
Boolean Function Representation Using Parallel-Access Diagrams.�

Valeria Bertacco and Maurizio Damiani
Dipartimento di Elettronica ed Informatica

Universit́a di Padova, Via Gradenigo 6/A, 35131 Padova, ITALY

Abstract

In this paper we introduce a nondeterministic counterpart
to Reduced, Ordered Binary Decision Diagrams for the rep-
resentation and manipulation of logic functions. ROBDDs
are conceptually related to deterministic finite automata
(DFA), accepting the language formed by the minterms of a
function. This analogy suggests the use of nondeterminis-
tic devices as language recognizers. Unlike ROBDDs, the
diagrams introduced in this paper allow multiple outgoing
edges with the same label. By suitably restricting the de-
gree of nondeterminism, we still obtain a canonical form for
logic functions.

Using PADs, we are able to reduce the memory occupa-
tion with respect to traditional ROBDDs for several bench-
mark functions. Moreover, the analysis of the PAD graphs
allowed us to sometimes identify new and better variable
ordering for several benchmark circuits.

1 Introduction
Reduced, Ordered Binary Decision Diagrams (ROB-

DDs) [1, 2] are the most CPU- and memory- efficient data
structure known so far for the manipulation of large logic
functions. For this reason, they are becoming pervasive in
logic synthesis and verification environments [3, 4, 5, 6].
Ongoing research is attempting to extend their applicability
to other domains, such as the solution of graph problems
and integer-linear programming [7, 8]. ROBDDs, however,
are not exempt from inefficiencies. Classes of functions
exist for which they may require an exponential amount
of memory. This may be due either to the intrinsic nature
of the functions (i.e. multiplication, hidden weighted bit,
clique-related functions, etc ... [9, 10]), or to an improper
ordering of variables. These inefficiencies motivate a sub-
stantial amount of research on the development of ordering
heuristics [11, 12] and alternative representations [13, 14].

ROBDDs are conceptually related to Deterministic Fi-
nite Automata. In particular, the ROBDD of a Boolean
functionF can be obtained from the minimum-state DFA
accepting the language formed by the set of minterms of
F , simply by removing the so-calledredundant-test states.
This relationship is further described in Section (2).

In this paper we demonstrate the possibility of using
data structures related with Nondeterministic Finite Au-
tomata (NFA) as alternative representations. The paper in-
troduces Parallel-Access Diagrams, a nondeterministic ana-

0This research was partially supported by the ESPRIT III Basic Re-
searchProgramme of the EC undercontract No. 9072(Project GEPPCOM)
and by CNR grant # 95.02061.CT07

log to ROBDDs. In a PAD, a vertex can have multiple
outgoing edgeswith the same label. Thus, in a PAD, from
one such vertex, we can access in parallel multiple vertices.
Following the semantics of NFA, the function that is glob-
ally pointed to by the set of pointers is the logic OR of the
functions pointed by each pointer. We show that by suit-
ably restricting the choices of multiple pointers, a function
can be represented by a unique PAD. We can thus retain
the canonicity properties of ROBDDs. We then show how
to manipulate Boolean functions using PADs, and provide
experimental results on several benchmark circuits.

On the theoretical front, we show that PADs are more
compact and more robust than ROBDDs: classes of
functions exist with polynomially-sized PADs, but only
exponentially-sized ROBDDs, and some order-sensitive
functions (with worst-case exponential ROBDD size) may
have an order-insensitive, linear-size PAD representation.
This property can be used also for deriving better variable
orderings for BDDs. Moreover, in no case the size of a
ROBDD can be smaller than that of a PAD.

For reasons of space, in this paper we do not include
proofs of theorems, but we will make them available upon
request.

2 Function representations and automata.

In this section, we briefly review previous work in the
area of function representations. We focus on the relation-
ship of automata with ROBDDs and covers. We assume
some familiarity with basic notions of automata theory.

2.1 ROBDDs and DFA

In [1], ROBDDs are introduced as a “processor”, receiv-
ing 1 bit of data at a time and issuing the value ofF as
output after a sufficient number of data bit are entered. The
“processor” is conceptually very close to a DFA, accepting
a finite set of strings - the minterms ofF -, and issuing a
logic “1” upon acceptance.

Example 1. Fig. (1.a) shows the truth table of a 4-variable
functionF . The input combinations resulting in a 1 ofF
form a set of strings, each string of length 4. This set, in
turn, describes completelyF . Fig. (1.a) shows the state-
minimal automaton accepting this set of strings. Since all
strings have the same length, the automaton can be factored
in two parts. The first part is a counter, sequencing out
variable symbols. The second automaton takes as inputs
(variable; value) pairs. It is easily verifiable that this sec-
ond automaton corresponds precisely to the BDD ofF . The
factorization and the final BDD are reported in Fig. (1.b)
and (1.c), respectively.2

a

b

c

d

(b)

Reject

b, 0b, 1

{b,c,d},-

a,0a,1

{a,b,d},-

b, 0

c,1
c,0c,1

d,1
d,0

b, 1

{a,c,d},- {a,c,d},-

{a,b,d},-

{a,b,c},-

c,0

{a,b,c,d}, -

1 0 Reject

0

1

1
1

1

0

0

0

0

0

1

1

c c

d

bb

a

Reject

1

1
1

1
- -

0

0

0 1 01

- 0

0

00

01

11

10

00 01 11 10

 1 0 1 1

1 1 0 0

1 1 10

1 1 1 1

ab
cd

(c)

(a)

Figure 1. a) Truth table of a 4-variable function and
the DFA accepting the minterms of its ON set. b)
Decomposition of the DFA into a counter and a sec-
ond machine. c) the ROBDD of the function.

2.2 Parallel-Access Diagrams and NFA.

Given an arbitrary cover of a functionF , it is possible
to construct anondeterministic automaton accepting the
minterms ofF . Redundant test states can be removed,
just like for ROBDDs, to obtain another directed acyclic
graph for the function. Example (2) below exemplifies this
construction.

Example 2. Consider the the same function as in Example
(1): F = a0bc0 + ab0 + ac + b0c + c0d0. A nondetermin-
istic automaton accepting precisely the minterms ofF is
shown in Fig. (2.a). The set of start states is identified by
the set of start (dashed) edges. Removal of redundant test
states, identification of isomorphic subgraphs, and labeling
of nodes produces the graph of Fig. (2.b).2

The resulting graph may present some key differences
from a ROBDD: Vertices may have multiple outgoing edges
with the same label, and the graph itself may have multiple
roots.

Definition 1. A PAD is a multi-rooted, directed acyclic
graph, with two distinct sink vertices, labeled 0 and 1, re-
spectively. All other vertices v are labeled by a Boolean
variable, and have two non-empty sets of outgoing edges,
denoted by 0(v) and 1(v). Moreover, each path in the graph

must be consistent with a pre-defined variable ordering. A
PAD is termed reduced if it contains no two isomorphic
subgraphs. 2

1

0

0-

0

-

1

-

-

- - - - 0

0

1

0

1

-

1

1

1

b

c

1

0

a

b c

1

cb

d

0

0 0

0 0

(a) (b)

Figure 2. a) NFA accepting the minterms of the func-
tion of Example (2). The NFA of part (a) after BDD-
like simpli�cations. Reject conditions are removed,
for the sake of simplicity.

A PAD defines recursively a logic function by the fol-
lowing rules:

� Vertices 0 and 1 denote the constant functions 0 and 1,
respectively.

� A vertexv, with Boolean variable labelx, defines the
logic functionfv = xF0(v) + xF1(v)

� A set S = fv1; � � � ; vng of vertices defines a logic
function

FS =
[

vi2S

fvi (1)

The following example points out the potential advan-
tages of PADs over ROBDDs.

a

0

c

0

b

d

01

0

0

00 1

11

1 1

1

0

bb

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

c

d

bb

a

0

0

0

1

1

0

0

0

0

01

1 1

1

1

0

1

c c

d

bb

a

0

0

0

1 1

1

(c)(b)(a)

Figure 3. a) The ROBDD of a 4-variable function;
b) a PAD representation; c) another PAD.

Example 3. Fig. (3.a) shows the ROBDD of the function
F = a0(b0c + bd) + ab(c + d), with a lexicographical or-
dering of the variables. Since the four residue functions
Fab; Fa0b; Fab0; Fa0b0 are all distinct, the uppermost two lev-
els of the graph form a binary tree. Notice, however, that
Fab = c+d = Fa0b+Fa0b0 . We can express this property of
F by replacing each edge pointing toFab by a pair of edges,
pointing toFa0b andFa0b0 , respectively. This transformation
is shown in Fig. (3.b).2

By expressingFab as the sum of other already exist-
ing functions, we are able to save the construction of the

ROBDD for Fab. In the small example of Fig. (3), this
saves us one vertex, at the expense of adding one extra
pointer. Unfortunately, unlike ROBDDs, there may be sev-
eral PAD representations of a logic function F , using the
same variable ordering: as an example, Fig. 3 shows three
different constructions of the same function using PADs.

In the next section we show that, by reducing the type
of nondeterminism allowed at each vertex, it is possible to
obtain a canonical representation.

3 Disjoint-support OR decompositions.

If a function f is represented by a multi-rooted PAD, the
functions pointed by each root form a cover of f . The multi-
plicity of PADs for representing f reflect the multiplicity of
covers for f . In this paper, we constrain the type of covers
that can be generated, in such a way that we can grant the
uniqueness of the generated PAD. To this end we leverage
upon the following simple but useful definitions and results
on logic decomposition [15, 16].

Definition 2. Let f : Bn ! B denote a non-constant
Boolean function of n variables x i; i = 1; � � � ; n. We say
that f depends on xi if @f=@xi is not identically 0. We
call support of f (indicated by S(f)) the set of Boolean
variables f depends on. 2

Definition 3. A set of non-constant functions ff 1; � � �fkg,
with respective supports S(fi) is called a disjoint-support
OR decomposition of f if

kX

i=1

fi = f ; S(fi) \ S(fj) = ;; i 6= j (2)

A disjoint support OR decomposition is maximal if no
function fi has further decomposition. We indicate by
DSOD(f) such a maximal decomposition. 2

Theorem 1. There is a unique maximal disjoint-supportOR
decomposition of a function. 2

Definition 4. Consider a vertex v of a PAD, and let
e1; � � � ; en denote n outgoing edges from v with the same
label. Let also fi denote the function pointed by each edge
ei. We say that a PAD has the disjoint-support property
if for each vertex v, the set of functions ff1; � � � ; fng is a
DSOD. 2

Example 4. Consider the three PADs of Fig. (3). Only
the second one satisfies the disjoint-support property. In the
third PAD, the two functions pointed by the root edges share
the variable b. 2

Theorem 2. For a given function f and variable order-
ing, there is a unique PAD representation with the DSOD
property. 2

The proof follows intuitively from the uniqueness of a
DSOD decomposition.

3.1 Properties of DSODs.

In the rest of the paper, we focus on PADs with the
disjoint-support property. We conclude the section by

pointing some results on DSODs that are useful for the
construction of PAD manipulation routines.

Theorem 3. Suppose ff1; � � � ; fkg is a DSOD of some
function. Then, by erasing elements from the set, the new
set is also a DSOD. 2

Theorem 4. If DSOD(f) = ff1; � � � ; fkg [fp1; � � � ; phg
and DSOD(g) = fg1; � � � ; glg [fp1; � � � ; phg, where gi 6=
fj ; i = 1; � � � l; j = 1; � � �k, then:

1. DSOD(f � g) =
fp1; � � � ; phg[DSOD((f1 + :::+fk) � (g1 + :::+gl)).

2. DSOD(f + g) =
fp1; � � � ; phg [DSOD(f1 + :::+ fk + g1 + :::+ gl)

3. Let x denote a variable not in the support of f or g.
Then:
DSOD(x0f + xg) =
fp1; � � � ; phg [fx

0(f1 + :::+ fk) + x(g1 + � � �+ gl)g
2

Theorem 5. Letx denote a variable, x 62 S(g), and suppose
f = x+ g. Then,

DSOD(f) = fxg [DSOD(g) (3)
2

4 PAD manipulation procedures.

Just like ROBDDs, the manipulation routines are recur-
sive. Lists of vertices are dynamically created and passed
down during recursion. Unlike ROBDDs, however, a mech-
anism for recognizing the possibility of nondeterminism (i.e.
creating lists of vertices and returning them up) is provided.
Fig. (4) illustrates the pseudocode of a binary operation, the
logic OR of two functions.

� �

 	

OR (list op1, list op2)
f

1 if (terminal case) return (terminal value);
2 opc=op1\ op2; op1=op1[opc; op2 = op2 [opc;
3 res = comp lookup(op1, op2);
4 if (res != NULL) return (res [opc);
5 x = top var(op1, op2);
6 left=OR (op1.x, op2.x); right=OR (op1.x’ , op2.x’);
7 res = pad find (left, right, x);
8 comp insert (op1, op2, res);
9 return (res [opc);
g

Figure 4. Pseudocode of OR()

The inputs op1, op2 are lists of vertices. At the top
level of recursion, they represent the sets of roots of the
two operands. There are two significant departures from
conventional BDD-based procedures, in lines (2) and (7),
respectively. Line (2) is an immediate application of case
(1) in Theorem (4). We seek subfunctions that are common
to both operands and remove these subfunctions from the
operands. This removal may result in a potentially faster
execution, because all the variables in the support of opc
will not interfere in the computation ofOR(op1�opc; op2�

opc). Similar factorings apply to all other binary operations.
The second difference consists of replacing bdd find()
with a different procedure, pad find(), in line (7).
� �

 	

pad find (set left, set right, var x)
f

1 if (left == right) return (left);
2 if (left == 1) f
3 new vertex = find or create (1,0,x);
4 return (left [fnew vertexg);

g
5 if (right == 1) f /* symmetric case */ g
6 shared = left \ right;
7 left = left \ shared; right = right \ shared;
8 new vertex = find or create (left,right,x);
9 return (shared [fnew vertexg);
g

Figure 5. Pseudocode of pad find()
The pseudocode of pad find() is shown in Fig. (5). In

ROBDDs, bdd find(l, r, x) is responsible for check-
ing the existence of a BDD node with variable label x and
with left and right pointers matching l and r, respectively.
In case no such node exists, a new node is allocated and
returned. In the case of PADs, two distinct actions are taken
by pad find(). Consider the two functionsF l and Fr rep-
resented by the sets left, right, respectively. The first
action consists of checking whether any of Fl; Fr is 1. If
(say) Fl is 1, then DSOD(F) = DSOD(Flx + Frx

0) =
DSOD(x+Fr) = fxg[DSOD(Fr). Pad find() (lines
1-4) then augments the list representing Fr with a new ele-
ment, representing the function x, and returns this new list.
This transformation is depicted in Fig. (6), and represents
the application of Theorem (5). The second action consists
of identifying common terms between left and right,
and factoring them out (lines 6-7). This applies case (3),
Theorem (4). This factoring operation is illustrated in Fig.
(7).

1

x

F

1 0 x

0

F

1

1 0

Figure 6. Identi�cation of disjoint-support subfunc-
tions during traversal.

Theorem 6. Procedure OR returns a PAD with the disjoint-
support property. 2

5 Comparing PADs with ROBDDs.
In this section, we contrast PADs with ROBDDs with

respect to two issues, namely the robustness with respect
to variable orderings, and the relative performance in terms
of memory occupation and CPU time. We compare the
two representations on theoretical grounds, and substantiate
our findings with experimental results on some benchmark
circuits.

G

x

F H

1 0

H

x

G G

0
01

1

F

Figure 7. Algebraic reduction of a vertex: a) the
vertex prior to reduction; b) after reduction

Since a PAD node size depends on the lists it includes,
we carried out comparisons by measuring the actual mem-
ory occupation. We assumed bare-bone implementations, in
which in particular each ROBDD node takes three machine
words. With regards to PAD vertices, we assumed an im-
plementation where each node consists of an array. The first
element of the array stores in compact form the number of
elements belonging to the left pointer set, the right pointer
set, and the variable rank.

We implemented a PAD package and tested it against the
Carnegie-Mellon ROBDD package. Time was taken on a
HP Vectra VL4 5/133 with 32Mbyte of RAM. We tested the
two packages on three series of benchmarks, namely, the
IWLS91 combinational multi-level and two-level and the
synchronous circuit series. We chose as initial variable or-
dering the variable ordering obtained by the stable-window-
3 reordering algorithm [17]. No variable reordering took
place, however, during the execution of any package. We
have also tested some ISCAS benchmarks with the ordering
provided by Wegener et al. in [18].

5.1 Variable orderings.

PADs appear to be less sensitive to variable orderings.
There are several theoretical motivations supporting this
observation. Consider a function f with a nontrivial DSOD,
say , ff1; f2g. The PAD representation will consist of a two-
rooted graph, and the total graph size is the sum of the two
subgraph sizes. The variable ordering will only affect the
size of the subgraphs representing f1 and f2.

In the case of ROBDDs, the optimal variable ordering
consists of clustering the variables in S(f1) and S(f2). The
relative order of the two clusters is immaterial. With such
an ordering, the total ROBDD size is still the sum of the
two subgraph sizes [4]. Any other ordering, interspersing
variables from the two supports, may only increase (some-
times substantially) the graph size. In other words, PADs
are insensitive with respect to this interspersing.

Example 5. One well known order-sensitive class of func-
tions is given by the formula [1]:

fn = x1x2 + x3x4 + � � �x2n�1x2n (4)

The ROBDD size for this class of functions can range from
2n to over 2n, depending on the ordering. The structure of
PADs for fn is given in Fig. (8). The size is 2n, regardless
of the ordering. 2

We now report on how the discovery of a disjoint-support
decompositionhelped improvingsubstantiallyROBDD per-
formance.

Example 6. The synthesis benchmark pair has 173 inputs
and 137 outputs. The ROBDDs of the complete circuit take,
after sift-based dynamic reordering, over 53000 nodes.

x2n-1

x2n

x3

x4x

x1

2

1

1

0

0

0

0

1
0

0

1

1

10

Figure 8. PAD structure for the functions fn of Ex-
ample (6).

The most expensive outputs turn out to be w5 and b6,
consisting of 5182 and 9076 nodes, respectively. Using
PADs, we found out that both outputs can be expressed as
the sum of four disjoint-support functions. The total PAD
size was one seventh of the total ROBDD size. For w5, the
partition was:
fn;w2g
fo;m; z2; y2; e3; d3; a3; c3; b3g
ft; s; l; p; p1; q1;d2; c2; b2; g2;n2; e2;g
ff ; b;u; q; r;w;v;n1;m1; l1; v0; d1;y0;x0;
w0; z0; r1; c1; b1;a1; g1; i1;h1; e1;f1; o1; k1; j1;g

For b6, we found:
fl0; l3; g
fm0; k0; r3; o3; t3; s3; q3;n3;p3;g
fr0; q0; j0;n0; g4; i4; f4; d4; e4; q5;p5;p4; g
fd0; z; s0; o0; p0;u0; t0; v4; r4; z4; y4;x4;w4;u4;
t4; s4; c5; e5; d5; b5;m5; l5;n5; r5; a5; g5;o5; i5; j5; k5; g

Notice that the supports ofw5 and b6 are disjoint as well.
It is thus possible to obtain a good order for both functions,
by clustering together the variables of the eight groups. We
tested this order on ROBDDs, and were able to reduce the
memory occupation of w5 and b6 to 118 and 362 nodes,
respectively. The total memory occupation for pair was
reduced to 15319 nodes. 2

Even when a function cannot be expressed by a nontrivial
DSOD, the flexibilityof PADs with respect to orderings may
be useful; for instance if ordering requirements for multiple
ROBDDs conflict. This conflict is less likely in the case of
PADs. We now substantiate this observation:

Example 7. Wegener et al. provide in [18] the best or-
dering known for several ISCAS benchmarks. We ana-
lyzed the benchmark C880. Three outputs (878GAT.442,
879GAT.441, 880GAT.440) result in the largest ROBDDs.

All of these outputs but 878GAT.442 can be decomposed
into the sum of a 2-variable function and a larger one. The
small functions depend on (210GAT.49, 91GAT.23) and
(210GAT.49, 96GAT.24). The function 879GAT.441 then
suggests modifying Wegener’s order by moving 210GAT.49
and 91GAT.23 up top or at the bottom. Other similar moves
are suggested by 880GAT.440. In trying these orders, we
found out that, while we were indeed reducing the ROBDD
of a single function, we were increasing the size of the other
functions. We also tried moving only 210GAT.49. In no

case we could beat Wegener’s order. Using PADs with We-
gener’s order, instead, we reduced the memory occupation
by about 50%. 2

5.2 Memory, CPU time, and complementation.
We tried two different versions of ROBDDs, without and

woth complement edges respectively. The reason for testing
both cases is that the current implementation of PADs does
not support constant-time / constant-space complementa-
tion.

Table (1) reports the results in terms of nodes (nod), ma-
chine words (mem) and CPU time (CPU) for the two ROBDD
versions against PADs. PADs turn out to be more com-
pact almost always when compared with complement-free
ROBDDs, with some penalty in CPU time. ROBDDs with
complement edges, however, are often more efficient than
PADs on both fronts. Empirically, we found the following
three reasons:

� Complementations in PADs do, so far, have a cost,
in terms of memory and CPU time. If a function f
has a significant DSOD, then it is easy to verify that its
complement will not, and the PAD of f 0 will be “close”
to a ROBDD. Moreover, the PAD of f 0 inherits all the
inefficiencies of a poor ordered ROBDD.

� Data inserted and looked up incomputed table are ar-
rays. The hash function depends on all array elements,
and its computation is consequently more costly.

� Some terminal cases (like in OR(f,f')) are not iden-
tified by PAD routines. These inefficiencies (space and
time) manifest themselves mostly in arithmetic-type
circuits. PADs maintain an edge over ROBDDs in the
case of synchronous benchmark circuits.

To this regard, we wish to point out that we are already
aware of ways to circumvent the complementation issue,
and that a constant-time complementation is in fact possible
for PADs. We are currently working in this direction.

6 Conclusions and future work.
In this paper, we inspected the possibility that more

compact and flexible graph-based representations may be
obtained by relaxing some of the constraints imposed on
ROBDDs. We considered allowing more output edges from
a vertex. This is conceptually equivalent to considering
a NFA-based representation, as opposed to a DFA-based
style. We have suitably restricted the type of nondetermin-
ism, however, so that the graph representation of a function
is still unique.

Compared with ROBDDs, we have shown that the new
representation is more robust with respect to poor variable
ordering, in no case less compact, but quite often more
compact.

Currently, the complement f 0 of a function f has a sepa-
rate representation, and it is difficult to detect when two func-
tions are each other’s complement. This has a performance
penalty in terms of memory and CPU time, which occurs
mostly in arithmetic-type circuits. We are already aware of
ways for circumventing the complementation problem, and
are working in this direction. We also expect benefits from
a dynamic reordering heuristic tailored especially for PADs,
and from the use of more general decomposition styles.

ROBDD PAD RATIOS
Benchmark w/o c.edges w c.edges w/o c.edges w c.edges

nod mem nod mem CPU nod mem CPU nod mem nod mem

MULTILEVEL
C1355.iscas 43140 129420 39458 118374 4.38 42037 132099 10.73 2.6% -2.0% -6.1% -10.4%
C1908.iscas 31960 95880 22771 68313 2.82 30223 114388 8.29 5.7% -16.2% -24.7% -40.3%
C432.iscas 1314 3942 1229 3687 0.11 1144 3673 0.42 14.9% 7.3% 7.4% 0.4%
C499.iscas 42890 128670 39377 118131 3.18 42003 130725 5.64 2.1% -1.6% -6.3% -9.6%
C880.iscas 9888 29664 9864 29592 0.47 6467 20962 1.64 52.9% 41.5% 52.5% 41.2%
cht 151 453 150 450 0.01 149 353 0.01 1.3% 28.3% 0.7% 27.5%
DES 104696 314088 65840 197520 5.81 67807 192298 10.97 54.4% 63.3% -2.9% 2.7%
frg1 171 513 170 510 0.04 147 375 0.10 16.3% 36.8% 15.6% 36.0%
pair 53205 159615 52449 157347 1.35 6191 19259 3.77 759.4% 728.8% 747.2% 717.0%
sct 124 372 105 315 0.01 81 221 0.03 53.1% 68.3% 29.6% 42.5%
x1 1212 3636 997 2991 0.12 722 2003 0.28 67.9% 81.5% 38.1% 49.3%
x4 756 2268 732 2196 0.08 630 1689 0.14 20.0% 34.3% 16.2% 30.0%
TWOLEVEL
apex1.pla 1607 4821 1579 4737 0.23 1505 4293 0.60 6.8% 12.3% 4.9% 10.3%
apex5.pla 2482 7446 2450 7350 0.98 2099 5889 2.02 18.2% 26.4% 16.7% 24.8%
duke2.pla 440 1320 434 1302 0.06 437 1079 0.15 0.7% 22.3% -0.7% 20.7%
e64.pla 633 1899 631 1893 0.10 632 1263 0.18 0.2% 50.4% -0.2% 49.9%
misex2.pla 105 315 103 309 0.00 104 228 0.02 1.0% 38.2% -1.0% 35.5%
FSM
ex2 326 978 324 972 0.02 325 672 0.04 0.3% 45.5% -0.3% 44.6%
ex3 115 345 113 339 0.01 114 242 0.01 0.9% 42.6% -0.9% 40.1%
ex7 123 369 121 363 0.02 122 259 0.02 0.8% 42.5% -0.8% 40.2%
s444 262 786 234 702 0.04 222 604 0.06 18.0% 30.1% 5.4% 16.2%
s641 1123 3369 1007 3021 0.09 807 2215 0.17 39.2% 52.1% 24.8% 36.4%
s713 1157 3471 1029 3087 0.12 704 1933 0.17 64.3% 79.6% 46.2% 59.7%
WEG.ORDER
C1355.iscas 27869 83607 25866 77598 2.46 27476 84103 6.65 1.4% -0.6% -5.9% -7.7%
C1908.iscas 7542 22626 5526 16578 0.64 7263 23521 1.86 3.8% -3.8% -23.9% -29.5%
C432.iscas 1146 3438 1087 3261 0.13 1036 3587 0.44 10.6% -4.2% 4.9% -9.1%
C499.iscas 27869 83607 25866 77598 1.76 27476 84103 3.06 1.4% -0.6% -5.9% -7.7%
C880.iscas 4073 12219 4053 12159 0.20 2894 9539 0.75 40.7% 28.1% 40.0% 27.5%

Table 1. ROBDD vs. PAD in size and performance

References

[1] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. on Computers, 35(8):677–691,
August 1986.

[2] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient imple-
mentation of a BDD package. In Proc. DAC, pages 40–45,
June 1990.

[3] O. Coudert and J.C. Madre. A unified framework for the
formal verification of sequential circuits. In Proc. ICCAD,
pages 126–129, November 1990.

[4] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Logic verification using binary decision dia-
grams in a logic synthesis environment. In Proc. ICCAD,
pages 6–9, November 1988.

[5] Y. Matsunaga and M. Fujita. Multi-level logic optimization
using binary decision diagrams. In Proc. ICCAD, pages 556–
559, November 1989.

[6] H. Touati, H. Savoj, B. Lin, R.K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit state enumeration of
finite state machines using BDD’s. In Proc. ICCAD, pages
130–133, November 1990.

[7] F. Corno, P. Prinetto, and M. Sonza Reorda. Using symbolic
techniques to find the maximum clique in very large sparse
graphs. In Proc. EDAC, pages 320–324, March 1995.

[8] Y-T. Lai and S. Sastry. Edge-valued binary decision diagrams
for multi-level hierarchical verification. In Proc. DAC, pages
240–243, June 1992.

[9] R. E. Bryant. On the complexity of vlsi implementations and
graph representations of boolean functions with application to
integer multiplication. IEEE Trans. on Computers, 40:205–
213, 1991.

[10] I. Wegener. The complexity of Boolean Functions. John
Wiley and Sons, 1987.

[11] R. Rudell. Dynamic variable ordering for ordered binary
decision diagrams. In Proc. ICCAD, pages 42–47, November
1993.

[12] S. J. Friedman and K. J. Supowit. Finding the optimal vari-
able ordering for binary decision diagrams. IEEE Trans. on
Computers, 39:710–713, 1990.

[13] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A.
Perkowski. Efficient representation and manipulation of of
switching functions based on ordered kronecker functional
decision diagrams. In Proc. DAC, pages 415–419, June 1994.

[14] J. Jain, M. Abadir, J. Bitner, D. Fussell, and J. Abraham. Ib-
dds: An efficient functional representation for digital circuits.
In Proc. DAC, pages 441–446, June 1992.

[15] H. A. Curtis. A new approach to the design of switching
circuits. Van Nostrand, Princeton, N.J., 1962.

[16] J. P. Roth and R. M. Karp. Minimization over booleangraphs.
IBM Journal, pages 661–664, April 1962.

[17] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable ordering
of binary decision diagrams for the application of multi-level
logic synthesis. In Proceedings of the European Conference
on Design Automation, pages 50–54, 1991.

[18] B. Bollig, M. Lobbing, and I. Wegener. Simulated annealing
to improve variable orderings for obdds. In International
Workshop on Logic Synthesis, page 5.1. IEEE-ACM, 1995.

