
Brisk and Limited-Impact NoC Routing Reconfiguration
Doowon Lee, Ritesh Parikh and Valeria Bertacco

Department of Computer Science and Engineering, University of Michigan

{doowon, parikh, valeria}@umich.edu

Abstract—The expected low reliability of the silicon substrate
at upcoming technology nodes presents a key challenge for
digital system designers. Networks-on-chip (NoCs) are especially
concerning because they are often the only communication
infrastructure for the chips in which they are deployed. Recently,
routing reconfiguration solutions have been proposed to address
this problem. However, they come at a high silicon cost, and
often require suspending the normal network activity while
executing a centralized, resource-hungry reconfiguration algo-
rithm. This paper proposes a novel, fast and minimalistic routing
reconfiguration algorithm, called BLINC. BLINC utilizes pre-
computed routing metadata to quickly evaluate localized detours
upon each fault manifestation. We showcase the efficacy of our
algorithm by deploying it in a novel NoC fault detection and
reconfiguration solution, where BLINC enables uninterrupted
NoC operation during aggressive online testing. If a fault seems
likely to occur, we circumvent it in advance with the aid
of our BLINC reconfiguration algorithm. Experimental results
show an 80% reduction in the average number of routers
affected by a reconfiguration event, compared to state-of-the-art
techniques. BLINC enables negligible performance degradation
in our detection and reconfiguration solution, while solutions
based on current techniques suffer a 17-fold latency increase.

I. INTRODUCTION

Increasing transistor densities have significantly affected the
architecture of silicon chips. In particular, processor designs have
transitioned to multi-core architectures, as a solution to improve
performance while keeping power dissipation in check. Networks-
on-Chip (NoCs) are a promising communication substrate for
multi-core architectures, providing high-bandwidth and concur-
rent communication among chip components. NoCs are often the
only communication medium among the units on chip, and hence
a malfunctioning NoC may render the entire chip dysfunctional.
Further, due to the waning reliability of silicon, ensuring the
correct operation of NoCs at runtime is becoming increasingly
challenging.

Correct NoC operation in face of unreliable silicon can be
guaranteed by providing routing reconfiguration to prevent and
circumvent failures. Unfortunately, the solutions available today
tend to be resource-heavy and impact the entire interconnect.
These techniques are based on the assumption that fault oc-
currences are rare events. Thus, they strive to provide optimal
or quasi-optimal post-fault routing reconfiguration, at a high
reconfiguration latency cost. For instance in [1], reconfiguration
takes between a 1K and 10K clock cycles for an 8×8 mesh
with dedicated hardware. When reconfiguration is conducted in
software, it takes substantially longer [2,6]. In addition, all these
solutions require suspending normal network activity while the
reconfiguration is ongoing: in-flight packets are stalled because
new routes may conflict with old routes, possibly triggering
a deadlock situation. Overall, these solutions fail to provide
uninterrupted availability in presence of faults: a property that
a digital system expects from its communication infrastructure.

Distributed fault-recovery solutions [5,24] operate by enabling
each router to monitor the availability of its neighbors. When
it finds that a neighboring resource has become unavailable, the

978-3-9815370-2-4/DATE14/ c©2014 EDAA

router avoids transmitting towards the affected direction. While
solving the issue of preventing packet loss, these solutions may
fall into livelock, due to the short-sightedness of their detouring
approach. Indeed, the router enforcing the detour may require
global connectivity information to guarantee correct delivery
and deadlock-freedom, even in presence of a few faults. This
requirement, though, brings along storage and route computation
overheads.

In this work, we propose a Brisk and Limited-Impact NoC
routing re-Configuration (BLINC) algorithm. BLINC deploys a
topology-agnostic routing algorithm, which provides maximal
connectivity and deadlock-freedom. The algorithm leverages a
novel representation of the network topology, which allows
to quickly perform reconfiguration locally, affecting very few
routers. The representation consists of routing metadata stored
at each router in a distributed fashion, and updated upon each
reconfiguration event through neighbor-to-neighbor updates. The
metadata is used to compute alternative (emergency) routes, which
affect only a few routers in most cases, and can be quickly de-
ployed upon a failure. BLINC maintains a deadlock-free network
connectivity at all times, if at all possible.

We use our BLINC algorithm to develop a transparent relia-
bility solution for NoCs, based on aggressive online testing and
failure prevention. In our framework, individual components are
taken offline and tested to evaluate if they are close to failing,
in which case they are disabled. BLINC allows us to quickly
move components offline and back online, and it provides a first-
response routing solution when a failure is deemed imminent.
These capabilities allow our framework to operate uninterrupted
and without data loss through testing and fault reconfiguration.

Contributions. In summary, we make the following contributions.

• We propose a novel, fast, deadlock-free, distributed and lo-
calized routing reconfiguration algorithm, called BLINC. Exper-
imental results show an 80% reduction in the number of routers
affected by a reconfiguration event and a 98% reduction in
reconfiguration latency, compared to existing solutions [1,22].

• We present a route computation framework that minimizes
performance impact. Emergency routes provide near-optimal al-
ternative routes without computation-intensive rerouting.

• We develop a transparent fault detection and reconfiguration
solution based on BLINC. Our solution enables uninterrupted
network operation during aggressive component-testing and fault
reconfiguration. It presents a minimal latency increase of 6%,
compared to a 17× increase for a baseline approach that stalls
one link segment at a time.

II. RELATED WORK

Wachter et al. [22] recently summarized existing fault-tolerant
routing techniques. Most of them can be grouped into two families
based on their approach to reconfiguration. The first family
deploys routing tables and logic that are updated upon each fault
occurrence [1,4,15,22]. This approach is topology-agnostic and,
in the best case, it can tolerate an arbitrary number of faults, but
suffers from high reconfiguration overhead. [16] also falls within
this family: it proposes to use route-computation logic instead
of routing tables to limit silicon area overhead, but requires an
additional computation step to configure the routing logic.

The second family of solutions exploits bypass rules to reroute

around faults using local connectivity information [5,24]. Due
to the localized nature of these solutions, they can only sustain
a few faults before the network becomes disconnected. Other
solutions also exist that do not belong to either of these families.
For instance, [14] leverages stochastic communication to select
the forwarding direction for each packet. While it can provide
high fault tolerance at low silicon cost, it also suffers from high
performance impact due to the use of non-minimal paths and lack
of a delivery-guarantee.

Fast routing reconfiguration has been investigated mostly for
off-chip interconnection networks, such as local area networks
(LANs). [2] proposes a dynamic, progressive reconfiguration
procedure based on the up*/down* routing algorithm [17], which
uses graph manipulation operations. However, it only discusses
reconfiguration principles without investigating the details and
hardware required to support the reconfiguration procedure. Sim-
ilarly, [18] proposes a fast dynamic reconfiguration procedure
based on partial channel lists. Although both solutions claim fast
reconfiguration and uninterrupted operation, they do not provide
evidence supporting their claims. In the on-chip networks domain,
OSR-Lite [20] proposes a fast reconfiguration solution utilizing
resources to support two routing-computation logic sets based on
[16], with only one of them active at a time. Upon a fault occur-
rence, a central manager calculates the new replacement routes,
while the old ones are still in use, then the two are swapped.
While OSR-Lite is reported to be faster than hardware solutions,
the dedicated central manager is a single-point of failure. [21]
improves [20] with a disconnection-rescuing algorithm, but it still
misses potential connections due to its limited routing capability.
[7] proposes a time/space-efficient reconfigurable routing algo-
rithm, but it does not show its applicability to fault tolerance.

In Table I, we present a comparison of relevant routing recon-
figuration techniques. Our proposed solution, BLINC, is very fast
and provides high tolerance against a wide range of faults.

TABLE I
COMPARISON OF EXISTING ROUTING RECONFIGURATION TECHNIQUES

method context computation impact speed
fault

tolerance

BLINC (our solution) on-chip hardware local very fast high

ARIADNE [1] on-chip hardware global fast high

MD [5] on-chip hardware local very fast low

Sem-Jacobsen et al. [18] off-chip software local slow high

OSR-Lite [20,21] on-chip software global moderate moderate

III. BLINC RECONFIGURATION

The main objective of our technique is to promptly find
alternative routes for packets affected by a network topology
change, due to a fault or other event. Our goal is to be fast and
minimalistic in the number of routing modifications, so that the
network traffic is minimally perturbed.

In distributed routing, forwarding directions are selected locally
at each router. Thus, rerouting entails recomputing the routing
tables for all routers in the network [1,4,15]. We observe that
we can limit the recomputation effort by utilizing pre-computed
routing metadata, so to quickly pinpoint the affected routes. The
immediate rerouting response from BLINC is fast and deadlock-
free, but not necessarily minimal. However, traffic remains unin-
terrupted while we generate a new minimal routing configuration
in the background. To this end, we also initiate concurrently
a complete routing reconfiguration in software to generate new
optimal routing paths in light of the new topology. Once this
process is completed, the new reconfiguration is transferred to all
network nodes and it replaces the emergency routing approach.

route
computation

(RC)

BLINC
reconfig.
module

re
co

n
fi

g
u

ra
ti

o
n

 m
e

ss
a

g
e

s
to

 n
e

ig
h

b
o

r
ro

u
te

rs

packet forwarding direction

routing
table

path
selection

offline
computation

re
co

n
fi

g
.

c
o

n
tr

o
ll
e

r

topology
analysis

routing
metadata

emergency
RC

normal emergency
rerouted?

online
computation

Fig. 1. Route computation. BLINC deploys two route computation
components: routing tables (white) and reconfiguration modules (gray). On
a fault occurrence, invalid routes are immediately replaced by emergency
routes, while a software procedure in the background computes new optimal
routes. When these are ready, they replace the emergency routes.

Figure 1 shows the components required for our BLINC
algorithm. The white-background blocks are part of the baseline
router: routing tables are generated offline [10] and ready when
the network becomes operative. Upon a topology change, the
gray-background reconfiguration module quickly calculates valid
alternative (emergency) routes, so that packets affected by the
change can be safely sent through them. Note that the majority
of packets still utilize the original optimal routes. Thus, the
deployment of our emergency routes enables fast rerouting at the
expense of route optimality.

A. Alternative Route Generation Cost Analysis

Turn model: Most regular on-chip network topologies, including
meshes and tori, often have many alternative routes available for
each source-destination pair. For example, in a mesh, it is possible
to choose between XY or YX routing, among other minimal
options. With reference to Figure 2.a, node 1 can reach node
4 through node 5 or through node 0. To avoid cyclic channel
dependencies [3], and thus guarantee deadlock-freedom, some of
these routes should be prohibited. For instance, the turn model
described in [8], disallows routes passing through a particular set
of turns. A turn is defined as a connection between two links
through a router. For instance, in Figure 2.a, we can prohibit the
turn 1-5-4 so that no packet can traverse the path 1→5→4 or
4→5→1. Upon a fault affecting a link (or a portion of a router
impacting link operability) the disabled turns must be recomputed
to allow packets to go through alternative surviving routes. This
effort entails a global routing reconfiguration [4], and it does not
guarantee deadlock-freedom.
Up*/down* routing: Spanning tree-based routing algorithms,
such as up*/down* routing [17], can be applied to route packets
in any topology. The up*/down* algorithm assigns a total order
to each node in the tree, from root to leaves, and it guarantees
deadlock-freedom, as long as packets are not routed between
two lower-order nodes via a high-order node (no down-up turn).
However, upon a topology change, the up*/down* algorithm
suffers from long reconfiguration latencies [1], more than 20K
cycles for a 64-nodes off-chip network topology [2].
Segment-based routing: We note that it is possible to design
alternative routes based on local information, if we use segment-
based routing [13]. In segment-based routing, the entire network
is partitioned into segments. The segmentation process starts
by selecting a root node, and then identifying a segment as a
sequence of nodes and links that starts and ends at the root node.
Each subsequent segment is identified by building a sequence that
starts and ends at nodes already included in the segmented portion
of the network. Figure 2.a shows an example of segmentation.
Recent work [12] has shown that it is preferable to segment a
network so that each segment has exactly two links connecting it

0

54

1 2

76

3

8

1312

9 10

1514

11

A B

C E

D F

a) sequential segmentation

: restricted turn

b) tree of segments

upward
direction

A

B

C

D

E

F

3

7

11

c) intra-segment tree

root node

segment
E

downward
direction

Fig. 2. Network segmentation example. a) The segmentation process
begins by identifying a segment that starts and ends at the root node (node
0). Additional segments stem from nodes already part of other segments
(e.g.: segment B). b) The corresponding segment-to-segment tree structure
reflects this construction from root to leaves. c) Nodes within each segment
are organized in intra-segment trees. Note how each segment includes two
connections to a parent segment.

to the already segmented portion of the network. We follow this
advice in our experimental evaluation. We propose in this work
to augment this algorithm and maintain metadata at each node,
so that, upon a fault, it is possible to quickly modify the routing
configuration locally.

B. Our Enhanced Segmentation Infrastructure

Our offline routing solution augments segment-based routing
with an additional high-level tree structure, showing the connec-
tivity between segments. The higher-level tree (Figure 2.b) is
built by traversing the network segment-by-segment, following
adjacency, starting from the root segment. Any two adjacent
segments have a parent-child relationship if the segment under
consideration (child segment) has links connecting it to one or
more segments already in the tree (parent segments). For example,
once segment A and B have been considered, segment C is found
to be a child of both. Nodes in the tree are ordered from root to
leaves based on the order in which they are included in the tree
(to improve readability, Figure 2.b shows the segment order by
using letters instead of numerals). Moreover, we also introduce
an ordering of the nodes within each segment by building “intra-
segment trees” (see Figure 2.c). Once all nodes are ordered, we
can enforce deadlock-free routing by forbidding turns around the
highest order node in each segment. Note how the forbidden turns
indicated in Figure 2.a follow the approach described: for instance
in segment E, the highest order node is 11, according to Figure
2.c. Thus, we disable the turn 10-11-7.

To provide an intuitive understanding of our approach, we
leverage the fact that each segment is connected to segments
closer to the root through two links. Thus, upon a link failure
within a segment, it is possible to use the two links to reach
the two disconnected portions of the segment. The tree structure
remains unchanged, and it is sufficient to find a different route
through one or more segments. As an example, in Figure 2.a,
assume that packets going from node 4 to node 13 traverse nodes
8 and 9. If the link 8-9 fails, it is possible to find an alternate
route via 5, 6, 10 and 9. Note that the alternate route may be
non-minimal. However, as shown in Section IV, routes generated
using our algorithm are only slightly longer than minimal.

C. Routing Metadata

To quickly find emergency routes upon a failure, the BLINC re-
configuration module leverages routing metadata that we compute
while segmenting the network. Routing metadata is embedded at
each router, and it includes three types of information:
• Port type: A router port can be connecting the router to a
lower-order node (parent port), or to a higher-order node in the
same segment (intra-segment port), or to a higher-order node in

3

a) port type

13

10

1514

11

: parent : child

54

1 2

76

8

1312

9 10

1514

11

0

9

b) children sets (node 9)

{13,14,15}

{10,11,15}

dest dir

15 E,S,W

... ...

c) preference list (node 9)

: intra-segment

1 W,E,S

0 W,E,S

: restricted turn

Fig. 3. Routing metadata. a) Port types are assigned based on our
hierarchical segmentation process. b) Each port in a node has an associated
children set through child and intra-segment ports. c) Preference direction lists
associated with each node are optional.

a different segment (child port). Figure 3.a indicates the type of
all ports for our example network.

• Children set: the set of reachable nodes along downward routes
for each port. Figure 3.b shows the children sets for node 9.

• Preference list (optional): An ordered list indicating the pre-
ferred output directions. If available, this list is used to improve
the quality of the emergency routes generated. The list can be
user-provided or generated automatically. In our evaluation we
prioritize based on distance to destination. Figure 3.c shows an
example of preference list.

Note that, if an output port includes the destination node in its
children set, the node has at least one valid route to destination,
since downward traversal is always allowed. To store the routing
metadata at each router we need: 2 bits to encode the port type, a
bit array to indicate the children set for each port, and 6 bits per
destination to encode the preference list (at most 3 directions, 2
bits to encode each direction). Thus, for an 8x8 mesh, we need
at least 264 bits per router (384 additional bits if the preference
list is provided).

D. Reconfiguration Process

Upon a link failure, BLINC leverages the metadata described
above to quickly generate alternative routes for the affected pack-
ets. Figure 4 illustrates the process with a high-level schematic:
each segment can be represented as a chain of nodes, and thus
the segment affected by the failure will find itself partitioned. The
localized reconfiguration process will re-establish connectivity
for all nodes by exploiting the additional routing paths that had
earlier been disabled to avoid deadlock. Indeed, because of the
construction described in Section III-B, each segment contains
exactly one disabled turn which, at this point, will be re-enabled.
Then all the children sets within the segment must be updated, so
that each node is reachable from the segment boundary. This goal
entails adding children to some ports’ children sets and removing
children from other ports. In the example of Figure 4, Y was
originally reachable via X only, but after the failure, it becomes
reachable via Z instead. Finally, the additions and subtractions
to the children sets are propagated outside the segment, until a
common ancestor is reached. The reason to keep the children sets
updated is that, during a topology change, packets whose routing
is affected by the change will use the children sets to determine
their new paths. This decision guarantees that even packets
undergoing a detour will reach their destination in the minimum
number of hops possible in the new topology. Moreover, the
elements added or removed from the children sets are maintained
in a separate bit array so that it is possible for a packet to
determine when it is undertaking an “emergency route”. Note
that this emergency route is also deadlock-free because the rest
of the network maintains the same turn restrictions as before. Note
also that a new optimal routing configuration is being generated
in the background in software; once computed, it overwrites all
emergency routes.

X
Y

a) before b) after

-X,Y,T

+X
+X,Y

T
Z

X
Y

T
Z

+X,Y

Fig. 4. Children set update on reconfiguration.

Algorithm 1 provides an outline of the reconfiguration algo-
rithm. We describe each step in detail below and illustrate the
process with an example in Figure 5. If the faulty link is adjacent
to the node with the disabled turn within the segment, then only
steps 1 and 5 of the algorithm must be executed. When that is
not the case, all steps of the algorithm must be completed.

Algorithm 1 BLINC reconfiguration procedure

1: (parent node, child node) = disabled link

2: if(Not HasTurnRestriction(child node))
3: turn node = FindTurnRestrictedNode(child node)
4: ReversePortType(from child node to turn node)
5: added set = GetNewChildren(turn node)
6: curr node = Parent(turn node)
7: while(Not IsEmpty(added set))
8: AddChildrenSet(curr node, added set)
9: Update(added set), curr node = Parent(curr node)
10: WaitForAck(child node)
11: removed set = GetUnreachableChildren(parent node)
12: curr node = Parent(parent node)
13: while(Not IsEmpty(removed set))
14: RemoveChildrenSet(curr node, removed set)
15: Update(removed set), curr node = Parent(curr node)

Step 1. Disabling the link: Nodes adjacent to the faulty link stop
sending packets through it (line 1 in the pseudo-code).
Step 2. Re-enabling the turn: Before the fault, the node with
the disabled turn (T in Figure 4) was the leaf in the intra-segment
tree. After the fault, the portion of the segment between the
turn-disabled node and the faulty link becomes isolated (portion
between X and T in Figure 4). To reconnect it, we need to i)
re-enable the turn at T, ii) swap the port types for each link in
the isolated portion (Figure 5.2), and then iii) create an “added-
children set” for each port in the isolated portion, which includes
all the nodes downstream towards X (lines 3-5 in the pseudo-
code). The added-children set is used to detect when a packet must
detour because of the fault: if the destination is in the original
children set, the packet does not experience a detour, otherwise
a detour is necessary.
Step 3. Enabling alternative routes: Once the added-children set
for the turn-restricted node (T in Figure 4) is computed, the set is
propagated toward the root node, across segment boundaries, to
instruct every node of the new route to reach the destinations
next to the faulty link. For each node towards the root, the
current children set of that node is compared against the incoming
added-children set, then the latter is reduced to include only
nodes not already present in the children sets of the node under
consideration. Indeed, if a destination was already in the children
set of a node, no routing change should be applied at that node.
The process stops when the added-children set becomes empty.
In Figure 5.3, the added-children set is propagated from node 10
all the way to the root node and node 4 (lines 6-9).
Step 4. Waiting for ack: The last recipients of the added-children
set generate an acknowledgment message that is propagated all
the way back to the node adjacent to the link failure (line 10).
Step 5. Disabling invalid routes: Finally, the other portion of
the segment (the one connected to the parent port side of the
faulty link) generates a “removed-children set” to indicate that it
cannot reach the other end of the link. The removed-children set
is propagated towards the root in a similar fashion to the added-
children set: the only difference is that nodes are eliminated from

3

54

1 2

76

8

1312

9 10

1514

11

0 3

54

1 2

76

8

1312

9 10

1514

11

0 3

54

1 2

76

8

1312

9 10

1514

11

0

3

54

1 2

76

8

1312

9 10

1514

11

0 3

54

1 2

76

8

1312

9 10

1514

11

0

(1) disabling link (2) swapping port types

{9,13,14,15}

(3) enabling alternative routes

added set =
{9,13,14,15}

(4) waiting for ack

removed set =
{9,10,11,13,14,15}

(5) disabling invalid routes

allo
wdisabled

: affected router

: message propagation

: restricted turn

: segment boundary

: intra-segment

: parent

Fig. 5. Reconfiguration example. The turn restriction in the segment with a
fault is eliminated and the new intra-segment leaf is the node next to the faulty
link (node 9). An added-children set is created to indicate the new routes to
reach the downward nodes after the fault, and it is propagated towards the root
node. Once this step completes, acknowledgment messages are propagated
back down. A similar process is followed to propagate removed-children sets
starting from the other end of the fault (node 8).

the removed-children set when they already exist in the union of
the children sets of all router’s ports other than the port receiving
the remove-children message (lines 11-15). Each router tracks its
children’s modification through a bit vector.

Messages carrying the port swapping and the added- or
removed-children sets can be transmitted on the same network us-
ing a dedicated virtual channel. Note that this minimally impacts
the router’s frequency because it only adds a 2-input multiplexer
in front of the crossbar. In addition, packets in reconfiguring
routers are stalled until the reconfiguration process is completed.
Then packets are routed as before, simply following the turn
restriction rules. However, when a packet is forwarded through
a port that includes that packet’s destination in its added- or
removed-children set, the packet enters “emergency routing”, and
a corresponding flag is set in its header flit. Once a packet is
in emergency routing, it routes using a minimal-hop tree-routing
algorithm by always selecting the port containing the destination
in its children set. When multiple options are available, the
preference list is used. When no choices are available, the packet
is routed towards the upward direction, in the worst case, to the
root node.

E. Discussion

BLINC reconfiguration is capable of tolerating a single link
failure per segment. Once a segment is damaged by a fault,
the next fault in the same segment may not be recovered by
BLINC. We deploy a background rerouting algorithm to handle
this. The background rerouting computes an optimal routing
function for the surviving network topology. Subsequently, the
new metadata can be overwritten safely when the network is idle.
Although this rerouting process usually takes longer than our fast
reconfiguration [6], it is still much shorter than the plausible time
to the next failure. Indeed, BLINC supplements existing solutions
by providing a fast emergency response against the fault.

BLINC’s metadata adds to the router’s area footprint, so it can
be affected by faults. However, since the metadata consists mostly
of storage, it can be easily protected by error-correcting codes.

IV. EXPERIMENTAL EVALUATION

We evaluated our BLINC algorithm with a cycle-accurate NoC
simulator, Booksim [3]. Our baseline design uses wormhole, 3-
stage pipelined routers with buffers for eight 64-bit flits per input

port, connected in a mesh topology. Packets are 10 flits long,
injected using random traffic at a 0.05 flits/cycle/router rate. We
first evaluated the performance of our solution, and then consid-
ered its value in the context of a fault detection/reconfiguration
solution for uninterrupted availability.

Fault Model. We assume that the faults’ spatial distribution
is uniform over the component’s area [1]. Thus, we derive area
values for each major module (input buffers, crossbar, route
computation unit, etc.) of the router in [3], using Synopsys DC
and the Nangate 45nm target library. The faults’ impact noted
in this synthesized logic model is then mapped to the link-failure
model of the network: i) faults in the router’s control logic (9.4%)
disable the entire router, affecting all surrounding links; ii) faults
in the router datapath (90.6%) only disable one link, including
the two I/O ports connected at its ends. Our evaluation considers
4 baseline systems, with the following fault’s nominal rates: 0%,
1%, 5% and 10%. The rate corresponds to injecting a number of
faults equal to the fraction of links in the topology (an 8x8 mesh
has 112 links, thus the 25% rate would be 28 faults). Note that
some faults may affect several links.

To evaluate BLINC, we create 10 distinct faulty topologies,
using different random seeds for each fault rate, and then generate
one more failure at 10 random different sites. In total, each fault
rate is evaluated with 100 distinct fault situations (10 baseline
topologies × 10 failure locations).

A. Characterization

Number of affected routers. The left part of Table II reports
the average number of routers affected by a reconfiguration event
over a range of fault densities and network sizes. The affected
number of routers increases slowly with network size, showing
that BLINC localizes the fault manifestation to a small region.
Compared to existing methods [1,20], BLINC achieves more than
80% reduction in the number of affected routers, across a wide
range of fault densities.
Reconfiguration latency. Reconfiguration latency was computed
assuming that each node takes 5 cycles to process an add/remove
children-set message and 1 cycle to propagate the acknowledge-
ment messages. Our findings are reported on the right part of
Table II. While reconfiguration latency is minimally sensitive to
network size, it does show a steady increase with growing fault
density. We believe this is due to the naturally occurring longer
segments in faulty networks, which in turn, impose more hops in
the transmission of reconfiguration messages. Overall, BLINC’s
reconfiguration latency is 98% shorter than previous hardware-
based techniques [1]. Note that [20,22] have the disadvantage
of performing reconfiguration in software, thus competing with
applications for CPU-time.

TABLE II
AFFECTED ROUTERS AND RECONFIGURATION LATENCY

impact of next fault

method
initial # affected routers reconf. latency (cycles)

faults 6×6 8×8 10×10 6×6 8×8 10×10

BLINC

0% 7.0 9.0 9.9 21.0 26.0 30.1

1% 6.8 9.3 10.3 21.0 28.1 31.1

5% 7.1 9.1 10.0 23.9 28.7 30.6

10% 6.6 8.9 10.0 24.9 30.0 34.4

ARIADNE [1] - all routers 1.3K 4.1K 10K

OSR-Lite [20] - all routers - ∼569* -

Wachter et al. [22] - all routers - - 0.2K-208K

Quality of emergency routes. Figure 6 shows the hop count
increase and the utilization of emergency routes when the number
of disabled links over the baseline topology varies from 1 to
10. The average hop count increases as the number of disabled

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

1 2 3 4 5 6 7 8 9 10

e
m

e
rg

e
n

cy
 r

o
u

te
 u

ti
li

za
ti

o
n

 (
li

n
e

)

h
o

p
 c

o
u

n
t

in
cr

e
a

se
 (

b
a

r)

number of disabled links over baseline

hop count increase (vs 0-disabled)

hop count increase (vs optimal)

emergency route utilization

5% nominal fault rate,
8x8 mesh

Fig. 6. Effect of multiple disabled links. The network performance degrades
gracefully as additional links are disabled. The emergency routes shows only
a slightly worse hop count than optimal ones.

links increases, up to 11.4%, compared to the performance of
the baseline topology. In addition, the plot indicates only a
3.0% increase in hop count compared to optimal routes. Further,
emergency routing is applied to 7.7% of the packets at 1 fault,
and up to 48.7% of the packets at 10 faults. These results suggest
that emergency routing provides near-optimal routes.

B. Uninterrupted Availability with BLINC

To showcase the value of BLINC’s approach, we evaluated its
deployment in a fault detection and reconfiguration solution that
provides uninterrupted availability. The methodology tests net-
work resources aggressively to detect early signs of an upcoming
fault. Each link, in turn, is taken offline for testing, which is
performed through transmission of testing packets generated by
a test pattern generator, such as the one in [9]. This approach
can detect a majority of router faults [4]. For this methodology
to be valuable, i) the network should be available and connected
while a link is being tested and ii) the testing approach should be
capable of detecting early signs of link failure (e.g.: increased
delay, etc.), so that the network can reconfigure around the
upcoming fault with no loss of packets. The first requirement
can be accommodated by our BLINC algorithm: as shown in the
previous section, it can provide emergency routes with minimal
overhead. The latter requirement has been solved in the context
of microprocessor designs [19,23] but, to date, no solution of
this kind has been developed for NoCs. Because of BLINC’s fast
and localized reconfiguration, it is possible to select each link
in turn, take it offline, test it in a harsh operating environment
to mimic circuit aging (such as lowered supply voltage [19]),
and then bring it back online. BLINC can simply reconfigure
the NoC to avoid the target link before the testing phase, and
then reactivate the original routing after the test completes. If a
link is found at risk of experiencing failure, emergency routing
is maintained until a new segment-based routing solution can be
computed in the background.

The testing flow is characterized by two parameters: the length
of the test duration for each link (L) and the network testing rate
(f), as illustrated in Figure 7. One complete testing cycle entails
testing each link in turn. Note that the network should remain
completely available even throughout testing.

link
1 32 N-1 N

testing period* (f) normal execution period (1-f)

... L cycles

user packets

testing packets * User packets are delivered

in the testing period

Fig. 7. Online testing flow. The network should remain completely available
even during testing, so that an aggressive testing frequency does not degrade
network performance.

Figure 8 reports our findings: it plots average packet latency

under a range of testing rates and test durations. Viable testing
rates and durations were derived from [9,11,23]. For instance,
the rightmost data point in our plot corresponds to one complete
test period every 112,000 cycles. We compare our measurements
against a routing solution (called Stall) that does not benefit
from BLINC. In Stall, packets are simply stalled in their buffers
whenever they are trying to use a link undergoing testing. We only
compared against Stall, because other solutions [1,4,15,22] have
reconfiguration latencies longer than the test durations we are
evaluating. From Figure 8, we observe that with BLINC, average
packet latency is minimally affected (6% in the worst case)
by the ongoing testing and reconfiguration process, regardless
of test durations. Moreover, Stall cannot provide uninterrupted
availability beyond a test duration of 500 cycles, even at very low
testing rates (the latency increase is 17× for L=1,000, f=1%).

100
200
300
400
500
600
700
800
900

1000

0.50% 1% 5% 10% 50% 100%

a
v

e
ra

g
e

 p
a

ck
e

t
la

te
n

cy
 (

cy
cl

e
s)

testing rate (f)

Stall (L=1000)

Stall (L=500)

Stall (L=100)

BLINC (L=1000,500)

BLINC (L=100)scale change
...

5% nominal fault rate,

8x8 mesh

Fig. 8. Average packet latency under online testing. BLINC reconfigures
routing quickly, supporing online testing with only negligible performance
degradation.

Figure 9 shows the accepted flit rate during testing. We
evaluated this under a randomly chosen 8×8 mesh topology and
1,000 random traffic patterns with L = 500. BLINC provides a
steady packet delivery capability. The accepted flit rate shows only
little fluctuations as shown in the figure. On the contrary, Stall
shows a decreased delivery capability with a periodic increase
when the link under test changes. We also conducted the same
experiment for BLINC with a doubled injection rate. The result
shows a similar result as the one in the figure, except for a
slightly lowered accepted rate at the fifth link period (12,000-
12,500 cycles), shortly recovered in the next period.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

a
cc

e
p

te
d

 r
a

te
 (

fl
it

s/
cy

cl
e

/r
o

u
te

r)

time (cycle)

BLINC Stall

9500 10000 10500 11000 11500 12000 12500 13000 13500

testing start

reconfiguration period

BLINC

Stall

5% nominal fault rate,

8x8 mesh

change in link

under test for:

Fig. 9. Accepted flit rate during testing. BLINC shows a steady rate with
little fluctuations during reconfiguration (near 12,100 cycle and 13,150 cycle).
Stall shows a constantly decreasing rate with periodic peaks.

V. CONCLUSIONS

We proposed BLINC, a brisk and local-impact NoC routing
reconfiguration algorithm. BLINC utilizes a combination of online
route computation procedures for immediate response, paired with
an optimal offline solution for long term routing. To achieve its
goal, BLINC employs compact and easy-to-manipulate routing

metadata. Our evaluation shows more than 80% reduction in the
number of routers affected by reconfiguration, and 98% reduction
in reconfiguration latency, compared to state-of-the-art solutions.
We also discussed how BLINC enables uninterrupted availability
for networks-on-chip, by allowing individual network links to
be taken offline for testing at high frequency. BLINC maintains
stable network performance with only a 6% increase in latency
during testing, in contrast with a 17-fold latency increase for a
baseline approach that stalls one link segment at a time.

Acknowledgements. This work was supported by STARnet,
a Semiconductor Research Corporation program sponsored by
MARCO and DARPA, and NSF grant #0746425.

REFERENCES

[1] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, “ARIADNE:
agnostic reconfiguration in a disconnected network environment,” in
Proc. PACT, 2011.

[2] R. Casado, A. Bermudez, F. Quiles, J. Sanchez, and J. Duato, “Perfor-
mance evaluation of dynamic reconfiguration in high-speed local area
networks,” in Proc. HPCA, 2000.

[3] W. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Morgan Kaufmann, 2003.
[4] A. DeOrio et al., “A reliable routing architecture and algorithm for

NoCs,” IEEE Trans. CAD, vol. 31, no. 5, 2012.
[5] M. Ebrahimi, M. Daneshtalab, J. Plosila, and F. Mehdipour, “MD:

minimal path-based fault-tolerant routing in on-chip networks,” in Proc.

ASPDAC, 2013.
[6] J. Flich et al., “A survey and evaluation of topology-agnostic determin-

istic routing algorithms,” IEEE Trans. PDS, vol. 23, no. 3, 2012.
[7] B. Fu, Y. Han, J. Ma, H. Li, and X. Li, “An abacus turn model for

time/space-efficient reconfigurable routing,” in Proc. ISCA, 2011.
[8] C. Glass and L. Ni, “The turn model for adaptive routing,” in Proc.

ISCA, 1992.
[9] C. Grecu, A. Ivanov, R. Saleh, and P. Pande, “Testing network-on-chip

communication fabrics,” IEEE Trans. CAD, vol. 26, no. 12, 2007.
[10] M. Koibuchi, A. Jouraku, and H. Amano, “The impact of path selection

algorithm of adaptive routing for implementing deterministic routing,”
in Proc. PDPTA, 2002.

[11] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu, “Self-
adaptive system for addressing permanent errors in on-chip intercon-
nects,” in IEEE Trans. VLSI Systems, 2010.

[12] A. Mejia, J. Flich, and J. Duato, “On the potentials of segment-based
routing for NoCs,” in Proc. ICPP, 2008.

[13] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie, “Segment-
based routing: an efficient fault-tolerant routing algorithm for meshes
and tori,” in Proc. IPDPS, 2006.

[14] M. Pirretti et al., “Fault tolerant algorithms for network-on-chip inter-
connect,” in Proc. ISVLSI, 2004.

[15] V. Puente, J. Gregorio, F. Vallejo, and R. Beivide, “Immunet: a cheap and
robust fault-tolerant packet routing mechanism,” in Proc. ISCA, 2004.

[16] S. Rodrigo et al., “Addressing manufacturing challenges with cost-
efficient fault tolerant routing,” in Proc. NOCS, 2010.

[17] M. Schroeder et al., “Autonet: a high-speed, self-configuring local area
network using point-to-point links,” IEEE Journal of Selected Areas in

Communications, vol. 9, no. 8, 1991.
[18] F. Sem-Jacobsen and O. Lysne, “Topology agnostic dynamic quick

reconfiguration for large-scale interconnection networks,” in Proc. CC-

Grid, 2012.
[19] J. Smolens, B. Gold, J. Hoe, B. Falsafi, and K. Mai, “Detecting emerging

wearout faults,” in Proc. SELSE, 2007.
[20] A. Strano et al., “OSR-Lite: fast and deadlock-free NoC reconfiguration

framework,” in Proc. SAMOS, 2012.
[21] F. Trivino, D. Bertozzi, and J. Flich, “A fast algorithm for runtime

reconfiguration to maximize the lifetime of nanoscale NoCs,” in Proc.

INA-OCMC, 2013.
[22] E. Wachter, A. Erichsen, A. Amory, and F. Moraes, “Topology-agnostic

fault-tolerant NoC routing method,” in Proc. DATE, 2013.
[23] B. Zandian et al., “WearMon: reliability monitoring using adaptive

critical path testing,” in Proc. DSN, 2010.
[24] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algorithm

for a fault-tolerant 2D-mesh network-on-chip,” in Proc. DAC, 2008.

