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Abstract—Software-based simulation provides a convenient environ-
ment for microprocessor design validation, where a number of complex
software checkers are integrated with the simulated design to identify
discrepancies between design and specification. Unfortunately, the per-
formance of software-based simulation is vastly inadequate to achieve
sufficient coverage for large microprocessor designs with complex mi-
croarchitectures. Hence, acceleration and emulation platforms are heavily
deployed in the industry for high-performance validation. However,
software checkers cannot be directly incorporated into such platforms,
forcing designers to craft ad-hoc solutions. Adapting checking solutions
for software simulation to acceleration platforms presents the following
constraints: i) only a limited number of signals can be monitored per cycle
for checking purposes so as to retain acceptable simulation performance,
and ii) the overhead of the added checking logic must be minimal.

In this work, we explore a novel solution to adapt software-based
checkers for individual microarchitectural blocks to acceleration plat-
forms, by leveraging a hybrid approach. Our solution exploits embedded
logic and data tracing for post-simulation checking in a synergistic
fashion to limit the associated overhead. Embedded logic can be used
for synthesized local checkers as well as to compress the traced data and
thus limit recording overhead. We analyze several trade-offs associated
with checking accuracy and logic / recording overhead for different
microarchitectural blocks of an out-of-order superscalar processor design.
We strive to provide valuable insights on how to adapt such software
checkers to the acceleration environment using our hybrid approach. We
find that, by leveraging simple embedded checkers and data compressors
(15-25% logic overhead), we can achieve excellent checking accuracy
even when aggressively compressing the data for transfer (only 15-
25 bits/cycle), and localize bugs up to 5,900 cycles sooner than an
architectural-level checker.

I. INTRODUCTION

Verification remains the most effort-demanding phase in the

modern microprocessor design process. Due to continued shrinking
of transistor sizes over many technology generations, the complexity
of modern microprocessor designs has increased tremendously over

the last few decades. Complex superscalar out-of-order processor
microarchitectures have expanded well beyond the high-performance

server and workstation space, as even the next-generation mobile
application processors have adopted such complexity [3]. This, in
turn, has led to an increase in the effort dedicated to verification.

Simulation-based validation is the primary methodology for verifica-
tion in the industry: a large number of regression suites are simulated
on different abstractions (architectural, RTL-level, structural) of the

design, to check for adherence to specification. Therefore, simulation
performance is key to the success of simulation-based validation.

Unfortunately, the performance of software-based RTL simulation
on large designs (> 1B gates), such as modern microprocessors,
is vastly inadequate (only 1-10 cycles/sec) to achieve satisfactory

coverage. Hence, many verification teams in the industry have shifted
some of their effort to acceleration and emulation. Indeed, these

platforms provide orders-of-magnitude better performance compared
to software-based simulation.

To its credit, software-based simulation provides a feature-rich
environment for verification, which is critical in validating and debug-
ging a design. A number of checkers are connected and simulated with

the processor design at various phases. Often, these checkers include
end-to-end correctness checks for correct architectural execution and
memory access protocols, as well as localized checkers for individ-

ual microarchitectural blocks. Checker-centric validation, although
very successful for software-based simulation, does not extend to

acceleration or emulation environments in a straightforward manner.
Acceleration and emulation platforms can only simulate synthesizable
logic; hence, even though the design can be synthesized and simulated
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Fig. 1: Hybrid checker-mapping approach. We use a mix of embedded
logic and data-compression techniques for data that must be logged. For
the latter, a software checker analyzes the logged data after simulation.

at high performance, the testbench and checking environments do not

extend into the realm of acceleration [11]. Moreover, lockstep execu-
tion of software checkers on a host paired with the design simulated
on an accelerator is not tenable, since it degrades overall performance

to an unacceptable level. It is, therefore, critical to adapt checkers to
acceleration platforms to fully leverage high-performance simulation

for verification and debugging. Current industry methodologies on
this front have focused on limiting the number of synchronization
events between the host running the checkers and the accelerator by:

i) accumulating short and frequent interactions between the design
and the testbench into longer and infrequent transactions [11], [15],
ii) recording the values of critical design signals during simulation

on-platform, and then off-loading the log at the end to check for
consistency with a software checker [7], iii) synthesizing some of the

checkers into hardware for simulation alongside the design [5], [12].
These approaches suffer from simulation slowdown due to large log
transfers or large logic overhead. Our proposed solution strives to

overcome these shortcomings.

Any checking solution adapted for acceleration platforms must

consider several tradeoffs regarding checking capability and per-
formance. Recording a large number of signals during simulation

can incur a performance penalty due to inherent constraints of the
acceleration platforms (since simulation must be suspended when the
internal buffers of the acceleration platform fill up with recorded

signal values). Thus, in such an approach, the average number of
recorded bits per simulation cycle must be small enough to introduce
only an acceptable degree of slowdown. Adding extra logic to be

simulated on the platform alongside the design, if there is room,
can also incur slowdowns. Some of the processor-based acceleration

platforms do not have a strict logic capacity limit but once the amount
of logic that can be simulated in true parallel fashion is reached, any
additional logic is simulated in time-multiplexed fashion inducing

slowdown. Hence, if embedded logic (such as synthesized checkers)
is to be simulated with the design for checking purposes, it must be as

small as possible. In an effort to reduce recorded bits and synthesized
checker logic, some of the capabilities of the original software-



based checkers may also be lost. In view of these constraints, a
desirable solution towards checking on acceleration platforms should
have minimal logic footprint and record only a small number of bits

per cycle, while providing the same quality of results as the original
checker in software-based simulation.

Contributions. In this work, we propose a novel checker adaptation
methodology (see Figure 1) for microarchitectural blocks, which
synergistically uses embedded logic and post-simulation software

checkers to provide high quality checking capability with very small
performance overheads. Checkers that have a small logic footprint

when synthesized can be embedded and simulated with the design
– we call these “local assertion checkers”. On the other hand,
checkers that must adopt the “log and then check” approach because

of their complexity, compress activity logs relevant to the check
using on-platform compression logic and then perform the check off-
platform – we call these “functionality checkers”. We demonstrate

our methodology on the software verification environment for a
modern out-of-order superscalar processor design. This environment

contains a number of microarchitectural-block checkers and an ar-
chitectural checker, which together provide a setup representative of
real world experiences. Adapting these checkers to an acceleration

environment provides a challenge that is representative of those faced
by verification engineers working in the field. We provide insights
on how the checking activity for a microarchitectural block can be

partitioned into local assertion checkers and functionality checkers.
We classify essential blocks of an out-of-order processor from a

checking perspective. Finally, we demonstrate novel techniques to
reduce the amount of recorded data with the aid of lightweight
supporting logic units, leading to only a marginal accuracy loss.

This study is performed at a conceptual level, which involves manual
partitioning of checkers for the case-study design.

II. RELATED WORK

A plethora of solutions are available for simulation-based val-
idation of digital designs using software-based simulation [16]. A

simulation-based validation environment commonly involves checkers
that are connected to the design. These checkers are written in high-
level languages, such as C/C++, SystemVerilog, and interface with the

design via a testbench. Unfortunately such validation schemes cannot
leverage the performance offered by hardware-accelerated platforms
for validation, namely simulation acceleration, emulation, or silicon

debug. Prior research has investigated synthesis of formal temporal
logic assertions into synthesizable logic [1], [8], targeting those

platforms [4], [6]. Techniques for using reconfigurable structures for
assertion checkers, transaction identifiers, triggers and event counters
in silicon have also been explored [2]. However, synthesizing all

checkers to logic is often not viable for multiple reasons. Software
checkers are often developed at a higher level of abstraction for a
design block, thus a direct manual translation to logic will run into

the challenge of addressing logic implementation details and can be
error prone. Though these checkers can be translated into temporal

logic assertions and subsequently synthesized with tools such as those
described in [1], [6], the size of the resultant logic is often prohibitive
for our context. Indeed, the logic implementation of a checker

implementing a golden model for a microarchitectural block is often
as large as the block itself, and such vast overhead is not tolerable for

large blocks. Schemes to share checking logic by multiple checkers
via time-multiplexing has been proposed for post-silicon domain [9],
however the range of multiplexing is too limited to offer the same

degree of flexibility as software checkers. Recent research has focused
on reducing logic overhead by sacrificing checking accuracy [12], but
did not consider the benefits of complementing that approach with

signal tracing.

The possibility of adopting conventional software testbenches
for acceleration and emulation platforms has been considered in

prior work as well. The testbench still executes in software and
communicates with the platform over a bus: in this setup the commu-
nication often becomes the bottleneck [13], [10]. Transaction-based

acceleration (TBA) [15] attempts to overcome this bottleneck by
bundling several interactions between the testbench and the platform

into larger, yet less frequent transactions.

Some recent silicon-debug solutions, such as IFRA [14], introduce

additional logic into the design to trace the flow of an instruction
through various microarchitectural blocks and a post-simulation anal-
ysis tool analyzes the trace to locate the manifestation of a possible

design bug. However, IFRA relies on post-triggers for detecting
processor execution divergence, and it is not nearly as flexible as

software checkers used during simulation. This solution is orthogonal
to IFRA as it attempts to adapt traditional pre-silicon verification
infrastructure for acceleration platforms, rather than developing a

dedicated post-silicon solution.

On the data logging front, acceleration and emulation platforms

permit recording the values of a pre-specified group of signals [17],
which can be later verified for consistency by a software checker. Re-

cently, a solution was proposed for adapting an architectural checker
for a complex microprocessor design to an acceleration platform
[7] using this approach: low overhead embedded logic produces a

compressed log of architectural events, which is later checked by
an off-platform software checker. However, an architectural checker
cannot provide the level of insight on design correctness, which

a number of local checkers for microarchitectural blocks can. At
the architectural level, the information gathered is limited to events

modifying the architectural state of the processor; in contrast, micro-
architectural checkers track events occurring in individual micro-
architectural blocks, generally entailing many more signals. Hence,

adapting several such checkers provides a much greater challenge,
but it is much more rewarding from design debugging perspective.

III. SYNERGESTIC CHECKING APPROACH

The most common method of checking microarchitectural blocks
involves implementing a software reference model for the block.

The design block updates a scoreboard during simulation, which,
in turn, is checked by the software reference model [16]. This
approach is viable in software simulation, but not directly applicable

to acceleration platforms. Since acceleration platforms only allow
simulation of synthesizable logic, one option is to implement the
reference model in hardware; however, as explained in Section II,

this option is often impractical. Another option is to record all signal
activity at the microarchitectural blocks’ I/O and cross-validate it

against a reference model maintained in software after the simulation
completes. However, that solution requires recording of a large
number of bits in each cycle, leading to an unacceptable slowdown

during simulation. Thus, neither solution outlined scales well to
complex microarchitectural blocks. We propose a two-phase approach
that solves this problem by making synergistic use of these two

methods while avoiding the unacceptable overheads of both. It may be
argued that we do not always need fine-grain checking capabilities on

acceleration platforms: engineers may turn off signal tracing during an
overnight run and only record the final outcome of the test, while fine
granularity checking requiring extensive tracing is enabled only on

sighting of a bug. Unfortunately, this approach prevents accelerated
simulation to obtain the same-level of coverage as software-based

simulation, since a buggy behavior can often be masked in the final
test outcome. Moreover, in this approach debugging is still performed
at a compromised simulation performance, while the proposed ap-

proach achieves both higher coverage as well as debugging support
without sacrificing performance.

The first phase performs cycle-by-cycle checking using embedded
local assertion checkers on-platform. It focuses on monitoring the

correctness of the target block’s interface activity and local invariants,



Block Local assertion (cycle-accurate, simple, low level) Functionality (event-accurate, complex, high level)

Reorder Buffer
(ROB)

Do ROB head and tail pointers ever cross each other? Do instructions retire with correct destination register values?

Reservation Station
(RS)

Are the contents of the RS flushed 1 cycle after an exception? Are instructions released with correct operand values?

Load-Store Queue
(LSQ)

Are loads whose address has been computed sent to the data
cache within a bounded number of cycles (unless flushed)?

Do store operations send correct data to the correct address?

Map Table (MT)
Are all register values marked as in-flight, are in the ROB, or
are in the register file?

Are correct tags provided to each dispatched operand field
whose value is not ready?

TABLE I: Examples of local assertion checkers vs. functionality checkers for core blocks of an out-of-order processor with an Intel P6-like
microarchitecture. Note that functionality checks are relatively more complex and high-level.

which can be expressed as local assertions. During this phase, we also

log and compress (with embedded logic) relevant microarchitectural
events to enable off-platform overall functionality checking. In the

second phase, the logged data is transferred off-platform and com-
pared against a software model to validate the functional activity of
the block. This approach is illustrated in Figure 2. The main idea

behind this two-phase approach is the separation of local assertion
checking from functionality checking for a block.

Other 

block 

1

Other block 3

Other

block 

2

Target 
microarchitectural 

block

Data compressing logic

Post-simulation 
analysis in S/W

Event-
accurate 
checking

Functional 

checks

in S/W

Phase 

2

Phase 

1

Local assertion checks
- implemented in H/W

in H/W Cycle-
accurate 
checking

Fig. 2: Two-phase checking. Local assertion checks are performed by
embedded logic in a cycle-accurate fashion, while microarchitectural
events are logged and compressed on platform with additional logic, and
then evaluated for correctness by an off-platform functionality checker
after simulation.

Local assertion checking often requires simple but frequent
monitoring. Hence it must be performed in a cycle-accurate fashion

and can often be achieved via low overhead embedded logic, with
minimal platform performance loss. Indeed most local assertions are
specified over a handful of local signals and can be validated in an

analysis’ windows of a few cycles (e.g., a FIFO queue must flush
all of its content upon receiving a flush signal, FIFO head and tail

pointers should never cross over, etc.). These checkers do not require
large storage of intermediate events; rather they must maintain just a
few internal states to track the sequential behavior of relevant signals.

In contrast, functionality checking can be carried out in an event-
accurate fashion. From a functionality perspective, most microarch-

itectural blocks can be abstracted as data structures accessed and
modified through events of read and update operations. The main goal

of functionality checking is then to verify the legality and consistence
of operations on this data structure. In addition to monitoring the
data associated with events, an event-accurate checker also needs to

perform bookkeeping of the internal contents of the microarchitectural
block, and thus an embedded logic implementation would be grossly
inefficient. Therefore, for functionality checking, the data associated

with events should be recorded and transferred off-platform for post-
simulation analysis in software, where the validity of the recorded

sequence of events is checked. Since events need to be recorded only
as they occur, there is no need to record signal values on every
simulation cycle. Moreover, we notice that we can further reduce

the amount of data recorded by leveraging on-platform compression,
while still achieving high-quality functionality checking. Table I

provides examples of local assertion and functionality checks for a
few blocks.

A. Checker partitioning guidelines

It is technically possible, though inefficient, to express any
collection of checks entirely as an embedded hardware or entirely as

a post-simulation software checker (preserving cycle-accurateness via
tracing cycle numbers, if needed). The partitioning of software-based

checkers into local assertions and functionality checkers amounts
to one of the most critical design decisions for the verification
infrastructure and requires the involvement of a verification engineer

who can extract the aspects that can be mapped into local assertions.
However, there are high-level guidelines that we gained from ex-

perience and that can be used to guide and simplify this task. As
discussed above, verifying the high-level functionality of a block
is naturally a perfect fit for event-accurate functionality checking,

whereas verifying simple interface behavior and component-specific
invariants with cycle bounds is a better fit for local assertion checking.
The primary criterion when making this distinction should be whether

event-accuracy is sufficient or cycle-accuracy is needed to implement
a check. Another governing principle is that the logic footprint of

a synthesized local assertion should be small. Hence, a sufficiently
complex interface check that will result in a large logic overhead
upon synthesis should be implemented as a post-simulation software

checker instead. Once a checker is selected for local assertion check-
ing, it can be coded as a temporal logic assertion and synthesized with
tools such as those in [1], [6]. Note, however, that for our evaluation,

we simply coded the assertions directly in synthesizable RTL.
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Fig. 3: Reservation station block: interfacing units and example checks.

Let us illustrate our approach using the reservation station (RS)

block shown in Figure 3. This block stores instructions whose source
operands are not yet ready and/or are waiting for a functional unit

(FU) to become available. It receives input data from: i) a dispatch
unit (DSPU) to allocate new instructions, ii) a map table (MT) to
get source registers’ tags (for not-yet-ready source values), iii) a

reorder-buffer (ROB) to receive unique tags for each newly allocated
instruction, and iv) a common data bus (CDB) to gather source

operand values as they become available on the CDB. The RS unit
releases instructions, whose source operands are ready, to multiple
functional units. Thus we can abstract the RS to a data structure that

allocates an entry upon receiving a new instruction from the DSPU,
receives updates from the CDB, and releases ready instructions to
the FUs.

One can identify several properties that must be upheld for the

correct operation of the RS, three of which are shown in Figure 3:
i) the DSPU must stall when the RS is full, and resume when a



slot is available in the RS, ii) the RS must clear all of its contents
on the cycle following an exception, and iii) each instruction must
be released by the RS with the correct source operand values. The

first two properties are localized to a few interface signals and
require cycle-accuracy. Their checkers are also simple to implement,

resulting in small logic footprints when synthesized; hence, suitable
for implementation as local assertions. The third property pertains
to correctness of source operand updates for instructions waiting in

the RS block. Its checker must monitor source operand updates from
the CDB, identify the instructions updated, and preserve the operand

values for later verification upon release. Note that the checker must
take action only during an update event from the CDB and a release
event from the RS. Since this checker verifies a complex high-level

property spanning the lifetime of an instruction in the RS and can
perform its checks in an event-accurate manner, it is best implemented
as a functionality checker.

B. Microarchitectural block classification

We have observed that most microarchitectural blocks can be

evaluated as black-boxes that receive control and data inputs from
other microarchitectural blocks or shared buses, and either output

information after some amount of processing, or perform internal
bookkeeping. We label the events associated with input, output, and
internal bookkeeping as allocate, release and update, respectively.

We present a general classification of microarchitectural blocks’
behavioral characteristics based on the types of events they receive
and generate. This classification can help us decide the appropriate

checker type, as well as the type of compression scheme, that fits
best a given unit. We identify three main types of microarchitectural

structures: the first two types are state-heavy structures (excluding
caches), and are suitable for our event-based functional checking,
while the third is best fit for local assertions. The three structures are

discussed below and illustrated in Figure 4.
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Fig. 4: Classification of microarchitectural structures. Based on their
behavioral characteristics, microarchitectural blocks can be classified into
three types of structures.

Type 1: Structures with allocate and release

This type of structure accepts bundles of information indexed
by a unique tag, stores them temporarily, performs some operations
on the data in the bundles, and finally releases the transformed

bundles. Common examples are processor functional units: they
receive operand values indexed by unique ROB-tags, operate on them
and release the result to the CDB. For this type of structure, our

functionality checker must simply log the allocate and release events
during simulation and must find the matching reference events during

post-simulation analysis. The unique ROB-tags associated with each
bundle are used to identify and match events.

Type 2: Structures with allocate, update and release

This type of structure also targets bundles of information indexed
by a unique tag; however, in this case the bundles include placeholders
for values to be updated with a final value (by a third party) while the

bundle is being processed by the structure. Update events generally
relate only to specific entries in the structure, which are identified

via a unique tag provided in the update event. A bundle is released
(becomes “ready”) when all its expected updates have been received.
The “ready”-ness criteria is defined by the microarchitectural context.

The control information associated with each bundle are the tags for
the value updates and the “ready”-ness bits.

Block
allocate
event

update event
release
event

ROB dispatch execution complete inst. retire

RS dispatch register value available on CDB inst. issue

MT dispatch execution complete (tag match)
inst. retire
(tag match)

LSQ dispatch
i) address update on computation
ii) value update on cache response

inst. retire

TABLE II: Allocate, update and release events for essential blocks of
an out-of-order processor with Intel P6-like microarchitecture.

This type of structure comprises some of the core microarch-
itectural blocks of an out-of-order processor. For instance, in an ROB,

allocation occurs when a new instruction is dispatched. The update
event (in this case just one) occurs when the instruction execution
is completed, as indicated by the common data bus producing the

corresponding tag. The release event is the instruction’s retirement,
indicated by the head entry in the ROB buffer. Table II presents a few
of the structures of this type included in an Intel P6-family out-of-

order processor: for each structure, we indicate the allocate, update
and release events. Several other families of microarchitectures for

out-of-order processors (e.g., MIPS R10K) exhibit similar behavior.

Type 3: Combinational/Arbitration structures

The last type of structure consists mainly of combinational blocks,

or blocks with a small amount of state information. They are often
used for issue, dispatch, or bus-arbitration logic. They must make
arbitration decisions based on pending requests in the current cycle:

here local assertion checkers generally suffice.

C. Compression of recorded data

In our solution, our functionality checkers gather all the relevant
events for each microarchitectural block, as described above, by

logging the associated control and data signals on-platform for later
transfer and post-simulation analysis. During the logging process,
however, we also compress the collected information so as to reduce

transfer time. Our goal is to achieve compression in the recorded
information without sacrificing accuracy. From a verification per-

spective, control signals are more informative than data signals;
hence, the guiding principle is to preferentially compress data content
over control information. Indeed, the control information is critical

in keeping the post-simulation software checker in sync with the
design block. Since compression is performed using an embedded
logic implementation, we want to leverage low-overhead compression

schemes, such as parity checksums, which can be computed with just
a few XOR gates. In [7] it was shown that blocked parity checksums

are generally sufficient to detect value corruptions due to functional
bugs in modern complex processor designs. In light of this, we
devised three compression techniques, presented below.

1) Data checksum with lock-step control: Often, the post-

simulation software must be able to follow the same sequence of
control states as the design block to validate its behavior. Based on
this observation, we compress the data portion of all events using a

checksum (see Figure 5.1), while keeping control information intact.
In cases where design and test constraints place limits on data range

(e.g., when the address field in a data packet is restricted to use only
a specific address range), considering only portions of the data may
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Fig. 5: Compression techniques for functional events.

allow for further compression of the recorded information. Moreover,
some types of events may undergo additional compression steps as

discussed in the next two subsections.

2) Sampling with lock-step control: Taking advantage of the

relative importance of control and data signals further, it is sometimes
sufficient to record allocate, update and release events with their
corresponding control signals, and simply drop the data components

of the event (see Figure 5.2). In addition, a number of release
events contain control signals that do not affect the state of a

microarchitectural block. For such events, either sampling intermittent
events, or considering only parts of the control signals is a viable
approach.

3) Data merging: This technique computes checksums across
multiple events. Instead of checking individual release events, we can

construct their “checksum digest” (see Figure 5.3). This is beneficial
when only a small fraction of release events may contain errors.
Also, note that this approach is complementary to individual event

checksums, since the data associated with each event is already
compressed.

Choice of technique: The first two techniques are applicable to

both type 1 and type 2 structures for compressing data associated
with all 3 types of events, while the data merging technique is only
applicable to release events for these structures. Some examples of

checksum decision choices on a case-study design are presented in
IV-A and IV-B.

IV. EXPERIMENTAL EVALUATION

We applied our checker-mapping solution to a number of repre-
sentative microarchitectural checkers that are part of the verification

environment of a 64-bit, 2-way superscalar, out-of-order processor
design, resembling the Intel P6 micro-architecture and implementing
a subset of the Alpha ISA. Due to the absence of any open-source

out-of-order microprocessor design we used a student project as our
design and developed a verification environment around it. Our veri-

fication environment consisted of multiple C/C++ microarchitectural
block-level checkers, one for each of the blocks reported in Figure
6, and an architectural golden model checker (arch-check) connected

to the design via a SystemVerilog testbench. We also equipped our
verification environment with a time-out condition on instruction
retirement, indicating whether the processor had hung (µP hang).

We synthesized the design (excluding caches) using Synopsys

Design Compiler targeting the GTECH library. Table III reports the
contribution of each block to the total logic size: as it can be noted,
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the lion’s share is contributed by structures that are state-heavy, such
as ROB, RS and LSQ. Developing acceleration-based checkers for

such blocks has been traditionally a challenge as: i) if the checker
is entirely implemented in hardware, the logic overhead becomes

unacceptable – comparable in size to their design counterpart, and ii)
these blocks generate many events, thus logging entails lots of storage,
data transfer and analysis. Hence, we believe that the validation of

these blocks will benefit the most from our solution.

ROB RS LSQ MULT RF Others

# GTECH blocks 158,163 53,086 46,765 40,894 24,702 30,546
% of total 44.7% 15.0% 13.2% 11.5% 7.0% 8.6%

TABLE III: Block sizes of our testbed design. The design has a combined
16-entry RS, 64-entry ROB, 32-entry LSQ and an 8-stage multiplier.

We evaluated the feasibility of our hybrid checking methodol-
ogy by analyzing several schemes on the checkers in our testbed.
The validation stimulus was generated using a constrained-random

generator that created a test suite of 1000 assembly regressions. In
evaluating the quality of our solution, we considered the three most
relevant metrics: average number of bits recorded per cycle, logic

overhead and checking accuracy. The first metric reflects the amount
of data to be recorded on platform and later transferred; we estimated

the second one by using tracing logic similar to [7]; the third one is
obtained by comparing our hybrid checkers against the bug detection
quality of a software-only checker in a simulation solution. Note

that, industry experience suggests that the average bits/cycle metric
is the most critical for acceleration performance. A recording rate of

only 162 bits/cycle is reported to induce a 50% slowdown for the
acceleration platform used in [7]. We use this metric as a proxy for
relative performance overhead independent of any specific platform

architecture.

We injected a number of functional bugs in each microarch-

itectural block to evaluate the bug-detection qualities of our solution.
To measure the checking accuracy of any compression scheme, the
full set of regressions were run with only one bug activated at a time,

and this process was repeated for each bug to create an aggregate
checking accuracy measure. Each microarchitectural checker was only

evaluated over the bugs inserted into its corresponding design block.
The quality of each checker is based on its accuracy of detection.
We quantified this aspect by computing what percentage of the bug

manifestations it detected.

While we investigated our solution on most type 1 and type 2

blocks, and some of the type 3 blocks of Figure 6, for reasons of
space we report below our findings for only one representative block

for each category: a multiplier checker (type 1), a RS checker (type
2) and a dispatch checker (type 3). Note that, as discussed in Section
III-B, type 3 checkers can typically be fully mapped to local assertions

and do not require a functionality checking component.

A. Multiplier Checker

Our design contains an 8-stage pipelined multiplier, which al-

locates mult instructions with operand values obtained from the

issue buses, and releases the result on the CDB after computation.
Associated with each instruction are data signals: two 64-bit operand



values on the input side, one 64-bit result on the output side
and a 6 bit-wide control signal (the tag), on both directions. For
this block, the only local assertion checked whether an instruction

completes within 8 cycles excluding stall cycles, while functionality
checking was used to verify computation performed by the block.

A data checksum with lock-step control compression, possibly with
data merging, is a natural choice for compressing events for the
functionality checker; using a checksum scheme on the data output

while preserving the whole 6 bits of control. However, to verify the
result of the computation, we still need all operands’ bits for each

passing instruction. Finally, sampling with lock-step control can also
be used as long as we keep track of all instructions going through
the block but record operands and results in a sampled fashion. Table

IV details the set of compression schemes for evaluation.

Name Compression scheme

csX compress 64-bit output into X checksum bits

merge merge results of 5 consecutive release events

samp
record data for only 1 out of 5 instructions going through
the block

TABLE IV: Multiplier checker - Compression schemes.

We modeled five distinct functional bugs (see Table V) on the
multiplier block to evaluate the quality of our checking schemes.

Multiplier’s functional bugs
- Incorrect multiplier pipeline control signal - Partial result over-written
- Wrong product bit assignment at pipeline stage - Corruption of result’s MSB
- Release of result on the wrong lines of the CDB

TABLE V: Multiplier checker - injected functional bugs.

Figure 7 explores the trade-off between the checking accuracy of
different data compression schemes and their average recording rate:

the first bar on the left is for the the full software checker tracing
all active signals and leading to an average rate of 25 bits/cycle.

In contrast, the hardware-only checker does not entail any logging.
Note that the average recording rate is much smaller than the total
number of interface signals for the block, since only a fraction of

instructions require a multiplier. The other bars represent sampling
(low logging rate and low accuracy), merging, and various checksum

widths. Note that our checksum compressions provide very high
accuracy at minimal logging cost. We believe this is due to i) the
ability of checksums to detect most data errors, and ii) the fact that

some control flow bugs impact data correctness as well.

Figure 8 plots the logic overhead for all the compression schemes

evaluated, relative to the multiplier block size. Note that the merging
scheme has a slightly higher tracing logic overhead since it needs

additional logic to maintain the running checksum.
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Fig. 7: Multiplier-checker - Accuracy vs. compression. The checksum
schemes achieve almost perfect accuracy, logging only about 16 bits/cycle.

B. Reservation Station (RS) Checker

The reservation station (RS) block is especially interesting since
it is central to the out-of-order core architecture as it interfaces with
almost all other microarchitectural blocks and generates the most

events. The task of a RS is to hold instructions whose operand values
have not yet been produced. The local assertions of the synergistic

RS checker verify the simpler aspects: stall, flush and instruction
residency time bounds. From the functionality checking perspective,
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Fig. 8: Multiplier-checker - Logic overhead relative to the multiplier
hardware unit for a range of compression schemes. Note that the logic
overhead for the local assertion checkers does not vary between schemes
since the same local assertion is used for every scheme.

the dispatch unit allocates instructions to the RS, the common data bus
(CDB) updates the RS with ready operands, and the RS releases ready

instructions to the functional units. Associated with each instruction
are control and data signals: a unique ID tag, operand “ready”-bits,
operand values if operands are ready, or corresponding tags otherwise,

and decoded instruction data. The control signals for an allocate event
(instruction tag, operand tags and readiness bits) require only 20 bits.
The data signals for the same event, on the other hand, require a total

of 326 bits. We observed this skewed distribution of data and control
signals in the update and release events of most other blocks as well.

Thus, we expect our data checksum with lock-step control method
to be very effective in compressing these events. Table VI lists the
compression schemes that we studied for this block.

Name Compression scheme

csX
both 64 bit operand fields are compressed to X bit parity
checksum, control and tag stay intact, all other data bits
are ignored

twX
Only last X bits of the 6 bit tag are recorded, control
bits stay intact, operand fields and all other data bits are
ignored

TABLE VI: RS checker - Compression schemes.

We modeled seven distinct effects of functional bugs (see Table

VII) for the RS block to evaluate the accuracy of our solution. Note
that these bug manifestations capture a large class of design bugs,
since a number of functional bugs produce similar effects.

Reservation station’s functional bugs
- Wrong operand value on issue - Wrong ROB tag released on issue
- CDB update overwrites ready operand - Missing a CDB update
- Corruption of decoded instruction within RS - Ready instruction in RS stalled
- Erroneous ROB tag recorded on allocate

TABLE VII: RS checker - Modeled functional bugs.
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Fig. 9: RS-checker - Accuracy vs. compression. A cs5 (64-bits operands
compressed to 5 bits) compression scheme delivers an almost perfect bug
detection accuracy at a recording rate of only 23 bits/cycle.

Similarly to what we did for the multiplier checker, Figures 9 and
10 report the trade-off between accuracy and logging sizes, and logic
footprints for several compression variants applied to the RS checker.

In this case, the software checker must log a very high 313 bits/cycle.
Note from Figure 9, that the “cs5” scheme provides almost perfect

accuracy at a logging rate of only 23 bits/cycle, a 92.7% reduction.
In Figure 10 we note that the same scheme can be implemented with
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a fairly small logic overhead (18%), compared to the extreme H/W
only checker (101%). Finally, we observe that the logic footprint of

the various tracing schemes decreases with the number of checksum
bits calculated, as one would expect.

Finally, in Figure 11, we show a distribution of which of the
checkers in our verification infrastructure detect each bug first.

The portions labeled RS-local and RS-func. represent the fraction
detected by the local assertion and functionality checker of our
synergistic RS-checker as described in this paper. other-check refers

to another microarchitectural block checker, and arch-check is the
fraction detected by the architectural checker (see the beginning of
Section IV). Finally, µP hang represents the fraction detected by our

timeout monitor. For the S/W-only version, both RS-func. and RS-
local checks are implemented as post-simulation software checkers.

While some bug manifestations are only detected by the architectural
checker, overall, all bugs are detected by at least one of the checkers
in place. Among the variants of our solution, the synergistic checker

with cs5 compression alone, localizes more than 60% of the bug
manifestations, at a logic overhead of only 18%, indicating that our
solution is effective for a wide range of bugs.
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cs5 scheme can detect a bug up to 5,900 cycles before it propagates to
the architectural level.

Note that, almost all bugs eventually manifest at the architectural

level; hence, the primary reason to validate at the microarchitectural
level is to localize the bug in time and space more accurately, easing

debugging. To evaluate the success of our solution on this front, we
also conducted a study on the latency of bug manifestation in Figure

12 , where we plot the difference in cycles between when a bug is
detected by our solution and when it is detected at the architectural
level. It can be noted that we can flag a bug up to 5,900 cycles earlier,

a great benefit for debugging purposes.

C. Dispatch Checker

The main purpose of the dispatch logic is to dispatch each
decoded instruction with correct value or tag (depending on whether

the value is available). The block is implemented with combinational
logic to select the correct source of tag/value provider based on
associated flags. All checks for this block are implemented via local

assertions whose footprint was less than 80% of the size of the block.
Even though this is a relatively large footprint, the block itself is very

small w.r.t. the whole design, hence the approach is affordable.

V. CONCLUSIONS

We presented a hybrid solution for acceleration-based check-

ers. Our solution leverages a combination of local assertions, data
compression hardware and off-platform post-simulation analysis for
checking the complex functionalities. We found that our solution is

effective in delivering high quality bug detection capabilities at low
recording rates (15-25 bits/cycle) and logic overhead (<25%) over
a broad range of micro-architectural blocks, while enabling much

earlier detection than an architectural-level check (up to 5,900 cycles).
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