
Activity­based Refinement for Abstraction­guided
Simulation

Debapriya Chatterjee, Valeria Bertacco
Department of Computer Science and Engineering

University of Michigan
{dchatt, valeria}@umich.edu

ABSTRACT

Semi-formal verification tools are gaining popularity because of

their ability to balance the performance of logic simulators with

the goal-focused capabilities of formal verification. Within this do-

main, abstraction-based simulation is a technique that has been pro-

posed in several research works and has also emerged in a few com-

mercial solutions. Abstraction-based simulation performs reacha-

bility analysis on a design abstraction to gather approximate infor-

mation on the distance of each design state from a goal state, and

then uses this information in a guided search by the logic simula-

tor. Unfortunately, so far, the quality of the abstraction has been the

weakest link in this semi-formal solution, because of its impact in

enabling a simulator to reach a verification goal.

This paper presents a novel solution for abstraction refinement

that operates in an abstraction-based simulation framework. Our

solution collects switching activity information during simulation

and determines how to modify and improve an abstraction based

on analysis of this information. By using refinement, the original

abstraction crafted by the tool is no longer a critical aspect of the

semi-formal search. Instead, initially the abstraction may be weak,

improving over time to enable the simulator to reach the goal state.

1. INTRODUCTION
Verification is one of the most demanding and time consum-

ing tasks in commercial digital design processes. Moreover, cur-

rent trends of increasing design complexity and shrinking times-

to-market further exacerbate the situation, with the result that it is

becoming commonplace to exclude some components or features

in a system under development because of the scarcity of verifica-

tion resources. It is estimated that in the near future verification

will become a “show-stopping barrier to further progress in the

semiconductor industry”[13]. Two main families of techniques are

used to perform verification: simulation-based and formal methods.

Simulation-based verification is most widespread in the industry,

because of its linear scalability with design complexity and ease

of use. However, this methodology requires much human effort in

generating meaningful direct and random tests, and produces very

low coverage, because only those execution scenarios that can be

reproduced in a test can actually be validated [2, 20, 26]. On the

other end of the spectrum, formal techniques are capable of guaran-

teeing that a design satisfies (or not) specific functional properties

by means of mathematical derivations, without requiring to recre-

ate all the relevant execution scenarios. The downside of these for-

mal techniques is that they have very limited scalability, due to the

computational complexity of the algorithms involved, and thus are

impractical for any industrial-size design [14, 8]. Because of the

promising high-quality coverage that formal techniques can pro-

vide, much effort has been dedicated in the past few decades to

boosting their scalability, through more scalable underlying solver

engines, better methodologies and abstraction techniques [12, 7],

which allow the formal tool to operate on a small (and manageable)

abstract version of the design under verification, and then reconnect

the outcomes of the analysis to the original complex design. One

important benefit of abstraction techniques in formal verification is

that, if a property holds in the abstract design, then it also holds in

the original design. However, if the property fails in the abstract

design, it may or may not hold in the original one: hence, the state-

of-the-art in formal verification is much stronger in proving valid

properties than in disproving invalid ones.

Another promising direction explored in the past few years is that

of semi-formal verification solutions: techniques that integrate sim-

ulation with formal approaches in an attempt to boost both the scal-

ability of the latter and the coverage of the former [12, 10, 15, 21].

Semi-formal solutions employ a range of mechanisms to integrate

the two families of approaches: from time-sharing, to controlled

symbolic simplification (down to the Boolean values of logic simu-

lation), to guided search, where simulation is used for coarse global

search and formal techniques for fine local analysis, or vice versa.

Simulation-heavy guided-search techniques have been often more

successful because they are more scalable and can be applied to

complex designs, and in some cases have become commercial elec-

tronic design automation tools. Their main weakness remains their

limited ability to disprove false properties and provide the user with

a bug trace (as mentioned earlier, purely formal techniques are of-

ten already capable of proving valid properties).

In this paper, we propose a novel solution to address this weak-

ness of guided-search semi-formal tools. Our solution improves

the quality of abstract design models used in guiding the simula-

tion search, so to improve the capability of this family of semi-

formal methods in disproving false properties. We developed an

abstraction-refinement solution, inspired by the corresponding tech-

niques common in purely formal methods. However, note that our

refinement mechanism cannot leverage the formal models used in

traditional refinement methods, since these are not available in this

context. In contrast, we must leverage logic simulation activity to

refine the guiding abstract model, that is, to determine which com-

ponents should be retained in the abstraction, and which should

be replaced. Our experimental results indicate that activity-based

abstraction refinement is effective in boosting the convergence of

semi-formal search solutions by enabling them to reach a given

“goal” state (a state disproving a property) in many fewer simu-

lation cycles than pure abstraction-guided hybrid solutions. More

importantly, we observe that, in many cases, traditional hybrid so-

lutions often fail to reach the goal, particularly for properties that

involve hard-to-reach states, while our technique is capable of re-

fining the abstraction even for these challenging situations leading

the simulator to the goal.

1.1 Contributions
This work proposes a novel abstraction-refinement technique for

simulation-centered semi-formal verification solutions. We consid-

ered the family of semi-formal solutions where random simulation

operates in symbiosis with a formal search: the simulator traverses



reset

state goal 

state

DUV state 

space

S
im
u
la
to
r

Formal 

Analysis 

Engine

design 

state

cost

Figure 1: High level overview of an abstraction­guided sim­
ulation solution where a simulator communicates with a formal
analysis engine providing data on the design’s current state and re­
ceiving feedback on its progress towards a goal state in the form of
a cost value, or approximate distance from the goal.

the design’s state space with random, legal input stimuli. The ob-

jective of the simulation is to reach a “goal state” (possibly one in

a pool of goal states). A goal state can be specified in many ways;

typically, it is a state, or states, that falsify a property under verifi-

cation. It is also possible that it represents states to be reached to

improve verification coverage. In order to guide the simulation to-

wards the goal state, at each simulation step, the state of the design

is transferred to a formal analysis engine. This engine, in turns,

computes a cost function based on the state received and commu-

nicates it back to the simulator. Based on the cost, the simulator

may choose to transition to the new state, if it is an improvement

towards the goal state, or backtrack, if the new cost indicates that

the search is moving away from it. A high-level schematic of this

approach is showed in Figure 1.

Several solutions have been proposed in this area, using differ-

ent cost functions – such as hamming distance, abstract reachabil-

ity analysis, etc. – and different algorithms to guide the ”walk”

of the simulation towards the goal – ranging from hill climbing,

simulated annealing, and many others [9, 21, 10]. In addition, in

some cases, the formal engine does not compute a new cost at each

simulation step, particularly if the computation is time consuming,

instead it is called less frequently. For this work, we assume a

formal engine based on abstract reachability analysis, that is, the

engine computes the cost function based on the distance between

the present state and the goal state. Distances are computed as min-

imum vertex distance on an abstract design model, represented as

a finite state machine (FSM). Due to the abstraction process, this

FSM may contain spurious transitions, which may lead to myopic

cost values returned to the simulator. Consequently, the simulator

may hill climb into an apparent local minimum, from which it may

not be able to reach the goal state.

Our technique provides the ability to refine the abstract model by

collecting and analyzing simulation activity data on selected design

signals. An abstraction may be refined several times during a sim-

ulation, until a proper and sufficient set of components are selected

for it, so that the cost function becomes sufficiently accurate to lead

the simulator to the goal state. Note that the accuracy of the cost

function is defined with respect to the goal state under study.

We evaluated our solution by using a semi-formal verification

framework with a logic simulator and a reachability analysis en-

gine operating on an abstract FSM of the design, and we compared

the quality of the results of the system with and without the ad-

dition of our refinement solution. We found that signal activity is

a good indicator of what portions of the design must be modeled

more accurately in the abstraction, and we show that our refine-

ment technique leads to verification runs requiring up to 25 times

fewer simulation cycles to converge to the goal state. For a number

of testbenches, a goal state could only be reached when our pro-

posed refinement scheme was activated, while the fixed abstraction

solution failed to converge within few hours.

2. BACKGROUND AND RELATED WORK
Formal hardware verification solutions have been the focus of

much research since the inception of digital design. In a classic

model checking framework [6, 5, 8, 3], for instance, a user would

specify a formal property to be validated, and the tool then checks

that, for any state in which the design may operate, the property

holds. In practice, formal algorithms usually operate by checking

the dual of the property, that is, that there is no design state for

which the property does not hold. If such a state exists, then the

property is deemed false and a sequence of input patterns, called a

bug trace, that leads to the falsifying state is provided to the user.

By studying the bug trace, the user should be able to identify the

source of the problem and correct the design. While successful in

many aspects, often these techniques are limited in the complexity

of the design that they can tackle.

To address the scalability limitation of classic formal verifica-

tion solutions, several hybrid techniques have been investigated in

recent years, both integrating a diverse pool of formal verification

techniques, as well as proposing the cooperation between formal

methods and a logic simulator. A common technique in these hy-

brid solutions involves constructing an abstraction of the original

circuit and applying formal analysis only to the abstract model,

thus circumventing the complexity wall. However, the abstraction

process does generate spurious transitions in the abstract model; as

a result, often bug traces assembled in the abstraction might not

be transferable to the original circuit. To determine if an abstrac-

tion bug trace, also called abstract counter-example (ACE), can be

transferred to the original design, the ACE is simulated in the orig-

inal system and the final state reached should falsify the property

under consideration. Often, however, this transfer fails to work,

and a different abstraction must be created, in the hope to obtain

either a proof of validity, or a transferable bug trace.

Recently, automatic techniques to refine abstract formal models

have been proposed. In [7], the authors present a solution to analyze

a non-transferable ACE to determine how to expand the abstraction

(by including additional storage elements) so that to improve the

quality of the bug trace obtained from it. Note, however, how this

basic approach may ultimately grow the abstraction until the formal

search is no longer computationally feasible, without converging on

a determination for the property. Several works have strengthened

and expanded on this idea, through improved analysis of the ACE,

often employing other formal tools [4, 11, 24, 17, 27].

As an alternative to purely formal verification solutions, semi-

formal, or hybrid, techniques have been investigated in the past

decade, also with the purpose to boost scalability, while still ben-

efiting from the high quality of results achievable by formal tools.

The common trait of these solutions is the use of a logic simulator

to support the search in the original digital system, and working

in cooperation with one or more formal engines either operating

on an abstract model or on a small portion of the system. Exam-

ples in this area include [30], where goal states are “enlarged” by

backward traversal in the hope that they become easier targets for

simulation; [10] strives to simplify the formal analysis by relying

on hamming distances as a metric to determine the simulator’s dis-

tance to the goal state. This research direction later attempted to

strengthen the distance metric by complementing the search with

automatically-generated “lighthouses”, intermediate goals to guide

the simulator towards the final goal state [29]. In [16], probabili-

ties are assigned to design states, indicating if they are part of paths

reaching the goal states; however this solution suffers from abstrac-



tion approximation in assigning probabilities to individual states,

and may consequently lead the simulator to dead-end regions.

Within the family of semi-formal techniques, one group, which

we call abstraction-guided simulation, uses a logic simulator to ex-

plore the design, while interacting with a distinct formal engine

to gather an approximate measure of the search progress. For in-

stance, [10] uses hamming distance computation as its low-cost for-

mal engine; the distance metric in [21, 9] is derived as the vertex

distance in an abstract FSM of the design under verification: this

metric is much more accurate, but also more expensive, since dis-

tance computations must leverage a reachability analysis algorithm.

The Everlost platform used in [9] attempts to improve the simula-

tion guidance strategy, however it does not address the problem of

deriving a useful abstraction automatically.

Both the latter two solutions complement the approximate dis-

tance metric with clever heuristics in the simulation walk through

the design state space, including variants of hill climbing, back-

tracking, simulated annealing, etc. The selection of the components

to be used in the abstraction is also varied, from individual register

selections in [7, 4], to design modules in [21], to the use of data

mining and cultural algorithms in [28]. Dynamically switching ab-

stractions to provide simulation guidance for hard to reach states

has also been considered in [19].

The common goal of all the solutions discussed is to boost the

complexity of designs that can be tackled by formal verification.

However, on one hand, abstraction-refinement in the context of for-

mal tools provides only partial improvements. On the other hand,

abstraction-guided simulation can only use statically generated ab-

stractions, without refinement, which are often too inaccurate to

reach the goal state. In this work, we propose a novel abstraction-

refinement techniques for abstraction-guided simulation, which an-

alyzes simulation data to craft an improved abstraction. In addition,

our solution allows to both expand and reduce the original abstrac-

tion, thus it does not suffer from the growing complexity of tradi-

tional abstraction-refinement solutions.

Other solutions complement the simulation-based effort with ad-

ditional formal engines, for instance to prune the search space, by

proving that a set of states cannot be reached in the design [12, 18],

or to coordinate the search at a high level [1]. The goal is to further

boost the size of designs that can be tackled, and these solutions

have reached a sufficient scalability level to become commercial

tools and/or the mainstream solution within a large company. Our

solution is complementary to them, and can be deployed within

these multi-engine tools to further boost coverage and scalability.

Finally, properties in the frameworks discussed can be specified

in several forms: using a formal property specification language, or

a hardware description language. Typically the property would be

translated into a small circuit sharing signals with the design under

verification. One or more states of this circuit would correspond to

the property being false. Thus, the design and the property could

be treated uniformly by the formal analysis solution, and the goal

of the tool would be to attempt to reach one of the falsifying states

in the “property circuit”. These states are also called “goal states”.

A very similar framework allows the user to directly specify the

goal states of interest, having the formal tool simply target the gen-

eration of traces leading to them. This framework is valuable in

scenarios where a verification team wants to boost the design cov-

erage and requires a formal solution to target hard-to-reach states

that plain logic simulation has failed to cover.

3. OVERVIEW
The abstraction-refinement solution that we developed in this

work operates on a framework of the type outlined in Figure 1:

Trace Controller

Abstraction 
Engine

Distances in

abstract state-space

Refinement
Engine

Design Under 
Verification

checker

design state

cost

High level 

design modules

Simulator

Abstraction I/O

our contribution

Figure 2: An abstraction­guided simulation framework aug­
mented with a refinement engine. The system comprises an ab­
straction engine, computing an abstraction on a design subset and
providing cost information to a trace controller. The latter resides
within the simulator and it is responsible for guiding its progress
towards the goal state. Our novel contribution, the refinement en­
gine, collects simulation data at the periphery of the abstraction
and communicates to the abstraction engine which components to
add/drop to refine the abstraction.

a simulation engine navigates through the design’s state space and

interacts at regular intervals with a formal analysis engine to re-

ceive updates on its progress towards the goal state. Since FSM-

based abstractions have shown more promising results than others,

we assume that the formal engine computes a distance metric from

the goal state by performing reachability analysis on an abstract

FSM of the design. Figure 2 shows a more detailed schematic with

the addition of our contribution highlighted. The abstraction en-

gine operates on a small set of components (modules or sequential

logic portions) – the abstraction – of the design under verification,

which is undergoing constrained-random simulation. This engine

computes a cost function by applying reachability analysis on the

abstraction and can be queried dynamically during simulation to

report on the cost of the current design’s state. The logic simulator

includes a trace controller, responsible for guiding the simulation

towards the goal state, based on the cost information received by

the abstraction engine. The trace controller may employ a range

of robust search algorithms, such as hill climbing, backtrack, sim-

ulated annealing, etc., to compensate for the approximate distance

measures provided by the abstraction engine.

Our contribution, highlighted in the picture, is the refinement en-

gine, which monitors dynamically the activity at the periphery of

the abstraction components and, after internal analysis, provides

feedback to the abstraction engine on how to refine the selection

(that is, which additional components to include, and which to ex-

clude). The refinement engine collects data continuously, however,

the refinement is triggered at a coarser granularity, for instance after

the cost has not improved for a certain number of simulation cycles,

or if the goal state cannot be reached within a certain time. Below,

we discuss the structure of each of the components in this system,

while Section 4 is devoted to the refinement engine architecture.



3.1 Abstraction Engine
The abstraction engine is responsible for computing the cost func-

tion used to communicate to the simulator the current distance to

the goal state. Many metrics have been proposed for this module,

however, abstractions based on approximate reachability analysis

tend to provide more accurate results. In our framework, the ab-

straction engine is responsible for selecting a portion of the design,

either critical design modules, or a set of critical latches with some

or all of their fanin cone of logic, and create an internal representa-

tion of the corresponding FSM (typically through Binary Decision

Diagrams). Then, this engine performs backward reachability anal-

ysis [8] on this FSM, thus classifying each state in the abstraction

based on their distance to the goal state. Note that it is advisable

to include the logic corresponding to the checker or property in the

abstraction, in order to achieve a viable abstraction. Moreover, note

also that the abstraction process, that is, the selection of just a few

design components instead of the whole design, affects the accu-

racy of the distances computed so that design states may appear to

be closer to the goal than they really are. Unfortunately reachability

analysis is computationally demanding, thus this engine is forced

to only rely on a very small design abstraction (50 to 100 storage

elements) to compute the cost function.

Abstraction engines for abstraction-based simulation solutions

select the components to be included by performing a static anal-

ysis of the design. For instance, a set of storage elements that are

closely affecting the checker logic, or the set of design modules that

directly interact with the checker logic, etc.. Since the selection is

based on a static analysis, there is a high risk that the abstraction is

not the best suited for the goal of the verification task at hand.

3.2 Trace Controller
The trace controller is responsible for guiding the logic simula-

tor towards an assigned goal state. It does so by applying a range of

informed search algorithms over the design states that it observes

in simulation. The trace controller’s search relies on the cost in-

formation that it receives from the abstraction engine upon com-

municating to it the present design state. A trace controller would

store aside a number of states recently visited with their relative

cost and, at each simulation step, either force the design in one of

these states, or allow the simulator to apply a random move and

visit a new state. A variety of search algorithms may be deployed

in the trace controller, usually including some heuristic aspects. In

addition, a trace controller must compensate for the approximate

cost measure that it receives from the abstraction engine, and in-

corporate the possibility of backtracking from local minima and/or

cycles different from the goal state.

3.3 Refinement Engine
The addition of a refinement engine to this framework is the main

contribution of our work. The purpose of this engine is to provide

feedback on the quality of the current abstraction and suggestions

on how to improve it by adding and/or removing some of its com-

ponents. One of the main limitations of current abstraction-based

simulation tools is in the quality of the abstraction: a poor selection

may make it impossible for a trace controller to guide the simulator

to the goal. At the same time, because the size of the abstraction

is extremely limited, it is challenging to construct one that is both

small and accurate, simply based on a static design analysis. Thus,

the refinement engine that we propose analyzes simulation data dy-

namically and can provide feedback to the abstraction engine at

regular intervals, indicating which components are most critical for

the abstraction selection. The abstraction engine, in turn, can up-

date its selection and recompute the FSM representation and the

cost function on the new abstraction. Thus the refinement engine

acts as a feedback loop in the system by evaluating the quality of an

abstraction and suggesting possible improvements. Note that, after

each abstraction update, the cost information contained in the trace

controller must be reset, however, the simulation does not need to

be re-initialized and may continue from the present state.

The introduction of a refinement engine, not only enables better

abstractions, but also allow to attain goal states that may be reached

only through a series of different abstractions, operating at different

distance ranges from the given goal.

4. ABSTRACTION REFINEMENT
As discussed in the previous section, the task of the abstraction

engine is to partition design states into equidistant ’bins’, each col-

lecting all the states with the same cost, that is, at the same distance

from the goal state (an intuitive sketch of these bins is shown in the

left part of Figure 1). The ideal abstraction engine is one that cre-

ates very fine granularity partitions, so that a simulator can leverage

a high spread among the costs of states it can move into at each step

of the search. Note, however, that the ideal abstraction is only re-

quired to provide fine granularity partitions for design states in the

surrounding of the simulator search path. In other words, during

a successful simulation, the design transitions from state to state,

along a trail starting from an initial state and ending in a goal state.

At each step, the system considers several candidate states that can

be reached in one step from the present state and then selects the

most promising option. If the abstraction engine can provide fine-

granularity distance information for the states in the surrounding of

the trail that the simulation is tracing, then the trace controller may

apply good next-state selections and reach the goal quickly.

The purpose of our proposed refinement engine is to achieve an

abstraction as close to the ideal one as possible, throughout the

simulation. In our framework we assume that the building blocks

of the abstraction are individual design modules. A module is a

small portion of the original design, comprising both combinational

logic gates and sequential elements. An individual module may be

as small as a single gate, and possibly smaller than the permissible

size of the entire abstraction, so that there is flexibility in choosing

a number of modules to be part of the abstraction. The permissible

size of the abstraction depends on the computational capabilities of

the reachability engine and on the time that a user accepts spending

in computing abstractions vs. simulating the design. To build an

abstraction, a number of modules are selected within the design;

if the goal state is specified through a checker module, it should

always be included in the abstraction, so that the latter always con-

tains at least one state at cost 0 (the goal state). All together these

modules should not exceed the permissible size of the abstraction.

The main task of our refinement engine is in observing the sig-

nals at the boundary of the abstraction modules during simulation.

The insight is that the goal state can always be reached in the ab-

straction because its inputs are free (that is, they can assume any

value during each simulation cycle), while in the original design,

the behavior of these signals is constrained by the other modules of

the design that are not part of the abstraction. Thus, the refinement

engine monitors these signals and tags those that show no or lim-

ited switching activity during the abstraction-guided simulation. If

those low activity signals were to switch more frequently, it would

be easier to generate any set of input sequences at the abstraction

boundary, including sequences necessary to reach the goal state.

The refinement engine thus proceeds as follows:

1. During simulation collect switching activity counts for each

input signal at the boundary of the abstraction logic.



2. When a refinement is deemed necessary (this is discussed

in detail in Section 4.2) the refinement engine computes the

average switching activity for each design module that i) has

outputs connected to the abstraction logic and ii) it is not

part of the abstraction logic. The average is computed over

the number of signals that are connected to the abstraction.

3. The module with the lowest switching activity is added to

the set of modules that are already in the abstraction. At this

point the new selection is completed, the abstraction engine

may recompute the new distance metric and then simulation

regulated by the trace controller may resume.

We speculated that, if a module causing low switching activ-

ity were to be added to the abstraction, then the abstract engine

would improve the accuracy and granularity of its distance metric

for states affected by that module and, in turn, this would improve

the quality of the trace controller guidance. In other words, the

low activity signals capture the difference between the abstract be-

havior and the observed (simulated) behavior. The “quality” of an

abstraction is judged primarily on how many distance bins it gen-

erates in the abstract state space: the finer the bin partitioning the

more accurate the simulation guidance. During incremental refine-

ment, if two distinct abstractions have the same number of distance

bins, but the relative distribution of abstract states has changed, we

consider it an improvement.

The following sections provide first an example of the operation

of the refinement engine, then an algorithm to remove modules

from the abstraction in order to allow new modules to be added

without crossing the permissible size bound for the abstraction and

a discussion of when a refinement should be triggered.

4.1 Example
We now present an example of abstraction refinement using the

algorithm described. With reference to Figure 3.a, consider a de-

sign comprising three modules, M1, M2 and M3. Figure 3.b shows

the FSM diagram of all the three individual modules: M1 has two

input signals, r and s and two output signals, p and q. M2 has no

input and one output, signal r. Finally M3 has two inputs p and q,

and one output, signal s. All the FSMs are Mealy machines, thus

the outputs are a copy of the internal FSM’s state. The initial state

of the system is pqrs = 0000 and we want to reach one of the

final states pqrs = 11xx (x=don’t care). Note how this design is

a pathological case for sake of the example: since it does not take

any external input, the trace controller does not have any impact on

the progression of the simulation.

Let us assume that, at first, the abstraction includes only module

M1 of the design. Thus the abstraction engine creates four distance

bins, each including one state, with the goal state at cost 0 and the

initial state at cost 3. This is indeed an approximation since the goal

state cannot be reached in just three simulation steps. After a few

steps of simulation, say two or three, the refinement engine deter-

mines that the switching activity between the abstraction (module

M1) and module M2 is higher than between the abstraction and

module M3. Indeed the only signal connecting M1 and M2 is r,

and it switches at each simulation cycle, while signal s switches

twice each time p and q differ. Thus it would recommend to in-

clude module M3 in the abstraction, obtaining the FSM’s shown

in Figure 3.c. In this new abstraction, the goal state is at distance

5 from the initial state, as in the original given design. Thus this

abstraction provides more accurate cost information along the path

that the simulator is executing towards the goal state.

Note that, if the abstraction were to be refined using modules

M1 and M2 instead, no improvement would be accomplished in

refining the costs along the simulation path as shown in Figure 3.d.

Finally, note also that the complete FSM of the design (comprising

all modules) includes additional states, whose cost information is

however irrelevant in attempting to reach the goal state.

a)

b)

M2:

M1xM3:

M1xM2:

c)

d)

y=0 y=0

s=0 s=1M3:

p xor q

M1:

~r s s

pq=00 pq=01 pq=10 pq=11

r=1r=0

~r

y=0
pqs

000
y=0
pqs

001
y=0
pqs

010
y=0
pqs

011

y=0
pqs

100
y=0
pqs

101
y=0
pqs

110
y=0
pqs

111

~r

pqr

000
y=0
pqr

001
y=0
pqr

010

pqr

011

pqr

10x y=0
pqr

11x

s s

s

M1M2 M3
r

s

p

q

Figure 3: Example of abstraction refinement. a) The design for
the example comprises three modules, M1, M2 and M3. b) FSM
diagrams for each of the design’s modules. c) A good abstraction
refinement by including module M3. d) A poor refinement choice
by including module M2.

4.2 Refinement interval
Each time the abstraction is refined, a new set of distance bins

must be created on the newly obtained FSM. This computation en-

tails a fix-point backward reachability analysis and can be fairly

time consuming, particularly with larger abstractions. One of the

guidelines of abstraction-driven simulation is to have the simulator

be the workhorse of the search and only use light-weight formal

analysis. In practice, we found in our experimental evaluation that

the time required by the abstraction engine to generate the distance

bins corresponds often to the time it takes to execute several thou-

sands simulation cycles.

Thus, we recommend invoking an abstraction refinement only

infrequently, after the simulator has spent sometime attempting to

reach the goal state and failed. One possible technique would entail

keeping track of how many times the trace controller backtracks in

the search, or how long it has stalled in equidistant states. A more

lightweight solution simply triggers the refinement engine when the

goal is not reached after a pre-set number of simulation cycles. In

setting this value, several factors should be taken into account: the

complexity of the present abstraction, the estimated distance of the

goal state and also the effort (in cycles) spent in the current search.

The complexity of the abstraction directly impacts the time re-

quired to generate the distance bins via backward reachability anal-

ysis: usually there is an exponential relation between the number

of latches in the abstraction and this time. It is recommendable

to compensate for large formal computation times with at least



equally lengthy simulation times, to keep the simulator as the lead

engine and because large abstractions usually generate a richer set

of information that the simulator can subsequently explore. In addi-

tion, the simulator should also be given sufficient time to leverage

the information available from the formal engine: if the new ab-

straction provides many distance bins between the present and the

goal states, the simulator should be given more time to attempt to

traverse through those bins, than if there were just a couple of bins

to cross between the present state and the goal.

4.3 Module removal
In order to enable the refinement engine to suggest new module

additions, while not crossing the permissible size bound in the ab-

straction, it is necessary from time to time to remove modules from

the abstraction. The combination of module addition and removal

allow for the abstraction to morph over time, adapting itself to pro-

vide the best cost estimates in the surrounding of the present design

state, while the system progresses towards the goal state.

Ideally, the module to be removed should be the one contributing

the least to the current abstraction’s quality. However, this evalua-

tion would require computing the cost function for many variants

of the abstraction, each including all modules but one, to evaluate

which is the best residual abstraction. Since this is impractical, we

developed a heuristic, which evaluates the contribution of a given

module to the overall abstraction quality when the module is added.

Note that this is not necessarily the same as the quality detraction

suffered when the module is eliminated a few refinements later.

Thus, at each refinement step, upon module addition, the im-

provement brought to the abstraction is logged. The improvement

is evaluated in terms of number of distance bins generated and how

drastically states are re-partitioned among the bins. This evaluation

is used when a removal is needed, by selecting the module provid-

ing the least improvement. In case of a tie, the most recently added

module is removed, since this would probably cause minimal dis-

ruption to the connectivity of the logic currently in abstraction.

5. CASE STUDY
We present here a case study where we applied our refinement

technique on a small MSI (modified-shared-invalid) cache coher-

ence protocol design. The design includes two local cache con-

trollers (pcacheA and pcacheB), an arbiter and two processor shells,

to emulate the processor interaction with the local cache. In addi-

tion, the setup for our abstraction-guided simulation requires a top

level module to instantiate all the components, a checker module

specifying the property to be falsified and a testbench module gen-

erating legal inputs for the design from a handful of random stimuli.

The schematic of the MSI design’s structure is shown in Figure 4.

At the beginning of the abstraction-guided simulation, only the

checker module is included in the abstraction, as shown in the first

frame of the figure. This module includes three latches and the cost

function generated divides the state space into 4 distance bins. Af-

ter some time, the abstraction is refined using the simulation data

collected at the I/O of the checker module and one of the cache

controllers is found to be that with the least average activity, thus

it is added to the abstraction, which now includes 11 latches, but

still divides the states space in only 4 bins. Successive abstraction

refinements will add more modules and attain a finer cost func-

tion granularity until the goal state is reached after a total of 863

simulation cycles and 3 refinement steps. If abstraction refinement

were not available, the goal state could only be reached in over

20,000 simulation cycles when relying on a fixed abstraction in-

cluding only the checker module.

As we discuss later in Section 6.3, we also evaluated a dual re-

3 latches

4 bins

26 latches

8 bins

11 latches

4 bins

19 latches

4 bins

top module

procA procB

pcacheA pcacheBa
rb
it
e
r

checker

testbench

3 refinement steps,

863 simulation cycles,

81.4 seconds

top module

procA procB

pcacheA pcacheBa
rb
it
e
r

checker

testbench

top module

procA procB

pcacheA pcacheBa
rb
it
e
r

checker

testbench

top module

procA procB

pcacheA pcacheBa
rb
it
e
r

checker

testbench

Figure 4: MSI design case study. The schematic illustrates the
sequence of refinements required to reach the goal states using our
refinement engine for the MSI design targeting property P2.

finement criteria to compare against our solution. This criteria will

give priority of inclusion to modules that have the highest switch-

ing activity with the current abstraction. Figure 5 shows how this

alternate refinement heuristic will require more simulation and re-

finement steps in order to converge.

6. EXPERIMENTAL EVALUATION
We evaluated our solution by developing a baseline abstraction-

guided simulator tool which relies only on static abstractions. Then

we augmented this framework with our refinement engine. The

static abstraction solution relies on Synopsys’ VCS logic simulator

[23], interfacing with a BDD-based abstraction engine that we de-

veloped in-house. The communication between the simulator and

the BDD engine was via Verilog PLI callback routines. The ab-

straction engine includes an algorithm to select a few design mod-

ules, compute their product FSM, and then apply reachability anal-

ysis to the abstract design. In addition, it interacts with the trace

controller by receiving the present simulation state and returning

the associated cost. The trace controller incorporates also a num-

ber of search heuristics to guide the simulator based on the approx-

imate cost function. The abstraction engine we developed collects

switching activity dynamically from the simulator via a number of

call-back routines and it selects the candidate with the lowest av-

erage switching activity at the periphery of the current abstraction

upon request from the top-level tool’s orchestration routine.

In the following sections, we present our testbenches and our ex-

perimental evaluation where we compare the performance of the

baseline solution against the one equipped with the refinement en-

gine. Finally, we present an analysis of an alternative refinement

heuristic, in comparison to our solution.

6.1 Designs and properties
We evaluated the solution on a number of publicly available test-

benches: a simple MSI cache coherence protocol from the VIS

benchmark suite [25], discussed already in Section 5, and a number

of design blocks derived from the Picojava processor by Sun Mi-

crosystems [22], including the full PicoJava design. For each de-

sign we crafted a number of properties to be proven false, and wrote

a checker module describing them, or we used properties that were

provided with the design. We also either used testbenches provided

with the design or developed one in house to generate legal random

stimuli for each design. Table 1 presents the characteristics of the



Design in/out FF Gates Properties

MSI 14/15 43 1,674
P1:wrongly evicting dirty cache line
P2:not invalidating a shared cache line

BSI 84/62 108 4,778

P1:misaligned fill of I-cache
P2:wrong handling of I-cache miss
P3:wrong transition in I-cache fill FSM
P4:wrong transition in SMU FSM

ICU 28/80 64 1,797
P1:misalligned fill of cache line
P2:wrong fill of cache line on miss

PicoJava 44/76 3,646 189,895

P1:wrong transition in cache fill FSM
P2:stall condition in SMU
P3:misaligned fill in cache
P4:stall in I-cache fill state machine

Table 1: Characteristics of the testbench designs and property
descriptions

testbench designs and a brief description of each property. From the

PicoJava processor, we derived the following testbenches: 1) ICU,

including only the Instruction Cache Unit of the processor and 2)

BSI, comprising the ICU, the Stack Management Unit (SMU) and

the Bus Interface Unit(BIU). Finally we also used the full processor

design as a testbench in itself.

6.2 Results
We applied abstraction-based simulation to all designs and prop-

erties and compared the performance of the solution in terms of 1)

whether the tool could reach a goal state or not, 2) the number of

simulation cycles required to hit the goal state and 3) the total wall

clock time required to complete the analysis. For the refinement so-

lution, we also report the time spent in refining the abstraction. The

experiments run on a Pentium 4, Redhat linux system operating at

3.2Ghz and equipped with 2GB of memory.

Table 2 compares the performance and speed of convergence of

the baseline solution, a static abstraction-based simulator, with our

solution, which includes the refinement engine. The abstraction in

the baseline solution includes only the checker module, while the

refinement solution starts with only the checker in the abstraction,

and then adds and/or removes additional modules over the course

of the analysis. In all cases the experiment was repeated with 10

different random seeds, in the table we report number of simulation

cycles required in the best case seed and the runtimes indicated are

the average over all runs. Each row in the table corresponds to a sin-

gle design/property pair. The second and third columns provide the

simulation cycles and the total runtime required by the static analy-

sis in seconds. It is worth noting that the static abstraction solution

does not converge to the goal state for a number of testbenches,

particularly those entailing more complex designs. We stopped the

analysis after running 200,000 simulation cycles without success.

The following three columns report the same information and the

time spent in our refinement engine. For these tests the refinement

engine could only add modules to the abstraction until when the

permissible size limit was reached. The three columns under the

“Refinement with removal” header report the same information for

a refinement engine that can both add and remove modules. Note

how, for the full Picojava design testbenches, this feature was in

some cases necessary in order to converge to the goal state. The

remaining columns in the table will be discussed in the next section.

Overall we note from the table that for several complex designs,

abstraction refinement is necessary in order to derive an abstraction

of sufficient quality to converge to the goal state. In addition, in

most situations, the use of a refinement engine allows to complete

the analysis in many fewer simulation cycles than when using a

static abstraction. For some of these situations, the overall wall

clock time is worse when using the refinement engine because of

the computation cost entailed by generating the new cost function.

3 latches

4 bins

top module

procA procB

pcacheA pcacheBa
rb
it
e
r

checker

testbench

top module

procA procB

pcacheA pcacheBa
rb
it
e
r

checker

testbench

top module

procA procB

pcacheA pcacheBa
rb
it
e
r

checker

testbench

top module

procA procB

pcacheA pcacheBa
rb
it
e
r

checker

testbench

top module

procA procB

pcacheA pcacheBa
rb
it
e
r

checker

testbench

top module

procA procB

pcacheA pcacheBa
rb
it
e
r

checker

testbench

11 latches

4 bins

15 latches

4 bins

23 latches

4 bins

27 latches

4 bins

34 latches

10 bins5 refinement steps,

4227 simulation cycles,

120.9 seconds

Figure 5: Refinement with the alternative heuristic. The
schematic shows the refinement sequence for the same design and
property as the case study, this time using the maximum­activity al­
ternative refinement heuristic. Note how the systems requires more
refinement steps to converge.

We derive from this observation that the refinement engine should

be triggered less frequently in an abstraction-based run.

6.3 An alternative refinement heuristic
c In order to gain a qualitative sense of the soundness of our

refinement heuristic, we implemented another variant of the refine-

ment engine. In this variant, the selection of a module for inclusion

in the abstraction is based on the maximum switching activity dur-

ing simulation. That is, the module at the boundary of the refine-

ment, which has the highest average switching activity with input

signals of the abstraction, is the one to be added to the abstraction

during a refinement stage. The progress of refinement for the MSI

P2 testbench under this heuristic is shown in Figure 5.

The last six columns of Table 2 report the performance evalu-

ation of this heuristic over all our testbench designs. As can be

noted in the table, this heuristic provide markedly fewer benefits

compared to our solution. Indeed, in all but one case, this refine-

ment approach requires more simulation cycles and time than a

minimum-activity heuristic. Note also that even when the module

removal feature is included in the refinement engine, this solution

cannot converge for the last two properties of the Picojava design.

7. CONCLUSIONS
In this paper we have presented a novel solution for refinement in

abstraction-based simulation frameworks. Our solution determines

how to refine an abstraction by analyzing observed switching activ-

ity at the abstraction boundary during simulation. Signals with low

switching activity provide the main behavioral difference between

the abstract and the original design, thus modules generating these

signals are best candidate to be included in the abstraction.

Our experimental evaluation confirms that abstraction refinement

greatly enhances the number of designs and properties that can be

evaluated with an abstraction-based simulation framework. In addi-

tion, they show that our minimum-activity heuristic for refinement



Testbench Static Refinement add only Refinement with removal Alternative add only Alternative with removal

cycles runtime(s) cycles runtime(s) refine.(s) cycles runtime(s) refine.(s) cycles runtime(s) refine.(s) cycles runtime(s) refine.(s)

MSI P1 145 1.8 144 45.2 43.2 144 45.2 43.2 144 45.2 43.2 144 45.2 43.2

MSI P2 21717 26.7 863 81.4 77.0 863 81.4 77.0 4227 120.9 113.1 4227 120.9 113.1

BSI P1 11207 48.3 1617 421.3 312.1 1617 421.3 312.1 3191 456.5 373.2 6451 479.8 421.0

BSI P2 - TO 17246 523.1 401.3 10945 551.7 456.3 4693 401.3 342.1 7893 446.3 391.6

BSI P3 404 2.98 138 10.45 9.1 138 10.45 9.1 138 10.45 9.1 138 10.45 9.1

BSI P4 59 1.44 59 1.44 1.02 59 1.44 1.02 59 1.44 1.02 59 1.44 1.02

ICU P1 13499 26.2 7578 135.1 111.2 17578 179.7 145.2 16109 157.3 112.4 39671 243.1 189.6

ICU P2 - TO 176 10.1 8.9 176 10.1 8.9 176 10.1 8.9 176 10.1 8.9

PICO P1 - TO 2733 301.7 245.1 3143 322.1 258.3 6733 345.4 278.3 7815 371.3 317.1

PICO P2 - TO 3789 311.3 267.1 4562 337.5 278.2 21561 393.2 271.4 27567 423.7 334.4

PICO P3 - TO - TO - 6148 894.5 789.1 - TO - - TO -

PICO P4 - TO - TO - 41687 1674.5 1347.3 - TO - - TO -

Table 2: Performance evaluation. The table compares the performance of a static abstraction­based solution against our solution equipped
with a refinement engine, with and without the capability of removing modules from the abstraction. The rightmost two sections of the
table provide results using a dual heuristic in the refinement engine. Results indicate that the inclusion of a refinement engine enable many
more test­cases to converge to the goal state and that a minimum­activity heuristic for refinement is almost always more successful than a
maximum­activity one.

is promising for simulation-based refinement. Finally, our most

complex testbenches benefit from the ability to remove components

from an abstraction, to enable continued refinement without reach-

ing an abstraction too complex for the analysis.

Currently we are working on evaluating our solution on more

complex designs and analyzing simulation data to derive improved

refinement heuristics.

8. REFERENCES
[1] M. Aagaard, R. Jones, and C.-J. Seger. Combining theorem proving
and trajectory evaluation in an industrial environment. In Proc.
Design Automation Conference, pages 538–541, June 1998.

[2] J. Bergeron. Writing Testbenches: Functional Verification of HDL
Models. Kluwer Academic Publishers, 2nd edition, 2003.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model
checking without bdds. In Proc. TACAS, pages 193–207, London,
UK, 1999. Springer-Verlag.

[4] P. Bjesse and J. Kukula. Using counter example guided abstraction
refinement to find complex bugs. In Proc. Design Automation and
Test in Europe, pages 156–161, Mar. 2004.

[5] J. Burch, E. Clarke, K. McMillan, and D. Dill. Sequential circuit
verification using symbolic model checking. In Proc. Design
Automation Conference, pages 46–51, June 1990.

[6] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic
model checking: 10e20 states and beyond. In Proc. Logic in
Computer Science, pages 428–439, Jun 1990.

[7] E. Clarke and Y. Lu. Counterexample-guided abstraction refinement.
In Proc. Computer Aided Verification, pages 154–169. Springer,
2000.

[8] O. Coudert, C. Berthet, and J. Madre. Verification of synchronous
sequential machines based on symbolic execution. In Proceedings of
the international workshop on automatic verification methods for

finite state systems, pages 365–373, New York, NY, USA, 1990.
Springer-Verlag New York, Inc.

[9] F. De Paula and A. Hu. An effective guidance strategy for
abstraction-guided simulation. In Proc. Design Automation
Conference, pages 63–68, New York, NY, USA, 2007. ACM.

[10] M. Ganai, A. Aziz, and A. Kuehlman. Enhancing simulation with
bdds and atpg. In Proc. Design Automation Conference, pages
385–390, June 1999.

[11] S. Hazelhurst, O. Weissberg, G. Kamhi, and L. Fix. A hybrid
verification approach: getting deep into the design. In Proc. Design
Automation Conference, pages 111–116, June 2002.

[12] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco,
J. Taylor, and J. Long. Smart simulation using collaborative formal
and simulation engines. In Proc. ICCAD, pages 120–126, Nov. 2000.

[13] International Technology Roadmap for Semiconductors.
http://www.itrs.net/, 2007 edition.

[14] C. Kern and M. Greenstreet. Formal verification in hardware design:
a survey. ACM Transactions on Design Automation of Electronic
Systems, 4(2):123–193, 1999.

[15] A. Kölbl, J. Kukula, and R. Damiano. Symbolic rtl simulation. In
Proc. Design Automation Conference, pages 47–52, 2001.

[16] A. Kuehlmann, K. McMillan, and R. Brayton. Probabilistic state
space search. In Proc. ICCAD, pages 574–580, Nov. 1999.

[17] K. Mcmillan and N. Amla. Automatic abstraction without
counterexamples. In Proc. TACAS, pages 2–17. Springer, 2003.

[18] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and
A. Kuehlmann. Scalable automated verification via expert-system
guided transformations. In Proc. FMCAD, pages 159–173. Springer,
2004.

[19] A. Parikh and M. Hsiao. On dynamic switching of navigation for
semi-formal design validation. In Proc. HLDVT, pages 41–48, 2008.

[20] K. Shimizu and D. Dill. Deriving a simulation input generator and a
coverage metric from a formal specification. In Proc. Design
Automation Conference, pages 801–806, 2002.

[21] S. Shyam and V. Bertacco. Distance-guided hybrid verification with
guido. In Proc. Design Automation and Test in Europe, pages
1211–1216, 2006.

[22] Sun Microsystems. PicoJava technology. http://
www.sun.com/microelectronics/communitysource/picojava.

[23] Synopsys, VCS. http://www.synopsys.com/tools/verification
/functionalverification/pages/vcs.aspx.

[24] S. Tasiran, Y. Yu, and B. Batson. Using a formal specification and a
model checker to monitor and direct simulation. In Proc. Design
Automation Conference, pages 356–361, June 2003.

[25] Texas 97 benchmark suite.
http://www-cad.eecs.berkeley.edu/Respep/Research/vis/texas-97.

[26] I. Wagner, V. Bertacco, and T. Austin. StressTest: an automatic
approach to test generation via activity monitors. In Proc. Design
Automation Conference, pages 783–788, 2005.

[27] D. Wang, P.-H. Jiang, J. Kukula, Y. Zhu, T. Ma, and R. Damiano.
Formal property verification by abstraction refinement with formal,
simulation and hybrid engines. In Proc. Design Automation
Conference, pages 35–40, 2001.

[28] W. Wu and M. Hsiao. Efficient design validation based on cultural
algorithms. In Proc. Design Automation and Test in Europe, pages
402–407, March 2008.

[29] P. Yalagandula, V. Singhal, and A. Aziz. Automatic lighthouse
generation for directed state space search. In Proc. Design
Automation and Test in Europe, pages 237–242, Mar. 2000.

[30] C. Yang and D. Dill. Validation with guided search of the state space.
In Proc. Design Automation Conference, pages 599–604, June 1998.


