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Abstract

The Multi-Level Decomposition Diagrams (MLDDs)
presented in this paper provide a canonical representation
of Boolean functions while making explicit disjoint-support
decomposition. This representation can be directly mapped
to a canonical multi-level gate network of a logic function
with AND/OR or NOR-only (NAND-only) gates.

Using MLDDs we are able to reduce the memory oc-
cupation with respect to traditional ROBDDs for several
benchmark functions, by decomposing logic functions re-
cursively into simpler - and more condivisible - compo-
nents. Because of this property, analysis of the MLDD
graphs allowed us to sometimes identify new and better
variable ordering for several benchmark circuits. We expect
the properties of MLDDs to be useful in several contexts,
most notably logic synthesis, technology mapping, and se-
quential hardware verification.

1 Introduction

Reduced, Ordered Binary Decision Diagrams (ROB-
DDs) [1] are probably the most powerful data structure
known so far for the manipulation of large logic functions,
and for this reason they have become pervasive in logic
synthesis and verification environments [2, 3, 4, 5]. On-
going research is attempting to extend their applicability to
other domains, such as the solution of graph problems and
integer-linear programming [6, 7].

Still, some key inefficiencies (an exponential blowup
for some classes of functions, the unpredictability of the
ROBDD size and shape with respect to the variable order-
ing chosen, etc ...) motivate an increasing research activ-
ity in this area. Research directions include in particular:
Efficient implementations [8, 9], development of ordering
heuristics [10, 11, 12], and alternative representations alto-
gether [13, 14, 15, 16, 17].

In [18], the authors presented an addition to the basic
ROBDD representation, based on the analogy of ROBDDs
with deterministic finite automata. The new representation
was a counterpart of a nondeterministic automaton (hence
possibly more compact), in which a function rooted at each
ROBDD node was represented as a logic OR of simpler,
disjoint-support components.

0This research was partially supported by the ESPRIT III Basic Re-
search Programme of the EC under contract No. 9072 (Project GEPP-
COM) and by CNR grant # 95.02061.CT07

In this paper, we add to the basic ROBDD representa-
tion the capability of discovering the presence ofarbitrary,
multiple-level tree decompositions of functions. The rep-
resentation shares with ROBDDs canonicity, a directed-
acyclic graph structure, and a recursive construction tech-
nique. Unlike ROBDDs, however, nodes may represent not
only two-input MUXes, but also unlimited-fanin OR / AND
(or NAND-only, NOR-only) gates. It is worth noting that,
because of gate-like nodes, our representation is essentially
a multiple-level circuit.

Through the use of a multiple-level NOR-only (or
NAND-only) decomposition, we maintain constant-time
complementation; and because of the tree decomposition,
the representation is significantly less order-sensitive than
ROBDDs. In particular, we identified a class of functions
for which the representation is totally independent from the
variable order chosen, and for which some difficult prob-
lems (like, Boolean NPN matching [19]) can be solved in
linear time. These features represent a substantial improve-
ment over the work [18], where a single-level OR decom-
position was used, and complementation was difficult.

Experimentally, we found that the new representation
is memorywise significantly more compact than ROBDDs,
because decomposable functions can share components.
More interestingly, however, the new representation gives
us some systematic and exact insight on the role of the in-
put variables of a logic function. This insight is deferred to
special-purpose heuristics (such as dynamic reordering) in
the case of ROBDDs.

The rest of the paper is organized as follows. Sec-
tions 2 and 3 introduce disjoint-support decomposition and
MLDDs, respectively. Section 4 describes the procedures
used for MLDD manipulation, and eventually Section 5
presents the experimental results. Proofs of Theorems are
deferred to the Appendix, for the sake of readability.

2 Disjoint support decomposition

The representation presented in this paper is based on the
notion of tree decomposition of a function. In this section,
we introduce the basic definitions concerning this decom-
position.

We consider the decomposition of functions into the
NOR (NAND, OR, AND) of disjoint-support subfunctions,
whenever possible. This notion will lead to a recursive
(e.g. tree) decomposition style and to the definition of Multi
Level Decomposition Diagrams (MLDDs).
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Definition 1. Let f : Bn ! B denote a non-constant
Boolean function of n variables x1; � � � ; xn. We say that f
depends on xi if @f=@xi is not identically 0. We call sup-
port of f (indicated by S(f)) the set of Boolean variables
f depends on. 2

Definition 2. A set of non-constant functions ff1; � � � fkg,
k � 1, with respective supports S(fi) is called a disjoint-
support NOR decomposition of f if:

f1 + � � �+ fk = f ; S(fi) \ S(fj) = ;; i 6= j(1)

A disjoint support NOR decomposition is maximal if no
function fi is further decomposable in the OR of other func-
tions with disjoint support. We define disjoint support OR,
AND, NAND decompositions in a similar fashion. We in-
dicate by DNOR(f) any such maximal decomposition. 2

Example 1. The functionf = (ab + a0c)(d + e) has the
following disjoint-support decompositions:

� AND: f1 = (ab+ a0c) andf2 = (d+ e);

� NOR:f1 = (ab+ a0c)0 andf2 = (d+ e)0;

� NAND and OR:ffg.

2

In the rest of the paper, disjoint-support decompositions
are referred to as decompositions, for short. Moreover, we
focus only on NOR decomposition, as the results for the
other decompositions can be obtained readily by standard
Boolean algebra.

2.1 Tree decompositions

Decomposition can be applied recursively to logic func-
tions. In this case, we obtain a representation ofF based on
a NOR tree.

Example 2. The functionF = (a + b)(c0d0 + e + f 0g0)

e

a
b

c
d

f
g

Figure 1. A recursively decomposable function.

is recursively NOR decomposable. From the first decompo-
sition we obtainf1 = (a + b)0 andf2 = [e + (c + d)0 +
(f + g)0]0. These functions are then again decomposable
until reaching the input variables, as reported in Fig. (1).2

Definition 3. A tree decomposition of a logic function
f is a recursive decomposition of f into a NOR-only tree
of subfunctions, where the functions at the inputs of each
NOR are maximally decomposed. We indicate by TDNOR

the decomposition tree. Similarly we can define TDNAND
and TDAND/OR. 2

Theorem (1) below states an intuitive but relevant result.

Theorem 1. For a given function f , the following properties
hold:

1. there is a unique DNOR ;

2. there is a unique TDNOR .

2

2.2 Tree-decomposable functions.

When decomposing a function, it may be possible that
the leaves of the decomposition reduce only to primary in-
puts or their complements. This is the case, for example, of
the functionF = (a+b)(c+d+e) = [(a+b)0+(c+d+e)0]0.

Definition 4. A logic function f(x1; : : : ; xn) is tree-
decomposable if the input subfunctions of its TDNOR belong
to the set fx1; : : : ; xn; x01; : : : ; x

0

ng, i.e. the set of inputs
variables and their complements. 2

If a function is tree decomposable, then Theorem (1)
indicates that its decomposition tree TDNOR is a canon-
ical representation. Not every function,however, is tree-
decomposable. For instance, the functionF = a 0b0 + c0d0e0

cannot be represented as the NOR of any disjoint-support
subfunctions. Hence, NOR decomposition trees are not a
universal representation style. We can enlarge, however,
the set of tree-representable functions as follows. Some-
times the complement of a non-decomposable function may
be decomposable. In this case the complementF 0 =
(a + b)(c + d + e) is indeed tree-decomposable. We can
thus exploit the decomposability ofF 0 in representing the
DNOR of F by simply appending a NOT gate at the root of
the NOR tree. Fig. (2) shows the representation.

a
b

c

e
d

Figure 2. Recursive decomposition with a NOT at
root.

The only remaining question is whether the introduc-
tion of NOT gates at the root preserves canonicity, that is,
whether a tree-decomposable function can have two decom-
position trees, one with a NOT at the root and another with-
out it. To this regard, the following result holds:

Theorem 2. If a logic function F is tree-decomposable,
then its complement F is not. 2

Because of Theorem (2), NOT gates can appear only at
the root or the leaves of the TDNOR . Suppose, by contra-
diction, that a topology like in Fig. (3) were possible. In
this case, we could merge the NOR gateN2 with N1. This
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would indicate that that we had not decomposed maximally
the function represented by the NOR N1.

a
b
cN1

N2
a

b

c

Figure 3. An impossible topology for NOR decom-
position trees.

Based on recursive DNOR , we have now partioned logic
functions into three classes:

1. tree-decomposable functions;

2. functions tree-decomposable with the use of NOT
gates;

3. functions not tree-decomposable.

In the next section, we describe how the notion of tree
decomposition and decomposability is used for obtaining
a hybrid representation style for arbitrary logic functions.
This representation will contain NOR trees and BDD nodes.

We conclude this section with some observations on tree-
decomposable functions:

Canonicity and variable orderings.

As mentioned, for tree-decomposable functions, the tree de-
composition is canonical. Moreover, unlike ROBDDs, the
tree representation is triviallyindependent from the vari-
able ordering. Indeed, even if a functionF is not entirely
tree-decomposable, the knowledge of a partial decomposi-
tion indicates ordering strategies for the input variables of
F . If F is decomposable as, say,F = (f1 + f2)

0, then op-
timal orderings will place all the variables off1 on top of
those off2 (or viceversa), and the size of the ROBDD ofF
will be the sum of those off1 andf2. Hence, it follows in
particular that the ROBDD of any tree-decomposable func-
tion, with an optimal variable ordering, is linear in the num-
ber of inputs.

Boolean matching.

Boolean matching is an important step of technology map-
ping [19]. It consists of finding whether two functions
f(x) andg(y) coincide after replacing the input variables
y with a permutationPx of the input variablesx. Varia-
tions of the problem include matching modulo complemen-
tation of some inputs and of one of the functions, and it
is named NPN-matching (Negation, Permutation, Negation
matching). In general, this is a difficult problem, as it en-
tails enumerating the permutations of the input vectorx and
checking the equivalence off(x) with g(Px). For tree-
decomposable functions, clearly a match exists if and only
the trees representingf andg are equal, except possibly for
the presence of input/ output inverters. Tree isomorphism
can be carried out in time linear in the size of the tree [20].
More generally, a matching can exist only ifg can be de-
composed in a fashion similar tof . Even a partial decom-
posability off is thus helpful.

Boolean manipulation routines.

ROBBD manipulation routines are based on a recursive
visit of the ROBDD functionsf . At each recursion, a vari-
ablex is selected and the cofactorsfx; fx0 are evaluated.
Recursion is made fast because, by their very nature, ROB-
DDs allow constant-time cofactoring. If a function is rep-
resented by a NOR tree, instead, then cofactoring requires
assigning the value to the tree input and then propagating
the effect (i.e. , simulating) towards the output. This simu-
lation takes time proportional to the tree depth. In the im-
plementation section it will be seen how the knowledge of
a decomposition, however, helps compensating this more
difficult cofactoring.

3 Multi-Level Decomposition Diagrams

In this section we exploit tree decompositions to derive a
new hybrid model for representing logic functions. We will
represent functions of the first and second class by a tree
of NOR gates. Functions in the third class will be repre-
sented through the use of Shannon expansion with respect
to some variablex, leading to BDD nodes. We then apply
tree decomposition and Shannon expansion in order to each
cofactorfx andfx recursively.

Example 3. The functionf = (a0b + ac0d0 + e0f 0)0 has

c
d

e
f

b 0

1

a

e
f

a’b+ac’d’a) b)

Figure 4. a) Tree decomposition of the function in
Example (3). b) The same function with the addi-
tion of BDD nodes.

TDNOR as in Fig. (4.a). Note that in no case we could fur-
ther decomposeac0d0 + a0b0 because of the disjoint support
constraint. Applying Shannon expansion, in Fig. (4.b) we
obtain a TDNOR for each input of MUX.2

The new structure we present in this paper explores tree
decompositions of a given function. Because of its purpose
we called it Multi-Level Decomposition Diagrams, MLDD.
We now define MLDDs based on TDNOR . In our drawings
of graphs, circles represent MUX vertices, while arrays of
squares represent NOR vertices.

Definition 5. A MLDD is a directed acyclic graph, with leaf
vertices labeled by a Boolean constant or variable and two
kinds of internal vertices:

NOR vertices have a non-empty set of outgoing edges,
each pointing to a MLDD.

MUX vertices have two outgoing edges, 0 and 1, and are
labeled by a Boolean variable.

A MLDD defines recursively a logic function with the fol-
lowing rules:
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� A terminal vertex t labeled by Boolean variable or
constant x denotes the function x.

� A MUX vertexm labeled by Boolean variablex defines
the function:

Fm = xF0(m) + xF1(m) (2)

� A NOR vertex nwith k outgoing edges defines the func-
tion:

Fn = f1 + � � �+ fk (3)

where fi, i = 1; : : : ; k is the function defined by the
MLDD pointed by edge i.

2

In a MLDD, while MUX vertices correspond to ROBDD
nodes, NOR vertices are a new feature of this model which
emphasizes the tree decompositions of the function.

Just like ROBDDs, we imposereduction rules andor-
dering rules to MLDDs in order to obtain a more compact
canonical representation:

� There are no two identical subgraphs in the same
MLDD.

� There are no vertices with two or more outgoing edges
pointing at the same MLDD .

� We impose a total ordering between variables labeling
internal and terminal vertices of a MLDD. Each path
from root to a terminal must traverse subsequent MUX
nodes in respect of this ordering and each variable is
evaluated at most once on each path.

MLDD

MLDD

0 1

x

MLDDMLDDMLDDMLDD

a) b)

Figure 5. Second reduction rule. a) Mux vertices.
b) NOR vertices.

It is worth noting that, unlike ROBBDs, the second re-
duction rule bears different consequences on the two kinds
of internal vertices. As sketched in Fig. (5), a reduction of
a MUX vertex implies the deletion of the node. This is not
the case for NOR vertices.

In addition to ROBDD-like rules, in order to grant
canonicity we must impose decomposition rules:

� the subfunctions pointed by a NOR vertex must have
disjoint support. None of them can be decomposed by
a DOR;

� a function is represented by a MUX iff it is not decom-
posable, nor its complement.

The following result is a direct consequence of the
canonicity of tree decompositions and reduction rules. We
thus state it without proof, for the sake of conciseness:

Theorem 3. Reduced Ordered Decomposed MLDDs are
canonical. 2

The MLDD of a function matches a multi-level logic cir-
cuit in the obvious way. In Fig. (6.a) and (6.b) we reported
a MLDD and the corresponding gate-level network. Due
to this evident correspondence, hereafter we will call graph
nodes indifferently vertices or gates.

Example 4. Fig. (6.a) represents the canonical MLDD
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Figure 6. a) The MLDD of the function in Example
(4). b) A logic circuit view of the MLDD. c) Its
ROBDD.

for the functionf = (c + d)(ab0 + a0e0) + a0b with a lexi-
cographical ordering of the variables.

In this case two distinct subgraphs share the NOR gate
representingc0d0. This is not often the case for simple func-
tions. For more complex functions it is more likely to hap-
pen.

In Fig. (6.c) shows the corresponding ROBDD. The
MLDD has decomposed both cofactorsfa and fa0 until
reaching the input variables.2 .

3.1 Properties of MLDDs

We conclude the section by pointing some results on
DNORs that are useful for the construction of MLDD ma-
nipulation routines.

Theorem 4. Suppose ff1; � � � ; fkg is a D of some function.
Then, by erasing elements from the set, the new set is also a
D. 2

Theorem 5. If DNOR (f) = ff1; � � � ; fkg [ fp1; � � � ; phg
and DNOR (g) = fg1; � � � ; glg [ fp1; � � � ; phg, where gi 6=
fj ; i = 1; � � � l; j = 1; � � � k, then:

1. DNOR (f �g) = fp1; � � � ; phg[ DNOR ([(f1+ :::+fk)
0 �

(g1 + :::+ gl)
0]0).

2. DNOR (f + g) = fp1; � � � ; phg[ DNOR ([(f1 + ::: +
fk)

0 + (g1 + :::+ gl)
0]0)

3. Let x denote a variable not in the support of f or g.
Then:
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DNOR (x0f + xg) = fp1; � � � ; phg[ DNOR ([x0(f1 +
:::+ fk)

0 + x(g1 + � � �+ gl)
0]0)

2

Theorem 6. Let x denote a variable, x 62 S(g), and sup-
pose f = x+ g0. Then,

DNOR (f) = fxg [ DNOR (g) (4)

2

3.1.1 Complementation

The MLDD of a tree-decomposable function is trivially a
NOR tree, possibly with a NOT gate at the root. This allows
constant time and space complementation.

It is well known [8] that for MUX nodes, the insertion
of NOT gates (i.e. complement edges), can arise canonicity
problems. To get around this problem we use NOT gate
reduction rules similar to those of [8]. These are depicted in
Fig. (7).

10 1010 1010 1010 10

Figure 7. Equivalent MLDDs

4 MLDD manipulation routines

As we have seen, this model has some of the ROBDD
features. Among these, a data structure that can be manipu-
lated through recursive procedures.

The data structure we implemented realizes vertices uni-
formly with n-tuples, the first element being an integer, all
the others being pointers to other MLDDs. In the first el-
ement we encode the type of node (i.e. , MUX or NOR
vertex), the number of elements in the n-tuple (for MUX
nodes it is always 2) and the top variable of the function
represented.

We maintain the structure in strong canonical form,i.e. ,
two equivalent functions are identified by the same pointer,
by the familiar hashing mechanism.

We have then implemented Boolean operation routines.
As an example, Fig. (8) reports the pseudo-code for the
logic OR of two functions.

Rows 1, 2 and 3 are the application of Theorem 5, case
2. We seek common elements in the operands and remove
them from the recursive operation. This removal can result
in faster execution because we have simpler operands.
D(op) indicates the set of elements of the decomposi-

tion of op. In a NOR vertexop, it is the set of all outgoing
pointers (n indicate set operation of difference).

The situations for whichop is a MUX is a special case.
For a uniform management of the structure and functions
represented, we indicate asD(op) of a MUX vertexop, a
pointer to the complement of the function rooted atop.

� �

� �

OR (mldd op1, mldd op2)
f

1 D(opc) = D(op1) \ D(op2);
2 D(op1) = D(op1) n D(opc);
3 D(op2) = D(op2) n D(opc);
4 if (terminal case) return (D(opc) [ terminal value);
5 res = comp lookup(op1, op2);
6 if (res != NULL) return (D(opc) [ res);
7 x = top var(op1, op2);
8 if (top var(op1) == x)

f
9 op1 l = evaltop(op1, 0); op1 r = evaltop(op1, 1);
10 g else f
11 op1 l = op1; op1 r = op1;

g
12 if (top var(op2) == x) f symmetric case g
13 left=OR (op1 l, op2 l); right=OR (op1 r, op2 r);
14 res = mldd find (left, right, x);
15 comp insert (op1, op2, res);
16 return (D(opc) [ res);

g

Figure 8. Pseudocode of OR()

We also maintain a computed table, like that of standard
ROBDD procedures, where we store partial results. The
removal of common subfunctions also helps avoiding the
overfill of this table because we can exploit the generic sin-
gle entry of the tableF 0 +G0 = H 0 for retrieving results of
every operation(F + f)0 + (G + f)0 = (H + f)0 whenf
varies, which consequently needs not be stored.

If the search in the computed table fails, we start recur-
sion. First of all we find the top variable of the operands,
which is immediate due to its encoding in the first element
of the data structure.

Procedureevaltop(f, value) returns the MLDD
of functionfx=value assumingx is the top var. off . This
step corresponds to taking cofactors in ROBDDs. After re-
cursion,mldd find() creates a MLDD from a top var.
and its cofactors.

We now analyze in more detail these three steps, namely,
terminal cases, cofactoring, and MLDD creation.

Terminal cases and values depend on the operation we
are applying. For the BooleanOR we recognize the follow-
ing situations:

terminal case return value
op1=1, op2=1 1
op1=0, op2=0 op2, op1
op1 = op2 op1
9x; x 2 DSD(op1’);x0 2 DSD(op2’) 1

Procedureevaltop() is responsible for cofactoring.
Its pseudo-code is reported in Fig. (9, and Fig. (10) shows
its operation.evaltop() recursively goes down the tree
decomposition until it reaches the MUX node labeled with
the top variable of the MLDD, and it takes its cofactor. In
Fig. (10.a), this is the MUX labeled bya. Returning up
from recursion, it substitutes NOR vertices with newly gen-
erated ones, while maintaining canonicity (the shaded gates
of Fig. (10.b)).
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� �

� �

evaltop (mldd op, boolean value)
f

1 if (op is a MUX node) return (op.value);
2 i = element of op such that op.topvar = op.i.topvar;
3 opr = evaltop(op.i, value);
4 D(op) = D(op) n op.i;
5 D(res) = D(opr) [ D(op);
6 return (res);

g

Figure 9. Pseudocode of evaltop()
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mldd Fb

d

c

e

10

10

10

mldd Gmldd F

10

a
10

d

c

e

b

Figure 10. An example of evaltop() application

The code ofevaltop() works as follows: Line 1
checks for end-of-recursion-case,i.e. reaching of a MUX
node from which we can take the requested cofactor. Other-
wise we have to find the critical element in our NOR vertex
list to use for going down one level. Line 3 makes the re-
cursive call with this critical element.

After recursion we substitute the critical element in the
list with the returned graph. For example if the critical el-
ement was a MUX vertex we substitute it with its cofactor.
While doing this work we may have to merge list and/or
check for special cases (for example if the returned graph is
the constant 1, we simply return the constant 0) and main-
tain canonicity (reduction rules).

Proceduremldd find() is sketched in Fig. (11). It
builds a MLDD trying to discover every possible ‘common
term’ from the two cofactors. First of all, it checks for sim-
ple cases (rows 2 to 8). They are application of Theorem 6.
For example, rows 2 to 5 examine the situation forright =
0, i.e. , the function to generate isf = x 0 � left. With NOR
MLDD such a function is given byf = (x+ l1+ � � �+ ln)

0

(li are the components ofleft).
We have represented these terminal cases in Fig. (12).

find or create() provides the creation or retrieval of
a MUX or a terminal vertex while keeping up to date a
unique table similar to that of ROBDD.

In rows 8 - 13 we check for one of the two general cases,
where none of the cofactors is a constant. If the complement
of one cofactor is contained in the other as a unique element,
then there is a tree decomposition.

x0r0
1
+ x(r1 + r2 + � � �+ rn)

0

where r1; r2; : : : ; rn are the components of the right

� �

� �

mldd find(mldd left, mldd right, top var x)
f

1 if (left == right) return (left);
2 if (right == 0) f
3 new vertex = find or create(0, 1, x);
4 D(res) = new vertex [ right;
5 return(res);

g
6 if (right == 1) f similarly g
7 if (left == 1 or left == 0) f symmetric case g
8 if (left � D(right)) f
9 D(right) = D(right) n left;
10 new vertex = mldd find(1, right, x);
11 D(res) = new vertex [ left;
12 return(res);

g
13 if (right � D(left)) f symmetric case g
14 D(opc) = D(left) \ D(right);
15 if ( D(opc) = ; ) return( find or create(left, right, x) );
16 D(left) = D(left) n D(opc);
17 D(right) = D(right) n D(opc);
18 new vertex = mldd find(left, right, x);
19 D(res) = D(opc) [ new vertex;
20 return(res);

g

Figure 11. Pseudocode of mldd find()

MLDD. This is equivalent to:

r1 + [x0 + x(r2 + � � �+ rn)
0]0

We have reported this case in Fig. (13.a).
Lines 14 - 20 deal with the other general case. Here we

have to search for common elements between left and right
MLDD and to factor them out. This applies case 3 of The-
orem 5. These steps are sketched in Fig. (13.b).

As mentioned,evaltop() and mldd find() re-
place cofactoring and the basicfind or create() op-
erations in ROBDDs. While operations are trivial constant-
time in ROBDDs, they may takeO(d) time in MLDDs,
whered denotes the tree depth. To this regard, we observe
thatd is bound by the number of variables and it is rather
small in practice (always 3 or less for the synthesis bench-
marks).

Moreover, asOR is applied to pairs of nodes down in
the graph, the support set of subfunctions will have fewer
elements and so the number of calls toevaltop().

Example 5. We have reported in Fig. (14) a maximal
depth tree decomposable functionf = (((x1 + x2)x3 +
x4)x5 + : : :. 2

5 MLDDs versus ROBDDs

In this section we present some comparisons in repre-
senting functions with MLDDs and ROBDDs.
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Figure 13. Identi�cation of D during traversal - gen-
eral cases

5.1 Exponential growth

In this subsection we contrast MLDDs with ROBDDs
with respect to a particular class of order-sensitive func-
tions, namely, the functions:

Fn = (x1 + x2)(x3 + x4) � � � (x2n�1 + x2n) (5)

It is well known that with an improper ordering of the vari-
ables (for example, placing the odd-labeled variables up
top) results in a ROBDD forFn with over 2n nodes [1].
Moreover, in spite of the simplicity of the function, most
variable orderings forFn can be proved bad.

The MLDD for the function is shown in Fig. (15). It
consists of a two-level NOR circuit,regardless of the or-
der chosen for the variablesxi and it is always linear.

Example 6. Consider the functionf = (aA + bB)c0 +
(ab+AB)c, with an ordering of variables placingc on top.
Sincefc=0 6= fc=1, any ROBDD has the aspect shown
in Fig. (16.a). In general, we may think of a case where
the two cofactors look like a functionfn of Eq. (5), but
with a different combination of products. Any ordering of
a;A; b; B which optimizes one branch is bound to be sub-
optimal for the other branch of the ROBDD. Fig. (16.b)
illustrates the MLDD for the same function. Both branches
are automatically decomposed optimally.2

xx

x

x

x5

12

3

4

Figure 14. A maximal tree decomposable function

x1 x2 x3 x4 x2n-1 x2n

Figure 15. The PAD for the functions Fn

5.2 Tests on benchmark circuits

We have compared our new model with ROBDDs in a
number of benchmark circuits in terms of memory occu-
pation and CPU time needed to build the output function
graphs.

The benchmarks are divided in three sections: multi-
level circuits, two-level and a third section testing the com-
binational part of synchronous circuits. All these bench-
marks come from the IWLS91 benchmark suite [21].

The variable ordering chosen for these circuits was ob-
tained by applying the Berkeley ordering [3]. No variable
reordering took place, however, during the execution of any
package.

We have implemented our model and tested it against the
Carnegie-Mellon ROBDD package. We carried out com-
parisons on the actual memory occupation. We assumed
bare-bone implementations, in which in particular each
ROBDD node takes three machine words. Moreover ROB-
DDs have complement edges. With regards to MLDD ver-
tices, we assumed an implementation where each node con-

0
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1

1

1

1

1

10

bb
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A

b
0

1
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Aa b B a Bb A

c
0 1

a)
b)

Figure 16. a) ROBDD structure for the function of
Example (9). b) MLDD structure for the same func-
tion.
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sists of an array. As mentioned, the first element stores in-
formations about the node, while other elements are point-
ers. This model also implements NOT gates through com-
plement edges.

CPU-time was taken on a HP Vectra 5/133 with
48Mbytes of RAM.

From Table 1, MLDDs turn out to be more compact on
average of 18%. Some benchmarks give particularly good
results, for examplecomp and pair, benchmarks which
TDNOR is very effective in decomposing output functions
until reaching input variables or very simple functions.

The CPU time is always better for ROBDDs. Empiri-
cally we have found the following three reasons:

� We make internal recursions in the constructions of
MLDDs (evaltop() and mldd find()). Thus
the number of calls to key procedures for each com-
putation is higher.

� We have to manage arrays that in general have more
elements than ROBDDs. For example, hash functions
are more complex and also storing and retrieving from
computed table and unique table needs more time.

� The structure we use allows multiple paths from a cer-
tain node (NOR). On the other hand, with ROBDD the
path is unique. This is similar to simulation through a
NFA opposite to a DFA.

We have also implemented dynamic reordering in our
model with a sifting-based algorithm [12]. Over ROBDDs,
we have the advantage to know more about a ‘good variable
order’ directly from the data structure.

In table 2 we make comparisons using for each bench-
mark the order given by sifting (interestingly, it is different
for the two models). Variable ordering took place only at
the end of execution.

Results show that, after sifting, MLDDs improve slightly
further over ROBDDs. We think this is because during sift-
ing we exploit our better knowledge of the function’s struc-
ture and can avoid to go through orderings that give a small
advantage but block further improvements.

6 Conclusions and future work

MLDDs have proved themselves efficient in making ex-
plicit the Ds of logic functions.

This property allows us to reach a more compact, flexible
and robust graph-based representation.

Moreover, this representation is closely related to a mul-
tiple level circuit, and is more informative on the role of the
support variables of a function.

We expect these properties to be useful in diverse ap-
plications, most notably technology mapping for combina-
tional circuits and Boolean matching /reachability analysis
for verification / ATPG in sequential circuits.

7 Appendix

Proof of Theorem 1. The proof of the first assertion follows
by contradiction: We assume the existence of two distinct DNOR ,
namely,ff1; � � � ; fpg andfg1; � � � ; gqg, and show that this leads

Benchmark ROBDD MLDD RATIOS
nodes mem nodes mem nodes mem

MultiLevel
alu2 205 615 126 519 62.7% 18.5%
alu4 685 2055 511 1771 34.1% 16.0%
apex6 1171 3513 903 3377 29.7% 4.0%
apex7 555 1665 231 979 140.3% 70.1%
b9 181 543 75 452 141.3% 20.1%
C1355 45922 137766 44156 150231 4.0% -8.3%
C432 31178 93534 16147 82676 93.1% 13.1%
C499 45922 137766 44156 150231 4.0% -8.3%
c8 133 399 96 388 38.5% 2.8%
C880 12841 38523 9173 31476 40.0% 22.4%
cht 150 450 86 421 74.4% 6.9%
CM151 511 1533 285 1066 79.3% 43.8%
CM152 383 1149 284 1060 34.9% 8.4%
comp 5476 16428 434 1459 1161.8% 1026.0%
count 204 612 187 703 9.1% -12.9%
DES 31508 94524 28185 90660 11.8% 4.3%
example2 869 2607 223 1362 289.7% 91.4%
frg1 204 612 53 458 284.9% 33.6%
frg2 3714 11142 3149 10472 17.9% 6.4%
k2 28336 85008 27437 86341 3.3% -1.5%
lal 138 414 63 284 119.0% 45.8%
Adderfds 457 1371 456 1372 0.2% -0.1%
pair 41128 123384 8053 26641 410.7% 363.1%
pcler8 144 432 98 392 46.9% 10.2%
rot 12537 37611 7796 27463 60.8% 37.0%
sct 118 354 49 239 140.8% 48.1%
term1 638 1914 154 540 314.3% 254.4%
too large 7096 21288 4876 18153 45.5% 17.3%
ttt2 205 615 115 565 78.3% 8.8%
vda 4345 13035 4203 13235 3.4% -1.5%
x1 1297 3891 223 1671 481.6% 132.9%
x4 683 2049 477 1825 43.2% 12.3%
TwoLevel
alu4.pla 1197 3591 801 3294 49.4% 9.0%
apex5.pla 2679 8037 1088 5259 146.2% 52.8%
clip.pla 226 678 148 664 52.7% 2.1%
e64.pla 1441 4323 66 2404 2083.3% 79.8%
misex2.pla 137 411 34 294 302.9% 39.8%
misex3.pla 1301 3903 814 3929 59.8% -0.7%
sao2.pla 155 465 48 319 222.9% 45.8%
vg2.pla 1044 3132 520 2429 100.8% 28.9%
F.S.M.
ex1 769 2307 118 1785 551.7% 29.2%
ex2 375 1125 44 729 752.3% 54.3%
ex3 129 387 27 317 377.8% 22.1%
ex4 248 744 39 497 535.9% 49.7%
ex5 119 357 23 251 417.4% 42.2%
ex7 144 432 28 308 414.3% 40.3%
s1196 3387 10161 2216 9523 52.8% 6.7%
s1238 3087 9261 2018 8998 53.0% 2.9%
s1423 12708 38124 10153 33116 25.2% 15.1%
s344 168 504 97 454 73.2% 11.0%
s420 152 456 76 340 100.0% 34.1%
s526 189 567 98 482 92.9% 17.6%
s713 903 2709 228 1480 296.1% 83.0%
s838 300 900 148 668 102.7% 34.7%
s953 474 1422 201 1302 135.8% 9.2%

Table 1. ROBDD vs. MLDD in size and performance
with Berkeley ordering
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Benchmark ROBDD MLDD RATIOS
nodes mem nodes mem nodes mem

MultiLevel
alu2 164 492 118 474 39.0% 3.8%
alu4 429 1287 349 1251 22.9% 2.9%
apex6 669 2007 537 2147 24.6% -6.5%
apex7 480 1440 157 760 205.7% 89.5%
b9 165 495 58 388 184.5% 27.6%
C1355 30460 91380 30043 95622 1.4% -4.4%
C432 1300 3900 2478 11054 -47.5% -64.7%
C499 30460 91380 30043 95622 1.4% -4.4%
c8 100 300 64 238 56.2% 26.1%
C880 6969 20907 4294 14392 62.3% 45.3%
cht 91 273 90 376 1.1% -27.4%
CM151 17 51 17 52 0.0% -1.9%
CM152 19 57 16 46 18.8% 23.9%
comp 152 456 66 381 130.3% 19.7%
count 82 246 87 339 -5.7% -27.4%
DES 9515 28545 8058 28898 18.1% -1.2%
example2 646 1938 183 1061 253.0% 82.7%
frg1 186 558 41 337 353.7% 65.6%
frg2 1957 5871 790 3809 147.7% 54.1%
k2 1426 4278 617 3796 131.1% 12.7%
lal 94 282 42 232 123.8% 21.6%
Adderfds 502 1506 456 1372 10.1% 9.8%
pair 6032 18096 4283 15485 40.8% 16.9%
pcler8 130 390 64 324 103.1% 20.4%
rot 7069 21207 3708 14185 90.6% 49.5%
sct 53 159 33 187 60.6% -15.0%
term1 107 321 53 283 101.9% 13.4%
too large 1113 3339 578 2529 92.6% 32.0%
ttt2 158 474 60 381 163.3% 24.4%
vda 534 1602 289 1648 84.8% -2.8%
x1 682 2046 122 1004 459.0% 103.8%
x4 682 2046 216 1128 215.7% 81.4%
TwoLevel
alu4.pla 790 2370 515 2675 53.4% -11.4%
apex5.pla 1440 4320 881 3935 63.5% 9.8%
clip.pla 170 510 66 276 157.6% 84.8%
e64.pla 732 2196 66 2404 1009.1% -8.7%
misex2.pla 111 333 32 286 246.9% 16.4%
misex3.pla 760 2280 185 1170 310.8% 94.9%
sao2.pla 133 399 45 289 195.6% 38.1%
vg2.pla 414 1242 59 403 601.7% 208.2%
FSM
ex1 639 1917 104 1568 514.4% 22.3%
ex2 370 1110 44 711 740.9% 56.1%
ex3 129 387 27 316 377.8% 22.5%
ex4 239 717 36 477 563.9% 50.3%
ex5 108 324 23 249 369.6% 30.1%
ex7 128 384 28 301 357.1% 27.6%
s1196 806 2418 318 1862 153.5% 29.9%
s1238 813 2439 311 1812 161.4% 34.6%
s344 164 492 80 395 105.0% 24.6%
s420 179 537 75 337 138.7% 59.3%
s526 147 441 69 387 113.0% 14.0%
s713 747 2241 173 1110 331.8% 101.9%
s838 293 879 147 665 99.3% 32.2%
s953 498 1494 158 1081 215.2% 38.2%

Table 2. ROBDD vs. MLDD in size and performance
after dynamic reordering

necessarily to the violation of some properties of the functionsfi
or gi.

It is not restrictive to assume that the two setsffig; fgig differ
becauseg1 6= fi; i = 1; � � � ; p: Sinceffig; fgig are both decom-
positions off , it must be :

f1 + � � �+ fp = g1 + � � � + gq (6)

or equivalently,

f1 + � � �+ fp = g1 + � � � + gq : (7)

Since all functionsgi have disjoint support, it is possible to find an
assignment of the variables inS(g2); S(g3); � � � ; S(gq) such that
gi = 0; i = 2; � � � ; q. Notice that the variables inS(g1) have not
been assigned any value. Corresponding to this partial assignment,
Eq. (7) becomes:

f
�

1 + � � � + f
�

p = g1 (8)

In Eq. (8),f�i denotes the residue function obtained fromfi with
the aforementioned partial assignment.

We need now distinguish several cases, depending on the as-
sumptions on the structure of the left-hand side of Eq. (8).

Case 1). The left-hand side reduces to a constant. Hence,g1 is
a constant, against the assumptions.

Case 2). The left-hand side contains two or more terms. Since
these terms must have disjoint support,g1 is further decompos-
able, against the assumptions.

Case 3). The left-hand side reduces to a single term. It is not
restrictive to assume this term to bef�1 . If f1 = f�1 , then we
haveg1 = f1, against the assumption thatg1 differs from anyfi.
Hence, it must bef�1 6= f1, and

S(g1) = S(f�1 ) � S(f1) strictly: (9)

We now show that also this case leads to a contradiction.
Consider a second assignment, zeroing all functionsfj ; j 6= 1.

Eq. (7) now reduces to

f1 = g
�

1 + � � �+ g
�

q : (10)

By the same reasonings carried out so far, the r.h.s. of Eq. (10) can
contain only one term. We now show that this term must beg�1 . If,
by contradiction,f1 = g�j ; j 6= 1, then by Eq. (9) one would have

S(f1) = S(g�j ) � S(g1) (11)

against the assumption ofgi; gj being disjoint-support. Hence, it
must bef1 = g�1 . In this case, by reasonings similar to those
leading to Eq. (9), we get

S(f1) = S(g�1) � S(g1) strictly (12)

which contradicts Eq. (9). Hence,g1 cannot differ from anyfi,
and the first point is proved.

The proof of the second statement follows by applying recur-
sively a DNOR to each offi. Since each D is unique, the tree
decomposition is also unique and the Theorem is proved.2

Proof of Theorem 2. By contradiction. Suppose we have a
functionF that is decomposable asF = (f1 + f2)

0 with S(f1)\
S(f2) = ; and such thatF 0 is also decomposable asF 0 = (g1 +
g2)

0 with S(g1)\S(g2) = ;. We have to prove a contradiction in
the equivalence:

(f1 + f2)
0 = g1 + g2 (13)

For sake of readability, we definea = f 01, b = f 02, c = g1, d = g2
and contradict:

a � b = c + d : (14)
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We partition the supports of these functions in this way:

Sac = S(a) \ S(c)

Sad = S(a) \ S(d)

Sbc = S(b) \ S(c)

Sbd = S(b) \ S(d)

Some of theSij can be empty. In the rest of the proof we show
that Eq. (14) implies that the support of at least one ofa, b, c, d is
empty, against the assumptions.

To this end, we will rewrite Eq. (14) under different partial
assignments of the variables inSij . For instance, by selecting an
assignment ofS(a) such thata = 1, we obtain:

b = ca + da (15)

whereca indicates the function obtained by assigning inc the vari-
ables ofSac with values satisfyinga = 1. The support ofca is
thenSbc.

Similarly, we can choose another assignment inS(b) so that
b = 1 and obtain:

a = cb + db : (16)

From Eqs. (15) and (16), we have:

c+ d = a � b = (cb + db)(ca + da) : (17)

We now find expressions forc andd. We evaluated to zero,
reducing the above equation to:

c = (cb + dbd0 )(ca + dad0) : (18)

dad0 is obtained by assigning first the variables inSad and then
those inSbd. Due to the complete assignment,dad0 is a constant
(not necessarily 0). Similarly fordbd0 . So, in reducing the last
equation, we face four cases:

1. dad0 = dbd0 = 1. Thenc = 1, i.e. its support set is empty
against the assumptions.

2. dad0 = 0 anddbd0 = 1. Thenc = ca.
3. dad0 = 1 anddbd0 = 0. Thenc = cb.
4. dad0 = dbd0 = 0. Thenc = ca � cb.

Repeating the same procedure to Eq. (17) with the evaluation
of c to 0, we have the symmetric cases:

1. cac0 = cbc0 = 1. Thend = 1.
2. cac0 = 0 andcbc0 = 1. Thend = da.
3. cac0 = 1 andcbc0 = 0. Thend = db.
4. cac0 = cbc0 = 0. Thend = da � db.

Now we have to prove the contradiction using Eq. (17) for all
the possible combinations of these cases.

1. c = ca � cb andd = da � db.

c+ d = (cb + db)(ca + da) = ca � cb + da � db (19)

The contradiction becomes evident if, for example, we assign
cb = 0, ca = 1 andda = 0, which leads todb = 0, i.e.
Sad = ;. A second assignment,cb = 1, ca = 0 anddb = 0,
leads toda = 0, so that alsoSbd = ;. ThusSd = Sad [
Sbd = ;; d would have to be a constant, a contradiction.

2. c = ca andd = da � db.

c+ d = (cb + db)(ca + da) = ca + da � db (20)

Sincec = ca we know thatSac = ; andcb is 0 or 1. We
consider both cases. Ifcb = 0 the equation above reduces to:

db(ca + da) = ca + da � db

and evaluatingda = 0 anddb = 0 we find ca = 0, hence
Sbc = ;, and thereforeS(c) = Sac [ Sbc = ;.
If, instead,cb = 1 we have:

ca + da = ca + da � db

Assigningca = 0 andda = 1 we finddb = 1, i.e. Sad = ;,
and thenS(a) = Sad [ Sac = ;, against the assumptions.

3. c = ca andd = da. Then,Sac = ;, Sad = ; andS(a) =
Sac [ Sad = ;, i.e. a is a constant.

4. c = ca andd = db.

c+ d = (cb + db)(ca + da) = ca + db (21)

and alsoSac = ; andSbd = ;. Sincecb andda are con-
stants, we consider two cases:
cb = 1. Then

ca + da = ca + db

and evaluatingca = 0 we find thatdb is a constant, so that
S(a) = Sad [ Sac = ;, against the assumptions.
If, instead,cb = 0, we have

db(ca + da) = ca + db :

Evaluatingdb = 0 we find ca = 0. ThenSbc = ; and
S(c) = Sbc [ Sac = ;.

All other situations are resolved by applying the same reason-
ing as in last cases.2
Proof of Theorem 4. Consider removing a single element, say,
f1, from the set. The new set,ff2; � � � ; fkg, is still a decomposi-
tion. It is also maximal, for if any term were further decomposable,
then the same term would be decomposable inff1; � � � ; fkg, and
ff1; � � � ; fkg would not be a D.2
Proof of Theorem 5. We prove only the third result, the other
cases being conceptually similar. Clearly, the right-hand side of
the third equation is a NOR decomposition. Therefore, the only
issue is its maximality. None ofp1; � � � ; ph can be further decom-
posed, or else we would contradict the assumption thatp1; � � � ph
appear in, say, DNOR (f). The only candidate for further decom-
position is thenph+1 = [x0(f1 + :::+ fk)

0 + x(g1 + � � �+ gl)
0]0.

Suppose, by contradiction, thatph+1 has a DOR fz1; � � � ; zqg with
more than one element. In this case,x appears in the support of
only one functionzj , say,zq. Hence,

f = (x0f + xg)x=0 =

= (p1 + � � �+ ph + z1 + � � �+ zq�1 + zq;x=0)
0

g = (x0f + xg)x=1 =

= (p1 + � � �+ ph + z1 + � � �+ zq�1 + zq;x=1)
0

Since the termsz1; � � � ; zq�1 appear inf andg, they cannot coin-
cide with any offi; gj . But thenf andg would have two distinct
DNOR s, already proved impossible.2
Proof of Theorem 6. The right-hand side is a disjoint-support
decomposition. Its maximality follows from the impossibility of
breaking downx or any term in DNOR (g) into a sum of other
terms.2
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