Boolean Function Representation based on dig oint-support decompositions.*

Valeria Bertacco and Maurizio Damiani
Dipartimento di Elettronica ed Informatica
Universit di Padova, Via Gradenigo 6/A, 35131 Padova, ITALY
e-mail: brian@dei.unipd.it damiani@dei.unipd.it
Tel: +39 49 827 7829 Fax: +39 49 827 7699

Abstract

The Multi-Level Decomposition Diagrams (MLDDs)
presented in this paper provide a canonical representation
of Boolean functions while making explicit disjoint-support
decomposition. This representation can be directly mapped
to a canonical multi-level gate network of a logic function
with AND/OR or NOR-only (NAND-only) gates.

Using MLDDs we are able to reduce the memory oc-
cupation with respect to traditional ROBDDs for several
benchmark functions, by decomposing logic functions re-
cursively into simpler - and more condivisible - compo-
nents. Because of this property, analysis of the MLDD
graphs allowed us to sometimes identify new and better
variableordering for several benchmark circuits. e expect
the properties of MLDDs to be useful in several contexts,
most notably logic synthesis, technology mapping, and se-
guential hardware verification.

In this paper, we add to the basic ROBDD representa-
tion the capability of discovering the presencadbitrary,
multiple-level tree decompositions of functions. The rep-
resentation shares with ROBDDs canonicity, a directed-
acyclic graph structure, and a recursive construction tech-
nigue. Unlike ROBDDs, however, nodes may represent not
only two-input MUXes, but also unlimited-fanin OR / AND
(or NAND-only, NOR-only) gates. It is worth noting that,
because of gate-like nodes, our representation is essentially
a multiple-level circuit.

Through the use of a multiple-level NOR-only (or
NAND-only) decomposition, we maintain constant-time
complementation; and because of the tree decomposition,
the representation is significantly less order-sensitive than
ROBDDs. In particular, we identified a class of functions
for which the representation is totally independent from the
variable order chosen, and for which some difficult prob-
lems (like, Boolean NPN matching [19]) can be solved in

linear time. These features represent a substantial improve-
ment over the work [18], where a single-level OR decom-
position was used, and complementation was difficult.

Experimentally, we found that the new representation

Reduced, Ordered Binary Decision Diagrams (ROB- is memorywise significantly more compact than ROBDDs,
DDs) [1] are probably the most powerful data structure because decomposable functions can share components.
known so far for the manipulation of large logic functions, More interestingly, however, the new representation gives
and for this reason they have become pervasive in logic us some systematic and exact insight on the role of the in-
synthesis and verification environments [2, 3, 4, 5]. On- put variables of a logic function. This insight is deferred to
going research is attempting to extend their applicability to special-purpose heuristics (such as dynamic reordering) in
other domains, such as the solution of graph problems andthe case of ROBDDs.
integer-linear programming [6, 7]. The rest of the paper is organized as follows. Sec-

Still, some key inefficiencies (an exponential blowup tions 2 and 3 introduce disjoint-support decomposition and
for some classes of functions, the unpredictability of the MLDDs, respectively. Section 4 describes the procedures
ROBDD size and shape with respect to the variable order-used for MLDD manipulation, and eventually Section 5
ing chosen, etc ...) motivate an increasing research activ-presents the experimental results. Proofs of Theorems are
ity in this area. Research directions include in particular: deferred to the Appendix, for the sake of readability.

Efficient implementations [8, 9], development of ordering
heuristics [10, 11, 12], and alternative representations alto-
gether[13, 14, 15, 16, 17].

In [18], the authors presented an addition to the basic
ROBDD representation, based on the analogy of ROBDDs  The representation presented in this paper is based on the
with deterministic finite automata. The new representation notion of tree decomposition of a function. In this section,
was a counterpart of a nondeterministic automaton (hencewe introduce the basic definitions concerning this decom-
possibly more compact), in which a function rooted at each position.

ROBDD node was represented as a logic OR of simpler, We consider the decomposition of functions into the
disjoint-support components. NOR (NAND, OR, AND) of disjoint-support subfunctions,

OThis research was partially supported by the ESPRIT IIl Basic Re- whenever possible. This notion will lead to a recursive

search Programme of the EC under contract No. 9072 (Project GEPP{€.g. tree) decomposition style and to the definition of Multi
COM) and by CNR grant # 95.02061.CT07 Level Decomposition Diagrams (MLDDs).

1 Introduction

2 Digjoint support decompaosition




Definition 1. Let f : B™ — B denote a non-constant
Boolean function of n variables x4, - - -, z,,. e say that f
dependson z; if 9f/0x; is not identically 0. We call sup-
port of f (indicated by S(f)) the set of Boolean variables
f dependson. O

Definition 2. A set of non-constant functions { f1, - - - fx },
k > 1, with respective supports S(f;) is called a digoint-
support NOR decomposition of f if:

i+ fe=f SUENSH) =0, i #5(1)

A digoint support NOR decomposition is maximal if no
function f; isfurther decomposablein the OR of other func-
tions with digoint support. We define disjoint support OR,
AND, NAND decompositions in a similar fashion. We in-
dicate by Dnor(f) any such maximal decomposition. O

Example 1. The functionf = (ab + a’c)(d + e) has the
following disjoint-support decompositions:

e AND: f; = (ab+d'c) andfy = (d + e);
e NOR: f; = (ab+d'c) andfy = (d + €)';
o NAND and OR:{f}.

O

the decomposition tree. Smilarly we can define TD nanp
and TDanp/or. O

Theorem (1) below states an intuitive but relevant result.

Theorem 1. For agiven function f, thefollowing properties
hold:

1. thereisaunique Dnor ;
2. thereisa unique TDyor -

O

2.2 Tree-decomposablefunctions.

When decomposing a function, it may be possible that
the leaves of the decomposition reduce only to primary in-
puts or their complements. This is the case, for example, of
the functionF’ = (a+b)(c+d+e) = [(a+b)'+(c+d+e)']".

Definition 4. A logic function f(zi,...,z,) IS tree-
decomposableif the input subfunctionsof its TD yor belong
to the set {z1,...,zp,2,..., 2.}, i.e the set of inputs
variables and their complements. O

If a function is tree decomposable, then Theorem (1)
indicates that its decomposition tree J&k is a canon-
ical representation. Not every function,however, is tree-

In the rest of the paper, disjoint-support decompositions decomposable. For instance, the functios o't + c'd'e’
are referred to as decompositions, for short. Moreover, we cannot be represented as the NOR of any disjoint-support
focus only on NOR decomposition, as the results for the subfunctions. Hence, NOR decomposition trees are not a
other decompositions can be obtained readily by standarduniversal representation style. We can enlarge, however,

Boolean algebra.

2.1 Treedecompositions

Decomposition can be applied recursively to logic func-

tions. In this case, we obtain a representatiof' tlased on
a NOR tree.

Example2. The functionF = (a + b)(c'd' + e + f'g')

a
b

joN(o)

f
g

Figure 1. A recursively decomposable function.

the set of tree-representable functions as follows. Some-
times the complement of a non-decomposable function may
be decomposable. In this case the complemiéht =

(a + b)(c + d + e) is indeed tree-decomposable. We can
thus exploit the decomposability &' in representing the
Dnor Of F' by simply appending a NOT gate at the root of
the NOR tree. Fig. (2) shows the representation.

a
b

Figure 2. Recursive decomposition with a NOT at
root.

The only remaining question is whether the introduc-
tion of NOT gates at the root preserves canonicity, that is,

is recursively NOR decomposable. From the first decompo- whether a tree-decomposable function can have two decom-

sition we obtainf; = (e +b) andfy = [e + (c+ d)' +

position trees, one with a NOT at the root and another with-

(f + 9)''. These functions are then again decomposable out it. To this regard, the following result holds:

until reaching the input variables, as reported in Fig. (1).

Definition 3. A tree decomposition of a logic function
f is a recursive decomposition of f into a NOR-only tree
of subfunctions, where the functions at the inputs of each
NOR are maximally decomposed. We indicate by TDyor

Theorem 2. If a logic function F' is tree-decomposable,
then its complement F isnot. O

Because of Theorem (2), NOT gates can appear only at
the root or the leaves of the TNdr . Suppose, by contra-
diction, that a topology like in Fig. (3) were possible. In
this case, we could merge the NOR gate with N1. This



would indicate that that we had not decomposed maximally Boolean manipulation routines.

the function represented by the NOR N1. . i i )
ROBBD manipulation routines are based on a recursive

visit of the ROBDD functionsf. At each recursion, a vari-
able z is selected and the cofactofs, f, are evaluated.
Recursion is made fast because, by their very nature, ROB-
DDs allow constant-time cofactoring. If a function is rep-
resented by a NOR tree, instead, then cofactoring requires
assigning the value to the tree input and then propagating
Figure 3. An impossible topology for NOR decom- the effect {.e. , simulating) towards the output. This simu-
position trees. lation takes time proportional to the tree depth. In the im-
plementation section it will be seen how the knowledge of
a decomposition, however, helps compensating this more
Based on recursive g , we have now partioned logic  difficult cofactoring.
functions into three classes:

1. tree-decomposable functions; 3 Multi-Level Decomposition Diagrams
2. functions tree-decomposable with the use of NOT

gates; In this section we exploit tree decompositions to derive a
3. functions not tree-decomposable. new hybrid model for representing logic functions. We will

) . ) represent functions of the first and second class by a tree
In the next section, we describe how the notion of tree of NOR gates. Functions in the third class will be repre-
decomposition and decomposability is used for obtaining sented through the use of Shannon expansion with respect
a hybrid representation style for arbitrary logic functions. to some variable:, leading to BDD nodes. We then apply

This representation will contain NOR trees and BDD nodes. tree decomposition and Shannon expansion in order to each
We conclude this section with some observations on tree- cofactor f, and f5 recursively.

decomposable functions: .
Example3. The functionf = (a'b + ac'd’ + ¢'f')" has

Canonicity and variable orderings.

As mentioned, for tree-decomposable functions, the tree de- A abracd: b)c b '
composition is canonical. Moreover, unlike ROBDDs, the d ) )
tree representation is triviallyndependent from the vari- . .

able ordering. Indeed, even if a functidnis not entirely f )
tree-decomposable, the knowledge of a partial decomposi-
tion indicates ordering strategies for the input variables of
F. If F is decomposable as, sdy,= (f1 + f»)', then op-
timal orderings will place all the variables ¢§ on top of
those off; (or viceversa), and the size of the ROBDDIof

will be the sum of those of; and f,. Hence, it follows in
particular that the ROBDD of any tree-decomposable func-
tion, with an optimal variable ordering, is linear in the num-
ber of inputs.

Figure 4. a) Tree decomposition of the function in
Example (3). b) The same function with the addi-
tion of BDD nodes.

TDnor as in Fig. (4.a). Note that in no case we could fur-
ther decomposec’d’ + a'b’ because of the disjoint support
constraint. Applying Shannon expansion, in Fig. (4.b) we
obtain a TR for each input of MUX.O

The new structure we present in this paper explores tree
Boolean matching is an important step of technology map- decompositions of a given function. Because of its purpose
ping [19]. It consists of finding whether two functions we called it Multi-Level Decomposition Diagrams, MLDD.
f(z) andg(y) coincide after replacing the input variables We now define MLDDs based on |gr . In our drawings

y with a permutationPz of the input variableg:. Varia- of graphs, circles represent MUX vertices, while arrays of
tions of the problem include matching modulo complemen- squares represent NOR vertices.

tation of some inputs and of one of the functions, and it
is named NPN-matching (Negation, Permutation, Negation
matching). In general, this is a difficult problem, as it en-
tails enumerating the permutz(:lti)ons of th(e in)put vegtand
checking the equivalence gf(z) with g(Pz). For tree- . .
decomposable functions, clearly a match exists if and only NOR VeLt'Cqﬁt.han a '\r}l?_n[—)e[r)npty set of outgoing edges,
the trees representingandg are equal, except possibly for eachpaintingtoa '

the presence of input/ output inverters. Tree isomorphism MUX vertices have two outgoing edges, 0 and 1, and are
can be carried out in time linear in the size of the tree [20]. labeled by a Boolean variable.

More generally, a matching can exist onlygifcan be de-

composed in a fashion similar b Even a partial decom- A MLDD defines recursively a logic function with the fol-
posability of f is thus helpful. lowing rules:

Boolean matching.

Definition 5. AMLDD isadirected acyclic graph, with |eaf
vertices labeled by a Boolean constant or variable and two
kinds of internal vertices:



e A terminal vertex ¢t labeled by Boolean variable or The following result is a direct consequence of the

constant =z denotes the function z. canonicity of tree decompositions and reduction rules. We
e AMUXvertexm labeled by Boolean variable defines thus state it without proof, for the sake of conciseness:
the function: Theorem 3. Reduced Ordered Decomposed MLDDs are
canonical. O
Fp, = TFo(m) + Fy1(m) (2) The MLDD of a function matches a multi-level logic cir-
cuit in the obvious way. In Fig. (6.a) and (6.b) we reported
 ANORvertexn with k outgoing edges definesthe func- a MLDD and the corresponding gate-level network. Due
tion: to this evident correspondence, hereafter we will call graph

nodes indifferently vertices or gates.
Eo=Fi+t  +F (3) Example4. Fig. (6.a) represents the canonical MLDD

where f;, i = 1,...,k is the function defined by the
MLDD pointed by edge.

O

In a MLDD, while MUX vertices correspond to ROBDD
nodes, NOR vertices are a new feature of this model which &
emphasizes the tree decompositions of the function.

Just like ROBDDs, we imposeeduction rules andor-
dering rulesto MLDDs in order to obtain a more compact
canonical representation:

a) b) ©)

e There are no two identical subgraphs in the same
MLDD. Figure 6. a) The MLDD of the function in Example

. . . (4). b) A logic circuit view of the MLDD. c) lts
e There are no vertices with two or more outgoing edges  ROBDD.

pointing at the same MLDD .

e We impose a total ordering between variables labeling . _ . .
internal and terminal vertices of a MLDD. Each path [OF the functionf = (¢ + d)(ab" + d’¢’) + b with a lexi-
nodes in respect of this ordering and each variable is representing’d’. This is not ofteg th% case for simple fun%-
evaluated at most once on each path. P ga. P

tions. For more complex functions it is more likely to hap-
pen.
In Fig. (6.c) shows the corresponding ROBDD. The

a) b) MLDD has decomposed both cofactofs and f,. until
O © - lll|'ll o> [ [\ reaching the input variables .
.
3.1 Propertiesof MLDDs
Figure 5. Second reduction rule. a) Mux vertices. We conclude the section by pointing some results on
b) NOR vertices. Dnors that are useful for the construction of MLDD ma-
nipulation routines.
Theorem 4. Suppose {f1,-- -, fr} isa D of some function.

duction rule bears different consequences on the two kindsp o '

of internal vertices. As sketched in Fig. (5), a reduction of
a MUX vertex implies the deletion of the node. Thisis not taorem 5. I Dnor (f) = {fi,-- fu} U dpL,-- - pn)

the case for NOR vertices.
e . . and D = U , where g;
In addition to ROBDD-like rules, in order to grant . Z-:N‘fR_(_?)l jigf’...];gér];m;{pl’ ,Ph} gi #
canonicity we must impose decomposition rules: 7 ’ ’ ’ '
1 Dnor (f-9) = i)pl, o, pr U DNor ([(f1 + o+ i)'

e the subfunctions pointed by a NOR vertex must have (g1 4 - +a)']
disjoint support. None of them can be decomposed by 2. D\or (f +9)

a Dor; o)+ +.-+a))
¢ afunctionis represented by a MUX iff itis notdecom- 3. Let = denote a variable not in the support of f or g.
posable, nor its complement. Then:



Dnor (2'f + zg) = {p1,---,pn}U Dnor ([2'(f1 +
et ) g+ + )T {G? (jm dd opl, ml dd op2)
O 1 Xopc) = Dopl) N D(op2);
L, Senl T | B
: ) op2) = D(op opc);
TQS(ZO}EI'_H 6'+Le:t ﬁ—ﬁgnmteava”able’ v ¢ S(g), and Sip ifl (terminal case) return (D(opc) U term nal Value);
P =rTyg. ’ 5 rgs = conp.l ookup(opl, op2);
ifl (res !'= NULL) return opc) U res);
Duor (/) = {} U Dnor (9) L on var (opt) apzy. " (HXOPS) L TES)
O 8 i f| (topvar(opl) == x)
{
9 opll = evaltop(opl, 0); oplr = evaltop(opl, 1);
. 10 1} else
3.1.1 Complementation 11 opll = opl; oplr = opil;
The MLDD of a tree-decomposable function is triviglly ai}f (topvar(op2) == x) { symmetric case }
NOR tree, possibly with a NOT gate at the root. This@jlows ¢f t =OR (op1.l, op2.); right=0R (oplr, op2r)}
constant time and space complementation. 14 res = niddfind (left, right, x);
It is well known [8] that for MUX nodes, the insarion cgnp_i nsert (opl, op2, res);
of NOT gatesi(e. complement edges), can arise canbicity gt urn (D(opc) U Tes);
problems. To get around this problem we use NOT date

reduction rules similar to those of [8]. These are depicted in
Fig. (7).

Figure 8. Pseudocode of OR()

” -h o Aea A
‘ ‘ ‘ We also maintain a computed table, like that of standard
ROBDD procedures, where we store partial results. The

removal of common subfunctions also helps avoiding the
Figure 7. Equivalent MLDDs overfill of this table because we can exploit the generic sin-
gle entry of the tabld™’ + G' = H' for retrieving results of
every operatiofF' + f)' + (G + f)' = (H + f)' whenf
. . . varies, which consequently needs not be stored.
4 MLDD manipulation routines If the search in the computed table fails, we start recur-
sion. First of all we find the top variable of the operands,

As we have seen, this model has some of the ROBDD Which is immediate due to its encoding in the first element
features. Among these, a data structure that can be manipu©f the data structure.
lated through recursive procedures. Procedureeval t op(f, val ue) returns the MLDD
The data structure we implemented realizes vertices uni-Of function f,—.qiu. assuminge is the top var. off. This
formly with n-tuples, the first element being an integer, all Step corresponds to taking cofactors in ROBDDs. After re-
the others being pointers to other MLDDs. In the first el- cursion,m dd_fi nd() creates a MLDD from a top var.
ement we encode the type of node( , MUX or NOR and its cofactors. _
vertex), the number of elements in the n-tuple (for MUX  We now analyze in more detail these three steps, namely,
nodes it is always 2) and the top variable of the function terminal cases, cofactoring, and MLDD creation.

represented. Terminal cases and values depend on the operation we
We maintain the structure in strong canonical form,, are applying. For the BooledIR we recognize the follow-
two equivalent functions are identified by the same pointer, INg situations:
by the familiar hashing mechanism. terminal case return value
We have then implemented Boolean operation routines. opl=1, op2=1 1
As an example, Fig. (8) reports the pseudo-code for the | op1=0, op2=0 op2, opl
logic OR of two functions. o opl = op2 opl
Rows 1, 2 and 3 are the application of Theorem 5, case Jz,2 € DSD(opl’ ) ;2' € DSD(op2’) | 1

2. We seek common elements in the operands and remove

them from the recursive operation. This removal can result  Proceduresval t op() is responsible for cofactoring.

in faster execution because we have simpler operands. Its pseudo-code is reported in Fig. (9, and Fig. (10) shows
D( op) indicates the set of elements of the decomposi- its operation.eval t op() recursively goes down the tree

tion of op. In a NOR vertexop, it is the set of all outgoing  decomposition until it reaches the MUX node labeled with

pointers { indicate set operation of difference). the top variable of the MLDD, and it takes its cofactor. In
The situations for whiclop is a MUX is a special case. Fig. (10.a), this is the MUX labeled hy. Returning up

For a uniform management of the structure and functions from recursion, it substitutes NOR vertices with newly gen-

represented, we indicate B§op) of a MUX vertexop, a erated ones, while maintaining canonicity (the shaded gates

pointer to the complement of the function rooteapt of Fig. (10.b)).
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evalitop (m dd op, bool ean val ue) mddfipd(mdd left, mdd right, topwvar x)
{ {
ifl (opis a MIX node) return (op.value);1 f (lleft == right) return (left);
i |= element of op such that op.topvar = @p.i.|bpydirght == 0)
opr = evaltop(op.i, value); 3 newvertex = find.or create(0, 1, x);
D(lop) = D(op) \ op.i; 4 D(rles) = newwvertex U right;
D(res) = D(opr) U D(op); 5 retjurn(res);
rgturn (res); I
} 6 f (rlight == 1) { sinmlarly }
7 f (lleft == 1 or left == 0) { symetric case }
8 if (Teft ¢ D(right)) {
Figure 9. Pseudocode of eval top() ¢ D(rlight) = D(right) \ Teft;
10 newvertex = mddfind(1, right, x);
11 D(rles) = newvertex U left;
12 retjurn(res);
§ T 13 if (rlight c D(left)) { symretric case }
| = . 14| Dopd) = D(left) n D(right);
e R if (|[D(opc) =0 ) return( findor_create(left, right, x)
= 1ok D(lefft) = D(left) \ D(opc);
. . i 17 D(right) = D(right) \ D(opc);
i 18 newvertex = mddfind(left, right, x);
b b —= 19 D(res) = D(opc) U newvertex;
7, .\ 1o\ =T o returln(res);

Figure 10. An example of eval t 0 application .
& P P() app Figure 11. Pseudocode of m dd_fi nd()

The code ofeval t op() works as follows: Line 1
checks for end-of-recursion-cases. reaching of a MUX o ]
node from which we can take the requested cofactor. Other-MLDD. This is equivalent to:
wise we have to find the critical element in our NOR vertex
list to use for going down one level. Line 3 makes the re- oA a4+
cursive call with this critical element.
After recursion we substitute the critical element in the \\e have reported this case in Fig. (13.a).
list with the returned graph. For example if the critical el- Lines 14 - 20 deal with the other general case. Here we

ement was a MUX vertex we substitute it with its cofactor. have to search for common elements between left and right

While doing this work we may have to merge list and/or MLDD and to factor them out. This appli
. . . ) pplies case 3 of The-
check for special cases (for example if the returned graph IS Jrem 5. These steps are sketched in Fig. (13.b).

the constant 1, we simply return the constant 0) and main- As mentioned.eval t op() and i dd_find() re-

tain canonicity (reduction rules). . .
Procedure}rli (dd_fi nd() is )sketched in Fig. (11). It place cofactoring and the badi¢ nd .or create() op-

; - . NP tions in ROBDDs. While operations are trivial constant-
builds a MLDD trying to discover every possible ‘common EM&H0 =
term’ from the two cofactors. First of all, it checks for sim- ime in ROBDDs, they may také(d) time in MLDDs,
ple cases (rows 2 to 8). They are application of Theorem 6, WN€red denotes the tree depth. To this regard, we observe
For example, rows 2 to 5 examine the situationright = thatd is bound by the number of variables and it is rather
0.i.e . the function to generate = z' - left. With NOR small in practice (always 3 or less for the synthesis bench-
MLDD such a functionis givenby = (z +1; +---+1,,)’ marks). i i ) )
(I; are the components téft). Moreover, asOR is applied to pairs of nodes down in
We have represented these terminal cases in Fig. (12)_the graph, the support set of subfunctions will have fewer
findor create() provides the creation or retrieval of = €/€ments and so the number of calleteal t op() .

a MUX or a terminal vertex while keeping up to date @ Eyample5.  We have reported in Fig. (14) a maximal

unique table similar to that of ROBDD. depth tree decomposable functign= (((z1 + z2)T3 +
In rows 8 - 13 we check for one of the two general cases, 24T+ ... 0

where none of the cofactors is a constant. If the complement
of one cofactor is contained in the other as a unique element,

then there is a tree decomposition.
! PoSt 5 MLDDsversus ROBDDs

i+ x(r 4+ 4+ ry)
In this section we present some comparisons in repre-
where ry,rs,...,r, are the components of the right senting functions with MLDDs and ROBDDs.



Figure 12. Identification of D during traversal - ter-
minal cases

a) b)

Figure 13. Identification of D during traversal - gen-
eral cases

5.1 Exponential growth

In this subsection we contrast MLDDs with ROBDDs
with respect to a particular class of order-sensitive func-
tions, namely, the functions:

F = (21 +22) (23 +24) - - - (T2 1 + T2n) %)
It is well known that with an improper ordering of the vari-

ables (for example, placing the odd-labeled variables up

top) results in a ROBDD fot,, with over2™ nodes [1].
Moreover, in spite of the simplicity of the function, most
variable orderings foF’,, can be proved bad.

The MLDD for the function is shown in Fig. (15). It
consists of a two-level NOR circuitegar dless of the or-
der chosen for the variableg:; and it is always linear.

Example 6. Consider the functioff = (aA + bB)c’ +

(ab + AB)c, with an ordering of variables placirgon top.
Since f.—9 # fe=1, any ROBDD has the aspect shown
in Fig. (16.a). In general, we may think of a case where
the two cofactors look like a functiofi, of Eq. (5), but
with a different combination of products. Any ordering of
a, A,b, B which optimizes one branch is bound to be sub-
optimal for the other branch of the ROBDD. Fig. (16.b)
illustrates the MLDD for the same function. Both branches
are automatically decomposed optimally.

Figure 15. The PAD for the functions F,

5.2 Testson benchmark circuits

We have compared our new model with ROBDDs in a
number of benchmark circuits in terms of memory occu-
pation and CPU time needed to build the output function
graphs.

The benchmarks are divided in three sections: multi-
level circuits, two-level and a third section testing the com-
binational part of synchronous circuits. All these bench-
marks come from the IWLS91 benchmark suite [21].

The variable ordering chosen for these circuits was ob-
tained by applying the Berkeley ordering [3]. No variable
reordering took place, however, during the execution of any
package.

We have implemented our model and tested it against the
Carnegie-Mellon ROBDD package. We carried out com-
parisons on the actual memory occupation. We assumed
bare-bone implementations, in which in particular each
ROBDD node takes three machine words. Moreover ROB-
DDs have complement edges. With regards to MLDD ver-
tices, we assumed an implementation where each node con-

b)

Figure 16. a) ROBDD structure for the function of
Example (9). b) MLDD structure for the same func-
tion.



sists of an array. As mentioned, the first element stores in-
formations about the node, while other elements are point-
ers. This model also implements NOT gates through com-
plement edges.

CPU-time was taken on a HP Vectra 5/133 with
48Mbytes of RAM.

From Table 1, MLDDs turn out to be more compact on

average of 18%. Some benchmarks give particularly good
results, for exampleomp and pair, benchmarks which
TDnor is very effective in decomposing output functions
until reaching input variables or very simple functions.

The CPU time is always better for ROBDDs. Empiri-
cally we have found the following three reasons:

e We make internal recursions in the constructions of
MLDDs (eval top() andm ddfind()). Thus
the number of calls to key procedures for each com-
putation is higher.

e We have to manage arrays that in general have more
elements than ROBDDs. For example, hash functions
are more complex and also storing and retrieving from
computed table and unique table needs more time.

e The structure we use allows multiple paths from a cer-
tain node (NOR). On the other hand, with ROBDD the
path is unique. This is similar to simulation through a
NFA opposite to a DFA.

We have also implemented dynamic reordering in our
model with a sifting-based algorithm [12]. Over ROBDDs,
we have the advantage to know more about a ‘good variable
order’ directly from the data structure.

In table 2 we make comparisons using for each bench-
mark the order given by sifting (interestingly, it is different
for the two models). Variable ordering took place only at
the end of execution.

Results show that, after sifting, MLDDs improve slightly
further over ROBDDs. We think this is because during sift-
ing we exploit our better knowledge of the function’s struc-
ture and can avoid to go through orderings that give a small
advantage but block further improvements.

6 Conclusionsand futurework

MLDDs have proved themselves efficient in making ex-
plicit the Ds of logic functions.

This property allows us to reach a more compact, flexible
and robust graph-based representation.

Moreover, this representation is closely related to a mul-
tiple level circuit, and is more informative on the role of the
support variables of a function.

We expect these properties to be useful in diverse ap-

plications, most notably technology mapping for combina-
tional circuits and Boolean matching /reachability analysis
for verification / ATPG in sequential circuits.

7 Appendix

Proof of Theorem 1. The proof of the first assertion follows
by contradiction: We assume the existence of two distiRgh®,
namely,{fi, -, fp} and{g1, - -, g¢}, and show that this leads

Benchmar| ROBDD MLDD RATIOS
nodes mem |nodes mem nodes mem
MultiLevel
alu2 205 615 126 519 62.7% 18.5%
alu4 685 2055 511 1771 34.1% 16.0%
apex6 1171 3513 903 3377 29.7% 4.0%
apex7 555 1665 231 979 | 140.3% 70.1%
b9 181 543 75 452 | 141.3% 20.1%
C1355 45922137766 |44156 150231 4.0% -8.3%
C432 31178 93534 |16147 82676 93.1% 13.1%
C499 45922 137766 |44156 150231 4.0% -8.3%
c8 133 399 96 388 38.5% 2.8%
C880 12841 38523 | 9173 31476 40.0% 22.4%
cht 150 450 86 421 74.4% 6.9%
CM151 511 1533 285 1066 79.3% 43.8%
CM152 383 1149 284 1060 34.9% 8.4%
comp 5476 16428 434 1459 (1161.8% 1026.0%
count 204 612 187 703 9.1% -12.9%
DES 31508 94524 (28185 90660 11.8% 4.3%
example2 869 2607 223 1362 | 289.7% 91.4%
frgl 204 612 53 458 | 284.9% 33.6%
frg2 3714 11142 | 3149 10472 17.9% 6.4%
k2 28336 85008 |27437 86341 33% -1.5%
lal 138 414 63 284 | 119.0% 45.8%
Adderfds 457 1371 456 1372 0.2% -0.1%
pair 41128123384 | 8053 26641 | 410.7% 363.1%
pcler8 144 432 98 392 46.9% 10.2%
rot 12537 37611 | 7796 27463 60.8% 37.0%
sct 118 354 49 239 | 140.8% 48.1%
terml 638 1914 154 540 | 314.3% 254.4%
toolarge | 7096 21288 | 4876 18153 455% 17.3%
ttt2 205 615 115 565 78.3% 8.8%
vda 4345 13035 | 4203 13235 3.4% -1.5%
x1 1297 3891 223 1671 | 481.6% 132.9%
X4 683 2049 477 1825 43.2% 12.3%
TwolLevel
alud.pla 1197 3591 801 3294 49.4% 9.0%
apex5.pla| 2679 8037 | 1088 5259 | 146.2% 52.8%
clip.pla 226 678 148 664 52.7% 2.1%
e64.pla 1441 4323 66 2404 |2083.3% 79.8%
misex2.pla] 137 411 34 294 | 302.9% 39.8%
misex3.pla] 1301 3903 814 3929 59.8% -0.7%
sao2.pla 155 465 48 319 | 222.9% 45.8%
vg2.pla 1044 3132 520 2429 | 100.8% 28.9%
FS.M.
exl 769 2307 118 1785 | 551.7% 29.2%
ex2 375 1125 44 729 | 752.3% 54.3%
ex3 129 387 27 317 | 377.8% 22.1%
ex4 248 744 39 497 | 535.9% 49.7%
ex5 119 357 23 251 | 417.4% 42.2%
ex7 144 432 28 308 | 414.3% 40.3%
s1196 3387 10161 | 2216 9523 52.8% 6.7%
s1238 3087 9261 | 2018 8998 53.0% 2.9%
s1423 12708 38124 (10153 33116 25.2% 15.1%
s344 168 504 97 454 73.2% 11.0%
s420 152 456 76 340 | 100.0% 34.1%
s526 189 567 98 482 92.9% 17.6%
s713 903 2709 228 1480 | 296.1% 83.0%
s838 300 900 148 668 | 102.7% 34.7%
s953 474 1422 201 1302 | 135.8% 9.2%

Table 1. ROBDD vs. MLDD in size and performance
with Berkeley ordering




Benchmar ROBDD MLDD RATIOS
nodes mem [nodes mem nodes mem
MultiLevel
alu2 164 492 118 474 39.0% 3.8%
alu4 429 1287 349 1251 22.9% 2.9%
apex6 669 2007 537 2147 24.6% -6.5%
apex7 480 1440 157 760 | 205.7% 89.5%
b9 165 495 58 388 | 184.5% 27.6%
C1355 3046091380 |30043 95622 1.4% -4.4%
C432 1300 3900 | 247811054 -47.5% -64.7%
C499 3046091380 |30043 95622 1.4% -4.4%
c8 100 300 64 238 56.2% 26.1%
C880 6969 20907 | 4294 14392 62.3% 45.3%
cht 91 273 90 376 1.1% -27.4%
CM151 17 51 17 52 0.0% -1.9%
CM152 19 57 16 46 18.8% 23.9%
comp 152 456 66 381 | 130.3% 19.7%
count 82 246 87 339 5.7% -27.4%
DES 951528545 | 8058 28898 18.1% -1.2%
example2 646 1938 183 1061 | 253.0% 82.7%
frgl 186 558 41 337 | 353.7% 65.6%
frg2 1957 5871 790 3809 | 147.7% 54.1%
k2 1426 4278 617 3796 | 131.1% 12.7%
lal 94 282 42 232 | 123.8% 21.6%
Adderfds 502 1506 456 1372 10.1% 9.8%
pair 603218096 | 428315485 40.8% 16.9%
pcler8 130 390 64 324 | 103.1% 20.4%
rot 706921207 | 3708 14185 90.6% 49.5%
sct 53 159 33 187 60.6% -15.0%
terml 107 321 53 283 | 101.9% 13.4%
too_large | 1113 3339 578 2529 92.6% 32.0%
ttt2 158 474 60 381 | 163.3% 24.4%
vda 534 1602 289 1648 84.8% -2.8%
x1 682 2046 122 1004 | 459.0% 103.8%
x4 682 2046 216 1128 | 215.7% 81.4%
TwolLevel
alu4.pla 790 2370 515 2675 53.4% -11.4%
apex5.pla | 1440 4320 881 3935 63.5% 9.8%
clip.pla 170 510 66 276 | 157.6% 84.8%
eb4.pla 732 2196 66 2404 |1009.1% -8.7%
misex2.pla] 111 333 32 286 | 246.9% 16.4%
misex3.pla] 760 2280 185 1170 | 310.8% 94.9%
sao2.pla 133 399 45 289 | 195.6% 38.1%
vg2.pla 414 1242 59 403 | 601.7% 208.2%
FSM
exl 639 1917 104 1568 | 514.4% 22.3%
ex2 370 1110 44 711 | 740.9% 56.1%
ex3 129 387 27 316 | 377.8% 22.5%
ex4 239 717 36 477 | 563.9% 50.3%
ex5 108 324 23 249 | 369.6% 30.1%
ex7 128 384 28 301 | 357.1% 27.6%
s1196 806 2418 318 1862 | 153.5% 29.9%
s1238 813 2439 311 1812 | 161.4% 34.6%
s344 164 492 80 395 | 105.0% 24.6%
s420 179 537 75 337 | 138.7% 59.3%
s526 147 441 69 387 | 113.0% 14.0%
s713 747 2241 173 1110 | 331.8% 101.9%
s838 293 879 147 665 99.3% 32.2%
s953 498 1494 158 1081 | 215.2% 38.2%

Table 2. ROBDD vs. MLDD in size and performance
after dynamic reordering

necessarily to the violation of some properties of the functifpns
or g;.

It is not restrictive to assume that the two sgfs}, {g: } differ
becausen # fi,i =1,---,p. Since{f;}, {g:} are both decom-
positions off, it must be :

i+ +fo=qgn+ - +gq (6)
or equivalently,
i+ +for=qg+ - +gq. (7)

Since all functiong; have disjoint support, it is possible to find an
assignment of the variables 8(g2), S(g3), - - -, S(gq) such that

gi = 0,i = 2,---,q. Notice that the variables ifi(g1) have not
been assigned any value. Corresponding to this partial assignment,
Eq. (7) becomes:

fit+fh=n ©)

In Eqg. (8), f;" denotes the residue function obtained frgnwith
the aforementioned partial assignment.

We need now distinguish several cases, depending on the as-
sumptions on the structure of the left-hand side of Eq. (8).

Case 1). The left-hand side reduces to a constant. Henc®,

a constant, against the assumptions.

Case 2). The left-hand side contains two or more terms. Since
these terms must have disjoint suppat,is further decompos-
able, against the assumptions.

Case 3). The left-hand side reduces to a single term. It is not
restrictive to assume this term to f¢. If fi = fi, then we
haveg; = fi, against the assumption that differs from anyf;.
Hence, it must bg| # f1, and

S(g1) = S(f1) C S(f1) strictly.

We now show that also this case leads to a contradiction.
Consider a second assignment, zeroing all functifng # 1.
Eq. (7) now reduces to

9)

fi=gi+-+g;- (10)

By the same reasonings carried out so far, the r.h.s. of Eq. (10) can
contain only one term. We now show that this term musg;bédf,

by contradictionfi = g7, j # 1, then by Eq. (9) one would have

S(f1) = S(g5) > S(g1)

against the assumption gf, g; being disjoint-support. Hence, it
must bef; = gi. In this case, by reasonings similar to those
leading to Eq. (9), we get

S(f1) = S(gr) C S(g1) strictly

which contradicts Eq. (9). Hence; cannot differ from anyf;,
and the first point is proved.

The proof of the second statement follows by applying recur-
sively a Dyor to each off;. Since each D is unique, the tree
decomposition is also unique and the Theorem is proied.

Proof of Theorem 2. By contradiction. Suppose we have a
function F that is decomposable @& = (fi + f2)" with S(f1) N
S(f2) = 0 and such thaF" is also decomposable # = (g1 +
g2)" with S(g1) N S(g2) = 0. We have to prove a contradiction in
the equivalence:

(fr + f2), =91+ 92

For sake of readability, we defire= f,b = f5,c = g1,d = g»
and contradict:

(11)

(12)

(13)

a-b=c+d. (14)



We partition the supports of these functions in this way:

Sac S(a) N S(c)
Sea = S(a)nS(d)
See = S)NS(e)
Sea = S(b)NS(d)

Some of theS;; can be empty. In the rest of the proof we show
that Eqg. (14) implies that the support of at least one,df, ¢, d is
empty, against the assumptions.

To this end, we will rewrite Eq. (14) under different partial
assignments of the variables $;. For instance, by selecting an
assignment of(a) such thats = 1, we obtain:

b=cq+da (15)
wherec,, indicates the function obtained by assigning the vari-
ables ofS,. with values satisfyings = 1. The support ot, is
thenSp..

Similarly, we can choose another assignmenf i) so that
b =1 and obtain:

a=cp+dp. (16)
From Egs. (15) and (16), we have:
c+d=a-b=(co+dp)(ca +da). a7

We now find expressions farandd. We evaluatel to zero,
reducing the above equation to:

c=(cp +dpg)(ca +daar) - (18)

d.q is Obtained by assigning first the variablesSp,; and then
those inSy,. Due to the complete assignmedit,;r is a constant
(not necessarily 0). Similarly fod,, . So, in reducing the last
equation, we face four cases:

1. dog = dpgr = 1. Thenc = 1, i.e. its support set is empty
against the assumptions.
dad’ =0 anddbd/ = 1. Thenc = ¢,.

3. dog = 1anddyy = 0. Thenec = ¢p.

4. dog = dpy =0. Thenc = cq - cp.

Repeating the same procedure to Eq. (17) with the evaluation

of c to 0, we have the symmetric cases:

2.

1. Cae! = Cper = 1. Thend = 1.

2. ¢coer =0andcy,r = 1. Thend = d,.
3. Cacl = 1 andcbcr =0. Thend = db.
4. coor = Cper = 0. Thend = d, - dy.

Now we have to prove the contradiction using Eq. (17) for all
the possible combinations of these cases.

1. c=c,-cypandd = d, - dp.
c+d=1(co +dp)(ca+da) =ca-co+da-dy (19)

The contradiction becomes evident if, for example, we assign
e = 0,¢c, = 1andd, = 0, which leads tad, = 0, i.e

Sad = 0. A second assighment, = 1, ¢, = 0 andd, = 0,

leads tod, = 0, so that alsaS,; = 0. ThusS; = S.q U

Spa = 0; d would have to be a constant, a contradiction.

.c=cqandd =dg, - dp.
c+d=1(co +dp)(ca +do) =ca +do-dp (20)

Sincec = ¢, we know thatS,. = @ andc, is 0 or 1. We
consider both cases. df = 0 the equation above reduces to:

db(ca + da) = Cq +da . db

10

and evaluatingl, = 0 andd, = 0 we findc, = 0, hence
Sve = 0, and thereforeS(c) = Suc U Spe = 0.
If, instead,c, = 1 we have:

Ca+do =cCq +do-dp

Assigningc, = 0 andd, = 1 we findd, = 1,i.e. Sqq =0,
and thenS(a) = Sqq U Sac = 0, against the assumptions.
. ¢ =c¢q andd = d,. Then, S, = 0, Spq = D andS(a) =
S.cUS.q =0,i.e aisaconstant.
. c=cq,andd = d,.

c+d:(cb+db)(ca+da)20a+db (21)

and alsoS,. = 0 andSyq = 0. Sincec, andd, are con-
stants, we consider two cases:
¢y, = 1. Then

Ca+do =cq+dp

and evaluating,, = 0 we find thatd, is a constant, so that
S(a) = Sqa U Sec = 0, against the assumptions.
If, instead,c, = 0, we have

db(ca + da) =cCq + db .

Evaluatingd, = 0 we findc, =
S(c) = Sbe U Sac = 0.

All other situations are resolved by applying the same reason-
ing as in last case$l
Proof of Theorem 4. Consider removing a single element, say,
f1, from the set. The new sef>, - - -, fx}, is still a decomposi-
tion. Itis also maximal, for if any term were further decomposable,
then the same term would be decomposabléfin- - -, fi}, and
{f1, -, fr} would not be a DO
Proof of Theorem 5. We prove only the third result, the other
cases being conceptually similar. Clearly, the right-hand side of
the third equation is a NOR decomposition. Therefore, the only
issue is its maximality. None gfy, - - -, p», can be further decom-
posed, or else we would contradict the assumptionghat: - p,
appear in, say, Ror (f). The only candidate for further decom-
position is themy+1 = [z’ (fi + ... + fx) + (g1 +-- -+ g)']'-
Suppose, by contradiction, thaf1 has ar{z1, - -, 24} With
more than one element. In this cageappears in the support of
only one functiory;, say,z,. Hence,

0. ThenS,. = 0 and

= (z f+$g)r 0=

= (p1+ - +pntz+ - +2-1+ Zg2=0)
g = ($f+fcg)z 1=

= (p1+-+pntz+ - +2-1+ 2ga=1)

Since the termsy, - - -, z,—1 appear inf andg, they cannot coin-
cide with any off;, g;. But thenf andg would have two distinct
DnoRr S, already proved impossiblel

Proof of Theorem 6. The right-hand side is a disjoint-support
decomposition. Its maximality follows from the impossibility of
breaking downz or any term in Qor (g) into a sum of other
terms.O
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