
Functional Post-Silicon Diagnosis and Debug
for Networks-on-Chip

Rawan Abdel-Khalek and Valeria Bertacco
Computer Science and Engineering Department

University of Michigan

[rawanak, valeria]@umich.edu

ABSTRACT

Networks-on-chip (NoCs) have emerged as a favorable so-
lution to provide higher bandwidth interconnects for large
chip multiprocessors (CMPs). In order to enhance the inter-
connect’s performance, the NoC is often designed to include
complex components and advanced features. Along with
the increase in complexity and size, ensuring the functional
correctness of the NoC can be particularly challenging This
challenge pervades the entire verification effort, and particu-
larly post-silicon validation, due to the lack of observability
of the networks complex internal operation.

We propose a post-silicon validation platform that en-
hances observability of network activity by periodically tak-
ing snapshots of the packets in flight. Each node’s local
cache is configured to store the snapshot logs in a tempo-
rary space allocated for post-silicon validation and released
at deployment. Each snapshot log is periodically and locally
analyzed by a software algorithm, running on the proces-
sor’s core, in order to detect functional errors. If an error
is detected, the snapshot logs are aggregated and additional
debug data is extracted. This includes an overview of the
traffic in the network at the time surrounding the manifes-
tation of the error, as well as a partial reconstruction of the
routes followed by the packets in flight. In our experiments,
we found that this approach allows us to detect several types
of functional errors, as well as observe over 50% of the net-
work’s traffic on average and reconstruct at least half of each
of their routes through the network.

1. INTRODUCTION
As silicon technology continues to scale, large chip mul-

tiprocessor (CMP) architectures are an emerging solution
targeting parallel applications and high performance com-
puting. In today’s market, designs such as Tilera CMPs and
Intel’s SCC have as many as 48-100 cores on chip. To pro-
vide the high communication bandwidth required for these
cores to communicate among each other, networks-on-chips
(NoCs) are utilized. In a typical NoC architecture, processor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)

2012, November 5-8, 2012 San Jose, California, USA
Copyright 2012 ACM 978-1-4503-1573-9/12/11 ...$15.00.

cores connect to the interconnect through a network inter-
face. Data sent over the network is divided into packets
and transmitted between cores through a series of routers
following a path determined by the network’s routing pro-
tocol. In order to provide more bandwidth, better resource
utilization, and higher performance, the NoC designs are
becoming increasingly complex. Today, networks often have
irregular topologies and advanced routing algorithms and
router architectures are often designed with advanced fea-
tures to boost performance. This growth in complexity and
size translates to an increase in the difficulty of verifying the
functionality of the NoC. Post-silicon functional validation
is an important phase in the verification process of hard-
ware designs. Tests run at high speeds directly on the first
few silcon prototypes, which allows a deeper and more thor-
ough validation of the state space. However, this comes at
the expense of extremely limited observability and control-
lability of the design’s internals, making the detection and
debugging of errors very challenging.

In this paper, we address the limitations of post-silicon
validation for the NoC subsystem by introducing a novel
debug platform that greatly boosts the observability of the
network activity and facilitates the detection and debug of
functional errors. While, pre-silicon verification, which val-
idates the RTL description of a design, is effective for indi-
vidual components [6], system-level validation is spotty at
best, given the limited scalability and performance of the
tools available. In contrast, post-silicon validation offers the
high performance necessary to investigate the correctness
of system-level functionality in depth and expose complex
bugs. Such functional bugs manifest as incorrect traffic be-
havior and network resource utilization or by preventing the
network from making correct forward progress, such as dead-
locks and livelocks.

2. CONTRIBUTIONS
To address the challenges outlined above, we present a

post-silicon verification platform that aids in detecting and
diagnosing functional errors in network-on-chip interconnects
in CMPs. We collect information about traffic in-flight dur-
ing network operation, by instrumenting each router to take
period snapshots of the packets traversing it at the time.
The snapshots are stored in a designated portion of the L2
local cache corresponding to that CMP node. This space
is temporarily reserved for post-silicon debug and released
afterwards. The logs of each router effectively provide sam-
ples of the traffic observed within the router throughout a
test execution. If a functional error manifests, then it af-

(P1, @t2,

@t3,…,@t40)

(P1, @t1)
(P2, @t1)

(P3, @t3, @t12)

(P3, @t5)

(P3, @t10)

(P3, @t8)

$ $ $

$ $ $

X

$

$

network
interface

processor core local cache

X

X

BLOCKED

MISROUTE LIVELOCK

router

P1

P2

P1 P3

P3

P3

P3

CMP node

packet

Figure 1: Overview of our NoC post-silicon validation
platform. We boost observability during post-silicon validation
by instrumenting routers to periodically monitor network traffic.
We show three possible bugs that our solution can detect and the
type of information collected.

fects the behavior of at least one packet. Therefore, we run
a software checking algorithm runs on each core to examine
the local logs and identify erroneous behavior. If an error
is detected, the logs from all nodes are aggregated and used
to reconstruct the paths followed by packets in the network.
The reconstructed paths provide an overview of the traffic
in transit during the time preceding the manifestation of
the error (see also Figure 1). Our proposed solution is in-
dependent of the specific NoC design, its topology, routing
algorithm and router architecture. It is also applicable to a
NoC that uses multiple clock domains.

Our solution provides the following main contributions:

• A framework that provides observability of the net-
work operations during post-silicon validation by pe-
riodically taking snapshots of routers’ contents. The
collected data is used to track packets through the net-
work, providing a global overview of the network traffic
at the time of the error manifestation. Our experi-
mental evaluation shows that our solution can provide
observability of over 50% of packets in most cases and
reconstruct at least half of their paths.

• A post-silicon solution that detects and diagnoses func-
tional errors that prevent the network from making
forward progress, including deadlocks, livelocks, star-
vation and misrouting errors.

3. RELATED WORK
Conventional approaches to post-silicon debug augments

the design with boundary scan registers (BSRs). Test data
can be serially shifted through these BSRs and applied to
the component being tested. Test results and traces can be
serially read out and transferred off-chip to be analyzed for
debugging. Another common approach uses on-chip trace
buffers to collect execution traces and then off-loads them
for analysis when they are full; however, this comes at the
expense of a large area overhead. In contrast, we propose a
post-silicon debug platform targeting specifically NoCs, en-
abling us to tailor our solution for effective functional debug-
ging of the interconnect. Similar to the idea of using on-chip
buffers, we collect information about packets in flight, but

we store them in the local caches. Data is collected at a
central location only if an error is detected in the local logs.
Therefore, our approach also has the benefit of eliminating
the need to regularly off-load data from all buffers.

Some solutions for post-silicon debugging of NoC designs
were proposed in [8], [3] [2]. Vermeulen, et al.describes a
transaction-based NoC monitoring framework for systems-
on-chip, where monitors are attached to master/slave inter-
faces or to routers. These monitors can filter traffic to ob-
serve transactions of interest as well as analyze network per-
formance. [2] proposes adding configurable monitors to NoC
routers to observe router signals and generate timestamped
events. The events are then transferred through the NoC
for off-chip analysis or at dedicated processing nodes. This
work was later extended in [3] by replacing the event gener-
ator with a transaction monitor, which can be configured to
monitor the raw data of the observed signals or to abstract
the data to the connection or transaction level. These works
propose solutions for increasing NoC observability, but do
not demonstrate their use in functional verification. [8] fo-
cuses on using the monitors for performance analysis of the
network operations. [3], [2] provide a high-level description
of the types of events and transactions that can be observed,
but do not address their use in detecting and debugging er-
rors. We share with them the idea of monitoring traffic at
the routers to provide observability of the network’s inter-
nal operations. However, we propose a complete framework
that selects the exact data to be monitored and uses it to de-
tect functional errors and help in debugging. An additional
drawback of the above approaches is that, in order to con-
tinuously monitor execution, monitored data either needs to
be stored in large buffers or regularly transmitted over the
network for analysis. The former increases area and power
overheads and the latter regularly perturbs the network’s
normal execution. The authors of [2, 3] also report a high
area overhead (17%-24%) for the monitors that will be no
longer needed after system deployment. On the other hand,
our framework stores the monitored data in the local cache,
analyzes it locally, and transmits it over the network only
when an error is detected. Finally, our monitoring hardware
introduces a much smaller area overhead (9%).

Other debugging solutions for NoC-based multi-cores and
systems-on-chip (SoCs) include [7]. Debug probes are added
between each core under debug (CUD) and its network-
interface. The probes monitor communication transactions,
generate signals to control the CUD, and read the CUD’s
trace buffers. Control and debug data are transferred be-
tween the probes and an off-chip debug controller through
the NoC. Similarly in [9,10], probes are added to monitor in-
coming and outgoing packets of master IPs in an SoC, which
are then used to analyze the initiation and completion of
transactions. These proposed platforms do not address de-
bugging functional errors in the interconnect itself, which is
the target of our work.

4. POST-SILICONVALIDATIONPLATFORM
In a typical NoC-based CMP, each processor core and its

local cache are connected through a network interface to
a router (Figure 1). We assume a general virtual chan-
nel worm-hole router architecture, where packets are par-
titioned into flits, with a header flit marking the beginning
of the packet. An incoming packet is first queued in one of
the router’s input buffer and then it is processed in three

logging local check logging logginglocal check global check
local cachecore

temporary
log storage

core

each core analyze its
log and detects bugs

lo
ca

l

ca
ch

e

periodic router
snapshots central debug unit (CDU) collects

snapshots and builds packet routes

error detected

CDU

snapshots
log

test execution

epoch

test execution test execution

router

Figure 2: Execution flow of the NoC debug platform. Execution is partitioned into epochs, each consisting of a logging phase and
a local check phase. During the logging phase, periodic snapshots of each router’s contents are logged in the local cache. During the
local check phase, the logs are locally analyzed by a software algorithm running on the cores. If an error is detected, the global check
phase reconstructs the route of packets in-flight.

stages. First, route computation determines the output port
for the packet. Then, virtual channel allocation determines
the output virtual channel. Finally, in the switch allocation

stage, flits arbitrate for the use of the crossbar. Once the
output port and virtual channel are selected for the header
flit, the rest of the packet follows.

In our NoC debug platform, execution is partitioned into
a series of epochs, each comprising a logging phase and a
checking phase, as shown in Figure 2. During the logging
phase, routers take snapshots of their internal state. These
snapshots are taken at regular intervals and stored in a re-
served portion of the local cache attached to that router.
When the available space in the cache is exhausted, the log-
ging phase terminates and the network execution is stopped.
Then, each core runs a series of software-based checks to an-
alyze the snapshots collected in its local cache and to detect
situations where packets are not making forward progress.
If such a situation is suspected, in-flight network packets
are dropped and the local logs are aggregated at one CMP
node. There, a global checking algorithm processes the data
to provide debug information, including an overview of the
network traffic at the time of the bug occurrence and the
reconstruction of the paths followed by packets in flight.

4.1 Logging
During the logging phase, each router is instrumented to

take snapshots of packets traversing it at the time, as illus-
trated in Figure 3. Snapshots are taken periodically at fixed
time intervals and the physical clock of the router is used
to track time. This interval is set by the user, based on the
characteristics of the NoC and the traffic density. To iden-
tify the packets to be logged, a router looks for header flits
stored in its input buffers. This is accomplished by aug-
menting the router with one header buffer for each input
buffer. When a router receives a packet, it stores the packet
in its input buffer and stores a copy of the header flit in the
corresponding header buffer. The size of the header buffer
depends on how many packets can be in a router’s input
buffer at any point in time, which in turn depends on the
minimum number of flits in a packet. When a header flit is
identified, the snapshot hardware can extract its source and
destination nodes. In addition, we require that the header
flit also includes a packet ID (unused space in the header is
often available). This ID is provided by a sequential number

Snapshot1, t10
P1, IP4, OP2
Snapshot2, t20

…..
…..

Snapshot4, t40
P7, IP1, OP3
P5, IP2
P9, IP4, OP4

processor data

temporary
snapshot
storage

lo
ca

l c
ach

e

IP1

IP2

OP1

OP2

OP3

OP4

router at time t40

IP3

IP4

input port

P5

P7

P7

P9

P5

P9

snapshot

input buffer
header buffer

output port

header flit

VARC SA

network
interface

Figure 3: Logging. Routers take periodic snapshots of packets.
A header buffer is added to every input buffer to keep track of
the header flits. The snapshot hardware captures header data
and information from the route computation (RC) and virtual
channel allocation (VA) modules.

generated at the source node, which, along with the source
and destination, forms a unique identifier of that packet. It
is also useful to log additional information about the packets,
depending on their status within the router. For example,
packets that have completed the route computation phase
are assigned an output port, so logging the output port al-
lows us to determine the downstream router.

Finally, snapshots also store the physical time at which
they are taken. However, if the network uses multiple clock
domains, we also rely on the notion of logical time imple-
mented through Lamport clocks [5], where every router has a
logical clock that is advanced when a new packet is received.
In this setup, packet headers also include a timestamp that
monotonically increases with every hop. When a router re-
ceives packets, it sets its logical clock to the maximum times-
tamp of the received packets and then increments it. When
a packet leaves the router, its timestamp is updated to the
logical time of the router. Thus, in the case of multiple clock

domains, a snapshot entry also includes the logical times-
tamp of the packet. Note, all entries in the same snapshot
have the same physical timestamp, we therefore store it only
once for the entire snapshot.

Overall, every snapshot consists of several entries, one for
each packet. Every entry contains a packet ID (counter,
source, destination), input port, input virtual channel, out-
put port (if allocated), output virtual channel (if allocated),
and its logical timestamp. Figure 4 shows the information
logged in each snapshot. In our experimental platform de-
scribed in Section 5, the size of a snapshot was at most 57B
(assuming 20 bits for the physical timestamp, 15 bits for the
logical timestamp and 20 bits for packet ID). The collected
snapshot entries are sent through a dedicated link to the
network interface and stored in a designated portion of the
local cache. When available storage is full, the correspond-
ing node transmits a flag through a dedicated link, halting
the network temporarily and initiating the local check phase.

Num of entries: n

Packet ID
(counter, src, dest)

input
port

input
VC

output
VC

output
port

physical timestamp

logical timestamp

Packet ID
(counter, src, dest)

input
port

input
VC

output
VC

output
port

logical timestamp

entry 1

entry n

Figure 4: Snapshot format. A snapshot consists of several
entries, one for each packet in the router.

4.2 Local Checks
Our debug platform targets errors that prevent the net-

work from making correct forward progress. During the local
check phase, each core analyzes the snapshot log from its lo-
cal cache to detect signs of such errors. The algorithm first
iterates through the snapshots and groups snapshot entries
according to the packet ID. Thus, each packet becomes as-
sociated with a list of entries that reflect how the status of
the packet changed within that router.

Forward progress can be hindered if a packet is blocked in
a router, in the case of a starvation or deadlock bug, or is
not advancing correctly towards its destination, in the case
of a livelock and a misroute bug. Therefore, we consider
each of these cases separately.
Livelock. A network livelock exists if a packet is being
transferred through routers but not advancing to its desti-
nation. Since the checking algorithm running on each core
has only access to its local snapshot log, livelocks must be
detected locally at the router. For a network with a finite
number of nodes, a livelocked packet will eventually tra-
verse the same router twice. Provided that the epoch length
is long enough for the livelock cycle to form, such errors
can be detected locally. In Figure 5 (lines 3-7), the algo-
rithm retrieves the physical timestamp of the packet’s snap-
shot entries. If the difference in time between two successive
snapshot entries is greater than the snapshot interval, then
they were captured in non-consecutive snapshots. This is an
indication that the packet traversed the router at different
non-consecutive times and the algorithm flags a livelock.
Starvation. A starvation error exists if a packet is tem-
porarily blocked waiting to acquire resources that are given
to other packets. Packets traversing the network can only be
blocked in a router’s input buffers, as this is the only storage
available in the network. Therefore, a starved packet must
appear in several consecutive snapshots in a router. Hence,
the checking algorithm determines the number of consecu-

tive snapshots in which each packet appears (Figure 5, line
9), and based on the snapshot rate, it deduces how long the
packet has been waiting and flags a starvation error when
this value exceeds a user-set threshold.
Deadlock. A network deadlock exists if packets are blocked
waiting on each other to free resources in a way that none of
them can advance forward. At the network-level, a deadlock
can be identified by the existence of a cyclic dependency of
resources, but identifying a deadlock at the router-level by
examining only the local snapshot log reduces to the prob-
lem of identifying a blocked packet. Similar to the starva-
tion bug, a packet is blocked if it appears in consecutive
snapshots. However, a deadlocked packet is permanently
blocked, which means it must also be seen in the latest snap-
shot. Thus, the local check algorithm checks if any of the
packets in the snapshots satisfy both these conditions and
flags them as deadlocked (lines 10-11 in Figure 5). Note that
long starved packets could be misclassified as deadlocks.
Misroute. With deterministic routing, a packet travel-
ing between a source and destination pair should always go
through the same route, based on the routing algorithm.
A misroute occurs if a packet is routed to a node that is
not on this path (irrespective of whether the packet even-
tually reaches its final destination). To detect such errors,
we first assume that all valid paths between each source-
destination pair are known, since they can easily be collected
theoretically or experimentally beforehand. This informa-
tion is stored in each local cache in the form of a bit vector
that indicates, for each source-destination pair, whether the
local router is part of the valid route. Therefore, to de-
tect misroutes, the local check algorithm iterates through
the snapshot entries, obtains the source and destination of
each entry, and checks it against the valid paths information
(lines 13-16 in Figure 5).

In the absence of errors, the snapshot data is cleared and
the NoC resumes execution. However, if an error is detected,
the logs are aggregated at the central debug unit (CDU),
which can be any of the network nodes. In-flight packet
are dropped and the logs are sent from one cache at a time
to the CDU. Sending from one node at a time reduces the
complexity of network operations during the transmission of
the logs, boosting the likelihood of error-free transmission,
since it only uses basic operations.
Sampling. To reduce the time spent in the local check
phase, we also provide an optimization that trades-off the
ability to detect errors with the execution time of the local
check algorithm. Instead of analyzing the entire snapshot
log, each core can downsample the information, such that it
only looks at a uniformly distributed fraction of the snapshot
entries. This sampling rate is another user-defined value,
and we evaluate its trade-offs in Section 5.1.

4.3 Global Check
The goal of the global check phase is to provide useful

information that can facilitate debugging the detected er-
ror. It combines the collected snapshots to reconstruct the
paths of observed packets, and it gives an overview of the
traffic that passed through the network during the logging
phase. Snapshots entries pertaining to the same packet are
grouped together. Packet routes are then reconstructed by
sorting these entries in increasing order of snapshots’ physi-
cal timstamps, when a global clock is present, or the logical
timestamps when the network uses multiple clock domains.

1. LocalCheck (snapshotLog){
2. foreach packet in snapshotLog {

3. foreach ntr in GetSnapshotEntries(packet) {
4. time = PhysicalTimeEntry(ntr);
5. next_time = PhysicalTimeEntry(ntr+1)
6. if (next_time - time > snapshotInterval)
7. FlagError(Livelock)}

8. if (CountEntries(packet) > threshold)
9. if packet in lastSnapshot(snapshotLog)
10. FlagError(Deadlock)
11. else FlagError(Starvation)

12. src = GetSrc(packet)
13. dest = GetDest(packet)
14. if router !InPath(src, dest)
15. FlagError(Misroute) } }

Figure 5: Local check algorithm. To detect livelock, the
algorithm checks if a packet appears in non-consecutive snap-
shots. For blocked packets (deadlock and starvation), it checks if
a packet appears in several consecutive snapshots. Finally, mis-
route errors are detected by comparison with the set of valid paths
between the packet’s source and destination.

We also use each entry’s input port and output port to try to
reconstruct the path beyond the router in which the packet
was observed. We determine the upstream (downstream)
router, based on the input port (output port) field and the
network topology.

Besides reconstructing packet routes, the global check al-
gorithm can highlight the packets that were present in each
router at the time the snapshot was taken, exposing inter-
actions that possibly triggered the error. For example, by
examining a router’s snapshot log, we can determine a sub-
set of the packets that traversed it and deduce the router’s
internal states, such as the buffers that were in-use and the
virtual channel and output port allocations at the time.

5. EXPERIMENTAL EVALUATION
To evaluate our debug platform, we modeled a CMP inter-

connect with Booksim, a cycle accurate C++ based network
simulator [4]. We considered our baseline system to be an
8x8 mesh NoC with input-queued virtual channel routers.
Each router has 5 ports, 2 virtual channels and 8 flit-buffers.
We augmented the simulator so that routers take periodic
snapshots of packets and we implemented the local check
functions. We simulated two types of workloads: directed
random traffic (uniform, bitcomp) and applications from the
PARSEC benchmark suite [1].

injected bugs

no

sampling

50%

sampling

20%

sampling

no

sampling

50%

sampling

20%

sampling

misroute 19% 14% 2% 6% 0% 0%

deadlock 100% 100% 100% 100% 100% 100%

livelock 100% 100% 100% 100% 100% 100%

starvation 24% 7% 2% 0% 0% 0%

snapshot interval=10 cycles snapshot interval=50 cycles

Table 1: Error detection rate for our four types of bugs. The
results are reported for two snapshot intervals, with and without
local check sampling.

5.1 Error Detection
We first analyzed our platform’s ability to detect func-

tional errors. We modeled four types of bugs in the baseline
system, each representing an error that would prevent the
network from making correct forward progress. These in-
clude a deadlock and a livelock bug, a misrouting bug, where

���������	��
�

�����
�

���������	��
�

�����
�

���

���
����

����
������
	�
� ��� ���

��������� 	
����	����� ��� ���

�����	
����	������	��
 ���

����������
����
	��������

��	
��� ��� ��	
��� ��

�������� ��� �������� ���

�������� ��� �������� ���

	�
����� ��� 	�
����� ��

�
����

���
����

��������
������
	�
� ��� ���

��������� 	
����	����� ��� ���

�����	
����	������	��
����

����������
����
	��������

��	
��� ��� ��	
��� ��

�������� ��� �������� ���

�������� ��� �������� ���

	�
����� ��� 	�
����� ��

����

���
����

����
������
	�
� ��� ���

��������� 	
����	����� ��� ���

�����	
����	������	��
����

����������
����
	��������

��	
��� ��� ��	
��� ��

�������� ��� �������� ���

�������� ��� �������� ���

	�
����� �� 	�
����� ��

Table 2: Diagnosis capability is evaluated by measuring the %
of packets observed, the % of each path that we could reconstruct,
and the % reconstruction for the erroneous paths.

a packet is misrouted once along its path to the destination
node, and a starvation bug, where a packet is temporarily
prevented from acquiring the resources it needs to progress
along its path. The bugs were injected in a randomly chosen
router or set of routers by modifying the simulator to model
the effect of the bug on the packets in transit at the time.
We ran both the random traffic and PARSEC workloads,
while triggering each bug once during the simulation and
repeated each experiment with 11 random seeds.

Table 1 shows the detection rate when simulating bitcomp
traffic over our four bugs and two snapshot intervals (ev-
ery 10 cycles and every 50 cycles). In addition, we varied
the sampling rate of the local check algorithm, which, as
explained in Section 4.2, constitutes a trade-off between de-
tection coverage and the time it takes to complete the local
check phase. In these experiments, the threshold for de-
tecting starvation and deadlock was set to 100 snapshots.
Results show that deadlock and livelock bugs are always de-
tected, whereas misroute and starvation have a much lower
detection rate (0% -24%). This is because, when a packet is
deadlocked or livelocked, it remains in this state from when
the bug manifests until the end of the simulation, and thus
it has a high probability of being captured by the snap-
shots. On the other hand, misroute and starvation errors
are transient and the affected packets can be missed and
never observed. This effect is more pronounced when the
snapshot interval is increased to 50 cycles. In addition, if
sampling is activated during the local check phase, the de-
tection of misroute and starvation decreases, again because
of the transient nature of these errors. Whereas, local check
sampling does not affect the detection of livelock and dead-
lock. Finally, we noticed that for the snapshot interval of 10
cycles, the simulations where the traffic injection rate was
high (close to network saturation), exhibited false positives
due to the false detection of starvation bugs. Starvation er-
rors were flagged even before our bugs were injected. This is
because the network is highly congested and the chosen de-
tection threshold was small. However, at a snapshot interval
of 50 cycles, no false positives were reported.

5.2 Error Diagnosis
We also evaluated the quality of information that can be

obtained from the snapshots when they are aggregated dur-

�

��

���

���

���

���

���

���

���

���� ���� ���	 ��� ���� ���� ���� ���	

�
��
��
��
��
�	

��
�
��

�
��

��������������

������

�

��

���

���

���

���

���

���� ��� ���� ���	 ���� ����

�
��
��
��
��
�	

��
�
��

�
��

��������������

��������

���	��
����

	��
����������

	��
������� ��

�

���

���

���

���

��

���

�
��
��
��
��
�!

��
�
��

�
��

����"���#	

$%&!�'

Figure 6: Effective simulation speed of our NoC debug platform with varying local check sampling rates. The baseline
system without our debugging functionality is assumed to be running at 1GHz.

�

���

���

���

���

����

���� ���� ���� ��� ���� ���� ���� ����

�
��
��
��
��
�	

��
�
��
�

�
��
�

��������������

������

�

���

���

���

���

����

���� ��� ���� ���� ���� ����

�
��
��
��
��
�	

��
�
��

�
��
�

��������������

�������

	��
	�����������

	��
	�����������

	��
	������������

�

���

���

���

���

����

�
��
��
��
��
�	

��
�
��

�
��

���������	

 !"#�$

Figure 7: Effective simulation speed of our NoC debug platform with varying snapshot interval. The baseline system
without our debugging functionality is assumed to be running at 1GHz

ing the global check phase. Table 2 highlights the results for
bitcomp random traffic at low, medium and high injection
rates and two snapshot intervals (10 cycles and 50 cycles)
and with a sampling rate of 50%. We particularly looked
at 3 measurements. First, we calculated the percentage of
packets that were observed in at least one snapshot out of
the total number of packets injected in the simulation. Sec-
ond, we looked at path reconstruction, which is the average
percentage of each route we were able reconstruct from the
aggregated snapshots. Finally, we measured the path recon-
struction of the packets that were detected as faulty (i.e.,
the packets where the detected error manifested).

For a snapshot interval of 10 cycles, the percentage of ob-
served packets is 54% at low injection and increases to 85%
at high injection. This increase is due to the fact that at
higher injection rates, the network is more congested and
routers have more packets traversing them, which allows
each snapshot to capture a larger fraction of the packets
in flight. As for path reconstruction, we note that on aver-
age 52% to 58% of each route was reconstructed from the
snapshots. When looking at the path reconstruction of the
erroneous packets, we notice that when the bug is detected,
we can reconstruct on average 36%- 60% of its path. For the
starvation bug at high injection, the path reconstruction of
the faulty packet is reported as 0%, since the error was not
detected in any of the runs. Even though at higher injec-
tion, the network is more congested and starvation is more
likely to occur, we maintained the same bug injection rate:
one starvation bug injected once during each run. There-
fore, with more traffic in-flight and given the probabilistic
nature of the snapshot algorithm, the erroneous packet that
was affected by the bug, was never observed.

When the snapshot interval is increased to 50 cycles, the
percentage of packets that are observed in the collected snap-
shots decreases to 20% at low injection and 50% at high

injection. Similarly, the overall average path reconstruction
decreases to 35%. With higher snapshot intervals, snapshots
are taken less frequently and thus more packets are missed.
Therefore, the snapshot interval directly influences network
observability. Moreover, the impact of the chosen snapshot
interval varies depending on the injection rate. For test cases
that have low traffic injection, a smaller snapshot interval is
required to observe at least 50% of all packets. However, at
high injection rate, a larger snapshot value would be suffi-
cient to achieve the same result, because of the higher con-
gestion in the network.

5.3 Debug Platform Simulation Speed
Our NoC debug platform periodically stops network ex-

ecution to locally check the collected snapshot logs. We
therefore evaluated the effective speed of the baseline system
with the snapshot and local check functionalities enabled.
To this end, we simulated the system with PARSEC and
random traffic and ran these simulations on a 2.4GHz Core2
Quad machine. We utilized the x86 timestamp counters to
calculate the average execution time, in cycles, of the local
check algorithm. In these experiments, we assume that the
baseline system (the cores and the NoC) without our NoC
debug functionality is operating at 1GHz. We also assume
that 30KB of the local L2 cache is reserved for the snapshot
log, when simulating random traffic workloads and 10KB
when simulating the PARSEC benchmarks. Note that the
snapshot storage is around 10% or less of a typical L2 cache
size of 256KB. In addition, the lower injection rate of the
PARSEC benchmarks required us to choose a lower storage
size so that the local log fills up and triggers a local check
at least once during the benchmark’s execution.

Figure 6 shows the effective simulation speed of the system
equipped with our NoC debug solution, using a snapshot in-
terval of 10 cycles and while varying the local check sampling

rate. The effective simulation speeds only take into account
the overhead of the local checks triggered during each run.
For the random traffic, we vary the injection rate from low
injection (when the network is close to zero-load latency) to
high injection (before network saturation). Without sam-
pling, the platform’s effective simulation speed is 38MHz
for the random traffic and 359MHz for the PARSEC bench-
marks on average. However, with sampling, the platform’s
effective speed can be increased to an average of 130MHz and
660MHz respectively. Overall, this performance is still sev-
eral orders of magnitude better that what can be achieved
in pre-silicon, all while providing much better observabil-
ity and debug information than traditional post-silicon so-
lutions. Moreover, performance can be boosted further by
sampling.

We also evaluated the effect of varying the snapshot inter-
val on the platform simulation speed, for a fixed sampling
rate of 20%. With higher snapshot intervals, local checks
are invoked less frequently and the overall effective speed of
the simulations is higher. This can be observed in Figure 7.
For example, when the snapshot interval is increased from
10 cycles to 50 and a 100 cycles, we observe an increase
in the simulation speed of bitcomp traffic by a factor of 3
and 7, respectively. However, as explained in Section 5.2, a
larger snapshot interval reduces the observability of in-flight
packets and the ability to reconstruct their paths. A similar
trend is observed for the uniform and PARSEC workloads.
However, note that for low injection, increasing the snap-
shot interval might not be feasible, as was the case of the
PARSEC benchmark that would never trigger a local check.

Since the snapshot interval and the local check sampling
rate constitute a trade-off between the execution speed of
our post-silicon validation platform and its ability to detect
and diagnose errors, we propose making them configurable
parameters that can be tuned depending on workloads and
traffic patterns.

5.4 Area
We also evaluated the area overhead of the router modifi-

cations that are needed to capture the local snapshots. The
router additions are described in Section 4.1 and illustrated
in Figure 3. We synthesized the modified baseline router
with the Artisan 45nm target library. The baseline router
area was 0.075mm

2 and the area overhead is 9%.

6. PLATFORM PARAMETERS
Our solution provides high observability and debug in-

formation. However, some of its aspects have limitations.
For instance, the snapshot interval may affect the ability
to detect transient bugs, such as misroute and starvation.
Moreover, depending on when the local logs fill up and trig-
ger a local check, it is possible for the platform to miss a
livelock bug, if a livelock cycle does not complete within the
logging epoch or a starvation bug if the bug manifests very
close to the end of an epoch. Note, however, that good tun-
ing of the several parameters available can overcome most
or all of these situations. Moreover, multiple runs of a same
test with different parameter settings can also boost the de-
tection capabilities of the solution. For instance, misroute
and starvation bugs are best detected with a small snapshot
interval. Moreover, a larger local check sampling rate im-
proves the platform’s detection accuracy, but decreases the
effective execution speed. Finally, the designated portion

of the cache reserved for the local logs is another parameter
which must be tuned. Benchmarks with lower injection rates
may require a smaller storage to trigger the local check fre-
quently enough to detect errors. Note also that although we
utilize a portion of the cache to store the logs, this does not
hinder the value of our solution. In fact, the smaller available
cache space would likely generate more traffic and better ex-
ercise the network, since conflict and capacity misses would
be more pronounced.

7. CONCLUSION
We presented a post-silicon solution to support the func-

tional verification of networks-on-chip by increasing the ob-
servability of the network’s internal operation and provid-
ing debug information to facilitate the diagnosis and debug-
ging of errors. Our platform targets functional errors that
prevent the network from making correct forward progress,
such as deadlock, livelock and starvation errors. Routers
periodically take snapshots of packets traversing them and
log these snapshots in a reserved portion of each proces-
sor’s local cache. When the space allocated for the logs
is exhausted, a software algorithm running on each cores
examines its local snapshot log for incorrect packet behav-
ior. Once an error is detected, the local logs are combined
and additional debug information is extracted. Results show
that our debug platform can effectively collect information
critical to the detection and diagnosis of functional errors
during post-silicon validation.
Acknowledgments. The authors acknowledge the sup-
port of the Gigascale Systems Research Center, one of six
research centers funded under the Focus Center Research
Program (FCRP), a Semiconductor Research Corporation
entity.

8. REFERENCES
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC

benchmark suite: Characterization and architectural
implications. In Proc. PACT, 2008.

[2] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and
J. Meerbergen. An event-based network-on-chip monitoring
service. In Proc. HLDTV, 2004.

[3] C. Ciordas, K. Goossens, T. Basten, A. Radulescu, and
A. Boon. Transaction monitoring in networks on chip: the
on-chip run-time perspective. In Proc. IES, 2006.

[4] W. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann, 2003.

[5] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 1978.

[6] R. Parikh and V. Bertacco. Formally enhanced runtime
verification to ensure NoC functional correctness. In Proc.
MICRO, 2011.

[7] S. Tang and Q. Xu. A multi-core debug platform for
NoC-based systems. In Proc. DATE, 2007.

[8] B. Vermeulen and K. Goossens. A network-on-chip
monitoring infrastructure for communication-centric debug
of embedded multi-processor socs. In Proc. VLSI-DAT,
2009.

[9] H. Yi, S. Park, and S. Kundu. A design-for-debug (DfD) for
NoC-based SoC debugging via NoC. In Proc. ATS, 2008.

[10] H. Yi, S. Park, and S. Kundu. On-chip support for
NoC-based SoC debugging. IEE Trans. on Circuits and
Systems, 57(7), 2010.

