
BulletProof: A Defect-Tolerant CMP Switch Architecture
Kypros Constantinides‡ Stephen Plaza‡ Jason Blome‡ Bin Zhang†

Valeria Bertacco‡ Scott Mahlke‡ Todd Austin‡ Michael Orshansky†

‡Advanced Computer Architecture Lab †Department of Electrical and Computer Engineering
University of Michigan University of Texas at Austin
Ann Arbor, MI 48109 Austin, TX, 78712

{kypros, splaza, jblome, valeria, bzhang@ece.utexas.edu
mahlke, austin}@umich.edu orshansky@mail.utexas.edu

Abstract

As silicon technologies move into the nanometer regime, tran-

sistor reliability is expected to wane as devices become subject

to extreme process variation, particle-induced transient errors,

and transistor wear-out. Unless these challenges are addressed,

computer vendors can expect low yields and short mean-times-

to-failure. In this paper, we examine the challenges of designing

complex computing systems in the presence of transient and per-

manent faults. We select one small aspect of a typical chip multi-

processor (CMP) system to study in detail, a single CMP router

switch. To start, we develop a unified model of faults, based on

the time-tested bathtub curve. Using this convenient abstraction,

we analyze the reliability versus area tradeoff across a wide spec-

trum of CMP switch designs, ranging from unprotected designs

to fully protected designs with online repair and recovery capabil-

ities. Protection is considered at multiple levels from the entire

system down through arbitrary partitions of the design. To bet-

ter understand the impact of these faults, we evaluate our CMP

switch designs using circuit-level timing on detailed physical lay-

outs. Our experimental results are quite illuminating. We find

that designs are attainable that can tolerate a larger number of

defects with less overhead than näıve triple-modular redundancy,

using domain-specific techniques such as end-to-end error detec-

tion, resource sparing, automatic circuit decomposition, and it-

erative diagnosis and reconfiguration.

1. Introduction
A critical aspect of any computer design is its reliabil-

ity. Users expect a system to operate without failure when
asked to perform a task. In reality, it is impossible to build
a completely reliable system, consequently, vendors target
design failure rates that are imperceptibly small [23]. More-
over, the failure rate of a population of parts in the field
must exhibit a failure rate that does not prove too costly
to service. The reliability of a system can be expressed as
the mean-time-to-failure (MTTF). Computing system reli-
ability targets are typically expressed as failures-in-time, or
FIT rates, where one FIT represents one failure in a billion
hours of operation.

In many systems today, reliability targets are achieved by
employing a fault-avoidance design strategy. The sources
of possible computing failures are assessed, and the neces-
sary margins and guards are placed into the design to en-
sure it will meet the intended level of reliability. For exam-
ple, most transistor failures (e.g., gate-oxide breakdown) can
be reduced by limiting voltage, temperature and frequency
[8]. While these approaches have served manufacturers well
for many technology generations, many device experts agree

that transistor reliability will begin to wane in the nanome-
ter regime. As devices become subject to extreme process
variation, particle-induced transient errors, and transistor
wearout, it will likely no longer be possible to avoid these
faults. Instead, computer designers will have to begin to
directly address system reliability through fault-tolerant de-
sign techniques.

Figure 1 illustrates the fault-tolerant design space we fo-
cus on in this paper. The horizontal axis lists the type
of device-level faults that systems might experience. The
source of failures are widespread, ranging from transient
faults due to energetic particle strikes [32] and electrical
noise [28], to permanent wearout faults caused by electro-
migration [13], stress-migration [8], and dielectric break-
down [10]. The vertical axis of Figure 1 lists design solutions
to deal with faults. Design solutions range from ignoring
any possible faults (as is done in many systems today), to
detecting and reporting faults, to detecting and correcting
faults, and finally fault correction with repair capabilities.
The final two design solutions are the only solutions that
can address permanent faults, with the final solution being
the only approach that maintains efficient operation after
encountering a silicon defect.

In recent years, industry designers and academics have
paid significant attention to building resistance to transient
faults into their designs. A number of recent publications
have suggested that transient faults, due to energetic par-
ticles in particular, will grow in future technologies [5, 16].
A variety of techniques have emerged to provide a capa-
bility to detect and correct these type of faults in storage,
including parity or error correction codes (ECC) [23], and
logic, including dual or triple-modular spatial redundancy
[23] or time-redundant computation [24] or checkers [30].
Additional work has focused on the extent to which circuit
timing, logic, architecture, and software are able to mask
out the effects of transient faults, a process referred to as
“derating” a design [7, 17, 29].

In contrast, little attention has been paid to incorporat-
ing design tolerance for permanent faults, such as silicon de-
fects and transistor wearout. The typical approach used to-
day is to reduce the likelihood of encountering silicon faults
through post-manufacturing burn-in, a process that acceler-
ates the aging process as devices are subjected to elevated
temperature and voltage [10]. The burn-in process accel-
erates the failure of weak transistors, ensuring that, after
burn-in, devices still working are composed of robust tran-
sistors. Additionally, many computer vendors provide the
ability to repair faulty memory and cache cells, via the in-

Online repair
Post-manufacturing
reconfigurationDETECTION

+CORRECTION
+REPAIR

Transient fault
recovery

Online defect
recovery

Post-manufacturing
recovery

DETECTION
+CORRECTION

Component
terminates.
Hard-reset restore

Component
terminates
at first error

TestingDETECTION

System glitch
manifests in

unpredictable way
System fails in

unpredictable wayUntestable DefectsNO-DETECCTION

TRANSIENT ERRORWEAR-OUT DEFECT
MANUFACTURING

DEFECT

DMRDMR

ECC - memory

cache-line swap-out
memory-array spares

TMR

Diva
Razor
ECC
TMR

Bulletproof

Mainstream Solutions High-end Solutions Specialized Solutions Research-stage Solutions

TYPE OF DEFECT
DESIGN FEATURE

Figure 1: Reliable System Design Space. The dia-
gram shows a map of type of device-level faults in a
digital system (horizontal axis) vs. protection tech-
niques against these faults (vertical axis). This work
addresses the problems/solutions in the dark shaded
area of the map.

clusion of spare storage cells [25]. Recently, academics have
begun to extend these techniques to support sparing for ad-
ditional on-chip memory resources such as branch predictors
[6] and registers [22].

1.1 Contributions of This Paper
In this paper, we push forward the understanding in re-

liable microarchitecture design by performing a comprehen-
sive design study of the effects of permanent faults on a
chip-multiprocessor switch design.The goal is to better un-
derstand the nature of faults, and to build into our designs
a cost-effective means to tolerate these faults. Specifically,
we make the following contributions:

• We develop a high-level architect-friendly model of sil-
icon failures, based on the time-tested bathtub curve.
The bathtub curve models the early-life failures of de-
vices during burn-in, the infrequent failure of devices
during the part’s lifetime, and the breakdown of de-
vices at the end of their normal operating lifetime.
From this bathtub-curve model, we define the design
space of interest, and we fit previously published device-
level reliability data to the model.

• We introduce a low-cost chip-multiprocessor (CMP)
switch router architecture that incorporates system-level
checking and recovery, component-level fault diagnosis,
and spare-part reconfiguration. Our design, called Bul-
letProof, is capable of tolerating silicon defects, tran-
sient faults, and transistor wearout. We evaluate a va-
riety of Bulletproof switch designs, and compare them
to designs that utilize traditional fault tolerance tech-
niques, such as ECC and triple-modular redundancy.
We find that our domain-specific fault-tolerance tech-
niques are significantly more robust and less costly
than traditional generic fault tolerance techniques.

The remainder of this paper is organized as follows. Sec-
tion 2 gives additional background on the faults of interest in
this study and introduces our architect-friendly fault model
based on the bathtub curve. Section 3 presents our fault
simulation infrastructure, and examines the exposure of the
baseline design to permanent faults. Section 4 introduces
the techniques we have employed in our CMP switch de-
signs to provide cost-effective tolerance of transient and per-
manent faults. In Section 5, we present a detailed trade-off
analysis of the resilience and cost of our CMP switch designs,

plus a comparison to traditional fault tolerant techniques,
such as ECC and triple-modular redundancy (TMR). Fi-
nally, Section 6 gives conclusions and suggestions for future
research directions.

2. An Analysis of the Fault Landscape
As silicon technologies progress into the 65nm regime and

below, a number of failure factors rise in importance. In this
section, we highlight these failure mechanisms, and discuss
the relevant trends for future process technologies.

Single-Event Upset (SEU). There is growing concern
about providing protection from soft errors caused by charged
particles (such as neutrons and alpha particles) that strike
the bulk silicon portion of a die [32]. The effect of SEU is a
logic glitch that can potentially corrupt combinational logic
computation or state bits. While a variety of studies have
been performed that demonstrate the unlikeliness of such
events [31, 29], concerns remain in the architecture and cir-
cuit communities. This concern is fueled by the trends of re-
duced supply voltage and increased transistor budgets, both
of which exacerbate a design’s vulnerability to SEU.

Process Variation. Another reliability challenge design-
ers face is the design uncertainty that is created by increas-
ing process variations. Process variations result from device
dimension and doping concentration variation that occur
during silicon fabrication. These variations are of particu-
lar concern because their effects on devices are amplified as
device dimensions shrink [20], resulting in structurally weak
and poor performing devices. Designers are forced to deal
with these variations by assuming worst-case device char-
acteristics (usually, a 3-sigma variation from typical condi-
tions), which leads to overly conservative designs.

Manufacturing Defects. Deep sub-micron technolo-
gies are increasingly vulnerable to several fabrication-related
failure mechanisms. For example, step coverage problems
that occur during the metalization process may cause open
circuits. Post-manufacturing test [18] and built-in self-test
(BIST) [1] are two techniques to impress test vectors onto
circuits in order to identify manufacturing defects. A more
global approach to testing for defects is taken by IDDQ test-
ing, which uses on-board current monitoring to detect short-
circuits in the manufactured part. During IDDQ testing,
any abnormally high current spikes found during functional
testing are indicative of short-circuit defects [4].

Gate Oxide Wearout. Technology scaling has adverse
effects on the lifetime of transistor devices, due to time-
dependent wearout. There are three major failure modes
for time-dependent wearout: electromigration, hot carrier
degradation (HCD), and time-dependent oxide breakdown.
Electro-migration results from the mass transport of metal
atoms in chip interconnects. The trends of higher current
density in future technologies increases the severity of elec-
tromigration, leading to a higher probability of observing
open and short-circuit nodes over time [11]. HCD is the
result of carriers being heated by strong electrical fields
and subsequently being injected into the gate oxide. The
trapped carriers cause the threshold voltage to shift, even-
tually leading to device failure. HCD is predicted to worsen
for thinner oxide and shorter channel lengths [14]. Time-
dependent oxide breakdown is due to the extensive use of
ultra-thin oxide for high performance. The rate of defect
generation in the oxide is proportional to the current den-
sity flowing through it, and therefore is increasing drastically

as a result of relentless down-scaling [27].
Transistor Infant Mortality. Scaling has had adverse

effects on the early failures of transistor devices. Tradition-
ally, early transistor failures have been reduced through the
use of burn-in. The burn-in process utilizes high voltage
and temperature to accelerate the failure of weak devices,
thereby ensuring that parts that survive burn-in only pos-
sess robust transistors. Unfortunately, burn-in is becoming
less effective in the nanometer regime, as deep sub-micron
devices are subject to thermal run-away effects, where in-
creased temperature leads to increased leakage current and
increased leakage current leads to yet higher temperatures.
The end results is that aggressive burn-in will destroy even
robust transistors. Consequently, vendors may soon have to
relax the burn-in process which will ultimately lead to more
early-failures for transistors in the field.

2.1 The Bathtub: A Generic Model for Semicon-
ductor Hard Failures

To derive a simple architect-friendly model of failures, we
step back and return to the basics. In the semiconductor
industry, it is widely accepted that the failure rate for many
systems follows what is known as the bathtub curve, as il-
lustrated in Figure 2. We will adopt this time-tested fail-
ure model for our research. Our goal with the bathtub-
curve model is not to predict its exact shape and magnitude
for the future (although we will fit published data to it to
create “design scenarios”), but rather to utilize the bath-
tub curve to illuminate the potential design space for future
fault-tolerant designs. The bathtub curve represents device
failure rates over the entire lifetime of transistors, and it is
characterized by three distinct regions.

• Infant Period: In this phase, failures occur very soon
and thus the failure rate declines rapidly over time.
These infant mortality failures are caused by latent
manufacturing defects that surface quickly if a tem-
perature or voltage stress is applied.

• Grace Period: When early failures are eliminated,
the failure rate falls to a small constant value where
failures occur sporadically due to the occasional break-
down of weak transistors or interconnect.

• Breakdown Period: During this period, failures oc-
cur with increasing frequency over time due to age-
related wearout. Many devices will enter this period
at roughly the same time, creating an avalanche effect
and a quick rise in device failure rates.

With the respect to Figure 2, the model is represented
with the following equations:

FG + λL
109

t
(1 − 1

(t+1)m
), if 0 ≤ t < tA

F (t) = FG, if tA ≤ t < tB

FG + (t − tB)b, if tB ≤ t

(t is measured in hours)
Where the parameters of the model are as follows:

• λL: average number of latent manufacturing defects
per chip

• m: infant period maturing factor

• FG: grace period failure rate

• tB : breakdown period start point

• b: breakdown factor,

Grace PeriodInfant Period Breakdown Period

Time

FG

Fa
ilu

re
 R

ate
 (F

IT)

ti tB

Infant Period
with burn-in

Graceful
degradation

Y

Burn-in

Model Parameters:
FG: grace period wear-out rate
�L : avg latent manufacturing defects
m : maturing rate
b : breakdown rate
tB : breakdown start point

FG+109 �L/t � (1 - (t+1)-m) FG + (t - tB)b

Figure 2: Simple bathtub curve model of device defect

exposure. The curve indicates the qualitative trend
of failure rates for a silicon part over time. The ini-
tial operational phase and the “aged-silicon” phase
are characterized by much higher failure rates.

In an effort to base our experiments off of published em-
pirical fault data, we developed a baseline bathtub model
based on published literature. Unfortunately, we were un-
able to locate a single technology failure model that fully
captured the lifetime of a silicon device, so for each period
of the bathtub curve we will use reference values from dif-
ferent sources.

Latent Manufacturing Defects per Chip (λL): Pre-
vious work [3], showed that the rate of latent manufacturing
defects is determined by the formula λL = γλK , where λK

is the average number of “killer” defects per chip, and γ is
an empirically estimated parameter with typical values be-
tween 0.01 and 0.02. The same work, provides formulas for
deriving the maximum number of latent manufacturing de-
fects that may surface during burn-in test. Based on these
models, the average number of latent manufacturing defects
per chip (140mm2) for current technologies (λL) is approx-
imately 0.005. In the literature, there are no clear trends
how this value changes with technology scaling, thus we use
the same rate for projections of future technologies.

Grace Period Failure Rate (FG): For the grace pe-
riod failure rate, we use reference data by [26]. In [26], a
microarchitecture-level model was used to estimate workload-
dependent processor hard failure rates at different technolo-
gies. The model used supports four main intrinsic failure
mechanisms experienced by processors: elegtromigration,
stress migration, time-dependence dielectric breakdown, and
thermal cycling. For a predicted post-65nm fabrication tech-
nology, we adopt their worst-case failure rate (FG) of 55,000
FITs.

Breakdown Period Start Point (tB): Previous work
[27], estimates the time to dielectric breakdown using ex-
trapolation from the measurement conditions (under stress)
to normal operation conditions. We estimate the break-
down period start point (tB) to be approximately 12 years
for 65nm CMOS at 1.0V supply voltage. We were unable to
find any predictions as to how this value will trend for fab-
rication technologies beyond 65nm, but we conservatively
assume that the breakdown period will be held to periods
beyond the expected lifetime of the product. Thus, we need
not address reliable operation in this period, other than to
provide a limited amount of resilience to breakdown for the
purpose of allowing the part to remain in operation until it
can be replaced.

The maturing factor during the infant mortality period

and the breakdown factor during the breakdown period used,
are m = 0.02 and b = 2.5, respectively.

3. A Fault Impact Evaluation Infrastructure
In [7], we introduced a high-fidelity simulation infrastruc-

ture for quantifying various derating effects on a design’s
overall soft-error rate. This infrastructure takes into account
circuit level phenomena, such as time-related, logic-related
and microarchitectural-related fault masking. Since many
tolerance techniques for permanent errors can be adapted
to also provide soft error tolerance, the remainder of this
work concentrates on the exploration of various defect tol-
erance techniques.

3.1 Simulation Methodology for Permanent Faults
In this section, we present our simulation infrastructure

for evaluating the impact of silicon defects. We create a
model for permanent fault parameters, and develop the in-
frastructure necessary to evaluate the effects on a given de-
sign.

Defect model

Function test
(full-cover. test)

Structural
design

Defect
analyzer

Defect is

• exposed
• protected
• unprotected but masked

MonteCarlo simulation
loop – 1000x

Defect-exposed
model

Golden model
(no defect injected)

Time, location

Figure 3: Simulation infrastructure for permanent

faults. The defect infrastructure uses two models of
the system, simulated in parallel. Defects are uni-
formly distributed in time and space and the input
stimuli is a full coverage test that activates each in-
ternal circuit node of the system. A fault analyzer
classifies defects based on the system response.

Figure 3 shows our simulation framework for evaluating
the impact of silicon defects on a digital design. The frame-
work consists of an event-driven simulator that simulates
two copies of the structural, gate-level description of the de-
sign in parallel. Of these two designs, one copy is kept intact
(golden model), while the other is subject to fault injection
(defect-exposed model). The structural specification of our
design was synthesized from a Verilog description using the
Synopsys Design Compiler.

Our silicon defect model distributes defects in the design
uniformly in time of occurrence and spatial location. Once
a permanent failure occurs, the design may or may not con-
tinue to function depending on the circuit’s internal struc-
ture and the system architecture. The defect analyzer clas-
sifies each defect as exposed, protected or unprotected but
masked. In the context of defect evaluation, faults accumu-
late over time until the design fails to operate correctly. The
defect that brings the system to failure is the last injected
defect in each experiment and it is classified as exposed. A
defect may be protected if, for instance, it is the first one to
occur in a triple-module-redundant design. An unprotected
but masked defect is a defect that it is masked because it
occurs in a portion of the design that has already failed, for

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

Time (Years)

De
fe

ct
ed

 P
ar

ts
 (%

)

Failure Rate (FIT)
Baseline Unprotected
System Level TMR

12000

24000

36000

48000

60000

72000

84000

96000

108000

120000

Fa
ilu

re
 R

at
e

(F
IT

)

Figure 4: Baseline design reliability. The graph su-
perimposes the FIT rates of the bathtub model with
the fault tolerance of two variants of the CMP switch
design: a baseline unprotected version and a variant
with a traditional TMR technique.

example a defect hitting an already failed module of a TMR
design.

In the context of defects, we are concerned with studying
the potential of a defect to impact the design outputs in
any possible future execution. Thus, the input stimuli is a
full coverage test, crafted to excite all internal nodes of the
design while observing the outputs. If any of the stimuli
impact the output correctness, the implication is that there
is at least one execution that can expose the defect, and thus
such defect is considered exposed.

Finally, to gain statistical confidence of the results, we
run the simulations described many times in a Monte Carlo
modeling framework.

3.2 Reliability of the Baseline CMP Switch Design
The first experiment is an evaluation of the reliability of

the baseline CMP switch design. In Figure 4, we used the
bathtub curve fitted for the post-65nm technology node as
derived in Section 2. The FIT rate of this curve is 55000
during the grace period, which corresponds to a mean time
to failure (MTTF) of 2 years. We used this failure rate in our
simulation framework for permanent failures and we plotted
the results.

The baseline CMP design does not deploy any protec-
tion technique against defects, and one defect is sufficient
to bring down the system. Consequently, the graph of Fig-
ure 4 shows that in a large parts population, 50% of the
parts will be defective by the end of the second year after
shipment, and by the fourth year almost all parts will have
failed. In this experiment, we have also analyzed a design
variant which deploys triple-module-redundancy (TMR) at
the full-system level (i.e. three CMP switches with voting
gates at their outputs. Designs with TMR applied at dif-
ferent granularities are evaluated at Section 5) to present
better defect tolerance.

The TMR model used in this analysis is the classical TMR
model which assumes that when a module fails it starts pro-
ducing incorrect outputs, and if two or more modules fail,
the output of the TMR voter will be incorrect. This model
is conservative in its reliability analysis because it does not
take into account compensating faults. For example, if two
faults affect two independent output bits, then the voter cir-
cuit should be able to correctly mask both faults. However,
the benefit gained from accounting for compensating faults
rapidly diminishes with a moderate number of defects be-
cause the probabilities of fault independence are multiplied.

Further, though the switch itself demonstrated a moder-
ate number of independent fault sites, submodules within
the design tended to exhibit very little independence. Also,
in [21], it is demonstrated that even when TMR is applied on
diversified designs (i.e. three modules with the same func-
tionality but different implementation), the probability of
independence is small. Therefore, in our reliability analysis,
we choose to implement the classical TMR model and for
the rest of the paper whenever TMR is applied, the classical
TMR model is assumed.

From Figure 4, the simulation-based analysis finds that
TMR provides very little reliability improvements over the
baseline designs, due to the few number of defects that can
be tolerated by system-level TMR. Furthermore, the area
of the TMR protected design is more than three times the
area of the baseline design. The increase in area raises the
probability of a defect being manifested in the design, which
significantly affects the design’s reliability. In the rest of the
paper, we propose and evaluate defect-tolerant techniques
that are significantly more robust and less costly than tra-
ditional defect-tolerant techniques.

4. Self-repairing CMP Switch Design
The goal of the Bulletproof project is to design a defect-

tolerant chip-multiprocessor capable of tolerating significant
levels of various types of defects. In this work, we address
the design of one aspect of the system, a defect tolerant
CMP switch. The CMP switch is much less complex than a
modern microprocessor, enabling us to understand the en-
tire design and explore a large solution space. Further, this
switch design contains many representative components of
larger designs including finite state machines, buffers, con-
trol logic, and buses.

4.1 Baseline Design
The baseline design, consists of a CMP switch similar

to the one described in [19]. This CMP switch provides
wormhole routing pipelined at the flit level and implements
credit-based flow control functionality for a two-dimensional
torus network. In the switch pipeline, head flits will pro-
ceed through routing and virtual channel allocation stages,
while all flits proceed through switch allocation and switch
traversal stages. A high-level block diagram of the router
architecture is depicted in Figure 5.

The implemented router is composed of four functional
modules: the input controller, the switch arbiter, the cross-
bar controller, and the crossbar. The input controller is re-
sponsible for selecting the appropriate output virtual chan-
nel for each packet, maintaining virtual channel state infor-
mation, and buffering flits as they arrive and await virtual
channel allocation. Each input controller is enhanced with
an 8-entry 32-bit buffer. The switch arbiter allocates virtual
channels to the input controllers, using a priority matrix to
ensure that starvation does not occur. The switch arbiter
also implements flow control by tallying credit information
used to determine the amount of available buffer space at
downstream nodes. The crossbar controller is responsible
for determining and setting the appropriate control signals
so that allocated flits can pass from the input controllers to
the appropriate output virtual channels through the inter-
connect provided by the crossbar.

The router design is specified in Verilog and was synthe-
sized using the Synopsys Design Compiler to create a gate-

Input
Buffers

VC State
Routing LogicInput

Buffers

VC State
Routing Logic

Input
Buffers

VC State
Routing LogicInput

Buffers

VC State
Routing Logic

Input
Buffers

VC State
Routing LogicInput

Buffers

VC State
Routing Logic

Input
Buffers

VC State
Routing Logic

Input
Buffers

VC State
Routing Logic

Cross-Bar Controller

Switch Arbiter
Input Controllers

Cross-Bar

Figure 5: Baseline CMP switch design. A high
level block diagram for a wormhole interconnection
switch is presented. It consists of 5 input controllers,
a cross-bar, a switch arbiter and a cross-bar con-
troller.

level netlist, which consists of approximately 10k gates. This
router design consists of five input controllers which dom-
inate the design’s area (86%). Also, the design is heavily
dominated by combinational logic, which represents 84% of
the total area, making it critical to choose protection tech-
niques that can tolerate errors in logic effectively.

4.2 Protection Mechanisms
A design that is tolerant to permanent defects must pro-

vide mechanisms that perform four central actions related
to faults: detection, diagnosis, repair, and recovery. Fault
detection identifies that a defect has manifested as an error
in some signal. Normal operation cannot continue after fault
detection as the hardware is not operating properly. Often
fault detection occurs at a macro-level, thus it is followed
by a diagnosis process to identify the specific location of the
defect. Following diagnosis, the faulty portion of the de-
sign must be repaired to enable proper system functionality.
Repair can be handled in many ways, including disabling,
ignoring, or replacing the faulty component. Finally, the
system must recover from the fault, purging any incorrect
data and recomputing corrupted values. Recovery essen-
tially makes the defect’s manifestation transparent to the
application’s execution. In this section, we discuss a range
of techniques that can be applied to the baseline switch to
make it tolerant of permanent defects. The techniques differ
in their approach and the level at which they are applied to
the design.

In [9] the authors present the Reliable Router (RR), a
switching element design for improved performance and re-
liability within a mesh interconnect. The design relies on
an adaptive routing algorithm coupled with a link level re-
transmission protocol in order to maintain service in the
presence of a single node or link failure within the network.
Our design differs from the RR in that our target domain
involves a much higher fault rate and focuses on maintaining
switch service in the face of faults rather than simply routing
around faulty nodes or links. However, the two techniques
can be combined and provide a higher reliability multipro-
cessor interconnection network.

4.2.1 General Techniques
The most commonly used protection mechanisms are dual

and triple modular redundancy, or DMR and TMR [23].
These techniques employ spatial redundancy combined with
a majority voter. With permanent faults, DMR provides
only fault detection. Hence, a single fault in either of the
redundant components will bring the system down. TMR

is more effective as it provides solutions to detection, re-
covery, and repair. In TMR, the majority voter identifies a
malfunctioning hardware component and masks its affects
on the primary outputs. Hence, repair is trivial since the
defective component is always just simply outvoted when it
computes an incorrect value. Due to this restriction, TMR
is inherently limited to tolerating a single permanent fault.
Faults that manifest in either of the other two copies can-
not be handled. DMR/TMR are applicable to both state
and logic elements and thus are broadly applicable to our
baseline switch design.

Storage or state elements are often protected by parity or
error correction codes (ECC) [23]. ECC provides a lower
overhead solution for state elements than TMR. Like TMR,
ECC provides a unified solution to detection and recovery.
Repair is again trivial as the parity computation masks the
effects of permanent faults. In addition to the storage over-
head of the actual parity bits, the computation of parity or
ECC bits generally requires a tree of exclusive-ORs. This
hardware has moderate overhead, but more importantly, it
can often be done in parallel, thus not affecting latency. For
our defect-tolerant switch, the application of ECC is limited
due to the small fraction of area that holds state.

4.2.2 Domain-specific Techniques
The properties of the wormhole router can be exploited

to create domain-specific protection mechanisms. Here, we
focus on one efficient design that employs end-to-end error
detection, resource sparing, system diagnosis, and reconfig-
uration.

End-to-End Error Detection and Recovery Mech-
anism. Within our router design, errors can be separated
into two major classes. The first class is comprised of data
corrupting errors, for example a defect that alters the data
of a routed flit, so that the routed flit is permanently cor-
rupted. The second class is comprised of errors that cause
functional incorrectness, for example a defect that causes a
flit to be misrouted to a wrong output channel or to get lost
and never reach any of the switch’s output channels.

The first class of errors, the data corrupting errors, can be
addressed by adding Cyclic Redundancy Checkers (CRC) at
each one of the switch’s five output channels, as shown in
Figure 6(a). When an error is detected by a CRC checker,
all CRC checkers are notified about the error detection and
block any further flit routing. The same error detection sig-
nal used to notify the CRC checkers also notifies the switch’s
recovery logic. The switch’s recovery logic logs the error oc-
currence by incrementing an error counter. In case the error
counter surpasses a predefined threshold, the recovery logic
signals the need for system diagnosis and reconfiguration.

In case the error counter is still below the predefined
threshold, the switch recovers its operation from the last
“checkpointed” state, by squashing all inflight flits and rerout-
ing the corrupted flit and all following flits. This is ac-
complished by maintaining an extra recovery head pointer
at the input buffers. As shown in Figure 6(a), each input
buffer maintains an extra head pointer which indicates the
last flit stored in the buffer which is not yet checked by a
CRC checker. The recovery head pointer is automatically
incremented four cycles after the associated input controller
grants access to the requested output channel, which is the
latency needed to route the flit through the switch, once
access to the destination channel is granted. In case of a

CRC
Checker

Interconnect
Switch

CRC
Checker

CRC
Checker

CRC
Checker

Recovery
Logic

CRC
Checker

Routed
Flit

Routed
Flit

Routed
Flit

Routed
Flit

Routed
Flit

Error Detection Signal abcde abcde

Input
Buffers

Tail Head Recovery
Head

a: Correctly routed flit
b, c: In the switch pipeline
d: Next flit to be routed
e: Last flit buffered

e d

Header

Routing Logic

Input
Buffers

Routing LogicVC State

CRC
Checker

Buffer
Checker

Switch Arbiter
Switch Arbiter

Cross-bar CRC
Checker

Recovery
Logic

Switch Recovery

Error

Tail Flit

Head/Tail
Cross-bar Controller

System
Diagnosis

System
Diagnosis

CRC

(a)

(b)
Figure 6: End-to-End error detection and recovery

mechanism. In part (a) the interconnection switch
is enhanced by Cyclic Redundancy Checkers (CRC)
and recovery logic for providing data corrupting er-
ror detection. The input buffers are enhanced with
an extra recovery head pointer to mark the last
correctly checked flit. In part (b) a more detailed
view of the switch with End-to-End error detection
is shown. Flits are split into two parts, which are
independently routed through the switch pipeline.

switch recovery, the recovery head pointer is assigned to the
head pointer for all five input buffers, and the switch recov-
ers operations by starting rerouting the flits pointed by the
head pointers. Further, the switch’s credit backflow mecha-
nism needs to be adjusted accordingly since an input buffer
is now considered full when the tail pointer reaches the re-
covery head pointer. In order for the switch’s recovery logic
to be able to distinguish soft from hard errors, the error
counter is reset to zero at regular intervals.

The detection of errors causing functional incorrectness
is considerably more complicated because of the need to be
able to detect misrouted and lost flits. A critical issue for
the recovery of the system is to assure that there is at least
one uncorrupted copy for each flit in flight in the switch’s
pipeline. This uncorrupted flit can then be used during re-
covery. To accomplish this, we add a Buffer Checker unit
to each input buffer. As shown in Figure 6(b), the Buffer
Checker unit compares the CRC checked incoming flit with
the last flit allocated into the input buffers (tail flit). Fur-
ther, to guarantee the input buffer’s correct functionality,
the Buffer Checker also maintains a copy of the head and
the tail pointers which are compared with the input buffer’s
pointers whenever a new flit is allocated. In the case that
the comparison fails, the Buffer Checker signals an alloca-
tion retry, to cover the case of a soft error. If the error per-
sists, this means that there is a potential permanent error

in the design, and it signals the system diagnosis and recon-
figuration procedures. By assuring that a correct copy of
the flit is allocated into the input buffers and that the input
buffer’s head/tail pointers are maintained correctly, we guar-
antee that each flit entering the switch will correctly reach
the head of the queue and be routed through the switch’s
pipeline.

To guarantee that a flit will get routed to the correct out-
put channel, the flit is split into two parts, as shown in
Figure 6(b). Each part will get its output channel requests
from a different routing logic block, and access the requested
output channel through a different switch arbiter. Finally,
each part is routed through the cross-bar independently. To
accomplish this, we add an extra routing logic unit and an
extra switch arbiter. The status bits in the input controllers
that store the output channel reserved by the head flit are
duplicated as well. Since the cross-bar routes the flits at
the bit-level, the only difference is that the responses to the
cross-bar controller from the switch arbiter will not be the
same for all the flit bits, but the responses for the first and
the second parts of the flit are fitted from the first and sec-
ond switch arbiters, respectively. If a defect causes a flit to
be misrouted, it follows that a single defect can impact only
one of the two parts of the flit, and the error will be caught
later at the CRC check.

The area overhead of the proposed error detection and
recovery mechanism is limited to only 10% of the switch’s
area. The area overhead of the CRC checkers, the Recov-
ery Logic and the Buffer Checker units is almost negligible.
More specifically, the area of a single CRC checker is 0.1%
of the switch’s area and the area for the Buffer Checker
and the Recovery Logic is much less significant. The area
overhead of the proposed mechanism is dominated by the
extra Switch Arbiter (5.7%), the extra Routing Logic units
(5x0.5% = 2.5%), and the additional CRC bits (1.5%). As
we can see, the proposed error detection and recovery mech-
anism has a 10X times less area overhead than a näıve DMR
implementation.

Resource Sparing. For providing defect tolerance to the
switch design we use resource sparing for selected partitions
of the switch. During the switch operation only one spare
is active for each distinct partition of the switch. For each
spare added in the design, there is an additional overhead
for the interconnection and the required logic for enabling
and disabling the spare. For resource sparing, we study two
different techniques, dedicated sparing and shared sparing.
In the dedicated sparing technique, each spare is owned by a
single partition and can be used only when the specific par-
tition fails. When shared sparing is applied, one spare can
be used to replace a set of partitions. In order for the shared
sparing technique to be applied, it requires multiple identi-
cal partitions, such as the input controllers for the switch
design. Furthermore, each shared spare requires additional
interconnect and logic overhead because of its need of hav-
ing the ability to replace more than one possible defective
partitions.

System Diagnosis and Reconfiguration. As a system
diagnosis mechanism, we propose an iterative trial-and-error
method which recovers to the last correct state of the switch,
reconfigures the system, and replays the execution until no
error is detected. The general concept is to iterate through
each spared partition of the switch and swap in the spare
for the current copy. For each swap, the error detection and

Correct Execution10100010100000104
Error Detected01100010010000103
Iteration Skipped00100010001000102
Error Detected00110010000100101

CommentTrialDefectsReconfigurationConfigurationAttempt#

Correct Execution10100010100000104
Error Detected01100010010000103
Iteration Skipped00100010001000102
Error Detected00110010000100101

CommentTrialDefectsReconfigurationConfigurationAttempt#

New Configuration = Trial Configuration = 1010
New Defects = Defects + (Configuration Trial) = 1010

Trial = (Defects + Reconfiguration) Configuration Defects
Partition A

1 0

Partition B

1 0

Partition C

1 0

Partition D

1 0

X*

Figure 7: Example system diagnosis and reconfigu-

ration. This example shows the system with four
partitions and one spare for each partition. The
first spare of partition B contains a previously de-
tected and corrected defect, thus the latest error in
execution is caused by the defect in the first spare
of partition D.

recovery mechanism performs a system replay. Eventually,
the partition that happens to possess the current error will
be disabled and its corresponding spare enabled. When this
occurs, the system diagnosis mechanism will detect correct
system behavior and terminate the replay mode. Using this
approach, the faulty piece of logic is identified and correctly
disabled.

In order for the system diagnosis to operate, it maintains
a set of bit vectors as follows:

• Configuration Vector: It indicates which spare parti-
tions are enabled.

• Reconfiguration Vector: It keeps track of which config-
urations have been tried and indicates the next config-
uration to be tried. It gets updated at each iteration
of system diagnosis.

• Defects Vector: It keeps track of which spare partitions
are defected.

• Trial Vector: Indicates which spare partitions are en-
abled for a specific system diagnosis iteration.

Figure 7, demonstrates an example where system diagno-
sis is applied on a system with four partitions and two copies
(one spare) for each partition. The first copy of partition B
has a detected defect (mapped at the Defects Vector). The
defect in the first copy of partition D is a recently manifested
defect and is the one that caused erroneous execution. Once
the error is detected, the system recovers to the last correct
state using the mechanism described in the previous section
(see error detection and recovery mechanism), and it ini-
tializes the Reconfiguration Vector. Next, the Trial Vector
is computed using the Configuration, Reconfiguration, and
Defects vectors. In case the Trial Vector is the same with the
Configuration Vector (attempt 2), due to a defected spare,
the iteration is skipped. Otherwise, the Trial Vector is used
as the current Configuration vector, indicating which spare
partitions will be enabled for the current trial. The execu-
tion is then replayed from the recovery point until the error
detection point. In case the error is detected, a new trial
is initiated by updating the Reconfiguration Vector and re-
computing the Trial Vector. In case no error is detected,
meaning that the trial configuration is a working configura-
tion, the Trial Vector is copied to the Configuration Vector
and the Defects Vector is updated with the located defected
copy. If all the trial configurations are exhausted, which are
equal to the number of partitions, and no working configu-
ration was found, then the defect was a fatal defect and the

system won’t be able to recover. The example implemen-
tation of the system diagnosis mechanism demonstrated in
Figure 7, can be adapted accordingly for designs with more
partitions and more spares.

We also consider the Built-In-Self-Test(BIST) technique
as an alternative for providing system diagnosis. For each
distinct partition in the design we store in ROM automati-
cally generated test vectors. During system diagnosis with
BIST, these test vectors are applied to each partition of the
system through scan chains to check its functionality cor-
rectness and locate the defected partition.

Both the iterative replay and BIST techniques can be im-
plemented as a separate module from the switch and the
area overhead for their implementation can be shared by a
wide number of switches in a possible chip multiprocessor
design.

4.2.3 Level of Protection
The error resiliency achieved by implementing one of the

protection techniques (e.g., TMR or sparing) is highly de-
pendent on the granularity of the partitions. In general, the
larger the granularity of the partitions, the less robust the
design. However, as the granularity of the partition becomes
smaller, more logic is required. For TMR, each output for a
given partition requires a MAJORITY gate. Since each added
MAJORITY gate is unshielded from permanent defects, poorly
constructed small partitions can make a design less error
resilient than designs with larger partitions.

To illustrate these trade-offs, consider the baseline switch
again in Figure 5. Sparing and TMR can be done on the
system-level where the whole switch is replicated and each
output requires some extra logic like a MUX or MAJORITY

gate. A single permanent error makes one copy of the switch
completely broken. However, the area overhead beyond the
spares is limited to only a gate for each primary output. A
slightly more resilient design, considers partitioning based
on the components that make up the switch. For instance,
each of the five input controllers can have a spare along with
the arbiter, cross-bar, and the cross-bar controllers. This
partitioning approach leaves the design more protected as a
permanent defect in the input controller would make only
that small partition broken and not the other four input
controllers. There is a small area penalty for this approach
as the sum of the outputs for each partition is greater than
the switch as a whole. However, the added unprotected
logic is still insufficient to worsen the error resiliency of the
design. Finally, consider partitioning at the gate-level. In
this approach, each gate is in its own partition. In this
scheme, the error resiliency for each partition is extremely
high because the target is very small. However, the over-
head of this approach requires an extra gate for each gate
in the switch design. Thus for TMR, the area would be four
times the original design. In addition, because each added
gate is unprotected, the susceptibility of this design to er-
rors is actually greater than the larger partitions used in the
component-based partition.

The previous analysis shows that the level of partition-
ing effects the error resiliency and the area overheads of the
design. In this paper, we introduce a technique called, Au-
tomatic Cluster Decompositions, that generates partitions
that minimizes area overhead while maximizing error re-
siliency.

#partitions: 1
#part.outputs: 2
#hyper edges: 8

#partitions: 2
#part.outputs: 3
#hyper edges: 7
#cut edges: 1

#partitions: 3
#part.outputs: 5
#hyper edges: 5
#cut edges: 3

A

E

H
D

G

J

IB

C

F

A

E

H
D

G

J

IB

C

F
A

B

F

C

D

E
H

G

I

J

A

B

F

C

D

E
H

G

I

J

A

B

F

C

D

E
H

G

I

J

Generate
Hypergraph Bisection Algorithm Bisection Algorithm

(a) (b) (c) (d)

Figure 8: The process of automatic cluster decompo-

sition. In part (a) a sample netlist is shown with
2 primary outputs, along with its corresponding hy-
pergraph in part (b). Part (c) shows the hypergraph
after a min-cut bisection creating two unbalanced
partitions. Part (d) shows the final 3-way partition
resulting from a bisection of the largest partition.

4.2.4 Automatic Cluster Decomposition
Automatic Cluster Decomposition takes a netlist and cre-

ates partitions with the end goal that each partition is ap-
proximately the same size and that there is a minimal amount
of outputs required for each partition generated. Generat-
ing these partitions requires that the netlist be converted
into a graph that can then be partitioned using a balanced-
recursive min-cut algorithm [15, 12] that has found use in
fields like VLSI [2].

Figure 8 shows how these partitions are generated from
the netlist of a design. First, the netlist pictured in part (a)
is used to generate a hypergraph shown in part (b). A hy-
pergraph is an extension of a normal graph where one edge
can connect multiple vertices. In the figure, each vertex rep-
resents a separate net in the design. A hyperedge is drawn
around each net and its corresponding fanout. If that net
is placed in a different partition than one of its fanout, that
net becomes an output for its partition thus increasing the
overhead of the partition. Thus the goal of the partitioning
algorithm is to minimize the number of hyperedges that are
cut. For this example, we show a 3-way partitioning of the
circuit. The algorithm in [12] performs a recursive min-cut
operation where the original circuit is bisected and then one
of these partitions is bisected again. In Figure 8(c), the hy-
pergraph is bisected and the number of hyperedges cut is
reported. Notice that one of those pieces is twice the size
of the other one. Because 3-way partitioning is desired, one
piece is slightly larger so that the final partitions are fairly
balanced where each partition has about the same number
of vertices/nets. Figure 8(d) shows the final partitioning as-
signment of the hypergraph along with the number of hyper-
edges cut which corresponds to the number of total outputs
for all the partitions not including the original outputs of the
system. In practice, several iterations of [12] are run as the
algorithm is heuristically-based and requires many runs for
optimal partitions. Also, some imbalance in partition sizes
is tolerated if the number of hyperedges cut is significantly
smaller as a result.

Once the hypergraph is partitioned, several different repli-
cation strategies can be used such as sparing and TMR. In
Figure 9, an example of performing 3-way partitioning over
an arbitrary piece of logic using one spare per partition is
shown. In part (a), sparing is performed at the system-level.

Part.3
Select

MUX
MUX

MUX

MUX

MUX

M
UX

M
UX

MUX

MUX

MUX

Part.2
SelectPart. 1

Part. 2

Part. 3Part.
Select

MUX
MUX

MUX
MUX

Part.1
Select

Full system

(a) (b)

Figure 9: Examples of one spare systems. In part (a)
sparing without any cluster decomposition is shown.
In part (b) sparing is applied to a three-way par-
tition. Cluster decomposition increases MUX in-
terconnect overhead, but provides higher protection
due to the smaller granularity of the sparing.

The outputs of both identical units are fed into a MUX where
a register value determines which unit is active and which
one is inactive. In part (b), the circuit is partitioned into
three pieces. Notice, that the outputs for each boundary
must now have a MUX associated with it. Also, each parti-
tion requires a register to determine which copy is active.
Thus 3-way partitioning requires a total of three registers
and the number of MUXes corresponding to the number of
outputs generated by the partitioning.

4.3 Switch Designs
Each configuration providing a defect tolerant switch de-

sign is characterized by three parameters: level of protec-
tion, techniques applied, and system diagnosis method. For
each configuration, we give a name convention as follows:
level technique diagnosis. The configurations using TMR
as the defect tolerance technique do not use the end-to-end
error detection, recovery and system diagnosis techniques,
since TMR inherently provides error detection, diagnosis
and recovery. All other configurations use the end-to-end er-
ror detection and recovery technique, along with either iter-
ative replay or BIST for system diagnosis. Table 1, describes
the choices that we considered in our simulated configura-
tions for the three parameters, and it gives some example
configurations along with their name conventions.

5. Experimental Results
To evaluate the effectiveness of our domain specific defect

tolerance techniques in protecting the switch design, we sim-
ulated various design configurations with both traditional
and domain specific techniques. To assess the effectiveness
of the various design configurations in protecting the switch
design, we take into account the area and time overheads
of the design along with the mean number of defects that
the design can tolerate. We also introduce a new metric,
the Silicon Protection Factor (SPF), which gives us a more
representative notion about the amount of protection that is
offered to the system by a given defect tolerance technique.
Specifically, the SPF is computed by dividing the mean num-
ber of defects needed to cause a switch failure with the area
overhead of the protection techniques. In other words, the
higher the SPF factor, the more resilient each transistor is
to defects. Since the number of defects in a design is pro-
portional to the area of the design, the use of this metric
for assessing the effectiveness of the silicon protection tech-
niques is more appropriate.

In Table 2, we list the design configurations that we simu-
lated. The naming convention followed for representing each
configuration is described in Table 1. For each simulated

Table 1: Mnemonic table for design configurations.

For each portion of the naming convention, we show
the possible mnemonics with the related description.
The last portion provides some example design con-
figurations.

Mnemonic Group Mnemonic Description

Level of applying
defect tolerance
technique

S
C
G
S+CL
C+CL

System level
Component level
Gate level
System level clusters
Component level clusters

Defect tolerance
techniques (can be
applied in
combinations)

TMR
#SP
#SH(X)
ECC

Triple Modular Redundancy
dedicated spares for each partition
shared spares for partition of type X
Error Correction Codes applied at state

System diagnosis
technique

IR
BIST

Iterative replay
Built-In-Self-Test

Example
configurations

S+CL_1SP_IR
C_2SH(IC)+1SP_BIST

C+CL_TMR+ECC

System level clusters with 1 spare for each partition and iterative replay.
Component level with 2 shared input controllers and one dedicate spare
for the rest of the components. BIST for system diagnosis.
Component level clusters TMR with ECC protected state.

design configuration, we provide the area overhead needed
for implementing the specific design. This area overhead
includes the extra area needed for the spare units, the ma-
jority gates, the logic for enabling and disabling spare units,
the logic for the end-to-end error detection, recovery and
system diagnosis (different configurations have different re-
quirements for the extra logic added). We notice that the
design configurations with the higher area overheads are the
ones applying BIST for system diagnosis. This is due to the
extra area needed for storing the test vectors necessary for
self-testing each distinct partition in the design, along with
the additional interconnection and logic needed for the scan
chains. Even though the area overhead for the test vectors
can be shared over the total number of switches per chip,
the area overhead of the BIST technique is still rather large.
Another design configuration with high area overhead is the
one where TMR is applied at the gate level due to the extra
voting gate needed for each gate in the baseline switch de-
sign. On the other hand, designs with shared spares achieve
low area overhead (under two) since not every part of the
switch is duplicated. The area overhead for the rest of the
design configurations is dependent on the amount of spares
per partition.

In the fourth column of the table, we provide the mean
number of defects to failure for each design configuration.
The design configurations providing high mean number of
defects to failure are the ones employing the ACD (Auto-
matic Cluster Decomposition) technique. Another point of
interest is that techniques employing ECC even when cou-
pled with automatic cluster decomposition perform poorly.
Although state is traditionally protected by ECC, when a
design is primarily combinational logic, like our switch, the
cost of separating the state from the logic exceeds the pro-
tection given to the state elements. In other words, if the
state is not considered in the ACD analysis and is therefore
not part of any of the spared partitions, the boundary be-
tween the state and the spared partitions must have some
unprotected interconnection logic. This added logic coupled
with the unprotected logic required by ECC makes ECC in
a logic dominated design undesirable.

The SPF values for each design are presented in the fifth
column of Table 2. The highest SPFs are given by the de-
sign configurations that employ automatic cluster decom-
position, with the highest being design S+CL 2SP IR at
11.11. Even though design S+CL 2SP BIST uses the same
sparing strategies, the area overhead added from BIST de-
creases the design’s SPF significantly. It’s interesting that
two design configurations have SPFs lower than 1. The first

Table 2: Results of the evaluated designs. For each design configuration we report the mnemonic, the area
factor over the baseline design, the number of defects that can be tolerated, the SPF, the number of partitions
and an estimate of the impact on the system delay.

 Key Design
Configuration

Area
O.head Defects SPF #Part. %Dly Key Design

Configuration
Area

O.head Defects SPF #Part. %Dly

1 S_TMR 3.02 2.49 0.82 1 0.00 20 S+CL_2SP+ECC_IR 3.39 8.64 2.55 118 22.22
2 S+CL_TMR 3.08 16.78 5.45 241 22.22 21 C_2SP_IR 3.36 13.07 3.90 12 0.00
3 S+CL_TMR+ECC 3.07 6.92 2.25 185 27.78 22 C_2SP_BIST 3.90 13.07 3.35 12 0.00
4 C_TMR 3.04 4.68 1.54 12 0.00 23 C+CL_2SP_IR 3.44 32.33 9.39 208 18.75
5 C+CL_TMR 3.09 15.86 5.13 223 18.75 24 C_CL_2SP_BIST 4.31 32.33 7.50 208 18.75
6 C+CL_TMR+ECC 3.11 6.25 2.01 298 25.00 25 C+CL_2SP+ECC_R 3.41 7.49 2.20 103 25.00
7 G_TMR 4.00 4.00 1.00 10540 100.00 26 C_2SH(IC)_IR 1.52 3.15 2.07 12 0.00
8 S_1SP_IR 2.22 3.27 1.47 1 0.00 27 C_3SH(IC)_IR 1.71 4.14 2.43 12 0.00
9 S+CL_1SP_IR 2.30 17.53 7.63 206 22.22 28 C_4SH(IC)_IR 1.89 5.02 2.65 12 0.00
10 S+CL_1SP_BIST 3.16 17.53 5.54 206 22.22 29 C_5SH(IC)_IR 2.08 5.90 2.84 12 0.00
11 S+CL_1SP+ECC_IR 2.48 5.96 2.41 183 27.78 30 C_2SH(IC)+1SP_IR 1.74 4.40 2.53 12 0.00
12 S+CL_1SP+ECC_BIST 3.34 5.96 1.78 183 27.78 31 C_3SH(IC)+1SP_IR 1.93 5.79 3.01 12 0.00
13 C_1SP_IR 2.24 5.87 2.62 12 0.00 32 C_4SH(IC)+1SP_IR 2.12 7.10 3.34 12 0.00
14 C_1SP_BIST 2.79 5.87 2.62 12 0.00 33 C_5SH(IC)+1SP_IR 2.41 8.39 3.48 12 0.00
15 C+CL_1SP_IR 2.33 16.04 6.88 223 18.75 34 C_2SH(IC)+2SP_IR 1.93 5.01 2.60 12 0.00
16 C+CL_1SP_ECC_IR 2.51 5.34 2.13 138 25.00 35 C_3SH(IC)+2SP_IR 2.12 6.57 3.09 12 0.00
17 S_2SP_IR 3.32 5.95 1.79 1 0.00 36 C_4SH(IC)+2SP_IR 2.30 8.10 3.52 12 0.00
18 S+CL_2SP_IR 3.42 37.99 11.11 206 22.22 37 C_5SH(IC)+2SP_IR 2.50 9.58 3.84 12 0.00
19 S+CL_2SP_BIST 4.29 37.99 8.86 206 22.22 38 S_ECC 1.18 1.16 0.98 12 0.00

 one is TMR applied at the system level, which can tolerate

2.5 defects but the area overhead is more than triple, thus
making the new design less defect tolerant than the baseline
switch design by 18%. The second one is where the state is
protected by ECC. Since our design is logic dominated and
the protected fraction of the design is very small, the ex-
tra logic required for applying ECC (which is unprotected),
is larger than the actual protected area. Thus, this tech-
nique makes the specific design less defect tolerant than the
baseline unprotected design by 2%.

The sixth column in the table shows the number of distinct
partitions for each design configuration. This parameter is
very important for the configurations employing ACD. The
SPF of a given design configurations, is greatly dependent
on the number of partitions in the decomposed design.

Figure 10 shows the dependency of the SPF over the num-
ber of decomposed partitions for the design configuration
S+CL 1SP IR. We can see that for the given design config-
uration the peak SPF occurs around 200 partitions. As the
per partition size decreases, the SPF value increases, and
as the number of cut edges per partition increases, the SPF
value decreases. Therefore, the initial rise of the SPF oc-
curs because the area per partition was decreasing as the
number of decomposed partitions was getting larger. Af-
ter the optimal point of 200 partitions, the overhead of the
extra unprotected logic required for each cutting edge be-
tween partitions causes the SPF to start declining. For each
design configuration employing automatic cluster decompo-
sition, we ran several simulations for varying numbers of
partitions to achieve an optimal SPF.

The final column in Table 2, %Delay, gives the percent-
age increase of the critical path delay in the switch. We
produce a coarse approximation of the delay overheads that
is technology independent by making the delay increase pro-
portional to the number of interconnection gates added to
the critical path. Thus, TMR-based designs will achieve
the same delay increase as spare-based designs as multiplex-
ers and majority gates are treated the same in the anal-
ysis. Our results show that for the best designs, we al-
ways achieve a delay increase of less than 25%. The designs
that involve ACD involve the greatest increase in delay be-
cause the partitions generated frequently split up the critical
paths. Designs with minimal amount of clustering, such as

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900
#Partitions

D
ef

ec
t R

es
ili

en
cy

k

Mean Defects to Failure
SPF-Defect Tolerance

Figure 10: Defect resiliency as a function of the num-

ber of partitions. As an example we plot the SPF
defect tolerance of configuration S+CL 1SP IR for a
varying number of partitions generated by the ACD
algorithm.

the C 2SH(IC) IR, achieve no overhead as no interconnec-
tion logic is added to any of the critical paths. In general,
our results indicate that achieving high SPF require slight
delay penalty; however, in principle the ACD strategy could
be used to try to minimize the number of critical paths that
are partitioned.

The graph in Figure 11 shows the trade off between de-
fect tolerance and area overhead. The horizontal axis of the
graph represents the defect tolerance provided from a design
configuration in SPFs, and the vertical axis the area over-
head of the design configuration. The further to the right a
design configuration lies, the higher the defect tolerance it
provides, while the lower it is, the lower the implementation
cost.

At the lower left corner, is the design configuration S ECC
providing ECC protection to the state. This is the cheap-
est design configuration, but it does not provide any con-
siderable defect tolerance to the switch design. The right-
most design configuration, S+CL 2SP IR, provides a de-
fect tolerance of 11.11 SPF, by employing automatic clus-
ter decomposition at the system level with 200 partitions
and two extra spares for each partition, along with itera-
tive replay for system diagnosis. The area overhead for im-
plementing this design configuration is 3.42X, and provides
the better trade-off between area required and offered defect

38-S_ECC

36
37-C_5SH(IC)+2SP_IR

1-S_TMR 2-S+CL_TMR3-S+CL_TMR+ECC
4-C_TMR

56

7-G_TMR

8-S_1SP_IR 9-S+CL_1SP_IR

10-S+CL_1SP_BIST

11

12

13

14-C_1SP_BIST
15-C+CL_1SP_IR16

17 18-S+CL_2SP_IR

19-S+CL_2SP_BIST

20 21-C_2SP_IR

22-C_2SP_BIST

23-C+CL_2SP_IR

24-C+CL_2SP_BIST

25

26 27-C_3SH(IC)_IR

28 29
30-C_2SH(IC)+1SP_IR

31-C_3SH(IC)+1SP_IR
32

33

34
35

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12
Normalized Defect Resiliency - Silicon Protection Factor (SPF)

A
re

a
O

ve
rh

ea
d

 h

More robust designs

Ch
ea

pe
r d

es
ig

ns cheaper

more robust designs

Figure 11: Pareto chart of the explored solutions. The design evaluated are plotted on an area vs. SPF chart.
The line across the chart connects the set of optimal solutions. See Table 1 for explanations of design points.

protection. Design configurations with moderate SPFs but
with much less cost in area overhead are: C 3SH(IC) IR,
C 2SH(IC)+1SP IR,C 3SH(IC)+1SP IR, andC 2SH(IC)+
2SP IR. These design configurations use shared spares of
input controllers along with dedicated spares for the other
components in the switch design, keeping the area overhead
less than 2X, but offering SPFs of 2.5-3 at the same time.
Such designs are interesting, since they keep the implemen-
tation cost at low levels and provide an attractive solution
for defect tolerance.

Other two interesting design configurations are C+CL 1SP
IR and S+CL 1SP IR. These two designs use the same tech-
nique, automatic cluster decomposition with one spare for
each partition, with the difference that design S+CL 1SP IR
applies the ACD technique on the system level, and design
C+CL 1SP IR at the component level. The area cost of the
two designs is almost the same but S+CL 1SP IR provides
11% more SPF. The same argument also holds for designs
S+CL 2SP IR and C+CL 2SP IR. This suggests that ap-
plying the ACD technique at the system level can offer more
effective defect tolerance at the same cost in area.

In Figure 12, we present how some of the design configu-
rations affect the lifetime of the switch design for a future
post 65nm technology where the mean time between fail-
ures to be manifested on a switch is 2 years (a failure rate
of 55000 FITs). The graph’s horizontal axis represents the
years that the switch design is operating. The vertical axis
represent the percentage of defected parts over a popula-
tion of switches (left axis) and the baseline switch’s failure
rate (right axis). The baseline switch’s lifetime failure rate
for the given technology is presented by the darker thick
line, forming the bathtub curve. In Figure 12(a), it only
forms a part of the bathtub curve since for this graph we
assume that the design’s breakdown occurs after 30 years.
For each design configured presented in the graph, there is a
line showing the failing rate of switch parts over time. This
line starts from year 1, since we assume that the first year of
a parts lifetime is consumed during the accelerated testing
(burn-in) procedure, and that shipped parts are already at
their first year of lifetime with a constant failure rate.

From the graph in Figure 12(a), we can observe that when
applying TMR at the component level, 25% of the shipped
parts will be defected by the first year and 75% after the first

(a)

(b)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30
Time (Years)

De
fe

ct
ed

 P
ar

ts
 (%

)

g

Failure Rate (FIT)
9. S+CL_1SP_IR (SPF=7.63)
4. C_TMR (SPF=1.54)
18. S+CL_2SP_IR (SPF=11.11)
31. C_3SH(IC)+1SP_IR (SPF=3.01)
13. C_1SP_IR (SPF=2.62)

Fa
ilu

re
 R

at
e

(F
IT

)

12000

24000

36000

48000

60000

72000

84000

96000

108000

120000

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (Years)

De
fe

ct
ed

 P
ar

ts
 (%

)

 g

Failure Rate (FIT)
9. S+CL_1SP_IR (SPF=7.63)
4. C_TMR (SPF=1.54)
18. S+CL_2SP_IR (SPF=11.11)
31. C_3SH(IC)+1SP_IR (SPF=3.01)
13. C_1SP_IR (SPF=2.62)

Fa
ilu

re
 R

at
e

(F
IT

)

12000

24000

36000

48000

60000

72000

84000

96000

108000

120000

Figure 12: Fault tolerance of some interesting design

configurations. Part (a) superimposes the FIT rate
of the bathtub model with the percentage of defec-
tive parts over time. In addition part (b) takes into
account the breakdown period.

three years. On the other hand, when in a design configu-
ration where automated cluster decomposition was applied
at the system level with 2 spares for each partition, the 25%
of the shipped parts will be defected after 16 years and the
75% after 29 years. If we define the lifetime of a manufac-
tured product as the period of time where 10% of the man-
ufactured parts become defective, then the clustering design
configuration S+CL 2SP IR increases the switch’s lifetime
by 26X over the TMR design configuration C TMR.

System designers, can choose a defect tolerance technique
that best matches with their design’s specifications. For

example the design configuration S+CL 1SP IR, where au-
tomatic clustering decomposition is applied at system level
with one dedicated spare for each partition, where 10% of
the parts will get defected after 7 years but with 48% less
cost in area than design configuration S+CL 2SP IR might
be a more attractive solution.

The same data as in Figure 12(a), is presented in Fig-
ure 12(b), with the difference that here we assume that the
breakdown for the switch design starts after 10 years of be-
ing shipped. For the first three design configurations, there
is no difference since by that time all of the parts become
defective. For the other two design configurations, what
is interesting to observe is that even after the breakdown
point where the failure rates increase with an exponential
rate, most of the parts will be able to provide the user a
warning time window of a month before failure. This is a
very important feature for a design configuration, especially
for very critical high dependable applications.

6. Conclusions and Future Directions
As silicon technologies continue to scale, transistor relia-

bility is becoming an increasingly important issue. Devices
are becoming subject to extreme process variation, tran-
sistor wearout, and manufacturing defects. As a result, it
will likely be no longer possible to create fault-free designs.
In this paper, we investigate the design of a defect-tolerant
CMP network switch. To accomplish this design, we first
develop a high-level, architect-friendly model of silicon fail-
ures based on the time-tested bathtub curve. Based on this
model, we explore the design space of defect-tolerant CMP
switch designs and the resulting tradeoff between defect tol-
erance and area overhead. We find that traditional mecha-
nisms, such as triple modular redundancy and error correc-
tion codes, are insufficient for tolerating moderate numbers
of defects. Rather, domain-specific techniques that include
end-to-end error detection, resource sparing, and iterative
diagnosis/reconfiguration are more effective. Further, de-
composing the netlist of the switch into modest-sized clus-
ters is the most effective granularity to apply the protection
techniques.

This work provides a solid foundation for future explo-
ration in the area of defect-tolerant design. We plan to
investigate the use of spare components based on wearout
profiles to provide more sparing for the most vulnerable com-
ponents. Further, a CMP switch is only a first step towards
the over-reaching goal of designing a defect-tolerant CMP
system.

Acknowledgments: This work is supported by grants
from NSF and Gigascale Systems Research Center. We
would also like to acknowledge Li-Shiuan Peh for provid-
ing us access to CMP Switch models, and the anonymous
reviewers for providing useful comments on this paper.

7. References
[1] H. Al-Asaad and J. P. Hayes. Logic design validation via

simulation and automatic test pattern generation. J. Electron.
Test., 16(6):575–589, 2000.

[2] C. J. Alpert and A. B. Kahng. Recent directions in netlist
partitioning: a survey. Integr. VLSI J., 19(1-2):1–81, 1995.

[3] T. S. Barnett and A. D. Singh. Relating yield models to
burn-in fall-out in time. In Proc. of International Test
Conference (ITC), pages 77–84, 2003.

[4] E. Bohl, et al. The fail-stop controller AE11. In Proc. of
International Test Conference (ITC), pages 567–577, 1997.

[5] S. Borkar, et al. Design and reliability challenges in nanometer
technologies. In Proc. of the Design Automation Conf., 2004.

[6] F. A. Bower, et al. Tolerating hard faults in microprocessor
array structures. In Proc. of International Conference on
Dependable Systems and Networks (DSN), 2004.

[7] K. Constantinides, et al. Assessing SEU Vulnerability via
Circuit-Level Timing Analysis In Proc. of 1st Workshop on
Architectural Reliability (WAR), 2005.

[8] J. E. D. E. Council. Failure mechanisms and models for
semiconductor devices. JEDEC Publication JEP122-A, 2002.

[9] W. J. Dally, et al. The reliable router: A reliable and
high-performance communication substrate for parallel
computers. In Proc. International Workshop on Parallel
Computer Routing and Communication (PCRCW), 1994.

[10] E. Wu, et al. Interplay of voltage and temperature acceleration
of oxide breakdown for ultra-thin gate dioxides. Solid-state
Electronics Journal, 2002.

[11] P. Gupta and A. B. Kahng. Manufacturing-aware physical
design. In Proc. of International Conference on
Computer-Aided Design (ICCAD), 2003.

[12] hMETIS. http://www.cs.umn.edu/ekarypis.

[13] C. K. Hu, et al. Scaling effect on electromigration in on-chip
Cu wiring. International Electron Devices Meeting, 1999.

[14] A. M. Ionescu, M. J. Declercq, S. Mahapatra, K. Banerjee, and
J. Gautier. Few electron devices: towards hybrid CMOS-SET
integrated circuits. In Proc. of the Design Automation
Conference, pages 88–93, 2002.

[15] G. Karypis, et al. Multilevel hypergraph partitioning:
Applications in VLSI domain. In Proc. of the Design
Automation Conference, pages 526–529, 1997.

[16] S. Mukherjee, et al. The soft error problem: An architectural
perspective. In Proc. of the International Symposium on
High-Performance Computer Architecture, 2005.

[17] S. Mukherjee, et al. A systematic methodology to compute the
architectural vulnerability factors for a high-performance
microprocessor. In Proc. International Symposium on
Microarchitecture (MICRO), pages 29–42, 2003.

[18] B. T. Murray and J. P. Hayes. Testing ICs: Getting to the core
of the problem. IEEE Computer, 29(11):32–38, 1996.

[19] L.-S. Peh. Flow Control and Micro-Architectural Mechanisms
for Extending the Performance of Interconnection Networks.
PhD thesis, Stanford University, 2001.

[20] R. Rao, et al. Statistical estimation of leakage current
considering inter- and intra-die process variation. In Proc. of
the International Symposium on Low Power Electronics and
Design (ISLPED), pages 84–89, 2003.

[21] N.R. Saxena, and E.J. McCluskey Dependable Adaptive
Computing Systems. IEEE Systems, Man, and Cybernetics
Conf., 1998.

[22] P. Shivakumar, et al. Exploiting microarchitectural redundancy
for defect tolerance. In Proc. of International Conference on
Computer Design (ICCD), 2003.

[23] D. P. Siewiorek, et al. Reliable computer systems: Design and
evaluation, 3rd edition. AK Peters, Ltd Publisher, 1998.

[24] J. Smolens, et al. Fingerprinting: Bounding the soft-error
detection latency and bandwidth. In Proc. of the Symposium
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2004.

[25] L. Spainhower and T. A. Gregg. G4: A fault-tolerant CMOS
mainframe. In Proc. of International Symposium on
Fault-Tolerant Computing (FTCS), 1998.

[26] J. Srinivasan, et al. The impact of technology scaling on
lifetime reliability. In Proc. of International Conference on
Dependable Systems and Networks (DSN), 2004.

[27] J. H. Stathis. Reliability limits for the gate insulator in CMOS
technology. IBM Journal of Research and Development, 2002.

[28] S. B. K. Vrudhula, D. Blaauw, and S. Sirichotiyakul.
Estimation of the likelihood of capacitive coupling noise. In
Proc. of the Design Automation Conference, 2002.

[29] N. J. Wang, et al. Characterizing the effects of transient faults
on a high-performance processor pipeline. In Proc. of
International Conference on Dependable Systems and
Networks (DSN), pages 61–70, 2004.

[30] C. Weaver and T. Austin. A fault tolerant approach to
microprocessor design. In Proc. of International Conference
on Dependable Systems and Networks (DSN), 2001.

[31] C. Weaver, et al. Techniques to reduce the soft error rate of a
high-performance microprocessor. In Annual International
Symposium on Computer Architecture, 2004.

[32] J. F. Ziegler. Terrestrial cosmic rays. IBM Journal of Research
and Development, 40(1), 1996.

