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Abstract—The increasing complexity of modern digital circuits
has exacerbated the challenge of verifying the functionality of
these systems. To further compound the issue, shrinking time-to-
market constraints place increased pressure on attaining correct
devices in short amounts of time. As a result, more and more
of the burden of validation has shifted to the post-silicon stage,
when the first silicon prototypes of a design become available.
This validation phase brings much faster test execution speeds,
at the cost of a very limited ability of diagnosing bugs. To further
compound the problem, intermittent failures are not uncommon,
due to the physical nature of the device under validation.

In this work we propose ItHELPS, a solution to identify the
timing of a bug manifestation and the root signals responsible
for it in industry-size complex digital designs. We employ
a synergistic approach based on a machine-learning solution
(DBSCAN) paired with an adaptive refinement analysis, capable
of narrowing the location of a failure down to a handful of
signals, possibly buried deep within the design hierarchy. We
find experimentally that our approach outperforms the accuracy
of prior state-of-the-art solutions by two orders of magnitude.

I. INTRODUCTION

The extreme complexity of digital hardware, enabled by
the continued evolution of silicon technology, has lead to an
unbearable challenge in validating a design’s functionality.
Indeed, today, design teams are no longer striving to attain the
complete functional correctness of a new system, but simply
to minimize their exposure to escaped bugs, by validating as
many of the design’s features and operations as possible, in the
limited amount of time available. In this dooming scenario, post-
silicon validation – the validation occurring on manufactured
silicon prototypes – has become a promising venue to flush out
design bugs: testbenches execute several orders of magnitude
faster than on pre-silicon software simulators. As a result,
in post-silicon, it becomes possible to quickly execute vastly
more complex regression tests, reaching deep design states,
than it was previously conceivable. Because of these benefits,
post-silicon validation has quickly become a key validation
methodology in large design houses.

However, validating in post-silicon brings along some
challenging aspects: first of all, the scope of validation in this
stage is much broader than it was in pre-silicon, since at this
stage other physical aspects, such as manufacturing defects and
electrical effects, must also be validated along with the design
functionality. Second, the observability of the design is minimal,
so that diagnosing a bug, once it has manifested, can be
extremely difficult, often requiring weeks of engineering effort.
Last but not least, because the validation is now carried out
on a physical medium (the silicon prototype), additional noise
effects are superimposed to the operation of the prototype. This
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Fig. 1. ItHELPS overview. ItHELPS applies an iterative refinement flow
to the design under validation: first it elaborates on the data gathered by
focusing on a handful of signals over multiple runs of a same test – some
passing and some failing. Then, it generates new sets of signals to monitor for
subsequent batches of test runs. In the end, ItHELPS provides a ranked list of
signals, with the top ranked ones being the most likely root-cause of the bug.

aspect, in turn, may lead to intermittent bugs manifestations
when, running a same regression suite multiple times on the
same prototype, leads to observing the bug (that is, the incorrect
output) only occasionally. This latter problem, a bug that
cannot be consistently reproduced, is often unsurmountable,
since regression suites in post-silicon are extremely complex,
reaching states that are buried deep in the design, while physical
effects and other software processes make it almost impossible
to produce multiple identical executions. Hence, to address
intermittent bugs, it is necessary to devise diagnostic solutions
that do not rely on the ability to reproduce the bug.

Contributions. To alleviate the challenges outlined above,
this work proposes ItHELPS, an Iterative High-accuracy
Error Localization solution in Post-Silicon. ItHELPS employs
an iterative machine-learning based approach capable of
identifying the root cause of a test failure, whether functional
or of other nature, within a handful of signals, 3 on average in
our experiments. ItHELPS is an automated solution, capable
of localizing failures by mining the activity of the prototype
when running the same regression test multiple times. The
signal activity information that ItHELPS requires for this
purpose is very simple and many post-silicon frameworks
are already equipped to gather it [1]. Note that for ItHELPS
to attain results, it is not necessary that the outcome of the
test be consistent (passing or failing): indeed, if that were the
case, other mainstream validation solutions could be deployed
[2,3,4]. Compared to other solutions in this space, ItHELPS
provides significant advantages in (i) the quality and accuracy
of its results and (ii) its unique ability to diagnose bugs
whose root cause is buried deep in the design hierarchy. To
attain these results, ItHELPS leverages at its core a powerful
machine-learning algorithm, DBSCAN [5], coupled with a
novel, iterative refinement search flow.



II. OVERVIEW

Figure 1 presents an overview of ItHELPS’s flow. The design
under validation executes the same test multiple times: some
executions are successful (passing), that is, the checkers at
the end of the test do not detect any bug, others fail (failing).
ItHELPS consists of a software analysis framework capable
of analyzing the data in these two sets and pinpointing the
time and signals where the executions first started to diverge,
thus diagnosing the bug down to a small time window and a
handful of candidate root-cause signals.

We assume that the design is equipped with on-chip sensors
[1], as it is common in many post-silicon setups, capable of
monitoring a handful of signals at a time (16-32 is typical) over
the entire execution of the test. To minimize the performance
cost of transferring signal values off-chip, this data is often
compressed on-the-fly, transforming the sequence of signal
values, into a sequence of “signatures”. ItHELPS provides
an iterative refinement approach, whereby it analyzes the
signatures gathered during a set of executions and, based on
its findings, it selects a new set of signals to monitor for the
next batch of test runs. In each of its analyses, our solution
strives to determine if the behavior of any of signals that were
monitored was highly divergent between passing and failing
runs. If that is the case, the signal is probably close to the
region where the bug first manifested; thus, it was strongly
perturbed. ItHELPS then selects a new pool of signals in the
vicinity of the diverging one, in the hope to find other signals
diverging even more markedly, and triggers a new batch of
runs. This iterative approach is what enables ItHELPS to attain
such high quality of results compared to prior solutions [6,7].

A. Signal Tracing

Signal tracing has become a mainstream component of post-
silicon methodologies as a way of gaining observability over
a target portion of a design under validation. Techniques such
as scan-chains and JTAG interfaces [8,9], have been deployed
since the early days of post-silicon validation. A more recent
approach that is gaining adoption is based on multiplexing
signal tracing [1], which entails the use of built-in multiplexor
tree-structures to select a small number of internal signals from
a rich pool, and route them to the “surface” of the design
for off-chip transfer. In our solution, we assume this type of
signal monitoring approach, where only a handful of signals
can be inspected during each batch of test executions; and we
designed ItHELPS to be robust to this limitation.

The sequence of signal values traced are then compressed
into signatures [6,10]. Similarly to [6], we assume here that
the signature is calculated simply by counting the fraction of
cycles during which the signal assumes the logic value 1 during
a fixed length of the execution. Note, however, that ItHELPS is
agnostic to the specific signature mechanism, if any: a valuable
aspect is that the compression provides a high-pass filter on the
data, so that small signal differences are amplified into large
signature variations. Note that the counting window length for
the signature computation can be varied based on the time
granularity desired for the diagnosis.
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Fig. 2. ItHELPS components. Our solution includes a machine-learning
algorithm, DBSCAN, and the iterative refinement module, responsible for
selecting the next set of signals to be analyzed and the new density parameter
for DBSCAN. This module also maintains the list of candidate root-cause
signals, ranked by the highest density value at which they could be flagged.

III. ANALYSIS SOFTWARE

ItHELPs consists of two main components: the machine-
learning algorithm, DBSCAN, responsible for identifying
“outlier” signals, and a novel, adaptive refinement module,
which determines which set of signals should be monitored,
and the density parameter value that DBSCAN should use. This
latter module is also responsible for maintaining the list of
candidate root-cause signals, ranked by the associated density
parameter, and for terminating the analysis, when improvements
have dwindled. ItHELPS considers two sets of signatures, one
from executions that passed and one from those that failed.
Moreover, each signature in a set is indexed by which time
window of execution and which signal it corresponds to. For
each time window and signal we collect multiple signatures,
one for each execution of the test.

A. Identifying outliers with DBSCAN

DBSCAN, Density Based Spatial Clustering for Applications
with Noise [5], is an unsupervised density-based clustering
algorithm. It first considers all the passing signatures from a
batch of test runs and creates clusters based on their distribution,
analyzing one time window of execution and one signal1 at a
time. It then includes the signatures from failing runs and counts
the number that fall outside the clusters built in the previous
step. If this number raises above a user-defined threshold,
then the corresponding time window and signal is flagged as
potentially being at the root of the bug. The signal identified
in this process is associated to the density parameter used in
the analysis and added to the “root-cause signals list”, which
is sorted by decreasing density value. DBSCAN requires one
density parameter to generate the clusters. The parameter sets
a limit on how far a point can be from another to be in its
same cluster, and it is controlled by our refinement module.

For the purposes of our goals, DBSCAN is more powerful
than other popular clustering algorithms (e.g., k-means) because
it is flexible in the number of clusters it builds and it is capable
of ignoring noise that doesn’t fit into any of the clusters. Both
these aspects are particularly valuable for us because (i) each

1DBSCAN could analyze many signals at a time, but we found that single
signal analyses provide more accurate results.



design/test pair requires unique clustering criteria for its signals’
activity: some tests cause signals to have naturally occurring
high variations, while others have very uniform activity patterns.
Moreover, (ii) a certain amount of variation between different
executions is always present, and it is important that the
clustering algorithm is capable of identifying and disregarding
it. Note that DBSCAN cannot operate with varying density
clusters, thus, our solution provides a specific density parameter
for each clustering task, so to provide adaptivity over the
analysis. Finally, note also that because of the small number of
signals monitored during each batch of test runs (corresponding
to one analysis step), the execution of DBSCAN is quite fast
and, contrary to mainstream machine-learning applications, it
does not require to overcome algorithmic complexity challenges.
In selecting DBSCAN, we evaluated a number of machine-
learning solutions and we found that it was the most flexible
in adapting to variations in bug manifestation patterns. We
further strengthened the robustness of our diagnosis solution
by devising the iterative refinement approach discussed below.

B. Iterative refinement

The iterative refinement component of ItHELPS forces our
software to co-execute with the post-silicon validation platform:
after a batch of test runs is completed, ItHELPS clusters the
data and identifies potentially buggy signals; then, based on
those findings, it determines the new set of signals to monitor
in the next batch and the new density parameter. Finally, it
returns the control to the validation platform.

Our refinement algorithm traverses the design hierarchy with
a depth search approach. It first investigates signals in the top-
level module of the design. When a signal is flagged, it analyzes
its surrounding region in great detail, and then goes deeper
into modules connected with the signals identified. Whenever
a portion of the search completes, it backs up to the prior level
and continues the search.

The algorithm uses three different signal-selection modes,
based on the phase in which it is operating. During the uniform
search phase, when there is no flagged signal yet, signals to be
monitored are selected uniformly across the candidate modules.
For instance, at the beginning of the analysis, the candidate
module is the top-level module of the design. When a signal
is flagged by DBSCAN, the algorithm enters the targeted
search phase, and switches to focus on the surroundings of
the suspected signal, by selecting other signals from the same
module. Once all signals in that module have been considered,
our algorithm enters the refinement phase, where it reconsiders
all the flagged signals from the same target module, but with
an increased density value, so that it can be more selective in
its ranking. It iterates this process and increases the density
value until no signal can be flagged by DBSCAN anymore.
This phase allows ItHELPS to update the root-cause signals
list with accurate rankings, representing the highest density
value at which each signal was found buggy. When the analysis
completes in one module, ItHELPS strives to determine if the
root-cause of the bug lies in a lower-level module. It does
do by repeating the process, starting with the uniform search

phase, but considering signals from lower-level module(s) that
are connected to previously-identified buggy signals.

Our algorithm has two terminating conditions: (i) reaching
sufficient coverage of the top-level design module (set through
a user-defined threshold), or (ii) finding a signal that provides
very high confidence of being the root cause of the bug.

IV. EXPERIMENTAL EVALUATION

We evaluated ItHELPS on an Oracle’s OpenSPARC T2 64-
bit multi-threaded processor [11], targeting the analysis to
one of the cores. We emulated the post-silicon executions on
a software simulator, injecting a variety of functional (fxn),
electrical (elect) and manufacturing bugs (SA), either in the
design or directly in the simulation. The bugs’ names indicate
the module where they manifest and the type of bug. For our
tests, we used testcases distributed with the design. ItHELPS
was implemented in Python and ran on 8-core Intel Xeon CPUs
with 24GB of memory. Furthermore, we eliminated data signals
from the search space and excluded noisy signals through a
common-mode rejection filter applied on a per-test basis.

We initialized the density parameter to 0.10 (the range is
[0, 1)), and we set to 2 the minimum number of points that must
be within “density” distance in order to form a cluster. We chose
this value because we used 10 passing runs to do the clustering,
so we only had 10 points in each DBSCAN clustering task,
and we wanted to maintain the option of forming multiple
clusters. Our time windows were set to 512 clock cycles and,
in all cases, we were able to localize the bug within a single
time window. Note that we chose this value to strike a trade-off
between detection time accuracy and time to collect all the
signatures in our evaluation. We believe that ItHELPS would
perform equally well with finer granularity time windows.

PCXgnt SA 1 / 0.98 nobug nobug nobug nobug nobug nobug nobug nobug nobug

Xbar elect 1 / 0.98 2 / 0.98 1 / 0.38 0 1 / 0.98 0 0 1 / 0.70 0 2 / 0.98

PCXatm SA 1 / 0.98 2 / 0.98 2 / 0.98 1 / 0.98 1 / 0.98 1 / 0.98 0 0 0 1 / 0.98

PCX fxn 1 / 0.94 3 / 0.98 2 / 0.98 2 / 0.98 1 / 0.12 1 / 0.24 1 / 0.98 12 / 0.98 nobug 1 / 0.98

MMU fxn 0 3 / 0.90 2 / 0.90 nobug 0 nobug 2 / 0.90 2 / 0.90 0 2 / 0.90

DEC elec 1 / 0.70 0 0 0 1 / 0.22 1 / 0.22 4 / 0.70 0 0 2 / 0.50
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Fig. 3. ItHELPS root-cause signal detection. The table reports how
many signals ItHELPS flagged as buggy and the corresponding top density
value, for each test / bug pair. The green shading indicates that the pool of
signals included the correct root-cause signal. The far right column indicates
whether the bug was correctly diagnosed by ItHELPS over all tests.

The table of Figure 3 reports the findings of the analysis
for a number of test / bug pairs. In each slot of the table we
report the number of signals in the top rank of the root-cause
signals list, and the corresponding density value. The slots
marked in green correspond to analyses where ItHELPS was
able to identify the correct root-cause signal. The slots with a 0,
indicate that ItHELPS could not flag any signal, while nobug
means that the bug did not manifest and the test completely
always correctly. Note how in every case ItHELPS flags only a
handful of signals, in contrast with prior solutions [6,7], which
produce hundreds of candidate signals, each to be checked to
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Fig. 4. Root-cause signals list. The figure plots the rank (density
parameter) for the top 10 signals included in the root-cause signals list when
analyzing two bugs, MMU fxn and Xbar elect – averaged over all testbenches.
Note how quickly the density drops after just three signals.

confirm the diagnosis. Note that the first four bugs are injected
at the top level, while the next two are injected deeper in the
design hierarchy. The computation time required by ItHELPS
increases with the depth of injection of the bug, because of the
additional coverage required for each module and level visited
by the algorithm. Indeed, we considered two additional bugs
not reported in the table, a functional bug related to the branch
unit (BR fxn), and a manufacturing bug on the instruction
level-2 cache (I2$ SA): in both cases the root-cause signal lies
in the third level of the design hierarchy, and ItHELPS was
able to precisely pinpoint it. For instance, in the latter bug,
it identified a set of 10 signals with a rank of 0.90 or above,
which included the bug.

To gain further insights on how selective ItHELPS is in its
diagnosis, Figure 4 charts the rank corresponding to the top
10 signals in the root-cause signals list for two sample bugs,
MMU fxn and Xbar elect (averaged over all testbenches): note
how the rank drops quickly from 0.9 to 0.4-0.5 within just
four list entries. In most cases, the root-cause signal of the bug
is precisely the top-ranked signal(s) reported by ItHELPS.
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Fig. 5. ItHELPS diagnosis progress. The plot charts how the average
rank of the signals in the root-cause list grows throughout the analysis.

Finally, we present an example on how the signal ranking
evolves over time. For this example we considered again the
MMU fxn bug. This bug affects a signal that is defined one
level below the top module, within the memory management
unit of the core0 processor. Figure 5 plots the average ranking
of the signals included in the root-cause signals list over the
progression of ItHELPS analyses. Note how, at first, the density
parameter of the signals included is at 0.10, the initialization
value.When ItHELPS stumbles upon a promising outlier signal
(3,000 analyses), it focuses in its surroundings, quickly finding
a number of highly ranked signals. It then moves into the
second-level module that is connected to the signals flagged
so far, and works in this region, quickly raising the average
rank by adding more signals closely related to the bug. At
10,000 analyses, this level’s search is complete, and ItHELPS

has found the root-cause signal. It then resumes the inspection
at the top level to attain good coverage over its signals.

V. RELATED WORK

Post-silicon bug diagnosis has been studied in several recent
works [2,3,4,6,7], leveraging formal analysis techniques and
algorithms for signal tracing selection. A few of them address
the diagnosis problem in the presence of intermittent bug
manifestations, leveraging both statistical analysis and machine-
learning algorithms. In particular, [7] attacks the problem with
a popular clustering algorithm, K-means. However, the lack of
adaptivity of K-means has led the authors to a much weaker
localization ability compared to ItHELPS, with hundreds, up to
a thousand candidate root-signals. The comparison of passing
against failing test results has also been leveraged to detect
functional bugs in hardware designs, e.g., [12] records circuit
traces using scan chains, and then applies the comparison
to detect discrepancies. Finally, other authors have deployed
machine-learning solutions in the context of hardware design
problems. An example is [13], where the authors record the
stimuli in constrained-random tests and use them to build a
model of a test’s behavior. This model is then used to discern
how novel the test is w.r.t. tests already included in a regression,
with the ultimate goal of boosting coverage.

VI. CONCLUSIONS

We presented ItHELPS, an effective solution to diagnose
intermittent post-silicon bugs with high accuracy. ItHELPS
leverages a powerful machine-learning technique (DBSCAN)
paired with an iterative refinement algorithm to diagnose post-
silicon bugs to a handful of candidate root-cause signals,
possibly buried deep in the design hierarchy.
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