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Abstract—As Moore’s Law scaling slows down, specialized
heterogeneous designs are needed to sustain computing perfor-
mance improvements. Unfortunately, the non-recurring engineer-
ing (NRE) costs of chip design—designing interconnects, creating
masks, etc.—are often prohibitive. Chiplet-based disintegrated
design solutions could address these economic issues, but current
technologies lack the flexibility to express a rich variety of designs
without redesigning the communication substrate. Moreover, as
the number of chiplets increases, yield suffers due to 2.5D assem-
bly defects. This work addresses these problems by presenting
a flexible communication fabric that supports construction of
arbitrary network topologies and provides robust fault-tolerance,
demonstrating near-100% chip assembly yield at typical bonding
defect rates. We achieve these goals with less than 3% additional
power and zero exposed latency overhead for various real-world
applications running on an example SiP.

I. INTRODUCTION

Application-specific hardware design is widely regarded as
one of the most promising methods for continuing improve-
ments in chip performance and power efficiency, particularly
when Moore’s Law can no longer be relied upon as a
primary driver of advancement [1]. Unfortunately, creating
custom hardware requires a huge investment in development
resources. First, per-design NRE costs are very high — a set
of 16nm masks for a new design, for example, may cost
nearly $6 million [2]. For high-volume chips, these costs can
be amortized effectively, but they quickly become prohibitive
for smaller-volume designs. Second, creating a custom chip
often requires integrating common logic alongside custom,
application-specific logic in a single monolithic die. Even
though some soft IP components may be reused across many
custom chips, which saves design time, there is no associated
economy of scale in the fabrication process because each chip
is still manufactured monolithically — thus, costs remain high.

Recently, research on reusable hardware design — building
system components that can be reused across a wide variety
of application-specific designs — has begun to address these
problems. Some works target NRE costs, proposing architec-
tures that compose application-specific hardware from arrays
of generic functional units on a mass-produced chip [3]. Others
focus on manufacturing costs, proposing systems in which
chips are fabricated in small blocks, called ‘chiplets’, which
are bonded in 2.5D to an interposer that delivers power, clock,
etc. and provides inter-chiplet data wiring [4]. This System-in-
Package (SiP) concept could enable solutions where resources
used in many different designs are fabricated at high volume
(hence, at lower per-unit cost) and integrated with smaller
pieces of chip-specific custom logic on an interposer. Rather
than incurring the high costs of designing and building a large
monolithic die for each new chip, it would instead be possible
to design and build only the smaller pieces of custom logic,
saving time and money. Moreover, the chiplets in a given SiP
need not even be manufactured at the same technology node,
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Fig. 1: SiPterposer proposes an off-the-shelf solution to reduce the
cost of custom SiPs by eliminating the need for custom interposer
designs and slashing chiplet bonding yield loss.

which could enable novel cost/performance optimizations.

However, these methods require a robust means of inte-
grating the components used to compose a new application-
specific design — and integration alone can represent a quarter
of the total NRE cost for a custom chip [5]. Thus, for reusable
hardware design to succeed at reducing custom chip costs, it
is crucial to consider not just the functional units or chiplets,
but also the cost of the underlying integration/communication
layer. In particular, cost-effective chiplet-centric design re-
quires an interposer with three key properties: generality, flex-
ibility, and resilience. Generality allows the interposer to be
mass-produced at low cost. Flexibility is important because the
substrate must support a wide range of applications — including
arbitrary chiplets and interconnect topologies — without costly
redesign. Resilience matters because the chiplet-to-interposer
bonding process is quite defect-prone [6], lowering yields and
raising costs if not handled carefully.

To that end, we propose a novel integration fabric, called
SiPterposer, based on a generic passive interposer structure
and the use of off-the-shelf bridge chiplets to create desired
interconnect topologies, as outlined in Fig. 1. This work
discusses SiPterposer’s economic viability, demonstrates its
capacity to achieve the design goals of generality, flexibility,
and resilience, and evaluates its interconnect performance and
system overheads. Our key contributions are:

« A generic, fully-passive interposer structure that may be
configured at chip assembly-time to generate any custom
interconnect topology, eliminating the need for custom in-
terposer design and fabrication when creating a custom SiP.

e A set of design-independent, mass-producible ‘bridge’
chiplets that can be used to connect distinct regions of a SiP.
These, along with the interposer structure, enable flexible
assembly-time interconnect formation.

« Designs and analyses of three low-overhead ECC methods
to improve resilience of chiplet-to-interposer bonds.
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green arrows). The blown fuses enable the cores to communicate in
isolation from accelerator pairs 0/1 and 2/3, and vice versa.
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Fig. 3: ubump clusters comprise a grid of 512 ubumps, each attached
to a distinct interposer wire. The top shows a simplified view of the
internal structure; the white dots indicate which ubump connects to
each wire. Each wire may be fused between each cluster on a rail.

Our evaluation finds that SiPterposer has significant eco-
nomic advantages over traditional 2.5D methods while provid-
ing increased reliability and assembly-time flexibility, which
could substantially lower the cost of custom silicon.

II. RELATED WORK

Recent work in the SiP space has detailed the economic and
technological advantages of building large chips in a ‘disinte-
grated’ fashion — dividing them into multiple independently-
fabricated chiplets and then integrating them on an inter-
poser [7]. Most such work assumes the use of a custom
interposer, and those that attempt to provide greater flexibility
either continue to impose some design restrictions or else
require active logic within the interposer [4].

The materials and mechanical reliability of microbumps
(ubumps) in chiplet/interposer bonds have been studied ex-
tensively [8]. [9] presented an empirical study of defect rates
across an image sensor bonded to a substrate using a large
array of fine-pitch ubumps. There has also been extensive prior
work on correcting bonding defects between layers of a 3D
chip, most of which focuses on replacing defective through-
silicon vias (TSVs) with redundant ones [10]. [11] proposed
adding ECC to correct TSV link defects. However, all these
are designed either to minimize the number of TSVs in a 3D
system or to provide error correction far stronger than SiPs
demand. Few, if any, address pbump defects in general or
2.5D integration in particular. By contrast, this paper takes
a targeted approach by accounting for 2.5D-specific design
considerations and realistic defect models.

Finally, in the NoC space, interconnect reliability has
been explored broadly, with various works discussing routing
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Fig. 4: Bridge chiplet examples. (a) is an active bridge that connects
two adjacent clusters on the same rail via bidirectional buffers; if
attached across a set of blown fuses, it can act as a repeater for long
interconnect paths. (b) is a passive bridge suitable for constructing
a small mesh by directly connecting parts of two adjacent rails; this
pattern can extend across additional rails to enable larger designs.

around failed components [12] or applying ECC to correct
transient faults and crosstalk [13]. To our knowledge, however,
these methods have not been leveraged in the SiP space, and no
prior work has applied ECC to tolerate SiP assembly defects.

III. SYSTEM OVERVIEW

SiPterposer structure. To achieve our goals of generality,
flexibility, and resilience, we propose constructing SiPs using
a generic, fully-passive interposer based on a simple internal
wiring pattern consisting of long, straight data rails (see Fig.
2). Each rail consists of a large number of parallel wires that
span the entire width of the interposer but are not directly
connected either to each other or to wires in any other rail.
ubumps are connected to each wire at regular intervals, and a
group of pbumps, one per wire in the rail, comprises a cluster.
A chiplet may span and connect to one or more of the clusters,
either on the same rail or on different rails.

For our analysis throughout the remainder of this paper,
we define each cluster to support a 512-bit data connection.
Because pbumps are much larger than interwire distances,
they are offset slightly from the centers of the wires to which
they attach, forming a two-dimensional grid (Fig. 3). In our
design, the pbumps are a typical 20um wide with 40um
pitch [8] and are configured in a 16x32 grid, resulting in cluster
dimensions of ~0.7mm by ~1.4mm. Further, we partition each
cluster into eight 64-bit logical links (akin to one node in
a full-mesh network with 64-bit full-duplex links). Different
sets of chiplets may communicate simultaneously by using
disjoint subsets of the available links. Fig. 3 illustrates this
layout/partitioning scheme.

Portions of interposer wiring between each cluster of
ubumps may be separated during the assembly process, caus-
ing them to act as small electronic fuses (Figs. 2 and 3).
Although we refer to these wire segments as ‘fuses’, there
is no need to add specialized fuse components or other
discontinuities to the fabric; existing technology can fuse link
wires at the pitch we propose [14]. At assembly-time, blowing
all fuses at a specific point in a rail can completely disconnect
a set of chiplets from others. Alternatively, blowing fuses to
disconnect only a subset of the logical links within a rail would
allow, for example, system-wide broadcasts over one link,
while other links carry out communication between adjacent
chiplets. Blowing fuses can also enable a chiplet to act as a
repeater (Fig. 4a) or as a node in a mesh with different parts
of a cluster connecting different network edges (Fig. 5).

Other electrical- and protocol-level considerations either can
be handled with standard techniques or are design-dependent.
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Power distribution, for instance, may use typical VLSI [15]
and SiP [16] methods, while interfaces between clock domains
are handled within the chiplets using existing NoC method-
ologies [17]. The proposed physical structure may also be
tessellated to produce a different interposer size without costly
redesign. Since SiPterposer is based on a passive interposer,
communication protocols are defined and handled chiplet-
side. These can range from AMBA buses to packet-switched
networks to fully-custom designs. For the rest of this work, all
chiplets are assumed to use a packet-based network protocol.
Bridge chiplets. In addition, we propose the use of dedicated,
generic bridge chiplets which, in conjunction with the inter-
poser structure, enable assembly-time customization of the
system’s connectivity. These bridge chiplets can be designed in
a handful of different patterns and then mass-produced. Simple
units (e.g., Fig. 4b) include only passive wiring; these ‘bridge’
electrical gaps by directly connecting wires in one data rail
to another. Other bridges may be active devices, deployed
horizontally across portions of a rail separated by blown fuses
to act as a buffer in the middle of that rail (e.g., Fig. 4a),
create clock boundaries, or be full-blown routing devices. To
illustrate the reusability of a small set of bridges across many
different designs, we limit our selection for the remainder of
this work to Fig. 4b’s passive unit (and its derivatives).
Arbitrary topology construction. By blowing fuses in the
interposer wiring and connecting bridge chiplets across dis-
connected regions, we can create any arbitrary interconnect
topology that a chip may require, as follows:

1) Align the network graph to a Manhattan layout.

2) Rotate the graph so as many edges as possible run along
the axis of SiPterposer’s internal wiring, lowering overhead
by reducing the number of bridge chiplets required.

3) Map the nodes in the graph to chiplets and arrange them
as blocks atop SiPterposer’s ubump clusters according to
their logical layout in the network graph.

4) For each edge in the graph:

a) If possible, map the edge to an unused subset of inter-
poser/bridge wires already in the design.

b) If too few bridge wires: (i) add or extend a bridge, or
(i1) time-multiplex access via chiplet-side logic, akin to
virtual channels (VCs) in a NoC.

c¢) If too few interposer wires: (i) move the nodes connected
by the edge to another rail (adjusting previously mapped
edges accordingly), or (ii) time-multiplex access.

d) Blow fuses at the endpoints of the new link, to reduce
wire loading and permit other parts of the newly sepa-
rated interposer wires to be used freely for other edges.

As an example, we illustrate building a simple 2x2 mesh

using this process, in Fig. 5.

Importantly, because SiPterposer’s electrical structure does
not require an active interposer, it may be implemented on any
desired substrate material — Si, organic, glass, efc. (our evalu-
ation assumes Si). Furthermore, it may easily be layered with
other chiplet placement or system configuration techniques
(e.g., [18]) as part of a holistic design methodology.
Defect-tolerance. The overall SiP concept is quite promising,
but it also introduces a new point of failure into chip fab-
rication via the chiplet-to-interposer assembly process. Prior
work estimates this process yield at 99%-99.5% per 1024-
ubump chiplet — a loss that, even in a system with relatively
few chiplets, can be responsible for as much as 26% of the
total manufacturing cost [6]. Rather than trying to reduce the
incidence of these defects, we instead propose tolerating them
by adding a module to each chiplet to provide lightweight
ECC on each interposer bond. Although this requires both
additional wires to carry parity information and chiplet-side
encode/decode logic, it requires no active logic on the inter-
poser, preserving its simplicity and its low manufacturing cost.

In our design, each pbump cluster provides a 512-bit data
connection to an interposer rail, partitioned into eight 64-bit
logical links. We further divide each 64-bit link into four 16-bit
sublinks and then apply a form of ECC to each sublink, either
Hamming single-error-correction (SEC) or Bose-Chaudhuri-
Hocquenghem double-error-correction (DEC). SEC requires 5
parity bits per sublink (672 total ubumps per cluster), while
DEC requires 10 parity bits per sublink (832 ubumps per
cluster). The sublinks within each logical link are interleaved
to better resist physically-adjacent defects [13].

The nature of chip warpage during die bonding [8] inspired
us to also design a third, defect-pattern-aware coding method.
Since warpage-induced mechanical stress causes bonding de-
fects to occur most often at a chip’s edges, we suggest a
hybrid concentric coding structure, with four logical links in
the center of the chiplets (using SEC) and four links along
their more-defect-prone edges (using DEC). As our evaluation
shows, this hybrid approach provides a better yield-overhead
balance than either SEC-only or DEC-only.

IV. EVALUATION

We evaluated SiPterposer’s defect-tolerance and overall per-
formance by simulating assembly of a hypothetical 48-chiplet
system. First, we determined the whole-chip assembly yield
for varying defect rates, ECC, and bonding defect patterns.
Second, we synthesized our ECC hardware and used the results
with whole-system models to simulate SiPterposer’s impact on
network performance and overall chip power/area overhead.
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A. Chiplet Bond Resilience with ECC

We began our evaluation of defect-tolerance by creating
a worst-case scenario for the error correction schemes we
propose, configuring our 48 chiplets into a fully-connected
system. Each chiplet uses exactly one pbump cluster, and
every ubump on a given chiplet is directly connected to the
corresponding pbump on every other chiplet (assuming no
defects). We defined a failed chip as one in which there exists
an uncorrectable fault in any link between any pair of chiplets.
We assumed known-good-dies in our simulations in order to
isolate the effects of coding on pbump bonding defects.

To model assembly defects, we assigned each pbump bond
an independent failure probability based on its physical posi-
tion within a cluster, relative to one of three potential defect
patterns. The first pattern, uniform, assumes that each pbump
bond has an equal chance of failure. The second pattern, edge-
weighted, incorporates the effect of die warpage via a linear
increase in bond failure probability with a ubump’s distance
from the center of a chiplet, from a baseline at the center to 10x
that value at the outermost corner. The third pattern, empirical,
simulates real-world failures using data derived from [9].

For each coding method and defect pattern, we conducted
Monte Carlo simulations (100K trials) of chip assembly to
calculate whole-chip assembly yields while sweeping the base
per-ubump failure probability. For the edge-weighted and
empirical defect patterns, we normalized the failure probability
of an overall chiplet bond to that of a chiplet bond having a
uniform defect pattern with the same base per-ubump failure
probability. Fig. 6 compares each coding method vs. a system
with no error correction. In general, there is little effect on
chip assembly yield with increasing defect pattern complexity,
from uniform to edge-weighted to empirical. Hybrid coding is
an exception: its defect-tolerance increases significantly on the
edge-weighted defect pattern. It performs even better with an
empirical defect distribution, since this pattern’s defects are
even more heavily biased towards the edges of each chiplet.

B. Interconnect Performance

To evaluate SiPterposer’s network performance and electri-
cal characteristics, we modeled two systems-in-package — one
synthetic, one inspired by real-world SoCs — and evaluated
their overheads vs. SoC and traditional-SiP equivalents.
Mesh network, synthetic traffic. Our first, synthetic, system
is an 8x6 full-mesh network containing 48 identical 4mm?
chiplets with 1W nominal power consumption, in which each
chiplet has a 64-bit full-duplex data connection to each of its
neighbors. This is representative of a homogeneous multicore
chip, and constitutes a worst-case scenario for SiPterposer,
since the large number of links required in the topology

TABLE I: Router synthesis results (with ECC)

| Baseline SEC DEC  Hybrid
Power (mW) 3.09 4.92 13.25 9.09
Area (um?) 2108 4973 15752 10363
Area overhead - 8x6 mesh - 0.07% 034% 0.21%
Area overhead - SoC - 0.04% 022%  0.13%
TABLE II: Network params TABLE III: Chipset params
Network clk 2GHz Chiplet area 72mm?
Routing fn dor (mesh), Chiplet pwr 4W total
_ min (SoC) (56mW/mm?)
VCs/buffer size 3/8 CPU clk 900MHz
Router pipeline 4 cycles Chiplet clk 500MHz
Link traversal 1 cycle Memory 2GB/500MHz
Pkt size (flits) 16 (mesh), Vid/img size 1080p
1 (SoC)

increases the number of bridge chiplets needed, which, in turn,
accentuates our proposed system’s overheads.

We established two baseline systems: a monolithic SoC,
and a traditional SiP using a fixed-topology passive interposer.
The latter is necessary because the novelty of this work lies
in the methods we propose for constructing SiPs; thus, it is
important to evaluate SiPterposer against both traditional SoCs
and non-reusable interposer designs. All active logic in each
system is assumed to use a 45nm process node; interposers use
65nm global wire widths. Since the interposers and bridges are
passive, the three systems differ only in encode/decode logic
overhead and link wire dimensions.

First, we constructed HDL models of our SEC and DEC
ECC modules. We then integrated these into an open-source
NoC router model [19] and synthesized the modified router
with Synopsys Design Compiler using an IBM 45nm library to
determine the ECC modules’ area and power overheads; these
are summarized in Table I. As the ECC modules were inserted
directly before/after the input/output buffers, off the critical
path of the router, they exposed no additional timing overhead
to the design. Hybrid coding would entail area and power
consumption exactly between the SEC and DEC routers.

Next, we evaluated network performance and power over-
head using a combination of BookSim [20], ORION 2.0 [21],
and LTSPICE. Since adding ECC to the routers introduced no
additional latency, and because we assume equal link widths
across the three example systems, performance overhead could
only come from added delay from longer inter-chiplet links on
SiPterposer. Using LTSPICE with ORION’s wire models and
[22]’s pbump models, we computed the delay of the longest
link as 62.2ps, small enough to not impact network timing.

Finally, we constructed a model of each interconnect (SoC,
SiP, and SiPterposer) in BookSim and analyzed the link wire
power with ORION for uniform random traffic at varying
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injection rates. Network parameters are given in Table II.
We then combined these results with the synthesized router
designs and our prior chiplet power assumption to determine
the total power overhead (vs. SoC) of each system. This ranged
from 0.98x for the SiP (using SEC) at packet injection rate
r=0.001 to 1.10x for SiPterposer (using DEC) at r=0.0225.
Realistic chipset, real-world traffic. Our second evaluation
framework approximates a real-world mobile chipset with a
mesh-like network topology. Using die shot analyses [23] and
other SoC power/area data [24] as guides, we defined a 72mm?
system with 4W average power consumption, comprising 12
core chiplets (see Fig. 7 and Table III). As before, we use
45nm technology for chiplets/SoC, and 65nm for interposers.
In this system, each chiplet has one radix-5 router with 64-
bit full-duplex links, similar to that of the previous section (see
Table II), which may communicate through pbump clusters at
the corners of the chiplet (this permits shorter inter-chiplet
links in both the baseline SiP and SiPterposer, but could have
worse yield due to die warpage). Adapting this system for
SiPterposer requires three bridges (see Fig. 7). Our analysis
is based on closed-loop simulation with GemDroid [25] and
BookSim, plus ORION’s link power models, with GemDroid’s
IP block power models normalized to a 4W 45nm SoC. We
evaluated real-world performance on various application traces
from the Android Emulator [26]. Again, since integrating
ECC into our router requires no additional latency and the
delay contribution of increased wire length is small (222.3ps
at maximum, well within our 0.5ns link traversal budget),
the only overhead we need to consider is wire power. These
results, in whole-system context, are detailed in Fig. 8. Even
using DEC, SiPterposer incurs no more than 0.2% power
overhead vs. the baseline SoC and 2.9% vs. a traditional SiP.

V. DISCUSSION

Resilience and performance. At currently achievable 2.5D
chiplet bonding defect rates (99%-+ per-bond yield), any of
our proposed ECC methods can achieve assembled-chip yields
near 100%. Differences in resilience become more apparent at
higher defect rates. SEC drops off quickly below a 90%-95%
per-chiplet bond yield, but DEC remains strong even with bond
yield as low as 50%-70%, at the cost of a traffic-dependent
increase in power consumption. Overheads for any of our
methods are quite low, particularly with real-world application
traffic, considering the substantial yield gains they provide.
Hybrid coding, especially with our empirical defect pattern,
is an intriguing case. It has chip yield substantially better than
SEC at low to moderate defect rates, but at high defect rates,
yield drops far more quickly than with DEC. In addition,
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the hybrid structure has power and area overhead exactly
in between SEC-only and DEC-only. Applying the principle
of routing around failed network components [12] further
improves the case for hybrid coding. As a proof-of-concept,
we examined the average number of non-defective links in a
SiP with each ECC method and used the result as a proxy for
the total bisection bandwidth available to the system, as shown
in Fig. 9. Here, hybrid coding performs closely to DEC-only,
but with much lower power and area overhead.

Note that our hybrid coding technique is applied to a
single pbump cluster; for chiplets spanning multiple clusters,
this technique will become less effective as its structure less
closely mirrors the warpage pattern created on the chiplet at
any individual cluster. However, a similar principle could be
applied at the inter-cluster level — i.e., using DEC for whole
clusters towards the edges of a chiplet and SEC for clusters
near its center. We leave further exploration of this and other
aspects of SiP defect-pattern-aware coding for future work.

To understand the impact of SiPterposer’s flexibility on chip
performance, we compared its power consumption to that of a
traditional SiP with a custom interposer. With synthetic traffic
on our 8x6 mesh, we observed a roughly linear increase in
power consumption with increasing network load: 1%-7% with
no ECC, 1%-9% with SEC, and 1%-11% with DEC (reaching
a limit as the network saturates). As previously noted, though,
this mesh topology with uniform random traffic represents a
worst-case-scenario for SiPterposer. More-realistic loads on
our example chipset showed overheads on the low end of these
ranges, averaging 1.5% with no ECC, 2.0% with SEC, and
2.3% with DEC. These values are quite reasonable considering
the degree of flexibility SiPterposer offers—and the impact of
that flexibility on chip cost, as discussed in the next section.

Finally, using LTSPICE, we performed rudimentary analysis

of the longest interposer-bridge-ubump links within each sys-
tem to understand how they might perform in mixed-signal
environments (note that discontinuities at pbump junctions
were not modeled). An AC frequency sweep showed worst-
case -3dB points of 2.48GHz for the mesh and 681.1MHz for
the SoC, which could be further improved by, for instance,
adjusting wire dimensions, modifying chiplet placement, or
including dedicated analog transmission lines as part of the
interposer fabric. We leave more-comprehensive analysis and
optimization of such possibilities for future work.
Economic analysis. Since the novelty of this work lies in
the methods we propose for constructing SiPs, we compare
the economics of SiPterposer against custom, non-reusable
interposer designs. In this analysis, we use the 48-chiplet mesh
and the realistic-chipset from Section IV-B as examples.



DEC
S 100% | 00 .
[11] 80% NHybnd
< ° SEC
S 60%
=
o 40% = None
& 20%
mn 0%

0.00% 0.20% 0.40% 0.60% 0.80% 1.00%

pbump failure probability

Fig. 9: Avg. bisection bandwidth vs. defect rate (empirical pattern).
Hybrid coding outperforms SEC-only and nearly matches DEC-only.

+ $10,000 $10,000

Q

g $1,000 Custom interposer $1,000 Custom interposer

& Mesh crossover:

[ €Sh C : Chipset crossover:
E $100 563K units @ $5.98  $100 1.83M units @ $2.13
° $10 $10 [|SiPterposer

o AN

g $1 SiPterposer $1

O 1,000 100,000 10,000,000 1,000 100,000 10,000,000

Chips produced (mesh) Chips produced (chipset)

Fig. 10: Cost of SiPterposer vs. custom-interposer solutions.

We can characterize the cost of producing an interposer as
c¢=(f/(d*n))+ v, where f represents the fixed/NRE costs
of design and verification, masks, efc., d is the number of
distinct interposer designs built using those fixed costs, n is the
quantity produced of each design, and v is the variable cost of
making each die. For a traditional custom-interposer SiP, d=1;
for SiPterposer, d may be much higher — i.e., SiPterposer’s
NRE costs are amortized across a far greater total volume.

First, we assume that a custom interposer has the same
variable cost per unit area as SiPterposer. As Figs. 5 and 7 sug-
gest, SiPterposer requires more interposer area because of the
additional space needed to attach bridge chiplets, plus the area
of the bridge chiplets themselves. To create either the mesh
or the chipset on SiPterposer, only passive bridge chiplets are
needed; thus, we lump the added interposer and bridge chiplet
area together to determine SiPterposer’s total area overhead vs.
a custom interposer (mesh=1.42x, chipset=1.35x). From these
values, using a manufacturing cost of ~$1,500 per 300mm-
diameter interposer wafer (~2.19-cents per mm?) [27], we
determine v for each scenario: $4.20 vs. $5.96 for the mesh
and $1.58 vs. $2.12 for the chipset on a custom interposer vs.
SiPterposer, respectively.

Next, we assume that the NRE cost f for each distinct
interposer design is $1 million — an intentionally conservative
figure. Given that 65nm masks alone cost about $700,000 [2],
this assumption creates a worst-case scenario for SiPterposer
since, the higher the NRE cost, the stronger the argument
for using a single interposer design. Letting d=100 (i.e.,
SiPterposer is used for 100 different designs for which a cus-
tom interposer would otherwise be needed), we can compute
the break-even quantities for the mesh and the chipset on
SiPterposer vs. a custom interposer (see Fig. 10).

Thus, even when using unfavorable assumptions, SiPter-
poser’s flexibility has economic benefits for designs with vol-
umes up to the hundreds of thousands or low millions of units.
The benefits are even greater at lower volumes; for the example
chipset with n=10,000, each custom interposer would cost
$101.58; SiPterposer, just $3.12. These estimates do not in-
clude the effect of yield gains from ECC on chiplet/interposer
bonds, which would further reduce fabrication costs.

VI. CONCLUSIONS

In this paper, we presented SiPterposer, a mass-producible,

flexible, and defect-resistant communication fabric for SiPs.
We showed how it can be used to build arbitrary net-
work topologies, evaluated the potential cost savings of
our assembly-time-configurable structure, and demonstrated
how tolerating defects by applying ECC to chiplet/interposer
pbump bonds allows us to realize near-100% chip assembly
yields at typical defect rates. An example SiPterposer system
achieves these benefits on real-world applications with less
than 3% additional power and zero exposed latency overhead
compared with traditional SiPs or SoCs.
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