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Abstract

The reliability of future processors is threatened by de-
creasing transistor robustness. Current architectures focus
on delivering high performance at low cost; lifetime device
reliability is a secondary concern. As the rate of permanent
hardware faults increases, robustness will become a first
class constraint for even low-cost systems. Current research
into reliable architectures has focused on ad-hoc solutions
to improve designs without altering their centralized con-
trol logic. Unfortunately, this centralized control presents a
single point of failure, which limits long-term robustness.

To address this issue, we introduce Viper, an architecture
built from a redundant collection of fine-grained hardware
components. Instructions are perceived as customers that
require a sequence of services in order to properly execute.
The hardware components vie to perform what services they
can, dynamically forming virtual pipelines that avoid defec-
tive hardware. This is done using distributed control logic,
which avoids a single point of failure by construction.

Viper can tolerate a high number of permanent faults
due to its inherent redundancy. As fault counts increase,
its performance degrades more gracefully than traditional
centralized-logic architectures. We estimate that fault rates
higher than one permanent faults per 12 million transistors,
on average, cause the throughput of a classic CMP design
to fall below that of a Viper design of similar size.

1 Introduction
Through tremendous efforts, Moore’s Law has contin-

ued to hold, allowing denser transistor integration in each
successive silicon generation. Unfortunately, this leads to
increased current and power densities, negatively affecting
the reliability of already fragile nanoscale transistors [6].

The reliability of future processors is also threatened
by the growing fragility of individual components. Large
scale studies of have already shown that existing processors
are susceptible to error rates that are orders of magnitude
higher than previously assumed [22]. Furthermore, leading
technology experts warn that device robustness may decline
even further for technology nodes below 32nm [6, 34].

As permanent failures in transistors and wires become
more likely, architects’ design priorities must shift to con-

sider robustness as a primary constraint. Traditional solu-
tions for high-availability and mission-critical computers
address reliability through dual- or triple-modular redun-
dancy [2]. However, these solutions are far too costly to
be adopted in mainstream commercial systems, which will
require new low-cost architectures that can survive a large
number of hardware malfunctions.

Modern single-chip devices often contain several proces-
sors, providing a straightforward method for increasing re-
liability. In such designs, faulty cores can be disabled with-
out affecting the behavior of other portions of the machine.
This solution requires limited engineering effort and does
not significantly hinder either the performance or the power
budget of fault-free systems. However, because a single
fault can disable large portions of the design, this technique
does not scale well to higher fault rates [24].

Recent research on reliable processors has focused on
online tests [23], fault isolation [12], redundant functional
units [31] and runtime checks [1, 20]. Though these solu-
tions improve reliability, they still rely on centralized con-
trol logic: a single point of failure that can allow one fault
to disable an entire core.

To compare the reliability and performance of such so-
lutions, we statistically computed the maximum expected
throughput of a chip comprised of about 2 billion transis-
tors as a function of the number of hardware failures in the
device. A chip of this size could fit 128 standard in-order
cores, 42 in-order cores in a TMR configuration, 27 Bul-
letProof pipelines [31] or 30 StageNet pipelines [12] (the
latter two having a fault-free throughput equivalent to about
four in-order cores). Our estimation, presented in Figure
1, demonstrates that the maximum performance of the un-
protected design decreases steeply as the number of faults
increases, while the performance of TMR is extremely poor
throughout. The two hardened microarchitectures can better
cope with hardware failures, but as they rely on centralized
logic, they still suffer significant performance degradations
when subjected to a large number of faults.

In classic architectures, hardware components are tightly
interdependent for performance reasons. This challenges
our ability to isolate faulty components, as an error in one
part of the chip can effectively disable all other components
that depend on it. We must therefore relax both these con-
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Figure 1: Comparison of maximum throughput achievable for a
CMP of two billion transistors. The four analyzed configurations
are: 128 in-order cores with no extra fault-tolerance hardware, 42
sets of TMR in-order cores, 30 StageNets [12] or 27 BulletProof
pipelines [31].

straints if we wish to design processors that can tolerate
more than a few hundred faults per billion transistors.

To this end, we introduce Viper, a new architecture that
decouples the functionality of a pipeline and its control
logic. By removing the dependencies between all parts of
a core, it becomes possible to build a highly redundant,
error-resilient design that contains no single point of failure.
Specifically, this work makes the following contributions:

• We present a novel decoupled architecture that can
reconfigure itself around hardware errors.
• We propose a new execution paradigm where instruc-

tions are split into bundles, each with a list of under-
lying tasks it needs to complete. The decoupled hard-
ware components then complete these tasks.
• We demonstrate a fully distributed control logic de-

sign, which allows performance to degrade gracefully
without any single point of failure in the system.

In a similar experiment to that reported in Figure 1, we
found that Viper outperforms other reliable designs and sur-
passes the performance of a CMP built from in-order cores
after only 160 faults in a two billion transistor chip.

2 Viper Hardware Organization
Viper is based on a distributed execution engine that is

dynamically configured to route instructions towards func-
tioning hardware components. This allows Viper to degrade
performance gracefully when subjected to hardware errors.

Viper is a service-oriented microarchitecture, where in-
structions are presented as customers that use hardware
components to complete an ordered sequence of services.
For instance, a sequence of such services for a sim-
ple add instruction - add %al, [%ebx] - could be:
“fetch/decode instruction”, “retrieve value from registers”,
“load memory value”, “add two operands”, “write the result
back to a register” and, “compute the address of the next in-
struction”. From Viper’s perspective, an ISA consists of the
set of services required by its instructions.

Instead of pushing instructions through paths defined at
design time, as classic architectures do, Viper relies on a
flexible fabric composed of hardware clusters. These clus-
ters are loosely coupled via a reliable communication net-
work to form a dynamic execution engine.

Each cluster can accomplish one or more services and,
if faulty, can be disabled without affecting the rest of the

system. Additionally, a cluster providing multiple services
can be partially disabled and only used for instructions that
need its functioning services. Such a design greatly sim-
plifies fault isolation, as each cluster is fully independent.
In Viper, a program is always able to successfully execute
as long as the working hardware clusters can, in aggregate,
perform all the services required by its instructions. Life-
time system reliability can be arbitrarily improved by con-
necting more clusters.

Once an instruction is decoded, it is possible to know
which remaining services it needs, and the instruction can
be directed towards clusters that can provide these services.
The set of clusters that contribute to the completion of an
instruction form a virtual pipeline. Because clusters can be
distributed across the chip, it may take many more clock
cycles to transfer instruction information through these vir-
tual pipelines than through a traditional hardwired pipeline.
To mitigate this potential performance loss, Viper operates
on larger collections of instructions called bundles, which,
like basic blocks, typically end in control flow instructions.
Bundles can successfully execute as long as at least one
cluster can complete all their required services.

Functional units within a cluster can service a bundle’s
instructions out of order, and thus the maximum through-
put achievable by a single cluster matches that of an out-of-
order processor with an execution instruction window equal
to the maximum number of instructions in a bundle.

Moreover, Viper must be able to dynamically determine
which hardware clusters will participate in any particular
virtual pipeline. To avoid reliability-reducing centralized
logic, Viper utilizes a collection of distributed, indepen-
dent and robust structures called Bundle Scheduling Units
(BSUs). Each BSU has some amount of reliable memory
(e.g., ECC protected) that stores information such as the ser-
vices that its bundle needs to complete, its virtual pipeline
configuration, and the status of all operations performed on
the bundle up to this point. This information is used to con-
trol the execution of a single bundle of instructions as it
works its way to completion through its virtual pipeline.

Every BSU also has some amount of local logic that is
used to determine which hardware clusters will be used in
its bundle’s virtual pipeline. Clusters independently signal
their ability to complete particular services to each BSU.
The BSU then chooses, without consulting any centralized
logic, which clusters will form the virtual pipeline that will
service its bundle. This process is detailed in Section 3.

Viper can be partitioned into two parts:

1. A sea of redundant hardware clusters: hardware func-
tional units connected through a reliable communica-
tion medium. Each cluster can perform some of the
services required to execute instructions in the ISA.

2. Bundle Scheduling Units: memory elements that con-
tain the state of in-flight instruction bundles and store
the data necessary to schedule and organize the hard-
ware clusters that form a virtual pipeline. A live BSU
entry does not contain instructions or operands, but
only the information required to control the bundle’s
execution.
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Figure 2: Organization of a Viper system with several redundant
clusters that communicate through a mesh and that are connected
to the BSUs through a crossbar. Some of the clusters, such as the
ones capable of fetching instructions, have special connections to
external hardware elements.

Figure 2 presents a simple Viper design organized in a
mesh, where each colored service is replicated in multiple
identical clusters. BSUs are connected to the sea of clus-
ters through a crossbar, which allows each BSU to interact
with all clusters in the execution engine. Clusters that need
access to external modules are connected to them through
dedicated links. For instance, clusters capable of “fetching
instructions” are directly connected to the instruction cache,
and the register file and load/store queues are placed near
clusters that need fast access to these units. Finally, clus-
ters that support the “write memory operations” service are
connected to the load/store queue to allow stored values to
be written to memory once the related bundles are commit-
ted. Note that, depending on the layout of the hardware,
such special links might not have uniform communication
latency.

Viper is reliable because the clusters are redundant,
meaning that individual clusters can be disabled without
jeopardizing the design’s ability to execute instructions. As
long as all clusters and memory structures are redundant,
Viper does not present a single point of failure. In order to
maintain availability, Viper utilizes reliable communication
infrastructures (the mesh of clusters and the cluster-BSU
crossbar) and robust memory elements (BSU, LSQ, RF,
etc.). Several solutions have been proposed for generic re-
liable packet-switched interconnects [10, 38]. As this work
focuses on the basics of the Viper architecture, we do not
explore these mechanisms further.

We assume that all of Viper’s memory structures are
protected through ECC. Faults in the - rather small - con-
trol logic of these memory elements can be handled either
through replication or by disabling faulty entries. Since
memory elements in the RF and the LSQ are intrinsically re-
dundant, disabling some of them only affects performance.
Similarly, BSUs are also redundant and generic, so individ-
ual BSU entries can be deactivated without hindering the
design’s functionality.

In the following two sections we will illustrate how Viper
executes a program using a running example. We first ex-
plain the steps necessary to execute a bundle of instructions
and then detail how Viper handles special events such as
branch mispredictions and exceptions.

3 Regular Execution in Viper
For the sake of simplicity, the Viper design used in our

example provides only six services: “fetch”, “decode”, “re-
name”, “execute”, “commit”, and “write-back and memory
operations”. Even though the services used in this example
might resemble stages in a classic pipeline, it is important to
stress that our architecture does not impose any constraint
on how to partition services. This partition is an arbitrary
design choice and should be driven by considering: 1) func-
tionalities exposed by the ISA; 2) tasks accomplished by the
underlying hardware; 3) degree of reconfigurability needed
by the system. In Figure 3 we show the Viper design used
in this example: it contains four redundant copies of the six
different cluster types, each providing one of the services.

The program stream is dynamically partitioned into bun-
dles of instructions, which typically have basic block gran-
ularity. In Viper, each in-flight instruction bundle is associ-
ated with a live BSU entry. Figure 3.a shows the example
program’s three basic blocks. As bundles are created in or-
der, they are assigned a sequential Bundle ID (BID). Each
BID is paired with the thread ID of its process to form a
unique bundle identifier throughout the entire machine.

In this section we illustrate how Viper can maintain cor-
rect program flow for these three bundles (with BIDs 5,
6 and 7) and detail the generation of the virtual pipeline
for the second instruction bundle - which starts and ter-
minates with the instructions at addresses 0x4013d2 and
0x4013e0, respectively. The color coding of the instruc-
tion bundles in Figure 3.a matches the hardware resources
assigned to their execution and is maintained throughout all
steps shown in Figure 3. New events and BSU updates are
marked in red.

3.1 Bundle Creation
In this example, we assume that an instruction bundle

(with BID 5) has already successfully determined the start-
ing address of the next bundle. Therefore, program execu-
tion proceeds to the next basic block, which starts at ad-
dress 0x4013d2. Since a not-taken conditional branch
concludes bundle 5, the “NPC” (Next Program Counter)
field of its BSU stores the (correctly) predicted location, as
shown in Figure 3.b. Because the PC of the next bundle
is available, but no BSU has been assigned to it (the field
“Next BSU” is empty), bundle 5’s BSU assigns an available
BSU entry to the following bundle, as shown in Figure 3.c.
The mechanism for choosing the next BSU is described in
Section 3.4.2.

When a bundle is first assigned to a BSU entry, the only
two pieces of information available are: 1) the BSU entry
number of the previous bundle and 2) the PC of the first
instruction of the bundle. The former is needed because
live BSU entries form a chain of in-flight bundles. This al-
lows the system to track correct control flow and to commit
bundles in order. The latter information is needed by the
fetch component, as we discuss shortly. Since a new set
of clusters is needed to form the virtual pipeline for the new
bundle, the newly assigned BSU marks all required services
as unassigned. Figure 3.c shows that BSU 2 is assigned to
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4013c3: or     $0x50000,%eax

4013c8: testb  $0x0,(%rax,%rax,1)

4013cc: adc    %al,(%rax)

4013ce: add    %al,(%rax)

4013d0: je     4013eb

4013d2: imul   $0x30000,(%rcx),%ecx

4013d8: add    %al,1048576(%rip)

4013de: add    %al,(%rax)

4013e0: jne    4013fc

4013fc: imul   $0x20000,(%rcx),%ecx

401404: fadds  (%rax,%rax,1)

401406: jmp    4025f0 
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Figure 3: Virtual pipeline creation process for the second bundle in frame a. b) The BSU for bundle 5 creates the next bundle when the
address of the following basic block becomes available in next PC field. c) The new bundle is created in an available BSU. d) Functioning
and available hardware clusters in the system propose their services to the new bundle. e) Cluster F0 is selected to become part of the new
virtual pipeline. f) A subsequent proposal from D1 is accepted. Clusters are also notified by the BSU about the other clusters composing the
virtual pipeline. g) The clusters are configured to establish communication paths. h) After the configuration, a virtual pipeline is formed.
i) Finally, as F0 detects the last instruction in the bundle, it updates the BSU’s NPC field, which allows the next bundle to begin.

keep track of a new bundle (with BID 6), and therefore the
list of clusters assigned to its virtual pipeline is reset.

A similar process is also used to bootstrap Viper: when
starting the system, a bundle with BID 0 is assigned to a
BSU and its initial address is set to the reset address.

3.2 Virtual Pipeline Generation

A BSU entry assigned to control the execution of a new
bundle is in charge of constructing a virtual pipeline ca-
pable of providing at least all services required by its in-
structions. Virtual pipeline generation consists of select-
ing which hardware clusters will collaborate in executing
a bundle. Since using a centralized unit to perform this
procedure would constitute a single point of failure in the
system, Viper adopts a distributed mechanism to generate
virtual pipelines. This negotiation mechanism is based on

service proposals: clusters independently volunteer to exe-
cute services for a bundle in a live BSU.

3.2.1 Service Proposal

Several distributed mechanisms can be used to allow service
proposals to reach the BSUs - solutions based on exchange
of credits, token broadcasts or service queues could all fit
this purpose. For the sake of simplicity, and without losing
generality, we adopt a technique based on service queues
in this example. In such an implementation, a live BSU
enrolls all needed services in queues accessible through a
crossbar by both the hardware clusters and BSUs. BSUs
requesting clusters are arranged in ascending order based
on their BIDs, and service proposals from clusters are first
forwarded to the oldest BID.

In our example, as the bundle with BID 6 has just been
created, all six required services need to be assigned. Avail-



able clusters independently propose to service the BSUs
that are enrolled in the service queue. Each cluster main-
tains a list of the virtual pipelines that have accepted its pro-
posals, though a cluster can simultaneously be part of only
a limited number of virtual pipelines.

In our example, we assume that a cluster cannot pro-
pose its service to multiple BSUs: clusters F3, D2, R1,
E0, C2, and W3 are already assigned to the previous bundle
and therefore refrain from proposing their services to BSU
2. Nevertheless, any other available cluster (shown with a
white background) can propose its services to the service
queues, which redirect such proposals to needy BSUs. For
instance, in Figure 3.d we show two clusters, F0 and W2,
proposing their services to the bundle with BID 6. This
may occur because clusters initiate the proposal negotiation
independently, and therefore a BSU might receive multiple
service proposals at the same time.

After submitting a service proposal, a hardware cluster
changes its local status from “idle” to “pending” and waits
for an award message from the BSU. A service proposal
is not binding until a BSU notifies the proposing party; if
no service award is received within a timeout period, the
cluster considers its proposal rejected, and the service ne-
gotiation sequence is re-initiated.

3.2.2 Service Assignment

BSUs notify clusters accepted into the new virtual pipeline
with an award message. In order to correctly build a new
virtual pipeline, BSUs award clusters in the exact sequence
as their services will be performed on the bundle. For in-
stance, proposals for the “decode” service will not be ac-
cepted until the “fetch” service has been assigned to a clus-
ter. In our example, the BSU cannot accept W2’s proposal
(shown in Figure 3.d) and cluster W2 therefore automati-
cally returns to the “idle” state.

When BSU 2 chooses F0 to be included in its virtual
pipeline, it records that this cluster will accomplish the
“fetch” service for its bundle. Besides the notification that a
proposal has been accepted, confirmation messages carry
information needed by the clusters to perform their ser-
vice. Such information consists of either data fields directly
stored in the BSU or routing information needed to retrieve
data from other clusters. The former situation is shown in
Figure 3.e: as the BSU sends a notification to F0 that its pro-
posal was accepted, it also forwards to it the first memory
address of the bundle with BID 6.

The other services are assigned to clusters in a similar
fashion. Figure 3.e shows a service proposal sent by D1.
Some of the services - such as “fetch” - are common to all
bundles, while others can only be assigned once instructions
in a bundle have been fetched and decoded. As the list of
services is populated, functional hardware clusters are cho-
sen in order to construct a complete virtual pipeline.

3.2.3 Configuring the Sea of Clusters

Clusters are dynamically selected to service bundles, and
communication channels must be established between them
to transfer information through the virtual pipeline. To per-
form this task, each cluster needs to know which clusters

precede it in the virtual pipeline. In Figure 3.f we show
the BSU awarding its “decode” service to D1. This clus-
ter is told which cluster will “fetch” the instruction bundle,
in this case F0. D1 then establishes a connection with F0
through the reliable network, as shown in Figure 3.g.

All services are similarly assigned in an ordered fashion
and, as the BSU service list is filled, the sea of cluster is
configured to generate a complete virtual pipeline through
the network, as shown in Figure 3.h. Viper can concurrently
configure several independent active virtual pipelines, since
the BSUs and execution clusters operate autonomousl. Mul-
tiple virtual pipelines can work on a single program (as
shown in our example), or can simultaneously execute mul-
tiple threads.

As faults accumulate in a device, a bundle might require
a set of services that none of the execution clusters can pro-
vide alone. For instance, bundles 6 and 7 in our example
can only execute on clusters that can service both the add
and mul instructions. However, Viper can overcome this
problem as long as at least one cluster can execute each one
of the needed services. This case is addressed by cancel-
ing the execution of the unserviceable bundle and splitting
it into multiple bundles, each consisting of a single instruc-
tion. While this technique reduces performance, as virtual
pipeline creation overhead is not amortized across multiple
instructions, it maximizes system availability by minimiz-
ing the set of services necessary to complete each bundle.

3.3 Operand Tags Generation
Viper does not enforce execution ordering on the differ-

ent bundles, as long as 1) bundles belonging to the same
thread commit sequentially and 2) cluster allocation avoids
resource starvation. Thus, there is the opportunity for clus-
ters to concurrently work on multiple bundles from the same
program. For instance, in our example we show Viper con-
currently executing BIDs 5 and 6.

Viper can improve performance by exploiting a pro-
gram’s ILP and capitalizing on the available hardware re-
sources. However, this also creates inter-cluster data de-
pendencies, as operands produced by clusters in one virtual
pipeline might be needed by others. Viper utilizes operand
tags to distribute values within the sea of clusters.

Adopting a centralized rename unit is not feasible, as this
would create a single point of failure in the system. Thus,
we developed a BSU-based mechanism for generating and
distributing tags to values produced by bundles. Because
each bundle consists of an ordered sequence of instructions,
only values live at a bundle’s exit point can be used by fol-
lowing instructions. Thus, only live registers will have an
associated tag: if multiple instructions in one bundle write
to the same architectural register, only the last value pro-
duced is associated with a tag.

Each live BSU entry stores three tag versions for all the
architectural registers in the ISA: “input”, “generated” and
“output”. Compared to classical renaming schemes based
on mapping architectural to physical registers, the “input”
and “output” tags can be seen as two snapshots of a clas-
sic rename table: the first before and the second after the
execution of the entire bundle.
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4013e0: jne    4013fc

4013fc: imul   $0x20000,(%rcx),%ecx

401404: fadds  (%rax,%rax,1)

401406: jmp    4025f0 
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Bundle 

ID
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Next 

BSU

Prev 

BSU
BSU ID RA RB RC RD RA RB RC RD RA RB RC RD
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ID
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Next 
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BSU
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7 4013fc 4025f0 -- 23 11 5 9 3 - - - - - - - -

Figure 4: Distributed rename table for an ISA containing four architectural registers - RA, RB, RC, RD. Tags assigned to the registers in
previous bundles are used by the following to retrieve operands and solve data dependencies.

In Figure 4, we illustrate how the tag generation and dis-
tribution process works for the three bundles used in our
example for an ISA containing four architectural registers:
RA, RB, RC, and RD. The first tags, “input tags,” are used
to allow a bundle to retrieve its input operands: in our ex-
ample in Figure 4, the cluster fetching register values for
the instructions in the bundle with BID 5 will use tag “1” to
retrieve the value of register RA from the physical register
file, tag “5” to retrieve RB, and so forth.

The second set of tags, called “generated tags,” is used
only if instructions in a bundle write to architected regis-
ters. In our example, two instructions update RA: adc
%al,(%rax) first and add %al,(%rax) later. Be-
cause both of these instructions update the same register,
only the operand computed by the last operation - add
%al,(%rax) - needs to generate a new tag, 4. Tag gener-
ation could either be accomplished by the BSU or it can be
serviced by the clusters. Tag generation for two sequential
bundles must be serialized to guarantee program semantics.
Solutions to overcome operand aliasing are: 1) maintaining
the set of free tags in a memory array protected by ECC;
2) piggybacking a list of available tags in the live BSUs; 3)
generating a large number of tags with limited lifetime.

Finally, the “output tags” are associated with the
operands that can be used by subsequent bundles. Output
tags are produced by overwriting the input tags with any
newly generated ones. Output tags of one bundle are pro-
vided as input tags of the next, as shown in Figure 4.

The set of input tags in a BSU is also annotated with
the hardware cluster that produces the operand, thus avoid-
ing the need to broadcast operand requests to the entire sea
of clusters. A cluster working on a bundle will request its
input operands from both the register file and from the clus-
ters that contributed to previous bundles. Finally, operands
can be requested in advance, as tags are available from the
preceding bundle.

3.4 Bundle Termination
A bundle can terminate only if two conditions are met: 1)

all clusters assigned to its virtual pipeline finish servicing its
instructions; 2) all preceding bundles belonging to the same
thread have already terminated. If both these conditions are
met, a bundle’s instructions are then checked for exceptions.
If no exceptions are detected, the bundle is terminated atom-
ically, its instructions update the architectural register file

and its “store” operations are committed to memory. In the
example in Figure 3.h we show two bundles in-flight (with
BID 5 and 6). As instructions need to commit in program
order, bundle 6 is not allowed to terminate before its prede-
cessor, bundle 5. Bundle 5, on the other hand, is the oldest
bundle in flight (”Prev BSU” is empty) and can terminate as
soon as all the clusters in its virtual pipeline complete their
services.

It is worth noting that Viper does not need a reorder
buffer, as program order is enforced by terminating bundles
in sequential order.

3.4.1 Memory Operations

In order to enforce ordered accesses to memory and detect
address conflicts, our design includes one load and store
queue for each simultaneously supported thread. Each en-
try in the load queue keeps track of the cluster that gen-
erated the memory requests, so as to deliver the data re-
trieved from memory to the correct destination. Each entry
in the store buffer also maintains information about the bun-
dle that originated the store instruction, as memory updates
are committed or canceled at the bundle granularity. Be-
fore terminating, a bundle with pending store instructions
signals to the store buffer associated with its thread that its
memory operations can be committed. Such a signal will
cause all store instructions in the bundle to update the mem-
ory state in program order.

Since multiple bundles from the same program can ex-
ecute in parallel, the load and store queues might receive
misordered memory requests. This could cause a problem,
as the forwarding logic in the load and store buffer might
mistakenly: 1) forward to load instructions values produced
by later stores or 2) receive a sequence of stores that does
not reflect the program order. As the memory queue can-
not dynamically address these issues, they are resolved by
clearing all entries in the thread’s load and store queue and
canceling the execution of the conflicting bundles. In order
to ensure forward progress, the oldest canceled bundle re-
plays its execution starting from its original PC but is forced
to include only one instruction. This replay mechanism is
also used to handle exceptional events, such as page faults,
and is detailed in Section 4.



4013c3: or     $0x50000,%eax

4013c8: testb  $0x0,(%rax,%rax,1)

4013cc: adc    %al,(%rax)

4013ce: add    %al,(%rax)

4013d0: je     4013eb

4013d2: imul   $0x30000,(%rcx),%ecx

4013d8: add    %al,1048576(%rip)

4013de: add    %al,(%rax)

4013e0: jne    4013fc

Branch 

misprediction

a.

b. c. d.

F
e
tc
h

D
ec

o
d
e

R
e
n
am

e

E
xec

u
te

C
o
m
m
it

PC NPC

B
S
U
 ID

B
u
n
d
le
 ID

N
ex

t B
S
U

P
re
v B

S
U

W
B
 M
e
m

F3 D2 R1 E2 C24013c3 4013eb1 5 3 - W3

4013eb -3 7 - 1
- - - - -- -2 - - - -
- - - - - -

F0 F1 F2 F3

R0 R1 R2 R3

E0 E1 E2 E3

C0 C1 C2 C3

D0 D1 D2 D3

W0 W1 W2 W3

F
etch

D
e
co

d
e

R
en

a
m
e

E
x
ecu

te

C
o
m
m
it

PC NPC

B
S
U
 ID

B
u
n
d
le ID

N
e
xt B

S
U

P
rev B

S
U

W
B
 M

em

F3 D2 R1 E2 C24013c3 4013d21 5 2 - W3

- -3 - - -
F0 D1 R2 E1 C14013d2 4013fc2 6 - 1 W1
- - - - - -

F0 F1 F2 F3

R0 R1 R2 R3

E0 E1 E2 E3

C0 C1 C2 C3

D0 D1 D2 D3

W0 W1 W2 W3

Misprediction!

je 4013eb

BID 5

BID 6

F
e
tc
h

D
ec

o
d
e

R
e
n
am

e

E
xec

u
te

C
o
m
m
it

PC NPC

B
S
U
 ID

B
u
n
d
le
 ID

N
ex

t B
S
U

P
re
v B

S
U

W
B
 M
e
m

F3 D2 R1 E2 C24013c3 4013eb1 5 2 - W3

- -3 - - -
F0 D1 R2 E1 C14013d2 4013fc2 6 - 1 W1
- - - - - -

F0 F1 F2 F3

R0 R1 R2 R3

E0 E1 E2 E3

C0 C1 C2 C3

D0 D1 D2 D3

W0 W1 W2 W3

F
e
tc
h

D
ec

o
d
e

R
e
n
am

e

E
xec

u
te

C
o
m
m
it

PC NPC

B
S
U
 ID

B
u
n
d
le
 ID

N
ex

t B
S
U

P
re
v B

S
U

W
B
 M
e
m

F3 D2 R1 E2 C24013c3 4013eb1 5 - - W3

- -3 - - -
F0 D1 R2 E1 C14013d2 4013fc2 6 - 1 W1
- - - - - -

F0 F1 F2 F3

R0 R1 R2 R3

E0 E1 E2 E3

C0 C1 C2 C3

D0 D1 D2 D3

W0 W1 W2 W3

Figure 5: The cluster that detects a branch misprediction updates the program counter of its virtual pipeline (a), which consequently clears
the state of the following bundles (b) and resets the virtual pipelines for the misspeculated bundle (c). Finally, program flow is steered
towards the correct execution path (d).

3.4.2 Managing Bundle Sequence
Each live BSU maintains starting addresses for both its bun-
dle and the one immediately following. This latter value is
provided by the clusters performing the “fetch” service, as
they can recognize the end of a bundle at control flow in-
struction such as “jump”. Such clusters communicate the
starting address of the next bundle back to their BSU, as
shown in Figure 3.g: even before bundle 6 terminates, F0
can predict the starting address of the following basic block
- 0x4013fc in our example - updating the “NPC” field of
the BSU with this address. With this, the BSU can generate
a new bundle (in our example with BID 7), and continue
program execution.

BSU assignment is performed with the same mechanism
used for cluster service negotiation. An active BSU needing
to initiate a new bundle requests a new service, “initiate a
new bundle”, to the service negotiation system. Idle BSUs
will then propose to accomplish such a task, as previously
detailed in Section 3.2.1.

4 Handling Exceptional Events
Due to the fact that hardware clusters are fully decou-

pled, our architecture cannot rely on classic techniques -
such as broadcasts of clear signals - to flush stale instruc-
tions from the system and correct erroneous control flows.
In this section, we detail how Viper can resolve such events
through its BSUs.

4.1 Mispredicted Branches
Most processors require several cycles to resolve the tar-

get of instructions that modify control flow. This delay
might cause the system to start processing instructions from

an incorrect execution path: these instructions need to be
flushed as soon as a control flow misprediction is detected.

Similarly, Viper needs to cancel the execution of bundles
generated by misspeculated program paths. We use the ex-
ample shown in Figure 5 to illustrate how our architecture
can tackle such events. We assume that bundle 6 is mistak-
enly predicted to follow bundle 5, and that all services re-
quired by both virtual pipelines are already assigned to clus-
ters in the execution engine - Figure 5.a. Once a cluster in a
virtual pipeline resolves a branch target, it reports the com-
puted address to its BSU. This case is shown in Figure 5.a,
where cluster E0 reports to bundle 5 that the correct initial
address of the next basic block is 0x4013eb. If this target
address does not match the one stored in the NPC field of
the BSU, a bundle misprediction is detected - Figure 5.b.
All bundles generated from a mispredicted address - in our
example bundle 6 starting from address 0x4013d2 - are
canceled. Through the BSUs, the clusters composing vir-
tual pipelines of canceled bundles are notified to stop their
work and clear their state - Figure 5.c. Finally, the most
recent non-speculative bundle recovers program execution,
creating a new instruction bundle starting at the correct ba-
sic block address - Figure 5.d.

4.2 Exception and Trap Handling
Interrupts, exceptions, traps, and page faults must be

handled with particular attention. Without modifying the
bundle termination procedure, these events can cause the
system to deadlock. For instance, an instruction triggering
a page fault might prevent its entire bundle from terminat-
ing. To overcome this issue, a bundle affected by one or
more of these special events is canceled and split in mul-



tiple bundles, each including a single instruction from the
original basic block. The bundle containing the faulty in-
struction will then steer program execution to the correct
software handler. Other cases where bundles must contain
only a single instruction are system calls and uncacheable
memory accesses.

4.3 Runtime Failures

In this work we assume that multiple permanent faults
could hit any hardware component among the clusters, the
BSUs and the interconnect. As Viper’s goal is to maxi-
mize processor availability in the face of hardware faults,
we assume that other mechanisms will detect faulty hard-
ware components [17, 23, 31]. In our failure model, we as-
sume that a hardware component detected as faulty can be
disabled. Compared to previous solutions, our design pro-
vides an additional advantage to online testing, as it does
not require interrupting program execution. A cluster de-
tected as faulty for a particular service is disabled for that
service, and it will not propose to complete that service for
any BSU.

Our architecture can recover from an online fault through
checkpoint techniques such as ReVive and SafetyNet [26,
33]. In Viper, program state is distributed, as program coun-
ters are stored in the BSUs, while architectural register val-
ues are placed next to the hardware clusters: these can be
synchronized to a unique checkpoint state when bundles
commit. In the case of runtime fault detection, all in-flight
bundles are canceled and the faulty component is disabled.
Both Viper’s architectural state and memory system are re-
stored to a previous safe checkpoint, and the checkpointed
program counter is used to start a new bundle and restart
program execution.

5 Experimental Setup

We simulated a Viper implementation that uses the x86-
64 ISA to evaluate Viper’s performance and reliability. We
compared Viper against two similarly sized CMP designs
comprised of either 2-wide in-order or out-of-order cores.
We chose the former design as it constitutes the backbone
of a number of current many-core systems, such as the Intel
KNF and the Tilera TILE64 [3, 28]. We envision the latter
as the natural successor to in-order CMP cores, when future
technology nodes will allow the integration of a larger num-
ber of transistors, but performance returns from thread-level
parallelism wanes [7, 29].

We first study the effects of bundle size on Viper’s per-
formance and follow this with an evaluation of Viper’s area
overhead. Next, we compare the performance of Viper
against traditional CMPs comprised of in-order and out-
of-order cores. These tests measure the single-threaded
and multi-program performance of workloads from the
MiBench and SPEC CPU2006 benchmark suites [13, 15]
when executed on chips that contain no hardware faults.
However, because future CMPs are expected to experience
many transistor failures over their lifetime, we examine how
these systems react to hardware failures.

5.1 Hardware Model
The Viper architecture we evaluated in this work offers

only six services: “fetch”, “decode”, “tag generation”, “ex-
ecute”, “commit” and “write to memory”. Adding more
services would increase the reliability of the design, but we
left such analysis to future work. Our modeled Viper de-
sign includes five types of clusters. The first four services
are each executed by four different kinds of clusters, each
capable of performing a single service. The fifth type of
cluster can accomplish both the “commit” and the “write to
memory” services.

The sea of hardware clusters is organized in a mesh con-
nected through 256-bit wide links. Routes in the intercon-
nect can be warmed up before transmitting the data pack-
ets, so we modeled the cluster-to-cluster latency as one ex-
tra cycle of delay per hop, with data transmission between
clusters fully pipelined [21]. Communication between the
BSUs and the clusters requires very little bandwidth, since
it is limited to a few control bits. For these connections, we
used a crossbar with a latency of 4 cycles [39].

The Viper design we modeled adopts two optimizations
to improve efficiency and utilization:

1. Early virtual pipelines generation: service proposal ne-
gotiation can be performed ahead of time; for instance,
while clusters are working on previous bundles, thus
reducing their idle time.

2. Non-blocking instruction migration: instructions can
be transferred from a cluster to the next in the virtual
pipeline as soon as they complete, instead of waiting
for the whole bundle to be serviced.

Viper, the in-order and the OoO cores are modeled to
fetch, decode, execute and commit up to two instructions
per cycle. They are all clocked at 2 GHz. Each core con-
tains 2 integer pipelines, 2 FP units, 1 load/store unit and
32KB of L1D and L1I. In order to fairly compare Viper’s
performance against classic processors, each of the “exe-
cute” clusters in our design has functional units identical to
those in the in-order and OoO cores. Finally, in our per-
formance evaluation, we compare Viper against a baseline
OoO processor with a comparable instruction window - 64
ROB entries and 5 RS entries per functional unit. Both the
OoO machine and Viper’s “execute” clusters can issue up
to 5 instructions per cycle to the functional units.
5.2 Simulation Infrastructure

We developed a microarchitectural model of our design
in the gem5 simulator [5], relying on full timing simula-
tions in system-call emulation mode. The Viper system
modeled is based on the C++ implementation of the OoO
core provided by the original gem5 distribution. Building
on this model, we organized the system in fully decoupled
clusters and augmented it with the required communica-
tion infrastructures (inter-cluster mesh and crossbar) and the
BSUs. Timing models for all hardware components have
been modified to better match the deeper pipelines of typi-
cal of modern CISC processors [14]. The number of cycles
for each logical stage are listed in Table 1, and sum to a
minimum of 12 cycles.



Cluster Names Number of Viper area In-order area OOO area
clock cycles (transistors) (transistors) (transistors)

Fetch 3 4M 1.5M 4M
Decode 3 2.5M 2.5M 2.5M
Rename/Tag Generation 3 3M 0 3M
Execute Variable (min 1) 6.5M 6M 6.5M
Commit and load/store logic 2 4.5M 4.2M 5M
Switches 0.65M 0 0
Communication buffers 1.2M 0 0
Total pipeline 22.35M 14.2M 21M
Number pipelines 4 6 4
BSU 0.5M 0 0
Crossbar 0.12M 0 0
Total area 90.02M 85.2M 84M

Table 1: Area estimations and delay of the pipelines stages for the in-order and OoO designs and for Viper’s clusters
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Figure 6: a) Cumulative distribution of the basic block size in our benchmarks. b) Sensitivity study on the maximum number of instructions
allowed in Viper’s bundles.

6 Experimental Results
6.1 Design Choices

We first analyzed the benchmarks’ performance as a
function of the number of available BSUs. Because the
BSUs hold the dynamic state of bundles that are running
in parallel, their number directly affects the maximum ILP
achievable by the execution engine. We found that single-
threaded performance reaches a plateau for a system com-
posed of 4 BSUs for every full set of hardware clusters. The
minimum number of operational BSUs needed by our pro-
posed microarchitecture is 2. However, we estimated that a
Viper system with only 2 BSUs operates 24.4% slower on
average than one with 4 BSUs. Since the system analyzed in
this section supports up to four concurrent threads, a model
with 16 BSUs is used for all further experiments.

Another parameter to select is the maximum number of
instructions allowed in a single bundle. On one hand, bun-
dles with a large number of instructions have the potential to
depend less on operands produced by clusters in other vir-
tual pipelines. This can provide a significant advantage, as
it reduces instruction reliance on long latency inter-cluster
operand requests. On the other hand, partitioning program
execution in smaller bundles allows more clusters to exe-
cute instructions concurrently. This leads to a performance
tradeoff, which we analyzed through Pin [18] by gather-
ing statistics on the distribution of basic block sizes in our
benchmarks. Our finding are reported in Figure 6.a. More
than 95% of the dynamic basic blocks in our applications

are smaller than 16 instructions. We performed a sensitivity
study on how this parameter affects Viper’s performance,
and report our results in Figure 6.b. A slight performance
slowdown is shown for bundles larger than 16 instructions,
mostly due to the higher probability of conflicts between in-
structions in the load/store queue and to the higher costs of
recovering from canceled bundles.

6.2 Area
We measured the performance and reliability of small

CMPs with comparable transistor counts, as reported in Ta-
ble 1. All area estimations have been computed for a tech-
nology node of 65nm. According to our estimations, the
computational core of a CMP holds 90 million transistors,
which can fit: 4 complete sets of Viper clusters, 6 in-order
cores or 4 out-of-order processors. CACTI 5.3 was used to
estimate the area of memory structures, such as the BSU,
ROB and instruction buffers [37]. We estimated that Viper
hardware organization would increase the total area of the
CMP’s computational core by 7.2% compared to the one
composed of OoO processors.
Processor modifications - We compared the area of a sin-
gle set of Viper hardware clusters against two 64-bit x86
processors: an in-order core (similar to Intel’s Atom Sil-
verthorne core [14]) that requires 14.2 million transistors in
roughly 13mm2, and an out-of-order pipeline (scaled from
AMD’s Opteron Deerhound microarchitecture [16]) that re-
quires 21 million in roughly 19mm2.

Every cluster must include input and output buffers for
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Figure 7: IPC achievable by fault-free configurations of the in-order core, OoO core and Viper. IPC of the in-order core is used as baseline.

moving bundle data during execution, which adds an area
footprint of 0.31mm2. Additionally, as the data for inter-
cluster communication is already buffered, it needs only
simple MUX-based switches, which can be built using
about 150,000 transistors. One of these switches is re-
quired for each hardware cluster. In our model each clus-
ter is paired with a NoC router enhanced with the reliability
features in [10] and its area is estimated accordingly (40%
increase in size).
BSU - We modeled a BSU with 16 entries in these exper-
iments. The storage required for each entry is reported in
Table 2, and each entry is enhanced with 58 bits of ECC,
for a total storage of 1,536 bytes. The area footprint for this
structure has been estimated to be 0.52mm2.
Crossbar - Our design requires a crossbar connecting 20
clusters with 16 BSU entries. Detailed area estimation for
a comparably sized crossbar (18x18) reports a footprint of
0.12mm2 [27].

6.3 Fault Free Performance
Due to our detailed simulations, we limited our perfor-

mance and fault degradation experiments to CMPs com-
prising: 4 complete sets of Viper clusters, 6 in-order cores
or 4 out-of-order processors. We report the IPC achiev-
able by Viper when no faults are present in the design for
single-threaded and multi-programmed workloads. Figure
7 reports performance figures for single-threaded bench-
marks: Viper outperforms the in-order core in most work-
loads. The performance increase for the vast majority of
workloads is above 50% and is higher for benchmarks such
as 410.bwaves and 470.lbm that can expose high ILP and
MLP. An interesting exception is 436.cactusADM, which
does not perform well in this model of Viper. This bench-
mark is composed of large basic blocks [11], and their par-
allel execution in Viper increases the probability of replays
due to conflicts in the load/store queue.

A healthy Viper design loses an average of only 24% per-
formance compared to the OoO core, as reported in Figure
7. This is primarily due to the overhead of generating virtual
pipelines. Still, Viper’s ability to execute on multiple clus-
ters allows IPC improvements for 473.astar, 410.bwaves
and 433.milc. We believe that are many possible optimiza-
tions that could recover most of the other performance loss.

Figure 8 plots Viper’s throughput on multi-programmed
benchmarks. In this case we compare the aggregate IPC

Content Size [Bits]
Bundle ID 16
Basic block program count. 64
Next basic block program count. 64
Branch pred. data 4
Previous bundle 4
Next bundle 4
Virtual pipeline 7*6
Input Tags 16*24
Output Tags 16*24

Table 2: BSU storage: Since there are only 16 BSU in our im-
plementation, only 4 bits are needed to index other BSUs. Six
services are present in our design, each requiring 2 control bits
(assigned, proposal pending) and 5 bits to index the assigned hard-
ware cluster. Finally, 16-bit tags are maintained for the 24 registers
of the x86 architecture (9 “general purpose”, 6 “segment pointers”,
8 “MMX” and 1 for execution flags).

achievable by 4 sets of Viper clusters against 6 in-order
cores and 4 OoO pipelines. In this evaluation we run the
same copy of the program for the maximum number of
times allowed by the each of the three designs. For these
workloads Viper’s performance disadvantage compared to
OoO is more significant, as the higher hardware utilization
does not allow programs to execute bundles out of order.

Performance figures for Viper are - on average - lower
than for regular OoO CMP designs. However, state-of-
the-art reliable microarchitectures are only applicable to in-
order cores: compared to such previous solutions, Viper
provides a significant performance advantage [12, 31].

6.4 Faulty Behavior
To better compare the reliability and performance of

Viper against previous works, we measured the expected
throughput of four different designs for a chip of 2 billion
transistors. In Figure 9 we compare Viper against the fol-
lowing designs: in-order CMP, Bulletproof, StageNet and
Viper. As the graphs show, performance of the unprotected
solution, though initially higher, quickly degrades as the
number of faults increases. Performance degradation for
both Bulletproof and StageNet is more graceful, but their
reliance on centralized control logic affects performance as
the number of hardware errors grows. On the other hand,
thanks to its distributed control logic, Viper is capable of
maintaining higher performance even on silicon substrates
tainted by hundreds of permanent faults.
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Figure 8: IPC achieved in our experiments by fault-free configurations of the three different CMP systems using multi-programmed
benchmarks. These experiments are performed on similarly sized designs, containing respectively: 6 in-order cores, 4 OoO cores and 4
copies of all types of clusters in Viper. IPC of the in-order core is used as baseline.

7 Related Work
Mission critical and high-availability computers cur-

rently rely on coarse-grained redundancy to improve reli-
ability. Systems such as the HP NonStop and the IBM
zSeries depend on processors with many RAS (reliability,
availability, and serviceability) features [19], and often run
them in dual or triple modular redundant configurations
[2, 4]. They trade high area, power, and performance over-
heads for their required reliability. Moreover, due to the
coarse granularity of redundancy, such systems would still
be unable to perform well when every processor is subjected
to a high fault rate.

More recently, several research projects proposed low-
cost reliable processor designs. BulletProof targets VLIW
designs, but its scalability to dynamic out-of-order proces-
sors is not clear [31]. Other works on reliable CPUs only
focus on components with natural redundancy, such as the
reorder buffer, branch history table, caches and other arrays
of regular structures [8, 30]. Architectural core salvaging
maintains ISA compliance at the die level, but still presents
single points of failure due to its reliance on classic central-
ized control logic [25].

StageNet is a more radical approach to processor re-
liability that proposes to use a reconfigurable fabric con-
necting multiple identical pipelines in a multi-core machine
[12]. Broken pipeline stages are disabled, and the fab-
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Figure 9: Comparison between performance of unprotected in-
order cores (CMP), Bulletproof pipelines, StageNets and our solu-
tion, Viper.

ric is reconfigured offline to force programs to utilize the
functioning hardware. Unfortunately, this solution does not
scale to complex designs, such as OoO cores. Additionally,
control logic constitutes a single point of failure, the number
of threads supported by its fabric is limited by the number of
instruction fetch stages available, and redundant component
granularity cannot be varied beyond pipeline stages.

Viper’s execution model might seem similar to those
adopted by data-flow machines [9, 32, 35, 36]. Programs
running in any of these designs require binaries annotated
with architectural-specific information and thus they cannot
execute legacy binaries. Among these designs, Wavescalar
[35], is the only one that could dynamically avoid assigning
instructions to faulty processing elements. However, as in-
struction scheduling is managed by a centralized hash table,
this design also has a single point of failure.

8 Conclusions and Future Directions

In this work, we presented Viper, a novel microarchitec-
ture that uses a reconfigurable execution engine built from
redundant components steered by fully distributed control
logic. Instructions in this design are viewed as clients that
require a number of services. These customers are served
by the currently available hardware components, and a pro-
gram can successfully finish as long as its required services
can be executed by a dynamic collection of the available
components. Viper avoids a single point of failure by con-
struction, resulting in a complete distributed design while
maintaining high performance. Viper can tolerate numerous
hardware faults, and its performance degrades gracefully as
fault count increases.

There are a number of future directions for this research.
Viper’s performance could be improved by developing more
efficient and faster techniques for building virtual pipelines
and handling exceptions. We would also like to perform a
more thorough study of the reliability of our architecture
and investigate cluster reconfiguration granularity and its
tradeoff between performance and fault-tolerance. Finally,
we would like to better explore the performance advantages
available for workloads that can capitalize on Viper’s flexi-
ble execution engine.
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