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Abstract
The advent of nanometer feature sizes in silicon fabrica-

tion has triggered a number of new design challenges for
computer designers. These challenges include design com-
plexity and operation in the presence of environmental and
device uncertainty. To make things worse, these new chal-
lenges add to the many challenges that designers already
face in order to scale system performance while meeting
power and reliability budgets. Current design objectives
are being met by applying even more engineers and increas-
ing overall design times, an unsustainable trend. This pa-
per overviews a novel design strategy, called Better Than
Worst-Case design, that addresses these challenges through
a methodology based on separating the concerns of perfor-
mance and reliability by coupling complex design compo-
nents with simple reliable checker mechanisms. We present
the key aspects of Better Than Worst-Case Design and cover
some recently proposed solutions that deploy this technique
in application domains ranging from microprocessors to
digital signal processors. We then highlight a few aspects
that need to be addressed to make this approach more prac-
tical in general contexts and suggest possible solutions.

1. Introduction

A critical aspect of any computer design is its reliability.
Users expect a system to perform without fail when asked
to compute a task. In reality, it is impossible to build a fully
correct and reliable system, consequently, computer man-
ufacturers target failure rates that are imperceivable small
[22]. In most systems today, reliability targets are met by
utilizing a fault-avoidance design methodology. However,
the trend in semiconductor fabrication towards the nanome-
ter scale devices has created many new design challenges
that make these targets harder than ever: Design complex-
ity, process variation, and single-event upsets all conspire
to compromise system correctness and reliability. Unless
these challenges are addressed, computer vendors can ex-
pect poor design quality and long times-to-market.

Design ComplexityAs the industry rides Moore’s law,
designers have available to them exponentially increasing
transistor budgets, leading to growing design complexity.
Consequently, significant design resources are dedicated to
design verification. Recently, the ITRS (the International
Technology Roadmap for Semiconductors) assessed that it
takes thousands of engineer-years to develop top-end sys-
tems, yet processors still reach the market with hundreds
of bugs [3]. Moreover, more than twice as many resources
are spent on verification compared to design in the micro-
processor arena, bringing the design-to-verification gap to
crisis proportions.

Process VariationAnother reliability challenge design-
ers face is the design uncertainty that is created by increas-
ing process variations. Process variations result from device
dimension and doping concentration variations that occur
during silicon fabrication. These variations are of particu-
lar concern because their effects on devices are amplified as
device dimensions shrink [1], resulting in structurally weak
and poor performing devices. Designers are forced to deal
with these variations by assuming worst-case device char-
acteristics (usually, a 3-sigma variation from typical con-
ditions), which leads to overly conservative designs. The
effect of this conservative design approach is quite evident
by the extent to which hobbyists can overclock high-end
microprocessors [20].

Single-Event Radiation (SER)There is a growing con-
cern about providing protection from soft errors caused by
charged particles (such as neutrons and alpha particles) that
strike the bulk silicon portion of a die [28]. SER events
are caused when high-energy particles strike the P-N junc-
tion of a MOSFET, which generates a current-pulse in the
depletion region, resulting in a temporary loss of charge
stored on the P-N junction. If the charge variation in the
P-N junction is sufficient to alter the logic value correspond-
ing to the voltage across the junction, a single-event upset
(SEU) results. The final effect is a logic glitch that can po-
tentially corrupt combinational logic computation or state
bits. While a variety of studies have been performed that
demonstrate the unlikeliness of such events [18, 25], con-



cern remains in the architecture and circuit communities.
This concern is fueled by the trends of reduced supply volt-
age and increased transistor budgets, both of which exacer-
bate a design’s vulnerability to SEU faults.

The combined effect of these challenges is that design-
ers are forced to work harder just to keep up with system
performance, power and reliability goals. The monumental
task of meeting these goals with limited resource budgets
and increasing time-to-market pressure has raised these de-
sign challenges to crisis proportion.

1.1. Better-than worst case design (BTWC)

To meet these challenges, we are advocating a novel de-
sign methodology, called Better Than Worst-Case design,
that employs a design style which separates the concerns
of correctness and robustness from the ones of performance
and power [5]. The name Better Than Worst-Case (BTWC)
design underscores the improvement that this approach pro-
vides over worst-case design techniques. Traditional worst-
case design techniques strive to build complete systems
which satisfy the guarantees of correctness and robust oper-
ation. The previously highlighted design challenges collude
to make this an increasingly untenable design technique.
Better Than Worst-Case designs take a markedly different
approach, as illustrated in Figure 1.

In a Better Than Worst-Case design, the core compo-
nent of the design is coupled with a checker unit that val-
idates the semantics of all core operations. The advantage
of such designs is that the efforts with respect to correctness
and robustness are concentrated on the checker component.
The performance and power efficiency concerns of the de-
sign are relegated to the core component, and consequently
they can be addressed independently of any correctness con-
cerns. By removing the correctness concerns from the core
component, many core design constraints are relaxed, mak-
ing this approach much more amenable to addressing future
physical design challenges. In addition, by delegating the
responsibility of correctness and reliability to the checker,
it becomes possible to quickly build provable correct de-
signs that effectively address both performance and relia-
bility constraints.

In a Better Than Worst-Case methodology, the designer
needs to consider only typical design constraints in order to
satisfy design closure in areas such as timing, noise, power,
and verification. Consideration of corner cases, which take
up to 90% of the design time, but occur only very rarely in
practice, can be ignored and are handled seamlessly using
embedded error detection and correction circuitry contained
within the checker component.

The remainder of this paper is organized as follows. Sec-
tion 2 highlights a Better Than Worst-Case design technol-
ogy called the DIVA checker. The DIVA checker is a hard-
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Figure 1. Better Than Worst-Case design approach

ware component that provides a very high-level of design
error coverage for a microprocessor design. Section 3 high-
lights a number of other Better Than Worst-Case design ap-
plications from the literature. In Section 4, we suggest fu-
ture applications and needs, and finally in Section 5 we give
conclusions.

2. DIVA: BTWC design for microprocessors

In our research, we have been exploring ways to employ
Better Than Worst-Case design techniques to ease the veri-
fication of complex microprocessors. The DIVA (Dynamic
Implementation Verification Architecture) project has de-
veloped a microprocessor checker component that provides
a near complete separation of concerns for performance and
correctness [7, 9, 26]. The design, which is illustrated in
Figure 2, employs two processors: a sophisticated core pro-
cessor that quickly executes the program, and a checker pro-
cessor that verifies the same program by re-executing all in-
structions in the wake of the complex core processor.
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Figure 2. DIVA Architecture

The core processor is responsible for pre-executing the
program to create the instruction prediction stream. This
stream consists of all executed instructions (delivered in
program order) with their input values and any memory ad-
dresses referenced. In a typical design, the core processor
is identical in every way to a traditional complex micro-
processor core, up to the retirement stage of the pipeline
(where register and memory values are committed to state



resources). The checker executes in the wake of the core
processor, verifying all computation by re-executing all pro-
gram instructions. The high-quality stream of instruction
predictions from the core processor simplifies the design of
the checker processor and speeds up its processing. Pre-
execution of the program on the complex core processor
eliminates all of the checker’s processing hazards (e.g.,
branch mispredictions, cache misses and data dependen-
cies) that slow simple processors and necessitate complex
microarchitectures. Thus, it is possible to build a simple in-
order checker pipeline without speculation that can match
the retirement bandwidth of the core. In the event of the
core generates a bad prediction value (e.g., due to a core
design error), the checker fixes the errant value, flushes all
internal state from the core processor, and then restarts the
core at the instruction following the computation error.

For dynamic verification to be viable, the checker pro-
cessor must be simple and fast. It must be simple enough
to reduce the overall design verification burden, and fast
enough to not slow the core processor. A single-issue two-
stage checker processor is illustrated in Figure 3a. The de-
sign presented assumes a single-wide checker, but scaling
to wider or deeper designs is a straightforward task [9].
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Figure 3. Operation of the checker processor

During normal checker operation (as shown in Figure
3b), the core processor sends instructions (with predictions)
to the checker pipeline. These predictions include the next
PC, instruction, instruction inputs, and addresses referenced
(for loads and stores). The checker processor ensures the
correctness of each instruction result through four parallel
checker stages, each of which verifies a separate component

of the prediction stream. If each prediction from the core
processor is correct, the result of the current instruction (a
register or memory value) as computed by the checker pro-
cessor is allowed to retire to non-speculative storage in the
commit (CT) stage of the checker processor.

In the event any core computation is found to be incor-
rect, the bad result is fixed, the core processor is flushed,
and the core and checker processor pipelines are restarted
after the errant instruction. In this event, as shown in Figure
3c, the routing MUXes are configured to form a recovery
pipeline. The recovery pipeline is a serial pipeline, very
similar to a classic five-stage processor pipeline. In recov-
ery mode, all instruction computations are sent to the im-
mediate next logical stage in the checker processor pipeline,
rather than used to verify core predictions. Unlike the clas-
sic five-stage pipeline, only one instruction is allowed to
enter the recovery pipeline at a time. As such, the recovery
pipeline configuration does not require bypass datapaths or
complex scheduling logic to detect hazards. Processing per-
formance for a single instruction in recovery mode will be
quite poor, but as long as faults are infrequent there will be
no perceivable impact on program performance [7]. Once
an errant instruction has retired, the checker processor re-
enters normal processing mode and restarts the core proces-
sor after the errant instruction.

We have shown through cycle-accurate simulation and
timing analysis of a physical checker design that our ap-
proach preserves system performance while keeping low
area overheads and power demands [7]. Furthermore, anal-
ysis suggests that the checker is a simple state machine that
can be formally verified [17], scaled in performance and
reused [26].

The simple DIVA checker addresses the concerns high-
lighted in the introduction, in that it provides significant
resistance to design and operational faults, and provides a
convenient mechanism for efficient and inexpensive detec-
tion of core faults. Specifically, if any design errors remain
in the core processor, they will be corrected (albeit inef-
ficiently) by the checker processor. The impact of design
parameter uncertainty is mitigated since the core processor
frequency and voltage can be tuned to typical-case circuit
evaluation latency. The DIVA approach uses the checker
processor to detect energetic particle strikes in the core pro-
cessor. As for the checker processor, we have developed
a re-execute-on-error technique that allows the checker to
check itself [26].

3. BTWC design in other application domains

A number of other Better Than Worst-Case designs ex-
ists, developed by the authors and others. To give the reader
a broader perspective of how this technology can be applied,
we present additional design examples from the literature.



Razor logic is an error-resilient circuit design methodol-
ogy based on in-situ detection of circuit timing errors [6].
The approach utilizes Razor latches, which double sam-
ple combinational logic output values. The first sample is
taken with an aggressively timed clock, and the result is
forwarded on to later logic. The second sample, from the
so-called shadow latch, is a reliable sample of the combina-
tional logic output, which is compared to the earlier sample.
If the two samples match, there was sufficient time/energy
to complete the computation, otherwise, circuit timing error
recovery is initiated. Timing error recovery is implemented
with microarchitectural support. In this event, the pipeline
is flushed and the correct result from the shadow latch is
inserted back into the pipeline. A physical Razor proces-
sor design demonstrated that the approach could cut energy
requirement nearly in half with little performance impact,
by utilizing error rates to tune voltage to the minimum nec-
essary level [10]. In addition, novel circuit-aware architec-
tural simulation techniques were developed that provide fast
simulation analysis of microarchitectural designs that make
decisions based on circuit-level phenomena [15].

Algorithmic noise tolerance is another Better Than
Worst-Case design technique that takes advantage of special
properties of signal processing applications to reduce pro-
cessing energy requirements [12]. The technique couples
a high-precision digital signal processor with a reduced-
precision version (e.g., utilizing fewer bits of precision). In
the event there is insufficient voltage to correctly compute
the high-precision result, it will be overridden by the less
accurate (but less energy demanding) low-precision result.
Using the combination of high and low-precision proces-
sors, it is possible to significantly reduce energy require-
ments (via aggressive voltage scaling), while only introduc-
ing a tolerable amount of noise into the computation (in the
form of occasional low-precision computations).

Lu’s work on approximate circuits recognized that many
computational circuits,e.g., adders, typically produce their
final result long before the worst-case latency [16]. To
leverage this property, they defined modified microproces-
sor functional units which could, for most computations,
quickly compute a result, but in the event that the com-
putation was more heavy weight (e.g., an adder opera-
tion with a long carry-chain) an additional computation
cycle was provided by the microprocessor scheduler. Lu
also demonstrated that redesigning functional units for op-
timized typical-case latency produced additional gains. One
example of this design style was an adder with circuits op-
timized for highly likely short carry propagations.

Worm introduced the use of Better Than Worst-Case de-
sign for on-chip busses [27]. In their design, they used
communication-based coding techniques to protect trans-
missions over on-chip busses. In the event that a trans-
mission does not reach the other end of the bus without er-

rors, a retransmission (possibly with increased voltage) is
requested. By monitoring the error rate of the on-chip bus,
they found that they could reduce voltage until small er-
ror rates were encountered, thereby eliminating on-chip bus
voltage margins and reducing overall energy requirements.

The techniques presented in this section comprise only
a subset of the Better Than Worst-Case designs we have
found in the literature. The interested reader will also find
clever applications in the work of Kehl [14], Anghel [4],
and Uht [24].

4. Future applications and needs

Looking ahead, we see a number of promising appli-
cations for Better Than Worst-Case design methodologies,
plus challenges in their deployment. In this section we high-
light one of our current efforts to apply this methodology
to the design of a defect-tolerant chip multiprocessor. In
addition, we highlight one of the greatest deployment chal-
lenges, that is, how do we reduce the human effort required
to incorporate this methodology into existing and ongo-
ing designs. We briefly introduce our effort to implement
turnkey Better Than Worst-Case design methodologies.

4.1. BTWC for defect tolerance

As silicon technologies move into the nanometer regime,
there are a number of failure factors that have risen in
importance. Many technology experts agree that transis-
tor reliability is bound to wane as devices become subject
to extreme process variation, particle-induced transient er-
rors, and transistor wearout. Unless these challenges are
addressed, manufacturers can expect low yields and short
mean-times-to-failure. There are a number of possible
causes for device failures; in the following subsections we
highlight the most relevant ones.

Manufacturing Defects. Deep sub-micron technologies
are increasingly vulnerable to several fabrication-related
failure mechanisms. Optical proximity effects at the sub-
micron level, airborne impurities, and processing mate-
rial defects can all lead to faulty transistors and intercon-
nect [21]. In addition, manufacturing defects arise from a
range of processing problems that manifest during fabrica-
tion. For example, step coverage problems that occur dur-
ing the metalization process may cause open circuits. Post-
manufacturing test [19] and built-in self-test (BIST) [2] are
two techniques to impress test vectors onto circuits to iden-
tify manufacturing defects. A more global approach to de-
tect defects is taken by IDDQ testing, which uses on-board
current monitoring to spot short-circuits. During IDDQ
testing, any abnormally high current spike found during
functional testing is indicative of short-circuit defects [8].



Gate Oxide Wearout. Technology scaling has adverse
effects on the lifetime of transistor devices, due to time-
dependent wearout. There are three major failure modes
for time-dependent wearout: electromigration, hot carrier
degradation (HCD), and time-dependent oxide breakdown.
Electro-migration results from the mass transport of metal
atoms in chip interconnects. The trends of higher current
density in future technologies increases the severity of elec-
tromigration, leading to a higher probability of observing
open and short-circuit nodes over time [11]. HCD is the re-
sult of carriers being heated by strong electrical fields and
subsequently being injected into the gate oxide. The trapped
carriers cause the threshold voltage to shift, eventually lead-
ing to device failure. HCD is predicted to worsen for thinner
oxide and shorter channel lengths [13]. Time-dependent ox-
ide breakdown is due to the extensive use of ultra-thin oxide
for high performance. The rate of defect generation in the
oxide is proportional to the current density flowing through
it, and therefore it is increasing dramatically due to relent-
less down-scaling [23].

Transistor Infant Mortality. Scaling has had adverse ef-
fects on the early failures of transistor devices. Tradition-
ally, early transistor failures have been reduced through the
use of burn-in. The burn-in process utilizes high voltage
and temperature to accelerate the failure of weak devices,
thereby ensuring that the parts that survive burn-in only pos-
sess robust transistors. Unfortunately, burn-in is becoming
less effective in the nanometer regime, as deep sub-micron
devices are subject to thermal run-away effects, where in-
creased temperature leads to increased leakage current and
increased leakage current leads to yet higher temperatures.
The end results is that aggressive burn-in will destroy even
robust transistors. Consequently, vendors may soon have to
relax the burn-in process which will ultimately lead to more
early-failures for transistors in the field.

The first design point we are tackling isBulletProof,
a defect-tolerant chip-multiprocessor, capable of tolerating
medium to high levels of defects. Our design approach is a
Better Than Worst-Case design based on system-level error
checking and recovery. Additionally, due to the permanent
nature of silicon defects, we must enhance the methodol-
ogy to include repair mechanisms. Through the utilization
of on-line testing diagnostics and run-time reconfiguration,
it should be possible to repair silicon defects and restore
normal operation to the extent that spare components are
available. Reconfiguration is accomplished by providing a
pre-selected set of redundant components for the most vul-
nerable portions of the system. After redundant compo-
nents are exhausted, further faults result in a loss of func-
tionality, thereby gracefully degrading the system perfor-
mance. In our preliminary experiments, we have applied
these techniques to a CMP router switch, and we found that
the system is capable of tolerating a number of defects be-

fore any performance impact. Moreover, through the use
of system-level error checking and recovery, it is possible
to provide defect tolerance with much lower cost than tra-
ditional fault tolerance techniques, such as triple-modular
redundancy (TMR).

4.2. Turnkey solutions

In the previous section we overviewed a range of BTWC
design solutions. All these solutions are ad-hoc techniques
that can be applied only to a specific domain. To the
best of our knowledge no computer-aided design support
is yet available to support the adoption of a BTWC design
methodology. While generalized support is not yet foresee-
able, some specialized CAD tools are easy to devise. In
this section, we highlight a number of “turnkey” BTWC de-
sign technologies that we are currently pursuing. For in-
stance, we can envision a software that can be used to ”ra-
zorize” any transaction-based ASIC design. The software
could insert the checker mechanism by substituting all the
latches with razor-latches. The recovery could be very sim-
ple, by just inserting a voltage controller and a mechanism
that upon the detection of a failure, flushes or flags as faulty
the entire transaction.

A light-weight general DIVA solution could also be de-
ployed as part of a design methodology that develops an op-
timized system through subsequent refinements of a high-
level reference description. Because of the tight require-
ments for performance of the final systems, the optimiza-
tions cannot be generated automatically and are usually
ad-hoc solutions put in place by the design team. Conse-
quently, these high-level descriptions are commonly only
used to validate the output of the optimized design. In this
context, a DIVA checker can be obtained by synthesizing
the high-level model to a simple non-optimized design com-
ponent which has the same functionality of the core design,
but lacks all of its optimizations. Since the checker’s only
requirement is correctness, the synthesis process can be in
this case automatic. In order to overcome the performance
limitations of the checker, this design can be pipelined so
that each stage is small enough to execute as fast as the core
system. The design team should still intervene to connect
the pipeline stages of the checker to the proper internal sig-
nals of the core.

5. Conclusions

In this paper, we presented the concept of Better Than
Worst-Case design, a novel design methodology that uti-
lizes checker components to effectively separate the con-
cerns of performance and correctness in complex designs.
We highlighted our own efforts in this design space as well



as the efforts of others from the literature. Finally, we pre-
sented future applications we are pursuing, including tech-
nologies to support the deployment of Better Than Worst-
Case design methodologies.
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