
High-Radix On-chip Networks with Low-Radix Routers
Animesh Jain, Ritesh Parikh and Valeria Bertacco

Department of Computer Science and Engineering, University of Michigan
{anijain, parikh, valeria}@umich.edu

Abstract—Networks-on-chip (NoCs) have become increasingly
widespread in recent years due to the extensive integration of many
components in modern multicore processors and SoC designs. One of the
fundamental tradeoffs in NoC design is the radix of its constituent routers.
While high-radix routers enable a richly connected and low diameter
network, low-radix routers allow for a small silicon area. Since the NoC
consumes a significant portion of the on-chip resources, naı̈vely deploying
an expensive high-radix network is not a practical option.

In this work, we present a novel solution to provide high-radix like
performance at a cost similar to that of a low-radix network. Our solution
leverages the irregularity in runtime communication patterns to provide
short low-latency paths between frequently communicating nodes, while
infrequently communicating pairs rely on longer paths. To this end, it
leverages a flexible topology reconfiguration infrastructure with abundantly
available links between routers (in accordance to a high-radix topology)
that are decoupled from scarcely available router ports (similar to a low-
radix topology). Network links are bound to router ports at runtime
to form connected and deadlock-free topologies. Binding selections are
based on the traffic patterns observed, which are synthesized through a
distributed statistics-collection framework. Our experiments on a 64-node
CMP, running multiprogrammed workloads, show that we can reduce
average network latency by 19% over an area- and power- comparable
mesh NoC. The latency improvements for non-uniform synthetic traffic are
above 30%.

I. INTRODUCTION

As a result of increasing integration of components into CMP
and SoC architectures, networks-on-chip (NoCs) have become the
dominant choice for on-chip interconnects, due to the highly concurrent
communication paths and better scalability they provide. Moreover, to
keep up with the communication demands of the cores/IPs on-chip,
NoCs are increasingly incorporating bulky and power-hungry resources,
required to meet target latency and bandwidth goals.

A key design choice in this context is the radix of the network
routers, that is, the number of I/O ports that a router provides to
connect to adjacent routers High-radix routers (>5 I/O ports) enable
low-diameter topologies, allowing all processing nodes to be reached in
just a few hops from any source. However, router components, such as
the crossbar and the allocators, grow in area quadratically with the radix
of the router. In addition, high-radix routers lead to increased signal
propagation latencies, and slower operating frequencies. A popular
alternative are topologies deploying low-radix routers (<5 I/O ports),
such as meshes: they can operate at higher frequencies and use less area
and power. For example, a radix-7 router requires a 4.1% greater cycle
time than a radix-5 router. Unfortunately, low-radix topologies could
lead to large network diameter and prohibitively high hop counts. They
are especially problematic for applications that do not have sufficient
memory-level parallelism (MLP) to hide their higher latency.

To overcome the limitations above, in this work we present Hi-
ROIC (High Radix On-chip Networks at Incremental re-Configuration
Cost). With HiROIC we want to provide the best of both classes:
the effective network diameter of high-radix topologies and the low
resource requirements of low-radix networks. HiROIC exploits the non-
uniformity of communication patterns to provide short, low latency
paths only between heavily communicating nodes, while it forces low
volume source-destination pairs to use longer paths. With the increasing
integration of application-specific components [4], the location and
quantity of heavily used routing paths is likely to be highly unbalanced
both across and within applications. In such designs, only a small subset
of accelerators will be active at any point in time, and this subset
will actively communicate with memories banks distributed across the
chip. Being able to optimize the latency between selected nodes (active
accelerators and memory banks) at runtime, will greatly benefit such
designs. We therefore envision great potential for the deployment of
HiROIC in upcoming CMP and SoC designs.

HiROIC leverages routing and topology reconfigurations to optimize
connectivity for high-volume source-destination pairs. At the heart
of HiROIC is the concept of port-link decoupling: network links
are connected to routers’ ports only at runtime, and the binding is
modified dynamically based on the changes in traffic patterns imposed
by the application. Our NoC design includes low-radix routers, but

abundant links, as in high-radix topology, so to potentially provide short
paths between any source-destination pair. In HiROIC, computation
is partitioned into epochs of execution, with port-link binding fixed
during each epoch. At the end of an epoch, the mapping is re-evaluated
based on the observed traffic patterns, and modified if there is space
for improvements. While HiROIC’s wiring overhead is greater than
conventional topologies (e.g., meshes), we observe that wires do not
constitute a timing bottleneck in conventional router pipelines [10].
Note that, in typical NoCs, routers have one local port connecting to
the processing node(s). Since this connection is essential, HiROIC uses
a fixed port-link binding for local ports. In the rest of this paper we
exclude the local port(s) when reporting the radix of the router.

0

20

40

60

80

100

0 20 40 60 80 100

Region of interest

Region of interest

0

15

30

45

60

75

0 2 4 6 8 10 12

> 60%

ne
tw

or
k

tr
af

fic
 (

in
 %

)

ne
tw

or
k

tr
af

fic
 (

in
 %

)

cumulative source-destination pairs(in %) – high to low traffic sharing

Fig. 1: Network activity shared by the most exercised source-destination pairs. The plot
on the right is an enlargement of the one on the left. The top 10% source-destination pairs
are collectively responsible for more than 60% of the total network traffic.

It is essential for HiROIC to have a high variation between high-
usage source-destination pairs and other source-destination pairs. To
this end, we conducted a study whose findings are plotted in Figure 1.
The plot shows the contribution of traffic flowing between each source-
destination pair. Our testbed consisted of an 8x8 mesh CMP running a
multiprogrammed mix of applications from the SPEC CPU2006 suite.
Source-destination pairs are sorted by decreasing traffic activity during
the execution, and the plot on the left indicates what fraction of network
traffic (Y axis) was carried out by a given fraction of sorted pairs. The
plot on the right is an enlargement of the contribution by the top 12%
source-destination pairs: less than 10% of them share as much as 60%
of the traffic load on average. Beyond the tenth percentile of utilization,
this disparity is no longer obvious. Thus, HiROIC’s goal is to leverage
the 10% most used pairs to provide short and high-bandwidth paths
between them. This, in turn, minimizes the effective network hop count.

Contributions. In summary, the novel contributions of this work are:

• A router architecture to mimic the high-radix routers’ connectivity
while consuming resources comparable to a low-radix router.

• A distributed, deadlock-free reconfiguration algorithm to predict
an application’s future communication needs and optimize the net-
work topology to provide short paths between high-traffic source-
destination pairs.

In our evaluation with non-uniform multiprogrammed workloads
from the SPEC CPU 2006 suite, HiROIC’s 64-node layout reduces
average network latency by 19% compared to a baseline mesh NoC.
For non-uniform synthetic traffic, latency improves from 30% to 38%,
depending on physical topology and traffic injection rate.

II. RELATED WORK

Much of the research targeting performance improvements in NoC
designs has focused on: i) reducing the number of pipeline stages
within the router [14], and ii) increasing the clock frequency of the
router’s operation [2]. Other works strove to optimize the router design
for specific topologies and flow control [9]. Our work leverages an
orthogonal approach to improve performance – decreasing the average
packet’s hop count. Previous works that leveraged application-driven
configuration for the NoC targeted the design phase of the NoC, with
no ability to reconfigure at runtime. These solutions would characterize
all applications that were expected to run on the system and then, based
on the analysis, optimize the design’s: i) topology [17], ii) routing [12],
etc. In contrast, HiROIC adapts dynamically to changing application
patterns and reconfigures the topology at runtime.

Runtime reconfiguration solutions have also been proposed to
optimize either power or performance. To reduce NoC leakage power,

ports

ports
ports

ports

links

linkslinks

links

links

links

links

Examples

xbar

router

Glue logic

Fig. 2: Router architecture and port-to-link binding. The router in the figure can connect
its four router ports to eight available neighboring links, by assigning the multiplexers’ select
signals accordingly. On the right we show 3 such possible bindings.

researchers have proposed power-gating network resources at a coarse
or fine granularity, during periods of inactivity. Other examples include
[8], which reconfigures routing at runtime to provide better management
of hotspots, and [7], which improves performance by adapting the
channel’s bandwidth. All these techniques provide valuable benefits and
can be deployed concurrently with HiROIC, which targets dynamic
topology reconfiguration, to attain additional gains. There is also a
body of work related to runtime topology reconfiguration whose goal,
however, has been reliability. In these solutions, for instance Ariadne
[1] and uDIREC [13], the topology changes because of a runtime fault,
and the authors propose reconfiguration techniques to update the routing
function. HiROIC’s key contribution is a dynamic topology reconfigura-
tion solution; upon each reconfiguration we also must perform a routing
reconfiguration, based on the solution in [1].

III. METHODOLOGY

Our solution leverages port-link decoupling to mimic high-radix
topologies, while utilizing an amount of resources comparable to a
low-radix topology. To optimize the topology for high-volume com-
munication patterns, we perform the following steps: i) we collect
traffic statistics over execution intervals (epochs) to predict future traffic
behavior, ii) we trigger topology reconfigurations when we observe
pattern changes, and iii) we set port-link bindings at each router based
on the new topology planned.

In conventional networks, router ports have fixed one-to-one map-
ping with links. In contrast, we propose to provide more links than
those available in low-radix topologies, eliminating the traditional fixed
connections. At runtime, router ports are bound to a subset of the
available links, based on the application’s communication demands.
The internal micro-architecture of the router is not modified, with the
exception of the necessary updates to the routing tables, based on
the selected configuration. Figure 2 shows on the left the schematic
of a four-port HiROIC-enabled router with the opportunity to bind to
eight links. The glue logic in the hashed area comprises multiplexers
to complete the bindings. The right side of the figure presents three
examples of port-to-link bindings for the router.

HiROIC’s Execution Flow. In HiROIC, the NoC’s execution is
partitioned into epochs. During each epoch, our distributed traffic-
statistics collection framework monitors the density of communication
between all source-destination pairs. Our goal is to identify the pairs
that transfer the majority of the traffic (see also Figure 1) so as to
minimize their hop count. In the rest of this paper, we will refer to
any such pair as the Frequently Communicating Pair (FCP). At the
end of each epoch, we analyze the composition of the FCP set and
determine whether a topology reconfiguration should occur to improve
on the current port-link binding. Figure 3 provides an overview of this
process.

Note that our approach strives to predict application’s demands
based on the traffic observations during the current epoch. This is a
valid approximation, as long as our epochs are short compared to the
frequency of major phase changes in the application’s behavior. We
observe that, in practice, applications’ phases are at least hundreds of
thousands of cycles long ; thus, in our evaluation we set the epoch

Topology reconfiguration phase

0

9 10 118

4 5 6

1 2

12 13 14

7

3

15

E
p

o
ch

 d
u

ra
ti

o
n

8 9

4 5

10

6

0 1 2

12 13 14

11

7

3

15

Statistics collection framework

FCPs during completed epoch

0 15

6 9

Epoch starts

A) Invoke topology reconfiguration

B) Create port-link bindings for FCP

C) Topology configuration for

non-FCP

N
th

 e
p

o
ch

(N
+

1)
th

 e
p

o
ch

D) Topology & routing updates

propagate through the NoC

links active to optimize FCPs connectivity

links to connect all other nodes

Fig. 3: HiROIC execution flow. Application’s execution is partitioned into epochs. During
each epoch, HiROIC monitors the NoC’s traffic patterns. At the end of the epoch, the
data is used to determine whether a topology reconfiguration is appropriate. If so, the new
configuration aims at minimizing the distance between FCPs.

length to 10,000 cycles, so to be able to quickly respond to significant
traffic pattern changes. In the next sections we present a distributed, fast
and low-overhead implementation of this collection and reconfiguration
process. Note that this reconfiguration process operates mostly in the
background, with minimal impact to mainstream network operation and
only during transitions between topologies.

IV. TOPOLOGY RECONFIGURATION

Considering the complexity of the decision and reconfiguration
process, at first a software implementation would seem a prudent
choice. However, it would require collecting all traffic statistics at
a central processing node, where a dedicated software routine ranks
source-destination pairs by traffic density, determines if a topology
reconfiguration should occur and what the new setup should be; then
the new binding information should be distributed to the NoC routers.
The cost in latency and dedicated resources of this approach makes it
impractical in the context of the epoch sizes we target.

Thus, we opted to implement HiROIC using lightweight, distributed
hardware components implementing an approximation of the ideal
algorithmic solution, for the benefits of design simplicity and to attain
low-latency reconfigurations. The hardware components added to each
router are shown in Figure 4. In addition we leverage a minimalistic
topology-generator network to control the distributed construction of
new topologies. We describe this solution below and provide insights
on the hardware additions in the next section.

Port-link bindings for FCPs. During each epoch, we collect traffic
statistics at each router in the traffic directory unit. This unit counts
the packets received from each source, and thus allows us to determine
the frequently communicating pairs (FCPs) in a distributed fashion. The
selection is made by comparing the number of packets received from
each source against a network-wide threshold, called HT th, which
varies dynamically. Once the FCP set for each router is determined,
the next step is to enable the NoC’s links that facilitate low-latency
communication for those critical pairs. These links are selected by
traversing the network, router by router, and building low-latency paths
connecting the FCPs.

The traversal is performed router by router, starting from the router
connected to processing node 0, and with each router providing some
(or none) of the FCP. At any particular time, the router providing the
information about the FCPs to connect is referred to as the controller
router. For each FCP entry from a controller router, HiROIC attempts
to enable all the links between the source and the controller router. This
is achieved by using the low-overhead topology-generator network, and
a small logic block that activates the appropriate select signals on the
multiplexers, so to enable the links on the shortest path between the
relevant source and destination routers.

The controller router chooses first a FCP entry and then performs the
port-link binding to enable the adjacent link on the shortest path from
the source node. The port-link binding activity is then transferred to the
neighboring router on the shortest path by using the link just enabled.

In turn, the neighbor router performs the port-link binding along this
designated shortest path. This process continues until the source node
is reached. The control is then transferred back to the controller router,
which moves on to perform port-link bindings for the next FCP entry.
Once the controller router has completed all the bindings for its FCP
entries, the control moves to the next router. This completes the first
phase of the topology reconfiguration algorithm.

Port-link bindings for non-FCPs. In our distributed algorithm, we use
aggressive settings for the HT th threshold, thus it is often the case that
we can enable all the links required to provide shortest paths for the
FCPs, and still have several disconnected ports in a number of routers.
Therefore, the second phase in topology reconfiguration binds the free
router ports to links that are still available. This is also achieved by
traversing the network, router by router. Each router chooses among
locally-available port-link bindings in a greedy fashion until it has bound
all its ports, or it has run out of binding options. While this greedy
approach does not lead to an optimal mapping with maximum port-link
bindings, it still provides very good solutions, as our experiments show
that 94% of the routers are able to bound all their ports to links.

Note that this kind of greedy approach to binding ports to links may
not always result in a fully connected network. We ran several Monte
Carlo simulations to evaluate the frequency of this situation and found
that disconnected networks are in practice a rare event, occurring only 5
times in 1,000 topology reconfigurations. Fortunately, this situation can
be easily detected when we apply the routing reconfiguration algorithm
to the new topology: if any destination router is not reachable in
at least one routing table, the network is disconnected. When this
situation occurs, HiROIC broadcasts a 1-bit disconnect signal to all
the routers through the topology-generator network. Upon reception of
the signal, all routers revert the topology back to a baseline low-radix
topology (a 2D mesh in our evaluation). To perform this step quickly,
HiROIC maintains a register at each router storing port-link bindings
corresponding to the baseline topology. Overall, since this is a rarely
occurring situation, it does not significantly affect HiROIC’s overall
adaptivity to application’s communication needs.

Routing in the new topology. After the generation of the new topology
is complete, all routing paths must be updated. To this end, we leverage
Ariadne’s route-reconfiguration algorithm [1]: Ariadne was proposed for
reconfiguration around faulty components and, due to the increasing
reliability concerns with shrinking transistor sizes, we assume the
Ariadne functionality to be already present on-chip. Ariadne leverages
the up*/down* algorithm [16] for routing in irregular networks, while
proposing a quick and lightweight distributed implementation to update
routes upon each topology change. Ariadne is reported to reconfigure
a 64-node network in only ∼4K cycles, and it is therefore an ideal fit
for HiROIC, if reconfiguration is triggered once every few epochs.

A. Topology Configuration Performance

The time required to complete topology reconfigurations is driven
by three factors: i) time to build a new topology (∼500 cycles), ii)
time to calculate new routes (∼4K cycles), and ii) time to drain packets
that were in flight during the reconfiguration – so to avoid deadlocks,
lost or dropped packets (∼200 cycles). We propose to hide the latency
imposed by the first and second factor by using duplicate routing tables
and link-to-port configuration registers. We can use this shadow set
of storage to compute topology and routing tables in the background,
while communication proceeds in the old topology. We then copy over
the new configuration and routes, once their generation is complete.

In addition, to switch topology configurations quickly and still avoid
lost and dropped flits, we assume a router design where the size of the
input buffers is a multiple of the number of flits possible in a packet.
With this assumption, any time we need to switch to a new topology, we
advance communication for a few cycles, until each packet sits entirely
in one router. This goal can be accomplished by forbidding packets
to access new buffers by temporarily disabling the virtual channel
allocation (VA) unit. In the worst case scenario, where each packet is
waiting for traversal of the packet at its downstream router, it will take
64*3=192 cycles for a 64-node system with 3-stage routers to complete
this task. At that point, we can switch to the new configuration.

Reconfiguration-induced deadlocks. HiROIC’s reconfiguration algo-
rithm can cause routing deadlocks even if both the old (before topol-
ogy reconfiguration) and new (after topology reconfiguration) routing
functions are independently deadlock-free [11]. Such deadlocks can be

ports

CC

Traffic
directory

Exception-

handling unit

Threshold-

update unit

Constraint
checker

source No of packets
1
2
3
4

125
20

200
10

CCCC

CC

Reconf.

trigger

Exception?

Yes

No

No

Yes

HTTH -= ∆HTTH

HTTH += ∆HTTH

at end of
epoch

increase threshold to
boost FCN set

decrease threshold to
shrink FCN set

for 10
consecutive

epochs?

Fig. 4: HiROIC hardware additions. HiROIC augments each router with five components
(shown in dark green): i) a traffic directory to count packets received from other routers, ii) a
reconfiguration trigger unit, iii) constraint checkers to check whether a port is already bound
to a link, iv) an exception-handling unit to detect execution anomalies, and v) a threshold-
update unit to adjust the packet threshold according to application needs. The right side of
the figure shows the threshold-update algorithm.

easily detected by identifying packets that are requesting illegal turns
under the new topology. We eject such packets to the network interface
at the local router port, and then re-inject them into the network upon
buffer availability. Ariadne [1] utilizes a similar technique to overcome
reconfiguration-induced deadlocks.

V. HARDWARE ADDITIONS

As mentioned earlier, our implementation consists only of simple
adders, comparators and storage structures, distributed in the NoC. As
illustrated in Figure 4, HiROIC’s hardware implementation consists of
five components at each router: i) a directory to maintain per-destination
traffic statistics, ii) a reconfiguration-trigger unit, iii) a distributed con-
straint checker (CC), iv) an exception-handling unit and v) a threshold-
update unit. Below, we discuss each unit in detail, along with the steps
of the topology construction. Finally, a minimalistic topology generator
network is used to control the distributed construction of new topologies.

A traffic directory is placed at each router so that it can track all those
source-destination pairs that have it as destination. HiROIC utilizes this
information to determine the FCP set at the end of each epoch. This
solution requires packets to carry their source node IDs, but this is
a common practice in commercial NoC designs . To approximate a
centralized, global computation of the FCP set (see Section III), we
compare entries in the traffic directory against a threshold value (high-
traffic threshold, or HT th), stored at each router and managed dynam-
ically through the threshold-update unit. All entries in the directory are
compared against this threshold value: if the number of packets received
from a given source is higher than the threshold, than the corresponding
pair is included in the FCP set. The complete FCP set corresponds to
the union of each router’s FCP set – although we never compute this
union and we keep the set distributed through all routers. The ideal
HT th depends on the epoch’s length and on the communication load
of the application, and thus it must be adjusted dynamically.

Our experiments across a range of workloads show that source-
destination pairs transferring more than ∼256 packets within a single
epoch of 10,000 cycles, are well above any dynamically generated high-
traffic threshold, irrespectively of network load. Thus, we set traffic
directory entries to be 8-bits wide (note that this design parameter
depends on epoch’s length). In our experiments, we use a network with
64 routers, thus the traffic directory at each router consists of 64*(8+6)
= 896 bits, where 8 bits store the number of packets received from a
given source, and 6 bits represent the source router tag.

Constraint checker. It is not always possible to enable the shortest
paths between all FCPs. This is because HiROIC’s architecture is
limited by: i) the number of available router ports, and ii) the flexibility
provided by the glue logic binding links and ports. Therefore, a check is
performed after enabling each link to determine that these constraints
are not violated. If any constraint is violated for any port-link along
the path of an FCP, then all the links bound for that path are released.
Constraint checking is fairly straightforward: a port-link binding cannot
be performed if the concerned port is already bound to another link.

Reconfiguration-trigger unit. A reconfiguration event involves proce-

dures that require significant activity. Fortunately, applications do not
change phase as quickly as our target epoch length (see Section III).
Thus, we trigger reconfiguration only when the application’s communi-
cation patterns have changed significantly, and the current topology no
longer provides low-latency paths for the current FCP set. Since ours is
a distributed solution, we monitor for communication pattern changes
locally, and each router is capable of triggering a reconfiguration if
it detects significant changes. Specifically, we check for the following
two conditions: i) the set of FCP entries should have at least three new
members compared to the last reconfiguration, and ii) the FCP set should
contribute at least 50% to the total router’s traffic. The first condition
ensures that changing the topology will significantly perturb the system,
while the second condition guarantees the existence of non-uniform
traffic patterns. We have calibrated these decision parameters through
design space exploration and by taking into consideration hardware
implementation costs. (for instance 50% of total traffic can be checked
with a shift-and-compare operation, while other fractions may require
far more complex computations).

The exception-handling unit monitors i) network congestion and
ii) number of FCP entries per router, and then uses this information
to update the HT th threshold value. Congestion is a limiting issue
in irregular topologies at medium-to-high traffic because they fail to
appropriately balance traffic. At the onset of congestion, the benefits
of shorter paths with irregular topologies are diminished, as packets
have to wait longer for free channels and buffers. Our analysis shows
that, in these situations, a baseline topology (such as 2D mesh in our
case) may better balance traffic, and thus leads to less congestion.
HiROIC leverages a local congestion detection metric (maximum buffer
occupancy - called BFM in [6]): the network is considered congested
if the BFM value is above a certain threshold (we found 20 to strike
a good balance in our evaluation setup). Upon detecting congestion,
the exception-handling unit broadcasts a 1-bit signal, similar to the
disconnection signal, to all the routers. Once again, the routers revert
to their baseline topology on reception of this signal.

The exception-handling unit also provides feedback to the threshold-
update unit. By maintaining a suitable HT th value, HiROIC ensures
that the topology is reconfigured for an optimal number of FCP entries.
Our experiments show that reconfiguring the topology for up to 50 FCP
entries, results in increasing improvements over the baseline topology.
Beyond 50 FCPs, the topology reconfiguration algorithm is unable to
provide optimized paths for all FCPs, and this results in diminishing
returns. However, controlling precisely the number of FCP entires in the
network requires collection and sorting of usage statistics at a central
node. For a distributed and fast implementation like ours, we control the
number of FCP entries approximately by using only local criteria. The
expectation is that by controlling the number of FCP entries per router,
the number of FCP entries can be controlled globally. Also, by using a
consistent HT th value throughout the network, HiROIC ensures that all
selected FCPs have higher usage than all other source-destination pairs.
We experimentally determined that if the number of FCP entries at any
router is more than four, then topology reconfiguration will provide
little benefit due to excessive FCP entries. Consequently, increasing
HT th, which in turn reduces the number of FCP entries, will likely
result in performance improvements. In practice, we want to keep the
number of FCPs in each router within a close range of 4-5 pairs, and
we keep pushing the threshold until we stabilize on that size. Such a
simple scheme provides a suitable trade-off between topology optimality
and simplicity of the hardware implementation. Thus, the exception-
handling unit at any router broadcasts a “HT th increase” flag globally,
if the number of locally selected FCP entries are greater than four.

A threshold-update unit is deployed at each router and controls the
high-traffic threshold by monitoring the broadcasts from the exception-
handling units. Notice that HT th affects directly the FCP set: the
higher the threshold the fewer the pairs included in the FCP set. In
addition, a suitable HT th depends on the application: a communication-
light workload will have a lower suitable HT th, compared to a
communication-heavy workload. Therefore, HiROIC can adapt to the
needs of the application by tuning this value.

Increases to the high-traffic threshold value arise when there are
changes in the workload communication density, from light to heavy,
and they are triggered by the exception-handling unit. The opposite
trend, traffic becoming lighter, is detected when HiROIC does not
observe any exception for a number of consecutive epochs, indicating

that we should include more pairs in the FCP set. We set the parameters
of our algorithm by sweeping a range of values and selecting the most
fitting ones: we initialize the HT th at a moderately high value of 96
packets to prevent over fitting. HiROIC gradually adapts to the network’s
demands by varying HT th in quanta of 8 packets. If we also do not
observe an exception for 10 consecutive epochs (indicating a decrease
in traffic), then we decrement HT th to optimize for more FCPs.

The topology-generator network serves two purposes: i) transfer
of control between routers during the building of a new topology, and ii)
network-level broadcasts to notify all routers about exceptions detected
locally at any router. For the former, the topology generator network
employs 1-bit links per channel of the underlying NoC to communicate
port-link binding signals. For the latter, the topology generator network
deploys two 1-bit wires organized as a unidirectional ring that visit
all routers in the NoC. Any router can broadcast exception detection
flags using these wires. The first 1-bit wire is used to broadcast the
“disconnection” or “congestion” flag. Both flags are identical in their
effects and therefore they can be broadcasted on the same wire. The
second 1-bit wire is used to broadcast the “HTTH increase” flag.
All routers have distributed controllers that snoop and forward these
broadcasted flags.

VI. PHYSICAL TOPOLOGIES

The key idea behind HiROIC is to emulate a router with more links
than available ports. We refer to a particular arrangement of physical
links and ports, independently of any binding, as a physical topology.
In physical topologies, links are available in accordance to a high-radix
topology (e.g., 3D torus), while ports are those of a low-radix router
(e.g., 2D mesh routers). Naturally, HiROIC’s efficacy greatly depends
on the arrangement of links and ports within the physical topology. In
our evaluation, we consider two such topologies: both use routers with
only four ports (plus a port connecting the local node), as in a mesh.
We argue that due to the similar router structure and considering power-
gating of idle links, both topologies have power and area characteristics
similar to a 2D mesh network. Therefore, all performance analysis is
against a 2D mesh topology. Notice that a traditional 2D mesh has a
one-to-one binding between ports and the links, as depicted in Figure
5(a). We implement HiROIC with the following physical topologies:

(a) 2D mesh topology (b) x-y plane of 3D torus

topology

(c) x-y plane of 4-ary 4-fly

flattened butterfly topology

x-dimension

y-
di

m
en

si
on

routers used for illustration

Fig. 5: Organization of links and routers in proposed physical topologies. We consider
two topologies for links: a 3D torus and a flattened butterfly. Routers are organized as in a
2D mesh. For simplicity of illustration, the figure shows the x- and y- dimension connections
only for the bold colored routers. 3D torus routers have two connections in each dimension,
while a 4-ary 4-fly flattened butterfly has three per dimension.

Adaptive 3D Torus. Because of its high-radix(6) routers, the average
hop count between the nodes of a 3D torus is substantially lower
than that of a 2D mesh. We propose a HiROIC-enabled adaptive 3D
torus physical topology that organizes links as in a 3D torus, while
maintaining radix-four routers.

Adaptive Flattened Butterfly. A flattened butterfly further reduces the
average hop count compared to 3D tori. For our 64-node NoC, a 4-
ary 4-fly flattened butterfly arranges the routers in three dimensions,
with direct links between routers on the same (x, y), (y, z) or (z, x)
dimensions, as shown in Figure 5(c). Our second physical topology is an
adaptive flattened butterfly (radix=9) topology with radix-four routers.

All routers are augmented with glue logic that incorporates multi-
plexers to bind ports and links at runtime. The size and the number of
multiplexers depend on the number of links a particular router port can
bind to. To understand the trade-off between multiplexer overhead and
binding flexibility, consider the scenario in which an adaptive 3D torus
router is provided full flexibility to connect any port to any link. In such
a scenario, each output port can connect to any of the six links, requiring
six 4:1 multiplexers. On the other hand, each input port can be bound
to any of the four incoming links, resulting in four 6:1 multiplexers.
Such a degree of multiplexing typically leads to layout challenges, in

addition to area and power overhead.

Link 1

Link 2

Link 3

Link 4

Link 5
Link 6

mux

m
u

x

mux

m
u

x

a)

Glue logic

Router

Link 1

Link 2 Link 3

Link 4

Link 5Link 6

m
ux

mux

m
ux

b)

Glue logic

Router

mux

Fig. 6: Glue logic for an adaptive 3D torus router. Glue logic select signals are set in
accordance to the new port-link bindings.

We experimentally concluded that increasing port-link binding flex-
ibility beyond a certain degree is not beneficial, considering the extra
logic overhead. We therefore decided to limit the number of links a port
can choose from: in our adaptive 3D torus topology, each output port
can connect to one of three output links (one in each dimension). Of
course, this restriction prohibits some port link bindings: with reference
to the example of Figure 6(a), the router can only make two connections
from the set of links 1, 2 and 6. With these restrictions, each output link
can connect to one of two ports, and therefore six 2:1 multiplexers are
sufficient for the output glue logic. For the input glue logic, each input
port can bind to one of three links, resulting in four 3:1 multiplexers, as
shown in the Figure 6(b). Similarly for the adaptive flattened butterfly
topology, we restrict each router’s output port to connect to one of
six output links (two in each dimension). This restriction results in the
addition of one 6:1 and three 3:1 multiplexers for the input glue logic,
while using six 2:1 and three 4:1 multiplexers for the output glue logic.

The restrictions on port-link bindings act as constraints in the
topology reconfiguration algorithm (Section V). First, each router can
never connect to more links than its number of ports (four in our
physical topologies). Additional constraints are specific to the topology
and arise from the limited flexibility of the glue logic, as described
above.

As it is common in constraint satisfaction problems, some input
conditions might not result in a solution satisfying all the constraints.
In order to improve the chances of a valid solution, we relax the
constraints that are not vital for correct functionality. Particularly, our
reconfiguration algorithm accepts topologies with routers having fewer
than four enabled ports. We are therefore able to achieve fully-connected
and valid topologies on 99.5% of the reconfiguration events, as reported
in Section IV. Obviously, these relaxed constraints can result in routers
with fewer active ports, and thus they can increase the average hop
count. To estimate the effect of constraint relaxation, we conducted
Monte Carlo simulations to determine the fraction of routers that do
not bind all of their four ports upon a topology reconfiguration. Table
I indicates that, even after binding ports and links for 50 FCPs on an
adaptive 3D torus, 94% of the routers bind all their ports. This result
provides empirical evidence that our relaxed constraint has minimal
impact on port utilization.

(a) Adaptive 3D torus

Number of pre- % of routers

selected links completely bound

10 96.46

20 95.67

30 95.18

40 94.65

50 94.36

(b) Adaptive flattened butterfly

Number of pre- % of routers

selected links completely bound

10 97.71

20 97.18

30 96.53

40 96.32

50 95.68

TABLE I: Topology configurations allowing unbound router ports – analytical study.
The Monte Carlo analysis uses up to 50 FCPs, then binds the remaining ports. The table
shows that ∼95% routers still bind all their 4 ports.

VII. EXPERIMENTAL RESULTS

We evaluated HiROIC on a cycle-accurate trace-driven multi-core
simulator [5]. Table II shows the characteristics of the processors and
the NoC we evaluated. We ran all experiments considering a 64-cores
CMP as a baseline. The application traces were obtained using the PIN
instrumentation tool. The simulator further incorporates a detailed model
of the NoC with 3-stage pipelined routers. We implemented our scheme

on top of an adaptive 3D torus and an adaptive flattened butterfly, as
discussed in the previous section. All our comparisons are with respect
to a baseline 2D mesh. Finally, we use an optimized version [15] of the
up*/down* [16] routing algorithm for the HiROIC-enabled NoC, while
the baseline system uses XY routing.

(a) Processor @2GHz

Cores
2-wide fetch/commit

64-entry ROB

coherence 4-hop MESI, 64B block

L1 cache
Private: 32KB/node

ways:4 latency:2

L2 cache
Shared: 256KB/node

ways:16 latency:6

Memory
Distributed: 1GB/bank

banks:4 latency:160

(b) Network @2GHz

Topology 8x8 mesh, 128 bit links

Pipeline 3-stage VC flow ctrl

VCs 4 VCs/port, 8 flits/VC

Routing up*/down*,XY

Routing- Ariadne [1]: new

Update up*/down* routes

Workload
multi-programmed:

SPEC CPU 2006

Simulation 10M cycles

TABLE II: Experimental CMP: configuration of processor and network.

A. Synthetic Traffic

Our first set of experiments injects the NoC with synthetic normal
random traffic. Normal random traffic is the most adverse traffic pattern
for topology optimization, since it does not create any imbalance on the
network. Since all nodes share similar amounts of traffic, the FCP set
should ideally be empty and topology reconfiguration should never be
triggered. However, since we use a distributed approximation for our
algorithm, we may observe some reconfiguration invocations. For the
set of decision parameters discussed in Section V, however, we do not
observe any reconfiguration invocations in this experiment, leading to
our adaptive topologies behaving exactly as a 2D mesh.

100

a
v
g

.
p

a
c

k
e

t
la

te
n

c
y
 (

c
y
c

le
s
)

Number of FCPs= 15
2-D Mesh

20

40

60

80

0 0.1 0.2 0.3 0.4 0.5

a
v
g

.
p

a
c

k
e

t
la

te
n

c
y
 (

c
y
c

le
s

Injection rate for FCPs

2-D Mesh

Adaptive 3-D Torus

Adaptive Flattened Butterfly

Fig. 7: Average network latency under directed traffic. The plot compares the average
network latency for three topologies under directed traffic with increasing injection rate for
the FCPs. HiROIC provides low-latency paths between FCPs, resulting in significant overall
latency improvements.

HiROIC is expected to provide latency improvements when some
source-destination pairs transfer more traffic than others. We created
synthetic directed traffic to gain more insights into the strengths and
limitations of our scheme. Our synthetic directed workloads consist
of 20 phases, each of which lasts 50 epochs and has a number of
frequently communicating pairs (FCPs). The new FCP set is randomly
selected after each phase. Correspondingly, HiROIC triggers a new
reconfiguration after each phase change. Other network nodes produce
traffic at low injection rate (0.005 flits/node/cycle). Figure 7 compares
the average latency of the topologies under consideration with directed
traffic using 15 FCPs. On the x-axis we sweep the injection rate for the
FCPs. To compare latency improvements, we define three traffic load
levels for the FCPs: low, medium and high. Low traffic corresponds
to 0.1 flits/node/cycle, and it is the lowest injection rate used in our
experiments. The medium and high injection rates are defined as the
injection rates where the network latency for the 2D mesh is 1.5×
and 2× that of the low-load latency. We observe that the latency
improvement over 2D mesh for adaptive 3D torus is 22.7%, 29.3% and
36.9% for low, medium and high injection rates, respectively, while
the corresponding latency improvements for adaptive flattened butterfly
are slightly better at 30.8%, 35.6% and 37.8%. This experiment proves
HiROIC’s potential in providing significant reduction in network latency
in the presence of traffic imbalance.

In order to study the limitations of HiROIC, we swept the num-
ber of FCP entries for a fixed directed load of 0.3 flits/node/cycle
(corresponding to medium load). Since irregular topologies realized
by HiROIC suffer from congestion at medium-to-high traffic, our
scheme reverts back to a 2D mesh topology upon congestion detection.
Therefore, increasing the number of traffic-heavy FCPs beyond a certain
point, should result in ineffective topology reconfigurations. Figure 8
shows that beyond 25 FCPs, HiROIC’s improvements over 2D mesh
start diminishing. However, the optimal number of FCP entries varies
depending on the network load: a heavily loaded network saturates
HiROIC’s benefits with a smaller number of FCPs.

100

a
v
g

.
p

a
c

k
e

t
la

te
n

c
y
 (

c
y
c

le
s

)

Injection rate for FCPs= 0.3 flits/node/cycle
2-D Mesh

20

40

60

80

0 5 10 15 20 25

a
v
g

.
p

a
c

k
e

t
la

te
n

c
y
 (

c
y
c

le
s

)

Number of FCPs

2-D Mesh

Adaptive 3-D Torus

Adaptive Flattened Butterfly

Fig. 8: Average network latency with varying number of FCPs. The plot compares the av-
erage network latency under medium-load directed traffic: HiROIC’s latency improvements
start diminishing beyond 25 FCPs because of network congestion.

B. Multiprogrammed Workloads

We also evaluated our proposed scheme with a set of multipro-
grammed workloads consisting of 35 applications from the SPEC
CPU 2006 benchmark suite. The experiments were conducted across
60 multiprogrammed workloads, with each workload consisting of 15
copies each of 4 unique applications. The studied applications exhibit
a wide range of cache misses per kilo instructions (MPKI) values: the
MPKI metric directly correlates to the amount of traffic sent through
the NoC. Some workloads use applications with similar MPKI values
causing all cores to inject similar amount of traffic on the NoC. We
further divide such workloads into two categories: the LL category
workloads use applications with low MPKI, while the HH workloads
use applications with high MPKI. We also use imbalanced workloads,
in which the MPKI values among the applications differ substantially,
and group them under LH category. We run each workload for 1,000
computational epochs and we noted that, on average, HiROIC triggered
142 reconfigurations during each execution.

Figure 9 compares the network latency of a 2D mesh against
the HiROIC-enabled adaptive 3D torus and adaptive flattened butterfly
under multiprogrammed workloads. Since HiROIC can optimize the hop
count only for a subset of communication paths, it provides the highest
latency improvements for high imbalance workloads, i.e., workloads in
the LH category. For this category, the average latency reduction over 2D
mesh is 21.4% and 21.2% for adaptive 3D torus and adaptive flattened
butterfly, respectively. HiROIC also provides good improvements for
workloads in the LL category because network transmissions are scarce
in such workloads, and only a small subset of applications produce
significant traffic within a given computational epoch (in contrast to
all applications producing traffic all the time). Therefore, HiROIC
optimizes the topology for this subset and reduces the average network
latency by 18.5% and 17% for adaptive 3D torus and adaptive flattened
butterfly topology. Finally, we observe the smallest gains for workloads
in the HH category, as most nodes generate heavy traffic, leading to
a larger than optimal FCP set. For workloads in the HH category,
the average latency improvement for adaptive 3D torus and adaptive
flattened butterfly over 2D mesh is 17.0% and 16.7%, respectively.

Our evaluations with multiprogrammed workloads do not yield
results as promising as the directed traffic evaluation of Section VII-A.
The primary reason for this is the organization of the underlying CMP
system. Our baseline CMP uses a shared and distributed L2 cache
architecture, and therefore L1 cache misses are uniformly distributed
over the entire CMP. As a result of this distribution, the majority of the
traffic in the NoC is uniform, and HiROIC is not able to optimize com-
munication paths aggressively, leading to sub-optimal results. However,
with a growing adoption of application-specific accelerators on-chip [4],
only a small subset of which will be active at any point in time, we
expect a greater imbalance in communication for future architectures.
The scenario is expected to be similar to our synthetic directed traffic
experiments from Section VII-A, and thus we expect HiROIC to provide
even better benefits in future architectures.

C. Area and Power Overhead

We implemented each HiROIC component in Verilog and used a
publicly available implementation of a 2D mesh router [3]. We synthe-
sized the HiROIC components and the unmodified router individually,
using Synopsys Design Compiler and the ARM ARTISAN 45nm library.
The logic area overhead of the HiROIC components for an adaptive 3D
torus router, relative to the unmodified router area are: i) multiplexers in
the glue logic (1.1%), ii) traffic directory (2.2%), iii) topology-generator
network (0.5%). Thus, we accrue approximately 4% overhead over a 2D
mesh router, in contrast with the 38% of a high-radix 3D torus router.
We assume that the Ariadne-style route-reconfiguration functionality,

40

0

5

10

15

20

25

30

35

40

LL HH LH Average

A
v

e
ra

g
e

 n
e

tw
o

rk

la
te

n
cy

(i
n

 c
y

cl
e

s)

Types of workloads

2D Mesh Adaptive 3D Torus Adaptive Flattened Butterfly

Fig. 9: Average network latency under multi-programmed workloads. The results are
presented for 2D mesh, adaptive 3D torus and adaptive flattened butterfly topologies under
three different types of workloads. HiROIC is most effective for workloads in the LH
category due to high traffic imbalance.

including routing tables, is already available at each router for fault-
tolerance. If not, Ariadne can be implemented at < 2% overhead [1]. For
a flattened butterfly router, the area overhead is slightly higher because
of the additional multiplexers in the glue logic. However, the overall
area overhead is still small (∼4%) and should not drive the selection
of the physical topology.

The main sources of power overhead in HiROIC are the glue logic
and the additional link wires in the physical topology. On the other
hand, HiROIC saves power by reducing the hop count of many packets
– all those using an FCP – and we believe that these savings are larger
than the additional power costs.

VIII. CONCLUSION

HiROIC provides performance similar to high-radix (> 5 ports)
NoC topologies using resources comparable to low-radix topologies
(<= 5 ports) by optimizing for critical high-volume communication
paths at runtime. In HiROIC, links are deployed abundantly for rich
connectivity as in high-radix topologies, while the number of router
ports is kept low. Router ports bind to links at runtime in accordance
to a distributed traffic analysis heuristic implemented at each router.
Our experiments with multi-programmed workloads on a 64-node CMP,
show that HiROIC reduces average network latency by 19% compared
to an area- and power- comparable mesh. When using non-uniform
synthetic traffic, the latency reduction is in the 30-38% range.

Acknowledgements: This work was partially supported by NSF grant
#0746425 and CFAR, within STARnet, a Semiconductor Research
Corporation program sponsored by MARCO and DARPA.

REFERENCES

[1] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco. ARIADNE: Agnostic reconfig-
uration in a disconnected network environment. In Proc. PACT, 2011.

[2] J. Balfour and W. Dally. Design tradeoffs for tiled CMP on-chip networks. In Proc.
ICS, 2006.

[3] D. Becker. Efficient microarchitecture for network-on-chip routers, PhD thesis. 2012.
[4] Y.-T. Chen, J. Cong, M. Ghodrat, M. Huang, C. Liu, B. Xiao, and Y. Zou. Accelerator-

rich cmps: From concept to real hardware. In Proc. ICCD, 2013.
[5] R. Das, O. Mutlu, T. Moscibroda, and C. Das. Application-aware prioritization

mechanisms for on-chip networks. In Proc. MICRO, 2009.
[6] R. Das, S. Narayanasamy, S. Satpathy, and R. Dreslinski. Catnap: energy proportional

multiple network-on-chip. In Proc. ISCA, 2013.
[7] M. Faruque, T. Ebi, and J. Henkel. Configurable links for runtime adaptive on-chip

communication. In Proc. DATE, 2009.
[8] B. Fu, Y. Han, J. Ma, H. Li, and X. Li. An abacus turn model for time/space-efficient

reconfigurable routing. In Proc. ISCA, 2011.
[9] J. Kim. Low-cost router microarchitecture for on-chip networks. In Proc. MICRO,

2009.
[10] T. Krishna, W. Chen, C-H.and Kwon, and L.-S. Peh. Breaking the on-chip latency

barrier using SMART. In Proc. HPCA, 2013.
[11] O. Lysne, J. Montañana, J. Flich, J. Duato, T. Pinkston, and T. Skeie. An efficient

and deadlock-free network reconfiguration protocol. IEEE Trans. Computers, 57(6),
2008.

[12] M. Palesi, R. Holsmark, S. Kumar, and V. Catania. IEEE Trans. Parallel and
Distributed Systems, 20(3), 2009.

[13] R. Parikh and V. Bertacco. uDIREC: unified diagnosis and reconfiguration for frugal
bypass of NoC faults. In Proc. MICRO, 2013.

[14] L.-S. Peh and W. Dally. A delay model and speculative architecture for pipelined
routers. In Proc. HPCA, 2001.

[15] J. Sancho, A. Robles, and J. Duato. An effective methodology to improve the per-
formance of the up*/down* routing algorithm. IEEE Trans. Parallel and Distributed
Systems, 15(8), 2004.

[16] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham, T. Rodeheffer,
E. Satterthwaite, and C. Thacker. Autonet: A high-speed, self-configuring local area
network using point-to-point links. IEEE Trans. Selected Areas in Communication,
9(8), 1991.

[17] M. Stuart, M. Stensgaard, and J. Sparsø. The ReNoC Reconfigurable Network-on-
Chip: Architecture, Configuration Algorithms, and Evaluation. ACM Trans. Embed.
Comput. Syst., 10(4), 2011.

