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Abstract

We present an algorithm for extracting a disjunctive de-
composition from the BDD representation of F . The out-
put of the algorithm is a multiple-level netlist exposing the
hierarchical decomposition structure of the function. The
algorithm has thoretical quadratic complexity in the size of
the input BDD. Experimentally, we were able to decompose
most synthesis benchmarks in less than one second of CPU
time, and to report on the decomposability of several com-
plex ISCAS combinational benchmarks. We found the final
netlist to be often close to the output of more complex dedi-
cated optimization tools.

1 Introduction

The decomposition of a logic function F (x1; � � � ; xn) is
the identification of a set of functions Ai(xi) with no vari-
ables in common , and a function L such that [1, 2, 3]:

F = L(A0; � � � ; Ai; � � �)

The decomposition of a function is desirable for several rea-
sons. First, it is obviously one method for passing from a
flat representation of F to a multiple-level one. It leads to
a clustering of the inputs in simpler - and smaller - logic
blocks, thereby reducing area and interconnect. This lat-
ter property is especially desirable in many implementation
technologies, such as FPGAs or deep-submicron, where
wiring resources are scarce or costly in terms of delay.
Moreover, it exposes a parallelism in the computation of
F , by evidencing the independence in the computation of
the functions Ai. This parallelism can be exploited both in
hardware, leading to faster realizations, as well as during
simulation.

Because of its importance, decomposition is a classic
subject of switching theory,still being researched [1, 2, 3,
4, 5, 6, 7, 8, 9, 10].

Known exact decomposition algorithms are based on the
decomposition chart method of Ashenhust and Curtis [1].
The method is based on constructing trial partitions of the
set of variables and then of verifying on the decomposition
chart that F can indeed be decomposed using that cluster-
ing of its inputs. Unfortunately, because of the potentially
exponential number of trial partitions, exact decomposition
is usually confined to functions of few variables. It is worth
noting, however, that simplified techniques, such as alge-
braic factorization [4], have been extremely successful in
transforming large two-level covers in multiple-level repre-
sentations, and have been extended in various ways to in-
clude other forms of decomposition.

This paper presents two contributions. First, we present a
novel, efficient exact decomposition procedure. The proce-
dure is BDD-based , and it determines the decomposition of
function directly from that of its cofactors. Its complexity is
bounded by jF j2 � nF , where jF j and nF denote the num-
ber of BDD nodes and input variables of F , respectively. In
practice, we found the procedure to be very fast, as we were
able to determine the decomposition of most benchmark cir-
cuits in less than five seconds on a PC. We have also derived
-we believe for the first time- the decompositions of several
combinational ISCAS benchmarks.

The decomposition engine is the core of a logic opti-
mization tool, LODE. LODE outputs a netlist for a function
F (x1; � � � ; xn) based on its decomposition. If F has no
disjunctive decomposition, the output is constructed using
the decomposition of the cofactors F0; F1 of F with respect
to its first variable, x1. Interestingly, since the decomposi-
tion of F is essentially unique [1], it could be shown that
the netlist output by LODE is also canonical. Moreover, it
is again generated in time proportional to jF j2. Although
LODE is currently missing many optimization opportuni-
ties, we found it in practice to produce netlists of compa-
rable quality - sometimes better - to SIS, in a small fraction
of the CPU time, for several synthesis benchmarks.

2 Terminology.

Hereafter, we assume the reader be familiar with BDDs
[11, 12]. Let B denote the Boolean set f0; 1g. A logic func-
tion is a mapping F : Bn ! Bm. Hereafter, lower-case and
upper-case letters will denote logic variables and functions,
respectively. We will be mostly concerned with scalar func-
tions F : Bn ! B. We use boldface to indicate vector-
valued functions. The ith component of a vector function F
is indicated by Fi.

We say that a function F depends on a variable xi if
@F=@xi [13] is not the constant function 0. We call support
ofF the set SF of variablesF depends on. The size of SF is
the number of its elements, and it is indicated by jSF j. Two
functions F;G are termed disjoint-support if they share no
support variables, i.e. SF \ SG = �.

2.1 Disjunctive Decompositions.

The decomposition of a function F consists of finding
other, simpler functions L and Ai such that

F (x1; � � � ; xn) = L(A1(x1; � � �); A2(x1; � � �); � � �) (1)

Definition 1. A function L(a1; � � � ; ak), n > k � 2 is
said to reduce a function F (x1; � � � ; xn) if there are k non-
constant disjoint-support functions A1; � � � ; Ak that satisfy



Eq. (1). F is said to be prime if it cannot be decomposed
by any L. 2

The functions Ai will be termed formal inputs of the
decomposition of F . The list of formal inputs to F will
be indicated as F=L, and termed decomposition list of F .
We call disjunctive decomposition of F any pair (L; F=L)
that satisfies Eq. (1).

If F is decomposable, it is possible to characterize its
decomposition as follows:

� there is a unique prime function L decomposing it, up
to permutations/complementations of its formal inputs.

� if L has support size jSLj > 2, then also the functions
in F=L are uniquely determined, up to complementa-
tion/permutation.

� if L has support size jSLj = 2 then F is decomposable
in exactly one of the following ways :

– as the OR of disjoint-support functions; the functions
of F=L are uniquely identified for the decomposition
of finest granularity [14];

– as the complement of a OR-decomposed function ;
again, the functions of F=L are uniquely identified for
the decomposition of finest granularity [14];

– as the XOR/XNOR of disjoint-support functions; the
functions in F=L are identified modulo complementa-
tion.

If a nontrivial function A belongs to F=L, we take the
cofactor FA (or F (A = 1)) to be the function L(A =
1; � � �). Notice that, because of the uniqueness of L and
of the other elements in F=L, this function is unique and
shares no variables with A.

2.2 Representing decompositions.
We represent the decomposition of the function F rooted

at a BDD node N by annotating N with a decomposition
type field type; and a sorted list list of BDD nodes, rep-
resenting the decomposition list of F . The field type can
take on the values OR, NOR, XOR, XNOR, PRIME,
UNDEF, depending on the type of decomposition. Initially,
type is UNDEF. After application of the decomposition
procedure, type can only take one of the other values.

Each node of list points to a BDD node. This node is
the root of one of the formal inputs Ai.

The ambiguity due to permutations and complementa-
tions is resolved by sorting the functions according to their
supports, and by not allowing complement edges in list.

Example 1. Consider the functionF = MAJORITY (a�
b; c + d; ef). Its BDD is shown in Fig.(1), along with the
annotation of the root node and of significant other decom-
positions. 2

In order to resolve ambiguities in the representation, we
adopt the following rules:

1. Lists are sorted by order of top variable, that is , a func-
tion Ai appears before Aj if the top variable of Ai is
ranked higher than that of Aj .

2. pointers to BDDs in decomposition lists of type XOR,
XNOR, or PRIME cannot be complemented.
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Figure 1. BDD and decomposition annotation for the
function of Example (1).

As each function in the decomposition list F=L may be
itself decomposable, the lists associated with the decompo-
sition of F form a tree, hereafter called the decomposition
tree of F .

3 Shannon- and disjunctive- decompositions.
A BDD node, with root variable z, represents a function

F (z; x1; � � � ; xn) as

z0F0(x1; � � � ; xn) + zF1(x1; � � � ; xn) (2)
where F0 = F (z = 0); F1 = F (z = 1). Our goal is to
infer a decomposition

F = L(A;B; � � �) (3)
from the decompositions of F0; F1. This inference mecha-
nism is the basis of the decomposition algorithm of Section
(4).

The link between the decomposition of F and that of its
cofactors is conceptually simple. For example, if a function
A belongs to the decomposition tree of bothF0 and F1, then
it must belong to the decomposition tree also of F . Unfor-
tunately, several cases and sub-cases need be considered in
practice. These are enumerated below.

We now describe in detail how the decomposition struc-
ture of F is reflected in that of its cofactors. Moreover, we
show how the information on the decomposition of the two
cofactors is sufficient to infer the decomposition of F .

The top variable z of F can appear in the decomposition
of a function F in only one of the four following ways :

1 : F is the OR/NOR of z=z0 with a function A, z 62 SA;
2 : F = z �A, z 62 SA.
3 : Cases 1 and 2 do not hold, and z belongs to the support

of one formal input of F (say, A), with jSAj � 2;
4 : Cases 1 and 2 do not hold, and z is one of the formal

inputs of F .

We now analyze the consequences of these cases on the
decomposition of F0; F1.

Case 1.
In this case, one of F (z = 0), F (z = 1) is a constant.
Viceversa, suppose that one cofactor is a constant (say,



F1 = 1, the other cases being symmetric). In this case,
trivially F = F0 + z, hence F.type = OR and the de-
composition list of F is that of F0 plus z.

Case 2.
Clearly, in this case, F0 = F 0

1
. Verifying F0 = F 0

1
is suffi-

cient to infer the decomposition of F as F = z � F0.

Case 3.
Suppose z belongs to the support of a function (say,A) with
nontrivial support jSAj � 2. We need to distinguish two
sub-cases :

3.a Neither cofactor of A (Az=0, Az=1) is a constant;

3.b Exactly one cofactor of A is a constant.

Notice that the case of both cofactors being constants rules
out the possibility that jSAj � 2.

Case 3.a
In this case, F0; F1 are :
F0 = L(A(z = 0); B; � � �); F1 = L(A(z = 1); B; � � �) (4)
In other words, F0 and F1 are decomposable by the same
functionL. Moreover, the decomposition lists of F0 and F1
will coincide, except for at most one element (A(z = 0) vs.
A(z = 1)).

Viceversa, suppose that F0 and F1 have decompositions
containing functions A0 and A1, respectively, and such that

F0(A0 = 0) = F1(A1 = 0) and
F0(A0 = 1) = F1(A1 = 1) (5)

it then follows that, by forming A = z 0A0 + zA1, one can
write

F = F0(A; � � �) = F1(A; � � �) (6)

Example 2. Consider function F = MAJORITY (�ab +
ad; c + e; fg), and its cofactors F0 = F (a = 0); F1 =
F (a = 1). Both cofactors are annotated as PRIME func-
tions, with decomposition lists b; c+ e; fg and c+ e; d; fg,
respectively. The two lists differ in exactly one element
(b instead of d), and moreover, Eq. (5) holds for A0 =
b; A1 = d. Hence the inference of the decomposition
�ab+ ad; c+ e; fg for F . 2

Example 3. Consider the functionF = MAJORITY (a�
b; c+ e; fg). In this case, F0 and F1 have identical decom-
position lists b; c+e; fg. We infer the decomposition by ob-
serving that the only possibility is that in Eq. (5), A1 = A0

0
.

We then test Eq. (5) using first A0 = b, A1 = b0. Since the
test succeeds, we list A = z0A0 + zA1 = z � A0 in the
decomposition list of F , along with c+ e; fg. 2

Case 3.b
We only consider the case where the cofactorA(z = 1) = 1
(i.e. A = z +A0), the other cases being symmetric.

Suppose that F has decompositionF = L(A;B;C; � � �).
Then

F0 = L(A0; B; C; � � �); F1 = L(1; B; C; � � �): (7)
In particular, the element A0 is missing from the decompo-
sition of F1, and F0(A0 = 1) = F1.

Viceversa, suppose that F0 has a decomposition con-
taining a function A0, that SA0

\ SF1 = �, and that
F0(A0 = 1) = F1. In this case, one can write

F = F0(A0 + z; � � �): (8)

Example 4. Consider the functionF = MAJORITY (a+
b; c; d + e). Consider the cofactors F0 = F (a = 0) =
MAJORITY (b; c; d+e) and F1 = F (a = 1) = c+d+e.
In this case, b is the only function of F0 (just a variable, in
this case) not in the support of F1. The test F0(b = 1) = F1
is satisfied; hence A = a+ b and the decomposition list of
F is that of F0 with A replacing b. 2

Case 4.
F must be of type PRIME, and the function z belongs to its
list of formal inputs. The decomposition tree - and hence
the decomposition list - of F can be constructed from those
of F0, F1 as follows:

1. If a function A belongs to the decomposition tree of F0
and SA\SF1 = �, thenA belongs to the decomposition
tree of F , along with its descendants.

2. If a PRIME function A belongs to the decomposition
tree of F0; F1, then it belongs to that of F , along with
all its descendants.

3. If a OR/NOR function A belongs to the decomposition
tree of F0, and a OR/NOR function B belongs to the
decomposition tree of G, then the OR of the functions
common to the decomposition lists of A and B belongs
to the tree of F ;

4. If a XOR function A is in the tree of F0, and a XOR
function is in the tree of F1, then the XOR of the com-
mon terms belongs to the tree of F .

5. The decomposition list of F contains all functions ob-
tained by rules 1-4 that do not have ancestors.

Rule (3) above accounts for the fact that if a function A =
a+b+c decomposesF0 and , sayB = a+b+d decomposes
F1, then a + b certainly decomposes F . Similarly for rule
(4).

Example 5. Consider the function F = a0(b + c)(d + e+
f) + a(b + c + d)(e + f + g). By rule (1), the function g
belongs to the tree of F . By rule (3), the functions b + c
and e + f belong to the decomposition of F . Eventually,
the function d belongs to the decomposition of F by Rule
(2). The decomposition list of F is then a; b+ c; d; e+ f; g.
2

Rules 1-5 are sufficient to construct the decomposition
tree/list of F :

Theorem 1. If a function A belongs to the decomposition
tree of F , then one of conditions 1�4 above must hold true
for A. 2

4 A BDD-based decomposition procedure.

In this section we present the algorithm for annotating
the decomposition of a function F on its BDD representa-
tion. The annotation is accomplished in a single sweep of



cb d OR

b+c d+e+fNOR e+f+gb+c+d NOR

eOR d f

a

d
cOR b

fOR e
g

ORfe g

Figure 2. Construction of the decomposition tree for
the Example (5).

the BDD nodes, sorted topologically in a linear array. Dur-
ing the sweep, each node is inspected, and the decomposi-
tion of the function rooted at that node is determined, from
that of the children. The node is then labeled with a pointer
to its decomposition list and annotated with its decomposi-
tion type.

The decomposition method is enumerative. We try to
verify Cases 1 to 3b of Section (3), in order. If we fail, a
node is annotated PRIME and its decomposition list con-
structed as in Case 4.
DEC decompose(BDD* node) {

DEC left = node->left->decomposed;
DEC right = node->right->decomposed;
VAR var = node->argument;

// check if any cofactors are constant:
res = decompose_ornor(var, left, right);
if (res) return(res);

// check if the cofactors
// are each other’s complements
res = decompose_xor(var, left, right);
if (res) return(res);

// check if var belongs to a subfunction
res = decompose_case3(var, left, right);
if (res) return(res);

// construct the new decomposition list
res = decompose_prime(var, left, right);
assert(res);
return(res);

}

4.1 Synthesis.

LODE generates a netlist from a depth-first traversal of
the decomposition of F as follows:
synthesis(F) {
if (F.synthesized) return(F.synthesized);
switch (F.type) {

case PRIME :
F_0 = disjoint_cof(F, F.dec.first’);
F_1 = disjoint_cof(F, F.dec.first);
N0 = synthesis(F0);
N1 = synthesis(F1);
NC = synthesis(F.dec);
return(MUX(NC, N0, N1));

case OR, XOR, NOR :
for F_0 in F.dec

F[i] = synthesis(F_0); i++;
return(OR/NOR/XOR(F[])); }

}

5 Experimental results.
The procedures of this paper have been implemented in

C and tested on several combinational logic benchmarks.
The CPU time was taken on a PC equipped with a 150 MHz
Pentium and 96Mbyte of main memory.

Table (1) below reports results on the decomposability
of some large combinational and sequential benchmarks.
Column DEC reports the number of decomposable outputs,
while CPU time is reported in seconds. The decompo-
sitions themselves are often of interest. For instance, in
some sequential circuits, such as s1494, the next-state out-
puts are often ANDed with the same signal (v13 D 0C).
Most of the outputs of C880 contain complex functions
of the same formal input AND(72GAT[12], 68GAT[11],
13GAT[2], 73GAT[13]). The output is also often the OR
of these complex functions with 255GAT[54], 259GAT[55],
etc... Synthesis benchmarks are mostly decomposable. The
decomposition of some circuits, such as DES, pair, etc ...
also evidences regular designs, that we cannot describe here
for reasons of space. For some ISCAS circuits, we have also
been able to decompose some of the outputs corresponding
to complex functions.

Table (2) below compares the literal counts ob-
tained by LODE against those obtained by SIS running
rugged script. Finally, table (3) reports the CPU time
employed by LODE for the decomposition.

For the largest benchmarks, the limited set of BDD trans-
formations of LODE do not compensate for the exceptional
growth of the BDD representation with respect to the origi-
nal representation. We are currently working towards a par-
titioning strategy and enriching the transformation set.

6 Conclusions.
We have presented an algorithm for the disjunctive de-

composition of logic functions, starting from a BDD rep-
resentation. The algorithm has worst-case complexity
quadratic in the BDD size. We found it very fast in practice,
as we were able to obtain the decomposition of all bench-
mark functions in a few minutes in the worst case. We have
been able to present results on the decomposability of com-
plex benchmarks for the first time. Moreover, we have been
able to generate a very compact, canonical multiple-level
circuit directly from a BDD representation.

We are currently investigating some implications of the
present work: First, the possibility of generating the decom-
positio form of this paper directly from a netlist. Second, we
are exploring the applicability of this representation to rapid
prototyping, technology mapping and reachability analysis.
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