
Application­Aware Diagnosis of Runtime Hardware Faults

Andrea Pellegrini and Valeria Bertacco
University of Michigan

{apellegrini, valeria}@umich.edu

ABSTRACT

Extreme technology scaling in silicon devices drastically affects

reliability, particularly because of runtime failures induced by tran-

sistor wearout. Current online testing mechanisms focus on testing

all components in a microprocessor, including hardware that has

not been exercised, and thus have high performance penalties.

We propose a hybrid hardware/software online testing solution

where components that are heavily utilized by the software appli-

cation are tested more thoroughly and frequently. Thus, our online

testing approach focuses on the processor units that affect appli-

cation correctness the most, and it achieves high coverage while

incurring minimal performance overhead. We also introduce a new

metric, Application-Aware Fault Coverage, measuring a test’s ca-

pability to detect faults that might have corrupted the state or the

output of an application. Test coverage is further improved through

the insertion of observation points that augment the coverage of the

testing system. By evaluating our technique on a Sun OpenSPARC

T1, we show that our solution maintains high Application-Aware

Fault Coverage while reducing the performance overhead of on-

line testing by more than a factor of 2 when compared to solutions

oblivious to application’s behavior. Specifically, we found that our

solution can achieve 95% fault coverage while maintaining a mini-

mal performance overhead (1.3%) and area impact (0.4%).

1. INTRODUCTION
Continued improvements in semiconductor fabrication technol-

ogy have enabled the manufacturing of microchips comprised of

billions of transistors; while such integration promises major ad-

vantages in terms of cost and performance, industry experts have

raised concerns that it will jeopardize transistor robustness [2].

Reliability issues may be triggered by a wide range of causes:

from manufacturing problems, such as optical proximity effects

and processing material defects, to component infant mortality, and

transistor failures at runtime. Among these, runtime failures are

the most concerning because they require expensive equipment re-

placements or, if undetected, may silently corrupt a computation.

Several causes may lead to permanent hardware defects at runtime,

including oxide breakdown, hot carrier injection, negative bias tem-

perature instability and electromigration. The problem is further

exacerbated by aggressive mainstream testing techniques such as

burn-in [16], where devices are operated in a high temperature and

voltage environment to accelerate the failure of weaker transistors.

This reduces the number of system failures due to infant mortality

but affects all transistors, often shortening their lifetime.

The impact of runtime transistor failures on processors varies

greatly: from causing disruptive software behavior to corrupting

computation without providing any warning signs [8]. Faults that

cause silent alterations to the output of software applications are

particularly concerning. For instance, silent data corruptions lead-

ing to system outputs that diverge from the expected results may

cause financial losses or even have safety impacts. Since programs

trust the underlying hardware to correctly execute instructions, soft-

ware developers rarely handle unexpected events such as hardware

faults, even for widely adopted sensitive applications such as cryp-

tographic routines. However, the effects on these applications can

be dramatic when hardware infallibility is questioned, as shown in

[13]. As the size of transistors decreases with technology, expected

fault rates are projected to increase drastically, causing concerns on

the correctness of computation by any computer system [2].

Traditionally, multiple modular redundancy has been adopted

for mission critical systems, but the cost of this solution is pro-

hibitive for most commercial applications. More recently, several

researchers have proposed a different, more cost-efficient approach

that does not rely on computation redundancy but, instead, assumes

that the work performed on a processor cannot be trusted until the

integrity of the underlying hardware is confirmed. Computations

are then partitioned into epochs and normal execution is periodi-

cally suspended to run a battery of tests on the microprocessor [5].

Periodic testing of microprocessors can be accomplished through

the addition of ad-hoc hardware testing components [5, 11] and/or

through the execution of high-quality software test sequences [4,

9]. Even if effective at detecting faults, the execution of online

tests is a time consuming task and results in a performance reduc-

tion up to 30% [4]. Independently from their implementation, all

current online testing techniques focus on maximizing the portion

of the silicon area where faults can be detected, striving to provide

high fault coverage throughout the entire device. In contrast, our

work proposes a novel approach to online testing of processors,

emphasizing application sensitivity to runtime hardware faults.

1.1 Contributions
We propose an adaptive fault detection framework for periodic

on-line testing, delivering high coverage, low performance over-

head, and near-zero area cost. Our solution can diagnose perma-

nent faults occurring in microprocessors at runtime, providing the

following contributions:

• We propose an Application-Aware testing framework - A2Test
- that dynamically tunes a test to focus on the hardware units

exercised by software. As a result, we can limit testing over-

head, while providing close and careful monitoring of hardware

units that, if faulty, might have corrupted software outputs.

• We rely on a hybrid hardware/software solution to deliver this

online approach: software tests check the integrity of the under-

lying hardware, while lightweight hardware observation points

are inserted to improve test coverage.

• We propose a newmetric called Application-Aware Fault Cov-

erage (A2FC) which measures test quality, while accounting

for dynamic hardware usage. Thus, A2FC expresses the effec-

tive fault protection experienced by the user.

We evaluated test quality, performance overhead and area impact of

our diagnosis mechanism on a processor based on an OpenSPARC

T1 core [17]. We found that the area overhead of our design is neg-

ligible (approximately 0.4%), and it can provide high Application-

Aware Fault Coverage (95.5%) with extremely low runtime over-

head (only 1.3% slowdown). Additionally, to the best of our knowl-

edge, we are the first to detail the fault coverage achievable by soft-

ware testing on a multi-threaded microprocessor.

2. RELATED WORK
Classic runtime testing techniques focus on achieving high area

fault coverage, regardless of processor utilization. These solutions

incur a constant runtime overhead due to periodic testing. Below

we overview the two groups of solutions.

Hardware-based detection mechanisms insert extra microarchi-

tectural features in order to detect faulty transistors on the chip.

For example, Constantinides, et al. [5] and Mehrara, et al. [11] pro-

pose embedding Built-In-Self-Test units and checkers to test the

integrity of VLIW processors. These hardware additions account

for a significant area overhead, 5.8% and 14%, respectively, and

provide limited coverage against permanent faults (89% and 95%).

Structural testing has recently been proposed as a viable solu-

tion to perform runtime fault detection [4, 9] and it is the solu-

tion that can achieve the highest fault coverage in digital systems.

However, area and performance overheads limit its viability for

online reliability schemes. Structural testing requires significant

area overhead, approximately 6%, to implement the logic neces-

sary to dynamically load and unload scan chains in the micropro-

cessor. Processor down time for these testing mechanisms can be

extremely high, a few seconds at a time for the solution proposed in

[9]. Software-based techniques utilize software routines providing

high fault coverage with no hardware additions [1, 14]. Their focus

is to achieve an elevated fault coverage across all structures of the

CPU, posing a significant performance overhead, regardless of the

dynamic usage and health of the processor. In contrast, our hybrid

solution takes advantage of the low cost of software testing, but im-

proves its coverage through the addition of extra observation points.

Gupta, et al. [7] suggested tuning the execution of functional tests

to the health of the silicon elements within the processor. They es-

timate hardware health through in-situ oxide breakdown and NBTI

sensors spread throughout the silicon, thus increasing chip area by

2.6%. Gupta, et al. focus only on a single type of silicon defect: ex-

tending their approach to handle other sources of silicon degrada-

tion would require the deployment of different specialized sensors.

All these solutions are oblivious to application behavior; our hy-

brid solution, in contrast, proposes to monitor processor’s utiliza-

tion. Doing so, we can tune our tests to target those hardware struc-

tures that have been subjected to high activity, and thus are at higher

risk of corrupting the application.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FPU

Load/Store Branch/Call

ALU/Shifter

Branch/Call

Load/Store

0%

10%

Millions of Instructions

Figure 1: Dynamic instructions in the Nas FT benchmark. This
application solves differential equations using Fourier transforms.
The figure shows the type of dynamic instructions executed over a
window of 2 billion instructions and their distribution by type.

3. APPLICATION­AWARE COVERAGE
The quality of fault detection tests has traditionally been mea-

sured by the fraction of transistors in the systems for which a failure

would be detected by a given test.

However, we note that the usage of different functional units by a

software application varies greatly during execution. Consequently,

the fault locations that might corrupt the state or the outputs of an

application tend to vary over time. For example, Figure 1 shows the

type of dynamic instructions executed over a window of 2 billion

instructions by a scientific benchmark application, Fourier Trans-

form from the Nas suite [6]. Note that the execution is charac-

terized by long phases executing instructions which require only a

portion of the hardware units. These patterns of utilization are not

unique to this benchmark, but are common to most applications.

Research has shown that applications are only susceptible to faults

that occur in the hardware units contributing to the computation of

the program’s outcome [8]. Thus, since software leverages differ-

ent components at different times of the execution, the hardware

units for which fault detection is relevant, for the sake of correct

software computation, also change over time. The metric that we

propose below is inspired by software testing techniques such as

operational profile [12], where the code is profiled at design time to

determine the software functions that are executed often by users.

Testing and debugging is then dictated by the results of these anal-

yses, such that more thorough tests are performed on the portions

of the code that are highly stressed by a user’s population. This

approach is very powerful and widely adopted in the software in-

dustry due to its benefit-to-cost ratio. Online hardware testing, on

the other hand, is typically oblivious to hardware utilization, thus

targeting high area coverage across the entire system.

To evaluate fault coverage in the context of an application’s dy-

namic behavior, we introduce a new metric, called Application-

Aware Fault Coverage - A2FC. A2FC measures the quality of a

test with respect to its ability to detect a fault in hardware units that

the application has exercised. For instance, if an application only

uses the integer pipeline of a processor, a test that detects faults oc-

curring exclusively in the floating point unit (FPU) would provide

an A2FC of 0%. If an application were to use the FPU during half

of its execution cycles, a test that exclusively provides 80% cover-

age over the FPU unit’s transistors would have an A2FC of 40%.

In other words, instead of measuring the fraction of transistors that

a test covers, A2FC measures the likelihood of detecting a hard-

ware fault that might have corrupted the software computation.

In the presentation below, we first analyze the relevance of a fail-

ure manifesting at the transistor level, the hardware unit level and

the chip level. We then consider the area fault coverage provided by

a given test to define our A2FC metric. Let Pf represent the prob-

ability of a single transistor permanently failing when it switches.

Then the probability of that transistor not failing is 1−Pf . We call

the number of switching events between two testing intervals s, so
the probability of a transistor not failing after s switching events is

(1− Pf)
s, and the probability that the same transistor fails within

s switching events is 1 − (1 − Pf)
s. Consider a hardware unit

comprising n transistors, all subject to the same switching activity.

Assuming that transistor failures are independent events, then the

probability of at least one error occurring in a unit after s toggles is
1− (1− Pf)

sn. Using Taylor binomial expansion, this expression

becomes: snPf +
(

sn

2

)

P 2
f − · · ·

If Pf is negligible when compared to s and n, the expression

above can be approximated with snPf . This is the case in all prac-

tical situations because the probability of a transistor failure due to

a single switching event is extremely low. For example, if a 5GHz

processor composed of 10 billion transistors had a Mean Time Be-

tween Failures of one day, and a hardware test is triggered every

second, the value 1/Pf is 5 orders of magnitude greater than the

product sn. As a conservative assumption, we consider that all

transistors switch as often as the one that switches the most.

At the chip level, a processor is composed of i units. Assum-

ing a negligible probability of having two faults manifesting in the

processor within the time frame delimited by two subsequent tests,

the probability of a chip incurring a fault is given by the sum of

the individual probabilities that any of its modules incurred a fault:

P (chip fails) ≈
∑

i
siniPf

Finally, we must take into account the ability of a test to detect

these faults. Assuming that a test covers a fraction ci of the tran-

sistors in each module i, the probability that it can detect a fault is:
∑

i(siniciPf). We therefore define the Application-Aware Fault

Coverage of a test to be the ratio between faults that can be detected

by the test and all possible occurring faults. Since Pf is common

to all terms, it can be removed from the expression, yielding:

A2FC =
∑

i
(sinici)∑
i
(sini)

Note that our A2FC metric takes into account usage of hardware

modules due to a particular workload. For example, assume that

a simple processor consists of only two modules that occupy the

same area on the chip: an integer pipeline and a floating point unit;

and consider two tests: one achieves 90% fault coverage over the

entire processor area, while the other provides 95% coverage for the

integer pipeline and 65% for the floating point unit. If we compare

the two tests in terms of area fault coverage, the latter provides

significantly lower coverage (80%) than the former. However, if an

application does not utilize the floating point unit, we attain much

better protection from the second test. Taking dynamic behavior

into account, our A2FC metric would report a 90% coverage for

the first test, against a 95% for the second. We use the A2FC
metric in this work to evaluate how effective a test is in protecting

a system against failures that can affect the correctness of software

application.

4. APPLICATION­AWARE DIAGNOSIS
Our diagnosis framework takes advantage of dynamic program

behavior to reduce the overhead required for periodic testing with-

out affecting A2FC. Classic online testing technologies invest

significant effort to thoroughly test all components of a proces-

sor. In contrast we propose to constantly monitor the activity of

all functional units of the CPU and test only those contributing to

the outcome of the user’s application. With reference to Figure 1,

note how the FPU is used steadily in the first part of the bench-

mark’s execution, while the last portion only exercises the integer

pipeline. Similarly, a test that optimizes performance without af-

fecting A2FC would invest time to check the FPU unit during the

first part of the benchmark’s execution, but would only focus on the

integer pipeline in the last portion.

Application utilization of the underlying hardware is assessed

through hardware counters, called activity monitors. An activity

monitor is associated with each functional unit in the processor.

Every time an instruction exercises a particular functional unit, the

corresponding counter is incremented. To characterize the dynamic

behavior of an application, the activity monitors are reset at the

beginning of each epoch. At the end of the epoch, our proposed

framework evaluates the monitor’s counters to determine which

hardware units should be tested. To optimize the overhead imposed

by our detection mechanism, we developed a fully-adaptive frame-

work, so that unit-focused tests are triggered on demand. Specifi-

cally, during each testing phase, we execute only test routines exer-

cising functional units that were utilized by the software application

during the last execution interval. Units which did not experience

utilization, based on the information from the activity monitors, are

not tested since they would not improve overall A2FC. This ap-

proach is beneficial for two reasons. First, units that have been

exercised by the application, and might have corrupted it if faulty,

are closely monitored. Second, test length is reduced by skipping

tests of unused components, thus improving user’s experience.

To further boost fault coverage in hard-to-test units we increase

design observability by adding dedicated observation points. En-

hancing the system with observation points does not impact perfor-

mance and requires very limited hardware additions. Since data

from the observation points is collected only during the testing

phase, they are transparent to software applications. In addition,

the same hardware counters used as activity monitors, can be used

during testing to collect data from the observation points and their

final value is used to verify test success. We found experimentally

that with our integrated approach, we can expose the vast majority

of microprocessor’s faults and, in particular, the ones applications

are most sensitive to, without incurring the high cost of traditional

testing mechanisms such as BIST and scan-chains.

As a case study we analyzed the behavior of the application Nas

FT using an epoch of 20 million cycles. During normal computa-

tion, every time an instruction exercised a functional unit, the cor-

responding activity monitor was incremented. At the end of the

epoch, the activity monitor associated with the floating point unit

and the divider reported an utilization of 5.9 million and 1 million

instructions, respectively. We had setup a 10% utilization threshold

for this case study and, consequently, our A2Test triggered hard-

ware tests for the integer pipeline and for the floating point unit, but

not for the divider.

4.1 Software Tests
In the hardware testing community, it is recognized that software-

based fault testing can be a very effective way to expose the major-

ity of faults in a processor design [14]. Several techniques has been

proposed in the literature to build software test routines to this end

[3]. In our framework, we choose to use the software regression

suite developed for the functional verification of the processor un-

der study, since this software strives to check all, or most, corner

cases of the system’s behavior. From this suite, we want to se-

lect several test subsets, one for each hardware unit. Each subset

should comprise those tests most effective in detecting faults for a

given unit. We accomplish this goal by formulating an integer lin-

ear programming (ILP) problem, such that its solution provides the

set of tests we are seeking. To start this process, we partition the

processor into several functional units and create an ILP problem

for each of them. For instance, for the processor considered in our

experimental evaluation, we partitioned the design in five separate

units: integer pipeline, divider, multiplier, floating point front end,

and stream processing unit. Solutions for the ILP problems gener-

ated are computed only once at design time and used to select the

routines that should test each module at runtime.

Constraint inequalities:

t1 + t2 ≥ f0 t2 + t4 ≥ f3
t0 + t1 ≥ f1 t0 + t3 + t4 ≥ f4
t0 + t2 ≥ f2 t1 + t4 ≥ f5

F0 F1 F2 F3 F4 F5 Cost

T
0

0 1 1 0 1 0 c
0

T
1

1 1 0 0 0 1 c
1

T
2

1 0 1 1 0 0 c
2

T
3

0 0 0 0 1 0 c
3

T
4

0 0 0 1 1 1 c
4

Fault locations

T
es

ts

ti =
1, if Ti (0≤ i ≤4) is selected

0, otherwise

fj =
1, if one of more tests

exposes Fj (0≤ j ≤5)
0, otherwise

Additional constraint Goal

Integer Pipeline ∑itici ≤ test time budget Max(∑jfj)

Module Directed ∑jfj ≥ target fault coverage Min(∑itici)

a)

b)

c)

Figure 2: Formulation of the ILP problems for test routines
selection. a. Example of a fault coverage matrix: a non­zero
coefficient at location (i, j) indicates that the i­th test exposes the
j­th fault. The last column reports cost in execution cycles. b.
Constraints derived from the fault coverage matrix. c. Additional
constraints and goals for the two types of ILP problems.

A fault coverage matrix is built from the outcome of the soft-

ware tests. Coefficients in the matrix specify which fault locations

are exposed by each test (Figure 2.a). From the fault coverage ma-

trix, the constraints for the ILP problem are generated (Figure 2.b):

a binary variable is associated with every test (ti) and fault location
(fj). One inequality is also added for each possible fault location.

The binary variable that represents a test i, ti, is set to 1 if and

only if the associated test is selected for execution. A variable as-

sociated with a fault location j, fj , is greater than 0 only if the

fault is exposed by at least one of the tests that will be executed.

Since the integer pipeline is active all the time while the system is

operational, the corresponding test is selected in each testing ses-

sion. As a result, this test has the most impact on test execution

and, consequently, we set a hard constraint on its time budget. In

contrast, the test time for all other units is less critical, since they

are triggered only occasionally. For those, high coverage becomes

the most relevant parameter. Below we present the specific aspects

of both problem setups.

Integer pipeline test. For this test we add a hard constraint to

the ILP problem instance so that the total execution time of the

tests selected is below a preset threshold. This choice is driven

by the frequent use of this test and its consequent high impact on

overall performance. In addition, the objective function of this ILP

instance is to maximize the number of distinct faults covered by the

execution of the tests (Figure 2.c).

Module-directed tests. For the other functional units, the primary

goal is to achieve high coverage. A specific modular test is devel-

oped for each complex module in the microprocessor not already

covered by the integer pipeline test. The ILP problem setup is sim-

ilar; however, we do not set a hard constraint on the test execution

time. Instead, we add a constraint requiring that overall coverage is

above a user-specified threshold (Figure 2.c).

The ILP problem for the integer pipeline in a complex processor

such as the OpenSPARC T1 consists of more than 300,000 fault

locations, over 850 tests, and occupies more than 2GB of memory

when stored in a file system. A commercial ILP solver spends be-

tween 2 and 40 hours to find a solution to the problem and peaks

at 30GB of memory usage. Note that solution to each ILP problem

must only be computed once when the microprocessor is designed;

thus, although these problems are resource-consuming, their com-

plexity is well manageable, even for a modern processor such as

the T1.

Instruction

Fetch
ExecutionDecoder

Write

Back
Memory

activity

controller

activity

monitor

to
 a
ct
iv
ity

m
on
ito
rs

activity controller

op
co
de

unit
Exe
Exe
Exe Mul
Exe Div

instr
ALU
branch
MUL
DIV

decoder

counterreset
(= test_end)

0 1testing

activity monitor

from_ctrl

Floating

Point Unit
DividerMultiplier

Stream

Processing
activity

monitor

activity

monitor

activity

monitor

activity

monitor

Figure 3: Activity monitors track the use of each processor unit
so that tests can be adapted to target those activated during the
last execution interval. Monitors’ counters are incremented by a
controller based on the instruction flow and reset at the beginning
of each execution interval.

4.2 Hardware Activity Monitors
To track switching activity in the various units we utilize ac-

tivity monitors. These consist of counters associated with each

complex unit in the microprocessor’s architecture. Each activity

monitor oversees a processor’s functional module, and its counter

is incremented every time the corresponding module is subject to

switching activity. The counters are reset after each hardware in-

tegrity check (testing phase). In practice, module utilization can be

approximated by analyzing the instruction flow: in our solution, we

use a dedicated controller, which observes each instruction entering

the processor’s decoder stage and increments appropriate counters

based on which units a given instruction exercises. The activity

monitors are embedded in the processor’s hardware, as shown in

Figure 3. We envision that software routines evaluating the need of

triggering a unit test can access counters’ values. Functional unit

testing can be triggered when a functional unit’s utilization rises

above a preset threshold. In our framework, we assume that users

could configure the desired trigger thresholds dynamically, so to

trade-off performance overhead with A2FC.

4.3 Microprocessor Observability Extensions
To boost the coverage provided by the test routines we augment

the processor’s logic with observability points. Indeed, faults not

detected during a test can be classified as either non-controllable

or non-observable. Non-controllable faults lay in logic paths that

are not exercised by testing. Usually they correspond to nodes that

are stimulated only by rare events not controllable through deter-

ministic software programs, such as external interrupts and error

conditions. Non-observable faults correspond, instead, to internal

nodes that toggle during the test, but whose eventual failure does

not manifest in the test’s outcome.

parity checkers

processor unit

observability

points

from activity
ctrl

counter
reset

testing0 1

counter
reset

testing0 1

carry out

Figure 4: Observability extensions. Each processor’s unit is
augmented by a set of observability points, compressed through a
parity checker and fed to local counters. Counters’ values are then
evaluated determine test correctness.

We selected tests capable of controlling the vast majority of fault

locations in the design. By analyzing the non-observable nodes

in the gate-level netlist of the processor, we found that these are

often grouped in cones of logic. From the processor netlist, we

built a graph connecting all non-observable locations in the design.

We then identified the cones of logic rooted at each of these loca-

tions through a breadth-search-first algorithm. The non-observable

nodes corresponding to cones containing at least four other non-

observable locations were selected to be instrumented with an ob-

servation point. Through this selection, we extended system’s ob-

servability without significantly affecting its area.

To reduce the amount of signals to monitor, we developed a sim-

ple compression circuit consisting of a parity detector. Several ob-

servation points are fed to the parity detector and its output is con-

nected to a counter, so that each time the parity signal is asserted,

the value of the counter is incremented. The value stored in the

counter is reset at the beginning of the testing sequence. After the

test completes, the counter is compared against a reference value

and it is considered successful only if the difference between these

two values is within an acceptable range (which we set at 10%).

Counter value variations below the threshold are considered within

the normal range for a complex processor executing a same test

multiple times. Indeed we noted, by experimental evaluation, that

the occurrence of a fault causes a significant difference in the coun-

ters values (greater than 10%). Figure 4 shows the schematic of

our compression circuit. Note that we can use the same counters

for both our compression circuitry and for the activity monitors,

discussed in the previous section.

5. EVALUATION
We evaluated the quality of our solution on a Sun’s OpenSPARC

T1 processor [17] and compared against traditional non-adaptive

testing solutions in terms of performance overhead, fault coverage,

A2FC and area impact. At the end, in Table 3, we provide a direct

comparison of our evaluation with a number of previously pub-

lished solutions. The processor implements the SPARC V9 ISA

and supports 4-way fine grain multi-threading. We synthesized the

pipeline logic of the T1 with Synposys Design Compiler target-

ing the Artisan IBM 130nm library. Fault coverage was obtained

through fault simulation of functional vectors with Synposys Tetra-

MAX. The Nas parallel benchmark suite was used to estimate the

performance overhead on CPU-intensive programs [6]. In addition,

we evaluated our solution on I/O intensive benchmark suites such

as Bonnie [18] and Stream [10]. To estimate performance on a

benchmark that relies on both CPU and I/O, SPECWeb was also

considered [15]. Statistics on functional unit utilization were col-

lected through Simics simulations. Performance was measured in

number of committed instructions and impact of our design was

evaluated against three epoch lengths: 20, 50, and 100 million cy-

cles. Our experiments focus on stuck-at faults and do not account

for faults either marked as undetectable by an automatic test pat-

tern generator or within the design-for-test structures. Because all

memory structures are protected with either parity bits or error-

correcting codes, single permanent faults in memory are detected

by mechanisms already present in the design [17]. Finally, the hard-

ware additions necessary for our diagnosis system were developed

in Verilog RTL and synthesized with the IBM Artisan 130nm li-

brary with Synopsys Design Compiler.

OpenSPARC Area Test Coverage
T1 Unit (%) (%)

No 5.0M 2.5M 1.25M 0.5M 1.25M
limit cycles cycles cycles cycles w/ obs

Instr. Fetch 7 94.4 93.8 93.2 88.9 82.8

Execution 10 97.1 96.4 95.9 95.2 94.0

Load Store 6 89.7 88.1 87.6 86.2 82.8 89.1

Trap Logic 10 88.7 86.0 85.5 84.3 78.7 87.1

Error Detect. 1 33.6 33.5 29.6 27.7 26.5

Multiplier 4 99.2 96.6 96.5 91.0 80.1

Divider 4 98.7 98.7 95.5 95.5 91.3

Stream Proc. 3 93.7 89.1 84.8 79.9 60.5

FP Front End 4 91.5 90.0 85.3 77.9 67.7

Memory 51 100.0 100.0 100.0 100.0 100.0

Total
100 96.3 95.5 94.9 93.6 91.0 94.1

(w/ Memory)

A2FC 96.6 95.9 95.7 94.8 93.2 95.5

Table 1: Fault coverage achieved by integer pipeline tests. For
each module in the OpenSPARC T1, we report area occupied and
fault coverage attained for test groups targeting the integer pipeline.

The last two rows indicate total area coverage attainable andA2FC
for an application relying exclusively on the integer pipeline.

5.1 Fault Coverage
Wefirst determined the maximum fault coverage achievable when

using Sun Microsystems’ functional verification software routines.

Because the overhead introduced by running all these programs se-

quentially is very high, we partitioned the processor into several

functional units and grouped the test routines based on the func-

tional units for which they provide high coverage. The functional

units are listed in Table 1. We first focused on the processor’s in-

teger pipeline since its correctness is vital to nearly every instruc-

tion. The integer pipeline consists of four modules: instruction

fetch, execution, load-store, and trap logic. As detailed in Section

4.1, an ILP solver was used to select offline the group of tests that

yields the highest fault coverage within a given time budget. Table

1 shows the coverage attained for each module when running our

integer pipeline test battery, over a range of execution budgets. The

last two rows in the table report the total fault coverage attainable

for the system, and the Application-Aware Fault Coverage for an

application workload that relies exclusively on the integer pipeline.

The area-based fault coverage attainable by executing all tests in

the integer pipeline group is extremely high, 96.3%. However, this

comes at a very high cost: the test sequence requires nearly 26 mil-

lion cycles. Thus we deemed necessary to select a subset of tests

that would still lead to high fault coverage but within a limited time

budget. As shown in Table 1, when the time budget is reduced, fault

coverage for the integer pipeline modules is not effected as signif-

icantly as for other functional units. Among the T1, the load-store

unit and the trap logic unit suffer of limited testability and, in an

effort to increase their fault coverage, we enhanced them with 869

and 738 observation points, respectively. This led to a 3% improve-

ment in the area-based fault coverage of these units, as indicated in

the last column of Table 1.

Note that the coverage for the other functional units plummets

as the time budget decreases, since the test group is focused only

on the integer pipeline. For the other functional units, distinct test

groups were selected by solving dedicated ILP problems: target

fault coverage for the multiplier and the divider was set to 98%,

and the cycles necessary to complete the corresponding test group

are 27,383 and 290,715, respectively. For the floating point front

end and for the stream processing unit, the target fault coverage

was set to 96%, requiring a runtime of the 230,033 cycles for the

first test group and 1,572,807 cycles for the second. These test

groups target a very high fault coverage but are very time con-

suming. For instance, performing a thorough integrity check on

the stream processing unit is extremely expensive, accounting for

more than 1.5 million cycles. However, the unit is utilized infre-

quently, indeed none of the benchmarks made use of it. This obser-

vation further supports the hypothesis that, in order to maintain low

performance overhead, tests should only be triggered on the hard-

ware units that could have impacted computation results. We then

compared the degradation in fault coverage observed when running

an application-oblivious test vs. an Application-Aware test, over a

range of application programs. In this experiment the epoch con-

sidered was 100M instructions long and we used a threshold of 1 in-

struction to trigger unit tests. From our experiments, we report that

the area-based fault coverage is reduced by 1.7% on average when

going from an oblivious test to an adaptive one; correspondingly

the A2FC metric is only reduced by less than 0.1% on average.

5.2 Performance Overhead
To evaluate the performance overhead of our solution, we set a

bound of 1.25 million cycles for the integer pipeline, since it pro-

vides a good compromise between area-based fault coverage and

test runtime. For all the considered epoch lengths, the average of

the performance overhead of our Application-Aware solution was

more than 50% lower when compared against an online testing so-

lution that is oblivious to application behavior. The runtime over-

head of our adaptive test system was also measured for several in-

dividual benchmarks against different test trigger thresholds. In

Figure 5, we plot the runtime overhead of our proposed technique

against an oblivious testing solution for some representative appli-

cations and for the average among all the considered applications.

In particular, we compare the variation of A2FC in our system

against the A2FC obtained by an oblivious solution. The epoch

length for this experiment is set at 100 million instructions. Again,

several test trigger thresholds to activate the module tests are con-

sidered (from 1 instruction to 20% of the instructions executed in

the epoch). Note that for the benchmark Nas IS, theA2FC achiev-

able by our adaptive system saturates when the test trigger reaches

1% of the committed instructions. This behavior is common among

several applications that only rely on few CPU functional units at

a time. In addition, the runtime required to perform the proposed

A2Test on the OpenSPARC T1 is extremely small compared to

the results obtained by techniques such as those in [4] and [9]. As

expected, by using test adaptation, the performance overhead of

online testing decreases when the threshold increases. Moreover,

Application-Aware testing reduces the performance overhead by a

factor of two over oblivious solutions.

95.4

95.6

95.8

96

96.2

A
2 F

C
 %

Specweb Stream Nas IS Average
Specweb Stream Nas IS Average

▲

▲

▲

▲

♦
♦

▲

▲

▲

▲

×

SpecWeb

■

■ Oblivious Test

Application-Aware Trigger:

▲1 instruction

♦ 1% of committed instr.

×

95

95.2

1 1.5 2 2.5 3 3.5

Runtime Overhead %

♦

♦
♦

×

♦

×
●●

+

× 5% of committed instr.

● 10% of committed instr.

+ 20% of committed instr.

Figure 5: Trade­off between runtime overhead and A2FC for
an epoch length of 100M cycles. This figure shows the impact on

performance and A2FC of our Application­Aware adaptive mech­
anism for some significant benchmarks. The markers in the graph
report different instructions thresholds triggering the functional test,
from 0 (oblivious solution), to 20% of the committed instructions.

5.3 Area Overhead
Our diagnosis mechanism requires additional hardware for coun-

ters, which are used at different times as activity monitors and as

fault detectors for the observation points. In the design considered,

only five 64-bit hardware counters were required, yielding a total

area overhead of 0.4%. We assume that the five hardware counters

can be split in eight 8-bit counters. If these 8-bit counters are time

multiplexed three times during the test, no further area additions are

needed for our framework. Our framework can take advantage of

counters already present in silicon for other purposes, such as post-

silicon validation or design for testability (DFT), in which case our

solution will not have any hardware impact. We estimated that the

addition of the parity compressors for the extra observation points

requires an additional area overhead of 0.4%.

To put our results into context, Table 3 compares all three aspects

of the evaluation for a range of previously published solutions: note

how our solution achieves the best coverage for the smallest area

overhead within a reasonable performance impact.

6. CONCLUSIONS
We proposed a novel solution to detect and diagnose permanent

faults in microprocessors. Our system relies on a hybrid hard-

ware/software technique to adapt hardware testing to the dynamic

use of the processor’s structures. Components that are exercised

more often are tested with higher frequency and accuracy. This al-

lows a significant benefit in performance impact while improving

software protection, since the tests target potential faults that are

most likely to corrupt computations.

Test
Technique

Test Core Area
Coverage Downtime Overhead

(%) (Cycles) (%)

A2Test Hybrid 95 - 96 1.3 M - 3.4 M 0.8
ACE [4] Structural 100 5.4 M 5.8
Bulletproof [5] BIST 88.6 1.5 K 6
Bulletproof2 [11] BIST 95.2 600 - 3.3 K 14
CASP [9] Structural 99.5 240 M 6
Health Adapt. [7] Functional 0 - 97 0 - 690 K 2.6
SW-Based [14] Functional 90 44 K 0

Table 2: Comparison of online testing techniques. For each
technique we report the fault coverage achieved for stuck­at faults,
the number of cycles required for testing and the area impact. Note

that A2Test, ACE, and CASP provide results for the OpenSPARC
T1, while the other results are based on different architectures.

We also introduced A2FC, Application-Aware Fault Coverage,

a new metric indicating the ability of a test to detect faults that

can corrupt the application. We implemented our framework on

the Sun OpenSPARC T1, finding that it achieves an Application-

Aware Fault Coverage of 95.5% while maintaining minimal perfor-

mance overhead (1.3%) and area impact (0.4%). Compared against

classic online testing solutions oblivious to the running application,

we showed that considering dynamic application behavior is very

beneficial, yielding a reduction of test overhead greater than 50%,

without severely affecting A2FC.

Acknowledgments. The authors would like to acknowledge the

support of the Gigascale Systems Research Center.

7. REFERENCES

[1] A. Benso, A. Bosio, P. Prinetto, and A. Savino. “An on-line software-based

self-test framework for microprocessor cores.” In Proc. of DTIS , Sep 2006.

[2] S. Borkar, N. Jouppi, and P. Stenstrom. “Microprocessors in the era of

terascale integration.” In Proc. of DATE, Apr 2007.

[3] L. Chen, S. Ravi, A. Raghunathan, and S. Dey. “A Scalable Software-Based

Self-Test Methodology for Programmable Processors.” In Proc. of DAC, Jun

2003.

[4] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco. “Software-based

defect tolerance for chip-multiprocessors.” In Proc. of MICRO, Dec. 2007.

[5] K. Constantinides, S. Shyam, S. Phadke, V. Bertacco, and T. Austin. “Ultra

low-cost defect protection for microprocessor pipelines.” In Proc. of ASPLOS,

Oct. 2006.

[6] A. Ferrari, A. Filipi-Martin, and S. Viswanathan, “The NAS Parallel

Benchmark Kernels in MPL.” Technical Report, Dept. of Computer Science,

Univ. of Virginia, Dec 1995.

[7] S. Gupta, A. Ansari, S. Feng, and S. Mahlke. “Adaptive online testing for

efficient hard fault detection.” In Proc. of ICCD, Oct 2009.

[8] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou.

“Understanding the propagation of hard errors to software and implications for

resilient system design.” In Proc. of ASPLOS, Mar 2008.

[9] Y. Li, M. Samy, and S. Mitra. “CASP: Concurrent autonomous chip self-test

using stored test patterns.” In Proc. of DATE, Mar 2008.

[10] J. McCalpin. “STREAM: Sustainable Memory Bandwidth in High

Performance Computers.” University of Virginia, 2007.

[11] M. Mehrara, M. Attarian, S. Shyam, K. Constantinides, V. Bertacco, and

T. Austin. “Low-cost protection against SER upsets and silicon defects.” In

Proc. of DATE, Apr. 2007.

[12] J. Musa. “Operational profiles in software-reliability engineering.” IEEE

Software, Mar 1993.

[13] A. Pellegrini, V. Bertacco, and T. Austin. “Fault-based attack of RSA

authentication.” In Proc. of DATE, Mar 2010.

[14] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A. Raghunathan,

and S. Ravi. “Systematic software-based self-test for pipelined processors.” In

Proc. of DAC, Jul 2006.

[15] Standard Performance Evaluation Corp. “SPECweb2005.”

http://www.spec.org/, 2005.

[16] A. Strong, E. Wu, R.-P. Vollertsen, J. Sune, G. LaRosa, and T. Sullivan.

“Reliability Wearout Mechanisms in Advanced CMOS Technologies.” Wiley

Press, 2009.

[17] Sun Microsystems Inc. “OpenSPARC T1 microarchitecture specification.”

Aug 2006.

[18] Textuality Services, Inc. “Bonnie file system benchmark.”

http://www.textuality.com/bonnie/, 1996.

