
Reversi: Post-Silicon Validation System for Modern Microprocessors
Ilya Wagner and Valeria Bertacco

University of Michigan
{iwagner, valeria}@umich.edu

Abstract— Verification remains an integral and crucial phase
of today’s microprocessor design and manufacturing process.
Unfortunately, with soaring design complexities and decreasing
time-to-market windows, today’s verification approaches are
incapable of fully validating a microprocessor before its release
to the public. Increasingly, post-silicon validation is deployed to
detect complex functional bugs in addition to exposing electrical
and manufacturing defects. This is due to the significantly
higher execution performance offered by post-silicon methods,
compared to pre-silicon approaches. Validation in the post-
silicon domain is predominantly carried out by executing
constrained-random test instruction sequences directly on a
hardware prototype. However, to identify errors, the state
obtained from executing tests directly in hardware must be
compared to the one produced by an architectural simulation
of the design’s golden model. Therefore, the speed of validation
is severely limited by the necessity of a costly simulation step.

In this work we address this bottleneck in the traditional
flow and present a novel solution for post-silicon validation that
exposes its native high performance. Our framework, called
Reversi, generates random programs in such a way that their
correct final state is known at generation time, eliminating the
need for architectural simulations. Our experiments show that
Reversi generates tests exposing more bugs faster, and can speed
up post-silicon validation by 20x compared to traditional flows.

I. INTRODUCTION

Verification remains an unavoidable, yet quite challenging
and time-consuming aspect of the microprocessor design and
fabrication process. With shortening product timelines and
increasing time-to-market pressure, processor manufacturing
houses are forced to pour more and more resources into
verification. The problem is exacerbated by the appearance
and growing adoption of multi-core chips. The design effort
in these systems is lower than that of a single-core chip of a
similar size, since cores are replicated from a single design.
The verification effort is however, higher, because in addition
to validating the cores, inter-core communication must also
be verified. Therefore, with processor complexity increasing
rapidly, and verification speeds lagging behind, bugs, such
as the AMD Opteron REP MOVS error [2] and functional
problems in the Intel’s Core 2 Duo [3, 4], continue to slip
into production silicon.

Hardware verification can be divided into two phases: pre-
and post-silicon. Pre-silicon verification employs two major
families of solutions: simulation-based tools and formal
techniques. Although formal solutions can be used to prove
key design properties, such as absence of deadlock, proper
ALU and FPU functionality, etc., they suffer from the state
explosion problem and can ultimately be used only on small
design modules. For example, in the verification of the Intel
Pentium 4 processor, formal methods were used only on
floating-point units, schedulers and instruction decoders [8].
Simulation approaches, on the other hand, do not have such
strict limitations, but neither can provide hard guarantees of

correctness: only those behaviors that have occurred during
the simulation can be validated. Nevertheless, simulation
remains the method of choice for pre-silicon verification due
to its scalability.

Post-silicon validation relies on a concept similar to sim-
ulation: the hardware prototype executes as many randomly
generated input vectors as possible. However, there are a few
key differences between this approach and pre-silicon valida-
tion. First, the execution on a hardware prototype is several
orders of magnitude faster than any functional simulator,
therefore, significantly more test vectors can be checked.
However, this high speed comes at the price of limited
observability: the internal state of the prototype cannot be
easily or fully observed, forcing the engineers to diagnose
errors from the architectural state of the system. Tests in
the post-silicon domain consists of directed tests checking
specific features of the processor, compatibility checks, such
as operating system boot-up and tests with legacy software,
as well as automatically generated random tests [8, 16]. Due
to the unpredictable outcome of these random programs,
engineers must simulate them on a known-correct model of
the design to obtain the correct final state of the hardware
prototype to identify discrepancies, potentially revealing a
bug. While tests can be run at-speed on the hardware, test
generation and simulation constitute the bottleneck in this
process, limiting it to the performance level of pre-silicon
simulation. Consequently, design houses are forced to spend
enormous computational resources on test generation and
simulation servers [16].

Traditional post-silicon testing solutions differ from vali-
dation in that they rely on a structural model of the design to
determine the correct behavior of the silicon part under test
and detect electrical and manufacturing defects. However,
functional errors in the design will be present in both the
hardware prototype and the structural model generated from
RTL, thus testing is not viable to find this kind of bugs.

In this paper we take the first step towards a novel
high-throughput post-silicon validation methodology, which
allows for test generation to match the performance of execu-
tion of the silicon prototype. By cleverly crafting randomized
tests with known final outcome, we address the bottleneck
of the traditional post-silicon flow, while leveraging its high
design coverage.

A. Contributions of This Work

The main contribution of this paper is the development of
a novel test generation framework, called Reversi, for post-
silicon processor validation. Our goal is to exploit the full
performance potential of silicon prototypes and eliminate the
costly simulation step required to obtain a known-correct
final state. To this end, tests are generated by Reversi in such

a way that at the end of the execution, the initial state of the
machine is restored. Therefore, the final state of such a re-
versible program is known a priori and, the simulation phase
of the validation process is bypassed. Since our program
generation algorithm is agnostic to any particular instruction
set, it can be easily ported between processors with different
instruction and feature sets. Moreover, the absence of the
simulation step in our framework allows for tests to be
generated directly by hardware residing on the same system
board as the prototype, eliminating the need for costly test
generation servers. Consequently, validation speed becomes
only limited by the speed of communication between the
prototype and the testing board. Moreover, once the system
under test is sufficiently validated, the test generator can run
directly on it. In this latter case, tests can be produced in
one portion of the chip’s cores and transferred to other cores
for execution. If the generator cores were flawed, they would
not produce proper reversible programs, exposing the issue.

We evaluated our framework against a traditional post-
silicon validation flow based on a constrained-random test
generator paired with an architectural simulator. Our ex-
perimental results demonstrate that reversible programs can
expose more complex processor bugs faster than traditional
methods and, at the same time, boost the performance of the
testing process by 20x.

The remainder of this paper is organized as follows.
Section II reviews prior work in post-silicon validation with
random instruction generators. Sections III and IV present
the Reversi solution and detail the construction of complex
program structures. Section V provides a comparative evalu-
ation of our approach, while Section VI concludes the paper.

II. PRIOR WORK

Hardware verification with constrained-random test gen-
eration has been a focus of both academic and industrial
research for a long time. Most efforts, however, have been
dedicated to the pre-silicon verification domain, where test
length is relatively short compared to real-life applications.
One of the most prominent industry tools in this family
is Genesys-Pro [7] developed by IBM. This tool provides
advanced capabilities for test generation (biasing primitives,
templated specification language, etc.) However, it is de-
signed primarily as a pre-silicon tool. Genesys is not capable
of producing tests with known final states, and hence its
use in the context of post-silicon validation would require
a simulator to compute such states. Several other industrial
solutions [1, 14] provide similar features, but again require
a simulator to generate the final processor state.

As reported by Rotithor in [16], test generation engines
targeting the post-silicon domain share some of their prop-
erties with the tools mentioned above: test scenarios have a
templated format allowing for fast generation of randomized
programs. Note however, that the setup described in [16]
calls for a number of servers to build the tests and known-
correct design models to simulate these tests and obtain the
correct final state, which will be compared with the results
of the prototype execution. Therefore, the framework in [16]

still requires a simulation-based checker in order to expose
bugs, unless they manifest themselves more explicitly, e.g.,
as a deadlock or early test termination.

There also exists a variety of testing solutions that combine
ATPG (automatic test patter generation) [11] with techniques
for silicon state acquisition such as scan [13], JTAG [12],
cycle breakpoint [9] or on-chip-logic analyzers [10]. Un-
fortunately, ATPG approaches are only capable of exposing
electrical and manufacturing defects. A functional error, on
the other hand, cannot be flagged by these solutions, since
it is present not only in the hardware under test, but in the
structural model used by the test generator as well. Unlike
these approaches, our solution relies on a functional, high-
level specification of the hardware to expose design defects.

Finally, Raina and Molyneaux presented in [15] a solution
based on the use of instructions and their inverses for proces-
sor verification. However, their work used the reversibility
scheme for cache verification, rather than for processor cores.

III. REVERSI TEST GENERATION SYSTEM

Typically post-silicon functional validation in industry
has been conducted with two types of tests: parameterized
directed tests and constrained-random (or pseudo-random)
tests. Although the former ones can provide high coverage,
they require significant human effort to be developed. The
pseudo-random tests, constrained to produce only valid in-
struction sequences, can be generated automatically, however
often suffer from lower coverage. More importantly, the final
state of the processor after executing a random test sequence
is unknown. Therefore, engineers must resort to simulating
the design’s golden model to compute the final processor
state and check it against state dumps of the actual hardware
prototype (as illustrated in Figure 1.a).

Reversi

Silicon

prototype

=

Random
Generator

=

Simulator
final state

Constr.
Random
program

C
ri
ti
c
a
l
p
a
th

C
ri
ti
c
a
l
p
a
th

a.

Architect.

simulation
Silicon

prototype

Random
reversible
program

Hardware
prototype

Hardware
prototype

H
o

s
t
m

a
c
h

in
e

Prototype
final state

Final
state

Initial
state

b.
Fig. 1. A typical post-silicon validation flow vs. a Reversi-based flow. a.
In a typical post-silicon methodology, random tests are produced by a test
generator and fed to both a golden model simulator and a silicon prototype.
Bugs are flagged by differences between the prototype’s and simulator’s final
states. Both test generation and simulation are done on a host machine at
relatively slow speed. b. A Reversi-based flow does not require a simulator:
random reversible programs can be generated on a tester board or on the
hardware prototype itself. Bugs are flagged by differences between final and
initial states of the prototype.

Unfortunately, as was mentioned above, the simulation of
the golden model is several orders of magnitude slower than
the hardware execution, therefore, the computation of the

final state becomes a bottleneck for the entire effort. We
address this issue in our methodology by developing a post-
silicon solution which fully exploits the performance of the
hardware under test. We designed a test generator, called
Reversi, that produces tests whose outcome is known by
construction. This allows us to bypass the simulation step
and speed up the overall validation flow (Figure 1.b).

The main observation that we made in developing Reversi
is that many instructions in a processor’s ISA have counter-
parts, i.e., operations whose functionality is the inverse of
the former, such as restoring a value in a particular register,
clearing a set of flags, etc. Moreover, if no single instruction
exists to reverse the action of another, one can devise a small
program sequence to be used to the same effect. This was
the case, for example, for the integer multiply instruction in
one of the ISAs that we used in our experimental evaluation.
No instruction for integer division was implemented, but we
could resort to software emulation of division to revert the
effect of multiplication. Note that, if the emulation routine
exposed any error in the hardware prototype, the result of the
multiplication would not be reversed correctly. The presence
of inverse functions enables us to design programs that
include every instruction in an ISA, and for which the final
register values match exactly the initial ones. In other terms,
if x is a vector representing the processor state, and each
Fi / F−1

i pair represents a distinct function (either an ISA
instruction or an instruction block) and the corresponding
inverse, then a program generated by Reversi applies the
following sequence of functions to the state x:

x = F−1
1 (F−1

2 (...(F−1
n (Fn(...(F2(F1(x)..) (1)

A. Reversible and Non-reversible Instructions

In order to create reversible programs, we first analyze
each ISA and identify inverse instructions (or instruction
sequences) for each of the operations. By applying these
operations in the manner discussed above we can modify
the state of the processor and then properly restore it (in
the absence of bugs). This allows us to create a block
database containing pairs of functional blocks: for each
operation block, there is a corresponding inverse block. Each
block contains either a single instruction or a small program
sequence. An operation block modifies the value of a register,
called the focus register, while its inverse restores its initial
value. The ID of the focus register for each block is a
parameter set by Reversi dynamically during test generation.
Therefore, the same block may appear in the test program
multiple times, each time modifying a different register,
which allows a varied set of programs to be created. Note
that blocks operate only on a single focus register at a time to
maintain the reversibility of our program and track the cor-
rectness of its execution. Thus, for instructions with multiple
operands, only one of the registers is the focus register, while
other operands are randomly generated by Reversi according
to the instruction format. The flexible and robust structure
of the block database allows the Reversi algorithm to be
agnostic to the functionality of individual blocks and the

TABLE I- Reversi blocks for arithmetic and logic instructions

Instruction Operation Block Inverse Block
add add sub
sub sub add
inc inc dec
dec dec inc
xor xor and/or emulated xor
not not nand emulated not
neg neg -1 mult emulated neg
and and/or emulated xor xor
or and/or emulated xor xor
mult mult emulated division
rol rol ror
ror ror rol
sll store lost bits, sll srl, restore lost bits
srl store lost bits, srl sll, restore lost bits
sra 1.store lost bits, 1.rol

2.create mask 2.apply mask
3.sra 3.restore lost bits

underlying ISA, making our framework readily adaptable to
different processor architectures. Moreover, since blocks in
Reversi may contain multiple instructions, we can populate
the database with complex functions, including loops, pro-
cedure calls, etc., and create elaborate tests representative
of real software. In the remainder of the section we discuss
individual classes of instructions and implementation details
of operation and inverse block verifying them.
Arithmetic and logic instructions. The design of blocks
containing arithmetic and logic instructions is summarized
in Table I and is fairly straightforward, since the majority
of these operations have a simple inverse directly in the
ISA. For example, add can be reversed by sub, inc by
dec, ror (rotate right) by rol (rotate left) and so on. If an
instruction does not have a counterpart in the ISA, a small
routine can be used to emulate its inverse. Some Boolean
logic instructions, such as and and or, do not have direct
inverses, however, these operations can be used to construct
an xor logic function, which can then be reversed by an xor
instruction. Such structure is also beneficial for verification
of the xor instruction itself, since operation and inverse block
in this case exercise different hardware modules. Situations
where the same processor modules are used in the function
and its inverse should be avoided to prevent bugs being
masked by faulty hardware.

Some ISA operations, for example sll and srl cause some
of the data bits to be lost. In order to be able to restore fully
the initial value of the focus register, we must mask out these
bits and store them in the scratchpad memory before applying
the operation. When the program reaches the inverse block,
it first applies the reverse operation (i.e., shift in the opposite
direction in this case) and then loads and restores the bits
from memory. Finally, the outcome of an instruction may
depend on the sign or value of the focus register, which is not
known at generation time. For example, shift-arithmetic right
(sra) will preserve the sign of the value by replicating its
most significant bit. Blocks verifying such value-dependent
operations can be built to execute differently based on the
operand’s value, saving and restoring all the bits required to
deterministically retrieve the initial data.

Load/store instructions. In Reversi the correctness of load
and store instructions is checked by copying a data structure:
a region of memory is initialized with random values and
load/store pairs are used to copy it to a new location. We
do not require that the copy preserves the order of the
bytes, rather, we treat the data structure as a pool of values,
which can appear out of order at destination (see Figure
2). This allows programs generated by Reversi to closely
resemble real software applications where loads bring data
from memory to the processor, and stores copy results of
the computation back. Moreover, because of their random
nature, Reversi programs contain a variety of cache and
memory access patterns, that can expose corner-case bugs
in the memory subsystem. To check the correctness of the
final state of the memory, we simply compare an xor-hash
of the memory values before and after test execution. This
approach allows Reversi to expose load/store related issues
such as illegal memory accesses and/or data corruption.

���������	
 �������

�������
 ���������	

��������

���
���������	
 �������

�������
 ���������	 ���

���

���

�������

���

Fig. 2. Blocks for load and store instructions. Load/store pairs are used
to copy bytes from source to destination data structures. Bytes may be
reshuffled, but their xor-hashes must match.

Branch instructions. The block database of Reversi also
contains templates that test branches with different prop-
erties: forward/backward, taken/nottaken etc. For example,
an operation block for a forward taken branch (Figure 3.a)
contains a store operation that saves the value of the focus
register to scratchpad memory, followed by a load that
overwrites the focus register with a predetermined constant
and then by the branch itself. Although the constant is
generated randomly, its value is dependent on the type of
the tested branch. For example, a template for a beq (branch
if equal) instruction, overwrites the focus register with a
random constant and then loads a temporary register with
the same value to test the branch. With reference to Figure
3.a, the destination of the branch is located in the inverse
block, which also contains a load operation restoring the
focus register and a return jump. Therefore, if all control
flow instructions are executed correctly, the value of the
focus register after execution of the block is preserved. If,
however, the branch is not taken by a faulty hardware, the
focus register would not be restored. Note that the inverse
block is only accessible via the proper branch and is skipped
otherwise. If, however, the unconditional branch in Figure 3.a
is not taken due to a bug, the halt instruction is executed and
the test stops without fully reverting processor’s state. The
structure of the blocks for forward not-taken branch (Figure
3.b) is similar to the one described above differing in the
position of the restoring load. We use a similar technique
to detect other faulty control flow operations, initializing all
unused locations in the program to halt instructions.

�����

����

���������
����

�� ������
����

�� !�

"#�������
!��$%

&�'�� �
!��$%

�����������
(���$)

���*��
+*�#

,�$����
(���$)

�����

����

���������
����

�� ������
����

"#�������
!��$%

&�'�� �
!��$%

�����������
(���$)

���*��
+*�#

,�$����
(���$)

Fig. 3. Branch operations. a. Block pair for forward taken branch.
The operation block includes a modifying load, a branch and the return
label, while the inverse block contains a restoring load and a return jump.
b. Structure of a forward not-taken branch. The dashed line indicates the
program flow for a case when the branch is taken by the faulty hardware.

Control register manipulation. In many modern proces-
sors there exist several special control registers. In general
terms we can classify them into two groups: mode control
registers, that can only be accessed by special instructions
and specify the machine’s mode of operation; and Execution
flag registers, that cannot be changed by the user but are
affected indirectly by executed instructions. For instance, a
register enabling/disabling the first level cache is a mode
control register, while a register storing the ALU overflow
bit or comparison bits from the comparator (equal, greater
than, etc.) is an execution flag register.

����

���
- .���

��*����#���
�#�������

/���)����0��#��� ��

���#���
��� .���

"#�������
!��$%

&�'�� �
!��$%

�� !�

.�$*
���

��������

.�$*
���

�� %

�� ����
���

�����
���

�����
���
�����
���
"#�������
!��$%

&�'�� �
!��$%

�����
���
-
�� %

,�$����������
(���$)

,�$����������
(���$)

���*��
+*�#

Fig. 4. Handling of instructions affecting control flags. a. Block pair for
testing mode control registers. An erroneous register operation is reflected
in the focus register’s value. b. Block pair for instructions affecting execu-
tion flag registers. The operation block includes an arithmetic/comparison
instruction setting the flag bits and copying the resulting flag vector. The
inverse block performs the counterpart action and compares resulting flags
with the vector from the operation block.

Reversi exploits the fact that the value of the mode control
registers can be modified only through specific instructions,
and must remain unchanged throughout other parts of pro-
gram execution. To test the proper operation of a control
register, the following sequence of steps is taken (Figure 4.a).
In the operation block the old value of the control register is
first stored to memory, then the new bit-mask is loaded to the
control register and also xored with the focus register. In the
inverse block, Reversi first accesses the value of the control
register and xors it with the focus register, restoring the
previous mode of operation from memory afterwards. Thus,
if the control register was erroneously modified between the
execution of the operation and the inverse block, the focus
register’s value would reflect this error.

Reversi can also check the correctness of execution flag
registers, because instructions affecting them (arithmetic,
logic and comparison) have counterparts in terms of which
flags they set. For instance, if comp $r1, $r2 sets the greater-
than bit, then comp $r2, $r1 must set the less-than bit.
Similarly, knowing that a+b > c ≡ b > c−a, we can check
that an add operation sets the overflow bit in the execution
flag register correctly. In this case

add $r1, $r2, $r3 # overflow i.e. $r3 > MAX

can be checked through subtraction and comparison:

sub MAX, $r1, $r3
comp $r2, $r3 # must set greater-than bit

where MAX is the largest number that can be stored in the
register. Thus, individual bits of the flag register can be used
to check other flag bits. The Reversi block structure for
execution flag register validation is presented in Figure 4.b.
The operation block executes a comparison or an arithmetic
operation that affects the flags, stores the flags values in a
register and jumps to the inverse block. The inverse block
then executes the counterpart operations, obtains the resulting
flags and checks if they correspond to previously computed
ones. Recalling the example above, first the add executes in
the operation block and then, in the inverse block, we check
that if an overflow bit was set by the add, then a greater-than
bit is set by the comp instruction.
Floating point instructions. Floating point operations
present a unique challenge to Reversi due to the their
inherent imprecision: In the majority of cases the result of
the computation is rounded, making it impossible to restore
the operands exactly. To address this issue we must recognize
this intrinsic approximation and take into account the relative
error that is introduced by these operations. We do so by
constructing a table indexed by the exponents of the operands
and checking the relative error after every operation against
the expected boundaries. Although this solution will not lead
to a strictly reversible program, the approach is still viable
for floating point error detection.
Limitations Although the Reversi framework allows to
create high-coverage tests with a verifiable final state, the
proposed approach has a few limitations. The most important
one stems from the fact that Reversi relies on the existence
of inverse functions that can fully and precisely restore the
internal state. For example, if the integer division operation
was implemented in such a way that the remainder is lost, the
value of the dividend could not be restored precisely. Simi-
larly, floating point instructions do not exhibit such precision,
however, they can still be partially verified by the approach
described above. Unfortunately, input and output operations
are inherently irreversible and cannot be easily covered by
Reversi. For example, external interrupts cannot be expected
to arrive at a certain time and cannot be “undone” by
the core. In addition, Reversi may fail in targeting special
execution cases for instructions whose output depends on
the operands’ values. For instance, a divide-by-0 operation
may trigger an exception or set an error bit. Due to the

randomness of operand values generated by Reversi, it is
unlikely that a zero divisor occurs. To address this, the
Reversi database can be augmented with specialized blocks
to exercise corner case situations.

B. Reversi Generator

As described above, reversible programs generated by
Reversi consist of sequences of operation and inverse
blocks instantiated from the block database. However, a
single sequence of blocks only alters a single focus register,
therefore, to create complex programs, Reversi generates
multiple block sequences (called stacks), each altering a
different focus register. The stacks are then interleaved
into a complex reversible test program, as Figure 5 illustrates.

�1
21345 �1

21345 �1
21345

�6
21345 �6

21345 �6
21345

��� ��� ���
�1345 �1345 �1345

�6345 �6345 �6345

������� ������	 ������

��

��

��������
�������

������

�
��

�
�
�

�����

�������

�
�
�
�
��

�

Fig. 5. Reversi operation. Given a database of functional blocks, Reversi
produces a set of stacks, consisting of blocks and inverse operations
assembled in reverse order. Each stack operates on a single focus register,
modifying it in such a way that its final value matches the initial one. The
stacks are then interleaved into a program with predictable outcome.

Stack generation. During the test generation, Reversi ran-
domly selects functional blocks from the database and creates
a user-specified number of stacks, each consisting of several
blocks and their inverses. Each stack has only one focus reg-
ister selected at random. The blocks are then arranged so that
inverse blocks follow operation blocks in inverse order (see
Eq. 1). On a properly working processor the focus register
should be restored to its original value once a stack execution
completes. Reversi also allocates a set of temporary registers
to each of the stacks, based on the requirements of its blocks.
We chose to allocate completely disjoint sets of registers to
each stack to simplify the interleaving.
Stack interleaving. After the required number of stacks is
generated, Reversi interleaves them by selecting instructions
from all stacks and chaining them together to form a single
test program. Note that some instructions may be grouped
together into “atomic operations”, meaning that the inter-
leaving phase cannot insert instructions between them. The
atomicity indicator is provided in the block definition in the
database. To balance the selection algorithm, we attribute
different probabilities of selection to each stack, based on
its length, so to avoid a long tail from a single stack at the
end of the program. The probability of selecting the next
instruction from a given stack j is:

Pj =
|stack j|

∑i |stacki|
where |stack j| is the number of atomic operations in stack j,
and all Pj’s are adjusted after each removal of an atomic

operation. Note that the requirements of using disjoint sets
of registers in each stack limits the total number of stacks
that we can have in Reversi. We chose to forego more com-
plex dynamic register set partitioning (as in some compiler
techniques) in favor of faster test generation.

The test program includes one last routine that calculates
the final xor-hash of the destination memory data structure.
When the program terminates the final values of the focus
registers and the hash of the destination memory are com-
pared to the initial state computed by Reversi during the gen-
eration to determine if the test executed successfully. It is also
important to note that Reversi programs can provide more aid
in debugging than traditional randomly generated programs.
If the test results indicate that there is a bug in the processor,
a validation engineer can quickly check if the exposing
instruction sequence is located in an individual stack, by re-
running the program without interleaving. Insights into the
nature of the bug can also be found by “peeling” operation
and inverse blocks from the program. Therefore, a reversible
program exposing a bug can be dramatically shortened to
alleviate debugging. In contrast, in a traditional flow a costly
re-simulation is required to obtain the new golden state after
each change of the test program.

IV. EXAMPLE

This section presents an example of a program generated
by Reversi for a simple instruction set presented in Table II.
Two stacks for this ISA using focus registers $r7 and $r11
are shown in Figure 6.a and 6.b. For both stacks the function
blocks are indicated in the left column and boxes mark
atomic actions. The stack in Figure 6.a contains simple arith-
metic/logic operations, while the stack in 6.b includes logic
instructions, load/store pairs and forward taken conditional
branches. Sets of register IDs for both stacks are allocated
dynamically by Reversi and are disjoint. Initial focus register
values (reg val1 and reg val2), constants (const1-const3) and
location accessed by the loads and stores in the program are
also selected at random.

TABLE II- Example ISA

Instruction Semantics
halt Stop the execution
add $r1, $r2, $r3 $r3=$r1+$r2
sub $r1, $r2, $r3 $r3=$r1-$r2
neg $r1, $r2 $r2= -$r1
ld $r1, var $r1=MEM[var]
st $r1, var MEM[var]=$r1
beq $r1, $r2, label PC=($r1==$r2) label : PC+1

Register $r0 is hardwired to the value 0

An interleaving of the stacks into a program is shown
in Figure 6.c. Conditions that must hold after this program
executes are: $r7=reg val1, $r11 = reg val2 and

⊕
src mem

=
⊕

dst mem. So, by using the resulting values of the focus
registers $r7 and $r11 and the xor-hash of the dst mem
data structure, we can quickly determine if the program has
exposed any functional bugs. Note also that the branch in
block G2 was generated by Reversi to be taken. Thus, during
correct operation, the execution should modify the value of

��7
8���9
8�:;9
��
���

��7
8�;9
8�;9
�:

	
��
��

��
8���9
��������

��7
8�;9
8�;9
��
�:

��

�
�
��
��
�
�
�
��
��
�
�
�
��
�
�
�
��
�

�	
8
:9
�����

�		
8
<9
8
:9
8
�;

��
8
�;9
8
�=

���
8
;9
8
�=9
8
�;

�	
8
�9
�����

���
8
�;9
8
�9
8
<

���
���
�	
8
<9

�������

�
�
��
��
�

�
�
��
��
�

�
�
��
�

�
�
��
�

�	
8
�9
�
������

��
8
�9
	�������

��
8
��9
��������

��7
8
;9
8
;9
�:

����
���

�	
8
��9
��������

��7
8
;9
8
;9
��
�:�

���
���
�	
8
��9

�������

��7
8
��9
8
:;9
��
���

�
:
��
�

�	
8
�9
����:

�		
8
��9
8
�9
8
>

�
:
��
��
�

�	
8
?9
����:

���
8
>9
8
?9
8
��

�	
8
�9
�
������

��
8
�
	�������

�	
8
:9
�����

�		
8
<9
8
:9
8
�;

��
8
�;9
8
�=

���
8
;9
8
�=9
8
�;

�	
8
�9
�����

���
8
�;9
8
�9
8
<

���
���

�	
8
<9

�������

�	
8
�9
�
������

���
���
�	
8
��9

�������

��
8
�9
	�������

��
8
��9
��������

�	
8
�9
����:

�		
8
��9
8
�9
8
>

�	
8
?9
����:

���
8
>9
8
?9
8
��

�	
8
�9
�
������

��
8
�
	�������

�������	
����
��������	
����

�����	���� �����	�

��

��

�@
��
�

�@
��
�

�	
8
��9
�����

�	
8
:;9
�����

�	
8
��9
�����

�	
8
:;9
�����

Fig. 6. Test program for the example ISA. a. Stack with arithmetic/logic
operations. b. Stack with arithmetic operations, load/store pairs and forward
taken branches. c. Interleaving of atomic operations in stacks a. and b. and
exit condition of the test.

$r11 and jump to the label L1. Then the processor restores the
value of the focus register and takes the unconditional branch
returning to L2. When operating properly, the processor
should not visit line L1 again and skip directly to L3.
Moreover, if the branch in G2 is not taken, then the exit
condition described above does not hold, exposing a bug.

V. EXPERIMENTAL EVALUATION

In this section, we first present our experimental evaluation
platform and two of our Reversi setups. Then, we evaluate
the performance of these setups against a traditional solution
based on a constrained-random instruction sequence genera-
tor. Finally, we investigate bug-finding capabilities of Reversi
in our last experiment.

A. Experimental Framework

To evaluate the performance of our Reversi approach,
we created two reversible instruction block databases: one
implementing a subset of the Alpha instruction set and
another implementing a subset of the x86 ISA. The database
for the Alpha instruction set contained 17 distinct blocks for
arithmetic and logic functions testing a range of instruction
formats (reg/reg and reg/imm) and 5 blocks for each type
of compare instructions. In addition to that, the database
included 3 blocks for load and store instructions, an uncondi-
tional jump block and 16 branch blocks containing 4 distinct

branching instructions, each in four possible modes (fw/bw
and taken/nottaken). Similarly, the x86 block database con-
tained 32 logic-arithmetic blocks testing multiple instruction
formats (reg/reg, reg/imm, reg/ mem, mem/reg), 3 load-store
blocks, 1 compare block and 40 branch blocks. Reversi itself
is implemented as an optimized program in C that created
and interleaved a specified number of stacks and contained
routines to set a random initial state and perform the final
check. The blocks are partially pre-assembled in binary, and
Reversi is responsible for setting the appropriate bit-fields
with register IDs, randomly generated constants, etc.

To compare Reversi with a traditional post-silicon val-
idation flow (Figure 1.a), we created an assembly-level
constrained-random test generator. In addition, for the archi-
tectural simulation phase of the traditional post-silicon flow
we used M5 2.0b3 [5] and Bochs-2.3.5 [6] for Alpha and x86
systems, respectively. Test generation and simulation for both
Reversi and the traditional post-silicon flow was performed
on a 3.2GHz Pentium 4 machine with 2GB of memory.

1

10

100

1000

10000

100000

K 10K 20K 30K 40K 50K 60K 70K 80K 90K 100

K

110

K

Pre-silicon simulation

Traditional Post-Si

Reversi

T
o
ta

l
ti
m

e
 (

m
s
)

Dynamic instructions

0K 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K 110K

Fig. 7. Total testing time for a traditional post-si flow and Reversi: Alpha
instruction set. The total time for the traditional post-silicon flow includes
the test program generation, simulation and execution time. The time for
Reversi includes test generation and execution. For comparison we plot the
speed of a pre-silicon validation technique based on RTL simulation.

B. Performance Evaluation

In our first experiment we compared the validation perfor-
mance of the traditional post-silicon flow with the Reversi
flow. In this case the total time for the traditional flow con-
sisted of i) the time to create a program on the constrained-
random test generation, ii) the time for the instruction set
simulator (either M5 or Bochs) to obtain the golden state and
iii) the execution time on the silicon prototype. For the Re-
versi flow we need to include i) the Reversi generation time
and ii) the time to execute on silicon. Performance for the
Alpha design was measured over shorter program sequences,
while x86 used longer testing programs. The results of the
experiments are presented in Figures 7 and 8. In Figure 7 we
also plot the performance of a typical pre-silicon simulator
(using a behavioral Verilog model of the Alpha design)
for comparison. As these figures demonstrate, the Reversi-
based approach flow provides a 19.5x and 21.5x performance
improvement for Alpha and x86 designs, respectively. It
should be noted that in addition to eliminating the simulation
step from the flow, Reversi is more efficient because it
operates on pre-assembled blocks. In a traditional approach,
on the other hand, the generator must frequently solve fairly
complex constraints to produce valid and meaningful tests.

Moreover, due to the presence of branching instructions and
PC-relative branches, the program generator must produce
tests in assembly language and then call an assembler to
convert it to machine codes. Reversi, however, does not
need an external assembler, since it implements internally
all functions required to generate the binary code.

1

10

100

1000

10000

100000

1000000

K 200K 400K 600K 800K 1000K 1200K 1400K

Traditional Post-Si

Reversi

T
o
ta

l
ti
m

e
 (

m
s
)

0K 200K 400K 600K 800K 1000K 1200K 1400K

Dynamic instructions

Fig. 8. Total testing time for a traditional post-si flow and Reversi: x86
instruction set. The total time for the traditional post-silicon flow includes
the test program generation, simulation and execution time. The time for
Reversi includes test generation and execution.

C. Design Error Coverage

In the second experiment, we use an RTL implementation
of a 5-stage pipeline running Alpha ISA to create 20 designs,
each containing a single bug from Table III. During the
test, both the traditional flow and Reversi generated code
of increasing length until the bug was exposed. Note that, in
order to identify an error with a randomly generated program,
we first need to compute the correct final state by running it
on a known-correct model. We run the experiment 10 times
with different random seeds and calculate the minimum,
average and maximum time required for the traditional flow
and Reversi to expose the fault (Figure 9).

TABLE III- Bugs introduced in Alpha design.

Bug Description
ld st addr load to store address forwarding fault
regfile rd faulty internal forwarding in register file read port A
fwd mem error in forwarding dependency resolution
fwd reg31 forwarding through register 31 (const 0)
ucbr cbr unconditional branch after conditional branch fails
fwd wb unnecessary forwarding from wb stage
regfile wr invalid write access to register file
flush pipeline flush on specific register file access
srl invalid execution of logical right shift
scmp cbr invalid forwarding from signed compare to a branch
cbr st backward conditional branch after a store is not taken
ld st data load to store data forwarding fault
ucmp cbr invalid forwarding from unsigned compare to a branch
back cbr specific backward conditional branch is never taken
add over incorrect handling of overflow on add
loop incorrect execution of looping sequence
jsr incorrect handling of jsr with invalid address
back ucbr fault in backward unconditional branch
sh back br fault in branch resolution for short backward branch
ld arith invalid execution of a load followed by arithmetic

As the results in Figure 9 demonstrate, Reversi can find
all errors faster than the traditional post-si flow. Furthermore,
some of the bugs, such as loop, jsr and sh back br, were
not exposed by the post-si flow in any of the runs. We
believe that this was due to the unique nature of the programs
generated by Reversi - they are designed so that only cor-
rectly operating hardware produces an easily verifiable result.

�

��

	�

�

��

���

���

�
��

��
��

��

��
��
��

��
�

��
��

�
��

��
��
��

��
�

��
��

��
��

��
��

�
�

��
��
��

��
�

��
�� ��

��
�

��
��
�

��
��
��

�
��

��
��

��

��
�

��
��
�

��
��

��
��

��
��

��
��

�
�� ��

�

��
��

��
��
�

��
��

��
��

��

�
��
���

�

��������!�"#���$%�

�������

&��""���!�"�'"
��������!�"#���$%�

	(�)

�(
) ��	 ��
 ��	

�
��

��
��

��

��
��
��

��
�

��
��
��

��
�

��
��

�
��

��
��

��
��

��
��

�
�

��
��
��

��
��

�
��

��
��

��

��
��
��

��
�

��
�

��
��
�

��
�

��
��
�

�
��
���

���

��
��

��
��

�
�� ��

�

��
��

��
��
�

��
��

��
��

��

��
��

��
��

��

	�

�

��

���

���

�*
�
�

("
��
�
�
"�

�
"�

+
�

�
�
�
"�

�
�
",

�
�
-

�(�)

	��

�(.)

�(�)

)

�(�)

�/.

�	�

�)

/
�

��)

	��

)

	.)
��)

	��
�
.

Fig. 9. Average time to discover bugs in the traditional post-silicon flow and Reversi. The experiments were run 10 times with different random seeds
and the minimum, average and maximum times to expose each bug are plotted. Note that bugs loop, jsr and sh back br were not exposed by a traditional
post-silicon flow based on a constrained-random test generator.

Thus, incorrect operations can be detected immediately at
execution completion. Moreover, Reversi creates complex
programs with multiple interleaved execution flows that
exercise all instructions in the ISA, exposing these corner-
case bugs.

It’s worth observing that, in several experiments with the
traditional flow (such as fw wb), a shorter random program
exposed a bug, while a longer sequence of instructions did
not. This is possible due to the random nature of the test:
later instructions may overwrite registers/memory locations
that contain incorrect values, thus eliminating the evidence
of the bug. Therefore, a longer random program does not
necessarily find more bugs than a shorter one. Reversi pro-
grams, on the other hand, are designed so that any behavior
corrupting the processor state is propagated to the exit point
and exposed.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel post-silicon valida-
tion methodology that exploits the performance potential of
hardware prototypes and bypasses the design simulation step
required by traditional flows. Test programs that our Reversi
framework generates work to explore complex execution
scenarios and, most importantly, have identical initial and
final architectural states eliminating the need for a simulator
to check the correctness of the test. The programs are built
from sequences of functional blocks, which modify the state
of the machine, and they are combined with inverse blocks
to undo earlier operations and restore the original machine
state. Individual blocks are parameterized and may consist
of one or several instructions, selected randomly from a
block database during test generation. Reversi handles all
types of instructions: arithmetic (integer and floating point),
logic, memory accesses, control flow and control register
operations. As our results demonstrate, Reversi creates pro-
grams capable of finding more bugs faster than traditional
constrained-random test generation techniques. Moreover,
due to the omission of the architectural simulation step,
Reversi can generate and run tests 20x faster than tools based
on a traditional post-silicon flow.

In the future, we plan to optimize Reversi to only require
minimal resources, such as OS primitives, I/O drivers, etc.,
so that we can run it on the same board as the device under
test. The programs in this case can be generated by a more
reliable or thoroughly tested previous generation processor
more efficiently than in our experiments. We also foresee the
possibility of running our generator on a subset of the cores
of a multi-core device-under-test. This would allow Reversi
to achieve generation speeds that significantly exceed the
performance of today’s methods and approach a throughput
comparable to actual silicon.

REFERENCES

[1] Constrained-random test generation and functional coverage with Vera.
Technical report, Synopsys, Inc, Feb. 2003.

[2] Revision Guide for AMD Athlon 64 and AMD Opteron Processors,
Aug. 2005.

[3] Intel Core2 Duo Desktop Processor E6000 and E4000 Sequence
Specification Update, Nov. 2007.

[4] Intel Core2 Extreme Quad-Core Processor QX6000 Sequence and Intel
Core2 Quad Processor Q6000 Sequence, Nov. 2007.

[5] The M5 simulator system, Nov. 2007. http://www.m5sim.org.
[6] The open source IA-32 emulation project, Sept. 2007.

http://bochs.sourceforge.net/.
[7] A. Adir et al. Genesys-pro: Innovations in test program generation for

functional processor verification. IEEE Design & Test of Computers,
21(2):84–93, Mar. 2004.

[8] B. Bentley and R. Gray. Validating the Intel Pentium 4 microprocessor.
Intel Technology Journal, Q1, pages 1–8, 2001.

[9] K. H. Bierman et al. U.S. Patent no. 7133818: Method and apparatus
for accelerated post-silicon testing and random number generation,
Nov. 2006.

[10] T. Litt. Support for debugging in the Alpha 21364 microprocessor. In
International Test Conference, Oct. 2002.

[11] M. L. Bushnell, V. D. Agrawal. Essentials of Electronic Testing for
Digital, Memory & Mixed-Signal VLSI circuits. Springer, 2000.

[12] M. Melani et al. An integrated flow from pre-silicon simulation
to post-silicon verification. In Research in Microelectronics and
Electronics 2006, Ph. D., pages 205–208, June 2006.

[13] P. T. Barch et al. U.S. Patent no. 5923836: Testing integrated circuit
designs on a computer simulation using modified serialized scan
patterns, Nov. 2006.

[14] R. Emek et al. X-Gen: A random test-case generator for systems and
SoCs. In International Workshop on High Level Design Validation
and Test, pages 145–150, Oct. 2002.

[15] R. Raina and R. Molyneaux. Random self-test method - applications
on PowerPC microprocessor caches. In Proceedings of the Great Lakes
Symposium on VLSI, Feb. 1998.

[16] H. Rotithor. Post-silicon validation methodology for microprocessors.
IEEE Design & Test of Computers, 17(4):77–88, Oct. 2000.

