
PowerRanger: Assessing Circuit Vulnerability to Power Attacks Using SAT-Based
Static Analysis

Jeff Hao, Valeria Bertacco
Department of Computer Science and Engineering

University of Michigan
Ann Arbor, United States of America

{jeffhao, valeria}@umich.edu

Abstract—Cryptographic cores, though algorithmically se-
cure, can leak information about their operation during ex-
ecution. By monitoring the power dissipation of a core, an
attacker can extract secret keys used for encryption. To guard
against this, designers must minimize the variation of power
dissipation of their circuits over time. Unfortunately, power
dissipation is a complex function of several different factors,
and an exhaustive search for its maximum range is computa-
tionally infeasible. In this paper, we propose PowerRanger, a
technique based on Boolean satisfiability to produce tight upper
and lower bounds on both maximum and minimum power
dissipation. In addition, we incorporate min-cut partitio ning
in our solution to improve its scalability for large designs. We
evaluated the quality and performance of PowerRanger on a
number of ISCAS benchmarks, as well as two cryptographic
cores, showing that our technique significantly outperforms
previously known solutions.

Keywords-Security, Power Analysis; Power Estimation;
Boolean Satisfiability; Partitioning;

I. I NTRODUCTION

Modern cryptographic algorithms such as DES, AES, and
RSA are generally considered mathematically secure, in that
knowing the encrypted text reveals no information about
the original data. However, the physical implementation of
these algorithms as digital circuits can introduce weaknesses
which can be exploited by attackers. Kocheret al. [1]
introduced two methods of analyzing a circuit’s power
consumption to break into a cryptosystem: Simple Power
Analysis (SPA) and Differential Power Analysis (DPA). In
SPA, a single trace of a circuit’s power consumption during
execution is exploited to yield information about a device’s
operation. In DPA, multiple power traces must be gathered
to build a correlation function that can reveal individual bits
of the encryption key. Both techniques have been shown to
allow attackers to break into a variety of cryptographic cores.

The most effective countermeasure to SPA and DPA
attacks is to minimize the variation of power consumed
by a circuit over time. By reducing the potential range of
power dissipation of the circuit, small variations in dynamic
power become difficult to isolate. When done well enough,
these small power fluctuations during execution become
obscured by noise, making SPA attacks almost as time-

consuming as brute-force key searching attacks. DPA attacks
are sophisticated and much more difficult to counter, since
they have the potential to discern even small variations in
power consumption. However, a smaller power dissipation
range reduces the amount of information gained by each
trace. More traces become necessary, and the computational
time needed to analyze them quickly grows to be impractical
[2]. A conscientious designer aware of power dissipation
during the design process can build cores that are highly
resistant to SPA and DPA. However, power dissipation in
CMOS circuits is difficult to estimate as it depends on clock
frequency, gate delays, process parameters, circuit topology,
and input patterns [3]. Within a given design, most of
these factors are constant, so that input patterns determining
switching activity play the main role in power consumption.

Determining the complete range of possible switching
activity would require searching an exponential number
of possible input combinations. However, this task can be
formulated as a Boolean satisfiability (SAT) problem. SAT
solvers today are powerful enough to solve complex prob-
lems very quickly. Unfortunately, for very large instances,
even state-of-the-art SAT solvers have difficulty producing
solutions. For this reason, we develop a novel solution which
integrates min-cut partitioning with SAT solving, so that
partitioning can be used to break down the problem into
smaller blocks and improve performance and scalability.

A. Contributions

In this paper we propose PowerRanger, a novel technique
that relies on a min/max ones SAT formulation and min-
cut partitioning to generate tight minimum and maximum
bounds on the switching activity of a digital circuit within
a single clock cycle. To achieve a more accurate correspon-
dence between switching activity and power consumption,
PowerRanger takes into account gate fanout of the internal
nodes of the design. In our experimental setup over a broad
range of ISCAS designs and two cryptographic cores, we
have found that PowerRanger can narrow these bounds down
to a very small range in every case. Also, in many cases it
can find exact solutions for either the minimum or maximum
power consumed, or both.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 presents our methodology
while Section 4 describes the algorithms that we developed
for PowerRanger and provides implementation insights. Sec-
tion 5 reports experimental results, and Section 6 concludes
the paper.

II. PREVIOUS WORK

Several approaches have been proposed to generate
bounds on the maximum power dissipation of a circuit, and
they can be grouped into one of two categories. The first
category includes techniques that search for a sequential pair
of input vectors causing maximum switching activity, and
provide a lower bound on the maximum if no exact solution
can be found. Examples of this include Wang and Roy [4],
who greedily assign transitions to gates with large fanout,
and then rely on Automatic Test Pattern Generation (ATPG)
techniques to propagate those values. Hsiao [5] describes
a genetic ”spot-optimization” algorithm that attempts to
maximize switching activity on one group of nodes at a time.
Finally, Qiu et al. [6] propose a method based on extreme
order statistics to generate maximum power estimates while
simulating only a few input vectors. The second category
provides an upper bound on the maximum, guaranteeing that
every execution of the circuit will dissipate no more power
than the estimate. Kriplaniet al. [7] present a technique to
reason on possible node values throughout the circuit, and
generate a maximum current envelope, which provides an
upper bound on power. This technique was further improved
by Hsieh et al. in [8] by considering signal correlation to
achieve tighter bounds. Our technique is able to compute
both lower and upper bounds on the maximum switching
activity, allowing us to close in on the maximum from
both directions. In addition, PowerRanger provides both
bounds on minimum power consumption, which is critical
in protecting against SPA and DPA attacks.

We believe that Devadaset al. [9] were the first to
propose a solution utilizing SAT-solvers to estimate power
consumption in CMOS combinational circuits. Their ap-
proach was later extended by Mangassarianet al. [10]
to sequential circuits through the use of pseudo-Boolean
satisfiability solvers. Our approach shares the use of a SAT-
based framework with these two previous works. However,
it differs in our integration of min-cut partitioning, which
greatly enhances the scalability of our solution.

III. M ETHODOLOGY

PowerRanger’s goal is to compute lower and upper
bounds of minimum and maximum power dissipation for
a digital circuit. We make the assumption that, for a given
circuit, switching activity is the most influential factor in
determining power consumption. Hence, PowerRanger an-
alyzes the variation in switching activity over all possible
input stimuli.

Fanout

Normali-

zation

Min / Max

Ones Solver

Min / Max

Bounds
Synthesized

Circuit

Partitioning

Min / Max

Problem Setup

PowerRanger
Figure 1. PowerRanger execution flow. A gate-level circuit description is
normalized for fanout, then partitioned and converted intoa SAT instance.
These two components are used by the min/Max ones solver to generate
min and Max power bounds.

Figure 1 illustrates the various phases of the PowerRanger
execution flow. PowerRanger starts its analysis by taking
a gate-level description of a circuit and normalizing its
fanout. Then the circuit undergoes partitioning, concurrently
with its transformation to a min/Max ones SAT problem.
Finally, a min/Max ones solver evaluates the SAT instance
and the partitioning, and generates bounds for minimum and
maximum switching activity.

A. Circuit Model

PowerRanger makes a few assumptions on the working
conditions of the circuit to be analyzed. First, we assume
that the entire circuit operates at the same voltage and
on the same clock. If that is not the case, the user can
partition the circuit based on the various voltage and clock
regions and apply PowerRanger separately to each. Based
on our assumptions, dynamic power dissipation becomes
proportional to the sum of the capacitive load of each
switching node. This relationship can be expressed in the
formula:

P ∝
n∑

i=1

CiTi (1)

whereCi denotes the capacitive load of nodei and Ti

represents whether nodei transitions. PowerRanger esti-
mates power dissipation by normalizing the design to the
sameCi for all nodes and then computing the minimum
and maximum values forTi. We also make the assumption
that all gates have the same size, and we use the fanout
normalization phase to normalize the fanout capacitive load.
Finally, we assume that the circuit is glitch-free to avoid
asynchronous dissipation.

B. Fanout Normalization

To avoid the use of more heavy weight pseudo-Boolean
SAT solvers, it is necessary to make the power ”weight”
of each node in the graph a single fixed value. Thus, we
change the power ”weight” of a node withn gates of
fanout ton nodes with unit fanout. Consequently, when the
node switches,n nodes with unit capacitance will switch
together, effectively multiplying the number of transitioning

nodes by the number of fanout gates. These additional
nodes have floating outputs that are kept to more accurately
model the switching capacitance of each node. Although this
transformation makes the fanout worse from an electrical
standpoint, the corresponding SAT problem only detects the
additional switching nodes, effectively applying a weight
factor which corresponds to the original node’s fanout.

C. Min/Max Problem Setup

To determine switching activity in the circuit, we unroll
the circuit once, and compare 2 consecutive cycles of
execution, as shown in Figure 2. Each internal node in the
first cycle is XORed with its corresponding copy in the next.
The output of each XOR represents a transition on that node,
and we can use these outputs to count the total number of
transitioning nodes in the circuit.

After unrolling the circuit, the initial state for the first copy
and the primary inputs for both cycles are left unconstrained.
By choosing different vectors for initial state and the 2 cycles
of inputs, we can generate different circuit configurations
and vary the number of switching nodes. Unfortunately, to
find the specific state and input combinations that would
maximize or minimize power dissipation, we would have
to iterate over all possible patterns, a task that grows
exponentially with the number of state elements and primary
inputs. Instead, we rely on a Boolean satisfiability solver,
which can perform this task in approximately linear time
in the average case, due to advanced search and pruning
techniques.

Given a Boolean expression in conjunctive normal form
(CNF), Boolean satisfiability is the problem of finding an
assignment for each variable in the expression such that
the expression evaluates to true. While the Boolean satis-
fiability problem is NP-complete for any instance including
disjunctions of three or more variables, researchers have
recently discovered several clever techniques to address this
family problems and have made available software tools,
called SAT solvers, capable of solving in practice extremely
complex problems in almost linear time. Consequently, we
formulate our switching activity problem as a SAT instance,

...

Circuit Copy 1In
p
u
ts

S
ta
te

Circuit Copy 2In
p
u
tsn1

@1
n2

@1
... nk

@1
n1

@2
n2

@2
... nk

@2

Figure 2. During min/Max problem setup, the circuit is unrolled once.
Sequential outputs from the first copy are connected to sequential inputs of
the second. Then XOR gates are added, connecting corresponding signals
between the two copies. Each XOR output indicates if a transition has
occurred at the corresponding node, and we call the corresponding SAT
variable atransition variable.

and convert our unrolled circuit into CNF format. This can
be done easily by representing each internal node in the
circuit as a Boolean variable and converting each gate into
a set of equivalent Boolean clauses [11]. The complete
transformation can be done in linear time.

D. Partitioning

Even though SAT solvers typically perform well, they can
struggle to produce solutions for very large instances. To
improve the scalability of our approach, we use a partition-
ing algorithm to divide the circuit into smaller blocks. This
information can be used in two ways, depending on which
type of bound we are trying to explore. In one case, we
use the partitioned design to create a set of simpler goals to
be accomplished simultaneously by the SAT solver. These
goals act as ”lighthouses” in directing the search toward the
maximization or minimization goal. In the other case, we
use the partitioning to decompose the problem into a series
of sub-problems to be solved one at a time.

The technique we use is a min-cut partitioning algorithm
that considers the circuit as a hypergraph, where wires are
vertices and gates are edges, and partitions the circuit’s wires
(corresponding to SAT variables) into a user-selected num-
ber of sets. The algorithm is a min-cut in that it minimizes
the number of edges crossing any set. From our circuit’s
standpoint, this means that the partitioning minimizes the
dependency between SAT variables belonging to distinct
sets, thus making it easier for a SAT solver to satisfy distinct
constraints over the different sets. Finally, note that themin-
cut partitioning tool that we use, hMETIS [12], attempts to
roughly balance the size of each partition.

E. Min/Max Ones Solver

Once the circuit is partitioned and converted into a SAT
instance, it is ready for input into a min/Max ones SAT
solver. Normally, the output of a SAT solver is an assignment
of all Boolean variables such that the SAT instance evaluates
to true. However, we need to find a satisfiable solution where
the number of asserted Boolean variables corresponding to
switching nodes is minimized or maximized. This variant
of the SAT problem is called amin/Max ones problem.
Note that, rather than considering all variables in the CNF
instance, we must minimize or maximize only those vari-
ables that correspond to the outputs of the XOR gates
added during setup, which we call thetransition variables.
As these variables capture whether a node in the original
circuit transitions, they allow us to obtain the min and max
switching activity of the circuit. The problem of minimizing
or maximizing the asserted variables within a subset of
those in the SAT instance is formally known asmin/Max
distinguished ones, though we refer to it asmin/Max ones
throughout the rest of this paper.

IV. B OUNDS SEARCH ALGORITHM

In order to find bounds for minimum and maximum
switching activity we developed two algorithms: Inner
Bound Search and Outer Bound Search. The first is used
to determine an upper bound on the minimum switching
activity and the lower bound on the maximum, while the
second is used to compute the other two bounds, a lower
minimum bound and upper maximum bound. Although they
are different, at their core both these algorithms use a
min/Max ones solver.

A. At Least/At Most SAT Constraints

While several CNF SAT solvers are publicly available,
PowerRanger requires a specialized min/Max ones solver.
To this end, we enhanced an existing DPLL-style SAT
solver [13] with two additional functionalities,atMost
andatLeast, which force the solver to find a satisfiable
solution with the additional constraint of maximizing and
minimizing the number of asserted transition variables, re-
spectively. We implemented the two functions into MiniSAT
[14], since it is both a powerful solver and has a flexible
code structure. TheatMost function takes two arguments,
the list of transition variables and a boundbnd, and forces
the solver to return a satisfiable solution where at mostbnd
transition variables are asserted. If no solution is possible
under this constraint, the min/Max solver will return UN-
SAT. TheatLeast function operates similarly by forcing
at leastbnd transition variables to be asserted.

B. Inner Bound Search

The Inner Bound Search algorithm begins by searching
for a satisfiable solution to the problem without posing any
constraints on the number of asserted transition variables. It
then repeats the search iteratively, adding new constraints
until the solver returns UNSAT. In the maximum lower
bound computation, Inner Bound Search createsatLeast
constraints in each iteration, forcing the new solution to in-
clude strictly more asserted transition variables. In addition,

Inner Bound Search
Sol = SAT_solve(instance);
while (Sol) {

sum = 0;
foreach (partition p) {

bound[p] = asserted_trans_vars (p, Sol);
add atMost/atLeast(trans_vars(p), bound[p]);
sum += bound[p]; }

add atMost/atLeast(trans_vars, sum-1/sum+1);
Sol = SAT_solve(instance); }

return sum;

Figure 3. Pseudocode for Inner Bound Search algorithm. Oncean initial
solution is found, it is parsed to determine the number of asserted transition
variables in each partition. New bounds are created for eachpartition to
force successive solutions to have similar transitions. One final bound
is placed over the whole instance to force either strictly increasing or
decreasing numbers of transitions throughout the design, and then the
instance is rerun through the SAT solver. This process is iterated until
the instance becomes UNSAT.

we also constrain the number of transition variables asserted
in each partition set to be non-decreasing. The additional
constraints on the partition sets greatly simplify the task
of the solver, enabling it to reach a solution faster and
with a smaller memory footprint. When searching for the
upper bound to the minimum switching activity, we proceed
similarly to the previous case, with the exception of using
atMost constraints instead ofatLeast, and with the
inequalities inverted. The pseudocode for this algorithm is
shown in Figure 3.

In the Inner Bound Search algorithm, the SAT solver is
guided by the partitioning toward solutions similar to the
previous one. Since the solver’s search space is reduced,
solutions can be found faster. However, the partition con-
straints may lead the solver to a sub-optimal solution. In the
worst case, Inner Bound Search will return a worse bound
than theoretically possible without partitioning constraints.
However, the complexity of the non-partitioned search often
prevents it from ever advancing the search to the point
achieved through partitioning.

C. Outer Bound Search

The Outer Bound Search algorithm has several similarities
with Inner Bound Search. It is used to compute the upper
bound on the maximum switching activity and the lower
bound on the minimum. We search for a bound in each
circuit partition independently, and then add the individual
bounds together, which leads to a conservative estimate. For
instance, when searching for the maximum’s upper bound,
we choose a partition in the circuit and attempt to solve
the instance by forcing all of the transition variables in that
partition to switch. If we cannot find any solution, we relax
our constraint, asking for all but one (or all but a few)
variables to switch. We continue to relax this constraint
until the solver can find a satisfiable solution. Then we
apply this process to each partition. Finally, we add the
number of asserted transition variables we could find in each
partition and obtain our upper bound. The lower bound on

Outer Bound Search
sum = 0;
foreach (partition p) {

Sol = UNSAT;
bound = 0/trans_vars(p);
while (Sol is UNSAT) {
add atMost/atLeast(trans_vars(p), bound);
Sol = SAT_solve(instance);
bound++/bound--; }

bound--/bound++; //obtain last valid bound
sum += bound; }

return sum;

Figure 4. Pseudocode for Outer Bound Search algorithm. Whensearching
for the upper max, we create a bound forcing all variables within a single
partition to transition. The instance is checked to see if itcan be satisfied
with this constraint, and if not, the bound is relaxed and theinstance rerun
until a solution is found. Iterated over all partitions, thesum of bounds
found form a bound for the upper max. When searching for the lower min,
the initial bounds force none of the variables to transitioninstead.

the minimum is calculated with a dual approach. Figure 4
outlines the process described. To be runtime-aware in the
search, instead of optimizing one partition at a time, we
work in a round robin fashion on all the partitions.

Note that, while computationally more scalable, this ap-
proach is approximate. When we attempted to solve the same
problem without partitioning, we could reach a tighter upper
bound of 521. With fewer partitions, the solutions found
will tend to be closer to the optimum, but the algorithm’s
runtime increases. The ideal number of partitions is the point
where partition size becomes almost too large for the solver
to handle, which varies greatly from one executing host to
the next. If a single partition is used, bounds found through
Outer Bound Search can be optimal.

V. EXPERIMENTAL RESULTS

We evaluated our solutions on a broad range of ISCAS
benchmarks, both combinational and sequential, and two
cryptographic cores: AES and DES [15]. All experiments
were performed on a 3.2 GHz Intel Pentium IV processor
with 1GB of RAM.

In order to evaluate the effects of partitioning over the
quality of the results, we ran PowerRanger several times
on the same testbench while varying the block size used
for partitioning during each run. In Figure 5 we show the
results for c7552. The graph plots the best lower maximum
values found over time during a PowerRanger run. The
curves shows the trends for a number of partitions ranging
from 1 to 64 in powers of two. The chart clearly shows
that a greater number of partitions can help achieve tighter
bounds more quickly, as the estimated lower bound found
at 10,000 seconds improves from 1 through 32 partitions.
However, the gains end when we use 64 partitions, where
PowerRanger falls into a local optimum and terminates after
only 88 seconds of runtime. The best partition of 32 sub-
blocks corresponds to 185 nodes per block. Using results
from this and other testbenches as guidelines, we determined
the best partitioning is at approximately 150 nodes per block.

3200

3300

3400

3500

3600

3700

3800

3900

4000

1 10 100 1000 10000Time (s)

#
 s

w
it

c
h

in
g

 n
o

d
e
s

 1 partition

 2 partitions

 4 partitions

 8 partitions

 16 partitions

 32 partitions

 64 partitions

Figure 5. PowerRanger computing the lower maximum bound forthe
c7552 benchmark. The plot shows how different size partitioning affects
the speed at which PowerRanger converges.

We then compared our technique, PowerRanger, against
two other approaches, a typical SAT-based approach, and
random simulation. We configured PowerRanger to use a
single partition for small circuit instances, and partitioned
the larger circuits such that each partition contained ap-
proximately 150 nodes. For the SAT-based approach, we
used the same flow as PowerRanger, but without min-cut
partitioning. For random simulation, all primary inputs were
randomly stimulated at each iteration and simulated with
Synopsys’ VCS simulator. For each testbench and technique,
we allocated 10,000 seconds of runtime.

Table I summarizes our results. For each testbench, the
table lists the number of internal nodes it contains after
fanout normalization, and then compares side by side the
results obtained for all four bounds with each of the three
techniques: simulation (Sim), SAT-based (SAT) and Power-
Ranger (PR). The values reported in each column indicate
the best bound found for the number of internal switching
nodes with the corresponding technique. The goal is to
obtain values which are proportional to the power dissipation
of the circuit. Since simulation cannot be used to generate
lower min and upper max bounds, we must use0 as the
lower min bound and the number of gates as the upper max
bound in this approach. Bold entries indicate that an optimal
value was found (the solver terminated when running with a
single partition). The last six columns indicate the range of
the the minimum and maximum bounds found for all three
approaches as a percentage of the total number of nodes.

The results show that a simulation-based approach can
perform moderately well at estimating the minimum switch-
ing activity for a circuit, reducing the range to within 5%
for many of the benchmarks. However, the simulation-based
maximum estimates are quite poor, with a range of over
80% for the AES core. This is mostly due to the lack of a
bound for the upper maximum. Without it, it is impossible to
tell how close simulation was to the actual maximum. This
same problem does not exist for the minimum because the
actual minimums happen to be close to zero. For the SAT-
based solution, the results show that it can perform very
well on benchmarks of a few thousand gates. The minimum
and maximum for many designs can be pinpointed precisely.
Unfortunately, for larger circuits, the performance of the
SAT-based solution deteriorates rapidly. The estimates for
the upper minimum are worse than simulation for many
benchmarks, though the search for the lower minimum is
able to terminate optimally for all benchmarks except AES.
Estimates for the lower maximum are generally better than
simulation, and the range of the maximum found by the
SAT-based solution is often reduced by 20% or more when
compared with simulation.

PowerRanger is able to do as well as a SAT-based
solution for small instances, but the incorporation of min-
cut partitioning enables it to perform well even on complex
problem instances. PowerRanger’s minimum switching ac-

lower min upper min lower Max upper Max min range Max range
Design Nodes SAT PR Sim SAT PR Sim SAT PR SAT PR Sim SAT PR Sim SAT PR
c432 265 0 0 2 0 0 176 206 206 206 206 1% 0% 0% 34% 0% 0%
c499 328 0 0 16 0 0 217 200 221 245 235 5% 0% 0% 34% 14% 4%
c880 533 0 0 25 0 0 352 444 447 469 450 5% 0% 0% 34% 5% 1%
c1355 888 0 0 90 177 0 455 482 514 653 562 10% 20% 0% 49% 19% 5%
c1908 1445 0 0 117 580 0 907 952 1026 1187 1095 8% 40% 0% 37% 16% 5%
c2670 1990 0 0 293 0 0 1235 1316 1499 1815 1597 15% 0% 0% 38% 25% 5%
c3540 2655 0 0 107 0 0 1433 1421 1592 2019 1777 4% 0% 0% 46% 23% 7%
c5315 4003 0 0 868 1594 0 2457 2545 2946 3861 3233 22% 40% 0% 39% 33% 7%
c6288 4320 0 0 857 815 0 2264 2535 2911 4139 2978 20% 19% 0% 48% 37% 2%
c7552 5944 0 0 1354 2204 0 3441 3508 4019 5701 4368 23% 37% 0% 42% 37% 6%
s298 261 0 0 0 0 0 186 221 221 221 221 0% 0% 0% 29% 0% 0%
s344 251 0 0 0 0 0 178 196 196 196 196 0% 0% 0% 29% 0% 0%
s382 328 0 0 0 0 0 143 270 270 270 270 0% 0% 0% 56% 0% 0%
s386 324 0 0 0 0 0 213 242 242 242 242 0% 0% 0% 34% 0% 0%
s444 376 0 0 0 0 0 163 282 282 282 282 0% 0% 0% 57% 0% 0%
s526 469 0 0 0 0 0 212 370 370 370 370 0% 0% 0% 55% 0% 0%
s820 675 0 0 0 0 0 466 540 540 540 540 0% 0% 0% 31% 0% 0%
s832 686 0 0 0 0 0 477 546 546 546 546 0% 0% 0% 30% 0% 0%
s953 718 0 0 0 0 0 281 303 303 303 303 0% 0% 0% 61% 0% 0%
s713 598 0 0 0 0 0 377 491 491 491 491 0% 0% 0% 37% 0% 0%
s1238 881 0 0 0 0 0 455 502 502 521 527 0% 0% 0% 48% 2% 3%
s1423 1226 0 0 7 0 0 677 902 964 1041 977 1% 0% 0% 45% 11% 1%
s1488 1356 0 0 0 0 0 832 909 909 909 909 0% 0% 0% 39% 0% 0%
s5378 4405 0 0 252 1884 0 1676 2618 3220 3951 3548 6% 43% 0% 62% 30% 7%
s9234 8155 0 0 225 3180 0 3301 4509 5621 7288 6280 3% 39% 0% 60% 34% 8%
s13207 11879 58 58 691 3862 65 2810 5882 7554 10235 8775 6% 32% 0% 76% 37% 10%
s15850 14214 5 5 471 4725 5 4420 7199 9162 13190 10794 3% 33% 0% 69% 42% 11%
s35932 27841 0 0 0 10390 0 17931 17633 18607 27759 23155 0% 37% 0% 36% 36% 16%
s38417 33742 19 19 718 11989 20 9199 15972 21106 33414 26536 2% 35% 0% 73% 52% 16%
s38584 34448 0 0 2398 16793 0 14778 18476 22857 33976 27149 7% 49% 0% 57% 45% 12%
DES 4403 118 118 710 1165 132 1669 1608 1900 2848 2297 16% 24% 0% 62% 28% 9%
AES 29706 8 158 3577 5066 339 5493 6063 7563 28751 16696 12% 17% 1% 82% 76% 31%

Table I
TABLE OF RESULTS COMPARING A SIMULATION-BASED SOLUTION, A SAT-BASED ONE [10], AND POWERRANGER. ON THE LEFT, THE NUMBERS

SHOW THE BEST BOUND FOUND WITHIN10000SECONDS OF RUNTIME, IN NUMBER OF TRANSITIONING NODES, WITH OPTIMAL VALUES IN BOLD . ON

THE RIGHT, THE POSSIBLE RANGES FOR MINIMUM AND MAXIMUM ARE SUMMARIZED AS A PERCENTAGE OF THE TOTAL DESIGN.

tivity estimates are optimal for all but 4 benchmarks, and
the minimum range is no more than 1%. PowerRanger’s
maximum estimates are equally good, many of them with
a maximum range of less than 10%. Even in the toughest
benchmark, the AES core, PowerRanger is still able to
achieve a maximum range of 31%, compared with 76% from
SAT and 82% from simulation. Overall, PowerRanger is able
to achieve tighter bounds than both SAT and simulation.

VI. CONCLUSIONS

In this paper, we presented PowerRanger, a technique to
achieve very tight bounds on both maximum and minimum
power dissipation using an integrated SAT and min-cut
partitioning solution. PowerRanger is effective in estimating
the range of power dissipation of a digital circuit, and can
be used to protect against power attacks to cryptographic
cores. We are able to produce optimal results for a number of
circuits, and demonstrate how our technique can outperform
both random simulation and SAT alone.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
in Proc. CRYPTO, 1999.

[2] C. Clavier, J.-S. Coron, and N. Dabbous, “Differential power
analysis in the presence of hardware countermeasures,” in
Proc. CHES, 2000.

[3] F. Najm, “A survey of power estimation techniques in VLSI
circuits,” IEEE Transactions on VLSI, 1994.

[4] C.-Y. Wang and K. Roy, “Maximum power estimation for
CMOS circuits using deterministic and statistic approaches,”
in Proc. VLSID, 1996.

[5] M. Hsiao, “Peak power estimation using genetic spot opti-
mization for large VLSI circuits,” inProc. DATE, 1999.

[6] Q. Qiu, Q. Wu, and M. Pedram, “Maximum power estimation
using the limiting distributions of extreme order statistics,” in
Proc. DAC, 1998.

[7] H. Kriplani, F. Najm, and I. Hajj, “Maximum current estima-
tion in CMOS circuits,” inProc. DAC, 1992.

[8] C.-T. Hsieh, J.-C. Lin, and S.-C. Chang, “A vectorless es-
timation of maximum instantaneous current for sequential
circuits,” in Proc. ICCAD, 2004.

[9] S. Devadas, K. Keutzer, and J. White, “Estimation of power
dissipation in cmos combinational circuits using boolean
function manipulation,”IEEE Trans. on CAD, Mar. 1992.

[10] H. Mangassarian, A. Veneris, S. Safarpour, F. N. Najm, and
M. S. Abadir, “Maximum circuit activity estimation using
pseudo-boolean satisfiability,” inProc. DATE, 2007.

[11] J. Marques-Silva and K. Sakallah, “Boolean satisfiability in
electronic design automation,” inProc. DAC, 2000.

[12] G. Karypis and V. Kumar, “hMETIS: A hypergraph partition-
ing package,” 1998.

[13] M. Davis and H. Putnam, “A computing procedure for quan-
tification theory,”Journal of the ACM, 1960.

[14] N. Een and N. Srensson, “MiniSat - a SAT solver with
conflict-clause minimization,” inProc. SAT, 2005.

[15] “Opencores.org, http://www.opencores.org,” 2007. [Online].
Available: www.opencores.org

