ArChiVED: Architectural Checking via Event Digests
for High Performance Validation

Chang-Hong Hsu*, Debapriya ChatterjeeT, Ronny Morad?, Raviv Galt, Valeria Bertacco*

*University of Michigan, Ann Arbor, MI, USA
{hsuch,valeria} @umich.edu

Abstract—Simulation-based techniques play a key role in validating the
functional correctness of microprocessor designs. A common approach
for validating microprocessors (called instruction-by-instruction, or IBI
checking) consists of running a RTL and an architectural simulation
in lock-step, while comparing processor architectural state at each
instruction retirement. This solution, however, cannot be deployed on long
regression tests, because of the limited performance of RTL simulators.
Acceleration platforms have the performance power to overcome this
issue, but are not amenable to the deployment of an IBI checking method-
ology. Indeed, validation on these platforms requires logging activity
on-platform and then checking it against a golden model off-platform.
Unfortunately, an IBI checking approach following this paradigm entails
a large slowdown for the acceleration platform, because of the sizable
amount of data that must be transferred off-platform for comparison
against the golden model. In this work we propose a sequence-by-sequence
(SBS) checking approach that is efficient and practical for acceleration
platforms. Our solution validates the test execution over sequences of
instructions (instead of individual ones), thus greatly reducing the amount
of data transferred for off-platform checking. We found that SBS checking
delivers the same bug-detection accuracy as traditional IBI checking,
while reducing the amount of traced data by more than 90%.

I. INTRODUCTION

Design verification has become increasingly challenging due to
shrinking transistor sizes with each technology node, which has
allowed designers to fit more transistors in the same chip area,
and thus to develop more complex micro-architectural features
with each generation. This increase in complexity has led to a
significant increase in associated verification effort. In this context,
simulation-based validation continues to be the primary mode of
verification in the industry. In this methodology, the correctness
of the design under verification (DUV) is checked by examining
simulation results created from executing a large collection of long
test regression suites on different abstraction levels of the DUV.

To achieve sufficient simulation coverage for these long regres-
sions, the performance of the simulator plays a key role. Software-
based simulation tools are most prevalent, but unfortunately their
performance is not even close to being adequate (1-10 cycles
per second on a full-chip design). This crucial requirement for
simulator performance has led verification engineers to transition
from software-based simulation solution, towards acceleration
platforms that can meet the ever growing verification performance
requirements. These platforms achieve orders of magnitude higher
performance over software-based solutions by using specialized
hardware components for logic simulation.

The boosted simulation performance, however, comes at the cost
of reduced checking and debugging capabilities. For instance,
these platforms are designed to only simulate synthesizable logic
descriptions, leading to challenges in integrating software check-
ers onto them. To overcome this issue, one often needs to rely
on a remote host and transfer the data to be checked off the
platform. This approach comes with limitations: specifically, the
limited transfer bandwidth of the platform greatly constrains the
observability of internal signals. Another drawback is related to
the fact that most checkers designed for microprocessor validation
execute in lock-step, frequently suspending the simulation and
eroding the performance advantage of acceleration. These issues,

978-3-9815370-2-4/DATE14/(©2014 EDAA

TIBM, Austin, TX, USA
dchatte @us.ibm.com

HIBM Research Lab, Haifa, Israel
{morad, ravivg}@il.ibm.com

unfortunately, render this checking approach infeasible.

Another verification technique considers a “log and then check”
approach, utilizing recording mechanisms on platform. In this
approach, only a relevant subset of a design’s signals / events are
recorded during simulation. The recorded data is then checked off-
line for consistent behavior. However, as the number of recorded
signals increases, simulation performance degrades quickly, thus
the need of minimizing the recording bit-rate. But how can
we ensure the same quality of checking as with software-based
simulation, while collecting only minimal information?

In this work, we target a popular family of checking schemes,
called instruction-by-instruction (IBI) checking, which are able to
identify any architectural state deviation from the golden reference
and thus providing bug detection and diagnosis capabilities. Even
though the deployment of this solution is quite straightforward
in software-based simulation, creating an equivalent scheme for
acceleration platforms is challenging. First, the checking func-
tionality is usually too complex to be implemented in hardware,
and it is further complicated by re-orderings in architectural state
updates due to the micro-architectural implementation. Second,
the recording rate necessary to gather information for IBI checking
(i.e., all updates to architectural state) is too high to sustain
the performance advantage of acceleration. These two challenges
require novel methods to attain the objective of IBI checking,
namely, validation of the architectural state updates with respect
to a golden model.

Contributions. In this work, we introduce a novel “sequence-
by-sequence” checking scheme that checks the validity of the
updates on the architectural state by sequences of instructions.
This approach drastically reduces the volume of recorded data,
while still discerning most discrepancies with high probability.
We achieve this goal by constructing a digest of the architectural
events over a sequence of instructions. Our digest-based solution
has the following features: i) minimal average recording bit-
rate; ii) error-detection ratio comparable to IBI checking; iii)
digests require only a small logic footprint on platform; iv) fine-
grained diagnosing capability. We observe that, even for digests
derived from long (>10,000) instruction sequences, sensitivity
to architectural state discrepancies is not diminished when using
appropriate compression schemes.

II. BACKGROUND AND RELATED WORK

Acceleration and emulation platforms have become increasingly
popular over the past decade and today are vital in the validation
of complex designs [1,7,9,12]. Modern acceleration platforms can
typically reach simulation performances between 10kHz to 1IMHz
by mapping a design’s structural logic description to large arrays
of customized processing elements and executing the simulation
in a concurrent fashion [4,7,8,17].

While acceleration and emulation platforms can provide high-
performance simulation, they also add substantial challenges to
the validation process: complex software checkers that cannot be
synthesized (e.g., golden models) cannot go on the platform. A
work-around to this limitation has been to keep these checkers
off-platform; however, the overhead of transferring the monitored

signal data off the platform severely limits the viability of this
work-around. As a result, current industry methodologies have
focused on limiting the number of synchronization events between
host and platform by: i) accumulating interactions between the
design and the testbench into longer and infrequent transactions
[13,16], ii) synthesizing the simpler checkers into hardware for
simulation alongside the design [3], or iii) recording the values
of critical design signals during simulation on-platform and off-
loading the data at the end to check for consistency with a software
checker [6]. Among these solutions, variants of the latter approach
are dominant for microprocessor validation on acceleration and
emulation platforms. For instance, [6] proposes to decouple event-
tracing from checking efforts. An abstraction of updates to the
architectural state, non-speculative updates of register values (RU)
and non-speculative instruction commits (IC), is recorded in a
buffer on-platform, and then transferred off-platform to compare
against the golden model events, while the test regression is run
in lockstep between the two models. The upside of this approach
is the capability of detecting any behavioral deviation between
them instantaneously. Unfortunately, even with this abstraction,
the latency overhead imposed on the accelerator is still much
higher than what is typically tolerable (~50% slowdown in the
worst case) in high-performance validation flows.

To mitigate this problem, a run-time verification scheme, as the
one proposed in [14,15], could be adopted to reduce the recording
rate by examining the correctness of the execution at a basic
block granularity. However, the average size of the basic blocks is
usually only tens of instructions. This advantage would be easily
erased by the extra data that must be transferred to the checker,
and thus this solution cannot solve the problem.

A. Challenges
To achieve our goals, two major challenges must be overcome.

Handling the lack of event correlation: Modern acceleration
platforms in the industry often employ a set of distributed register
files to achieve higher access bandwidth, instead of a single
monolithic one. The different delays between register files and the
corresponding logging devices lead to different amounts of delay
in the event-reporting, and thus eliminates the natural correlation
between an instruction commit (IC) event and the register update
(RU) events that the instruction has generated. Fortunately, even
so, it can be guaranteed that under correct execution, all RU events
corresponding to an IC event will appear within a bounded number
of cycles before or after the IC event. In our solution, we leverage
this observation to synchronize RU events from an acceleration
with those from the golden model. In the evaluation, we use the
parameter k to express the bound described, where k is expressed
in terms of IC events, instead of cycles. We also leverage two
other observations: i) all IC events still occur in program order
on platform, and ii) all updates to a given architectural register
appear in program order in the trace.

Reducing the amount of traced data: The recording rate
necessary to trace relevant events for a thorough checking is
prohibitive for acceleration platforms. Hence, a straightforward
tracing approach would erode away the performance advantage.
Thus, it is compulsory to perform at least some on-platform com-
pression using additional logic. Previous attempts to tackle this
problem [6] record all events but compress data values associated
with them (e.g., updated register values) using checksum schemes.
The solution we propose here achieves much higher compression
density by summarizing sets of events.

III. SEQUENCE-BY-SEQUENCE CHECKING

Traditional IBI-checking approaches require recording each ar-
chitectural event on the DUV and compare it against a golden
model. When operating on an acceleration platform, this solution

During acceleration run: \ c

o dAdi +
[r (A I H " |
Epoch 0 digest H
s e Reg| Total#of | Cumulative L
P r1 | r1 updates | checksum for r1 |4
cceleration platform :
- B Reg| Total#of | Cumulative 22_
Simulated Tracing r2 | r2 updates | checksum forr2 [|
microprocessor logic = |
design j—y/ = —
PC of the last IC event |
— — IC | Total#of | Cumulative [
IC events | checksum of PC -
Post-simulation checking: T~ time
Golden model trace o
ez B2 e
oo S oo o S oS oo|lS|S ool S| oS ol om|/Slo|S
- |o|¢ o|o|o|¥ T|¥ o|lT|e|? oo || T ¥ oc|T|¥T|?
2/5|3|5/12/5|3|5|% 5|5|8|5|S|5|5 5(53|5|5\8 5|3
= R EEEEEENE EEEEEE R ENEE
=—__ ==
T——_ / T /
T / S~ /
P = (=2
Epoch 0 digest Epoch 1 digest
Reg| Total # of Cumulative Reg| Total # of Cumulative
r1 | r1 updates | checksum for r1 r1 | r1 updates | checksum for r1
Reg| Total # of Cumulative Reg| Total # of Cumulative

r2 | r2 updates | checksum for r2 r2 | r2 updates | checksum for r2

PC of the last IC event

Total # of Cumulative
IC events | checksum of PC

PC of the last IC event

IC | Total#of | Cumulative IC
IC events | checksum of PC

Fig. 1: Overview of our sequence-by-sequence (SBS) checking. Epoch
digests are generated during execution on the acceleration platform and then
transferred off-platform. In post-simulation, these digests are compared against
the architectural events reported by the golden model execution to detect the
possible occurrence of a bug.

entails the ability to record and transfer event data off-platform at
high bandwidth [6]. In contrast, our sequence-by-sequence (SBS)
solution accrues and compresses several architectural events over
a period of time before it transfers the information off-platform for
comparison with a golden model. Thus, the storage and transfer
bandwidth demands are amortized over a period of execution and
can be controlled by a user by extending or shortening the window
length. For our solution to be effective, however, we need to
organize the event data to avoid the loss of critical information and
bug detection potential in this accrual and compression process.

Figure 1 presents a high-level overview of our solution. During
the execution on the acceleration platform, architectural event
digests are computed for each window of simulation, called an
epoch. Low-overhead additional logic can be used to compute
and record such event digests. Digests are then transferred off
platform. During the off-line checking phase, these event digests
are compared, epoch-by-epoch, against the golden model. The
digests consist of cumulative checksums of updates to each
architectural register, along with a count of the total number of
updates (the latter is used to align the acceleration digest with the
golden model one as discussed in Section II-A). They also include
the address of the last committed instruction and a checksum,
which is built from the addresses of instructions committed during
the epoch.

One may think of the possible downsides of our approach. The
first one lies in the use of a checksum, which may limit the
sensitivity to discrepancies between corresponding architectural
update events. We address this issue by using sufficiently long
checksums for each architectural resource. While this solution
may entail more data recording, the impact is insignificant since
the long checksums are amortized over the entire length of the
epoch. Another possible downside is that, after we identify a
discrepancy in the cumulative record of a large number of events,

/~ Bug detection N\

DUV digest Golden trace (Start)

Checkpointing

Last epoch?

current epoch No Yes
1
1. Epoch 2. RU events 3. Checksum

segmentation adjusting computation

Bug detected!

-

Fig. 2: ArChiVED’s checking flow proceeds epoch-by-epoch through three
main steps: epoch segmentation, RU events adjusting and checksum compu-
tation phase.

it is no longer possible to localize which update was its cause.
However, if the regression’s length is in the order of billion cycles,
narrowing down a discrepancy to a window of a few thousands
cycles is already a very valuable accomplishment. Once a bug
has been detected, we can use our same framework for an in-
depth analysis of the region of execution surrounding the bug as
discussed in Section IV.

A. Complete checking flow

Our SBS solution checks iteratively the consistency between a
simulation trace generated on an acceleration platform and a
golden model. This process takes two inputs: the trace’s digest
from the acceleration and the unmodified trace generated by the
golden model. The checking task manipulates the golden model
trace to fit on the digest. We process the trace and digest epoch
by epoch. When we succeed in matching an epoch, we move to
the next one. If we fail, we flag a bug.

An epoch is a contiguous portion of a simulation trace, consisting
of a sequence of instruction commit (IC) and register update
(RU) events, interleaved in any way. The number of IC events
in an epoch must be fixed, and it is called the epoch’s length.
The number of RU events within an epoch may vary. The last
entry of an epoch must always be an IC event. Finally, for each
architectural register we define a metric, called RU length, which
corresponds to the number of RU events updating that register
within the epoch. Thus, each epoch has an RU length vector
associated with it, with one entry for each architectural register.

In our approach, we compare epochs obtained in acceleration
against those from the golden model execution, by comparing
the checksums derived from the traces. The epoch’s comparison
flow, which is illustrated in Figure 2, consists of three main parts:

1. Epoch segmentation: This step aligns epochs obtained from the
accelerator simulation with those from a golden model. After a
segment is identified via the epoch length of the golden trace, this
step examines whether the last IC event of the segment matches
the last IC event of the digest obtained from the accelerator. A
mismatch reveals a bug due to incorrect program flow.

2.RU events adjusting: The goal of this step is to match the RU
length vectors between the golden model’s epoch and the digest’s
epoch. As discussed in Section II-A, the RU events corresponding
to an IC event may appear up to k IC events earlier or later.
However, all the IC events and RU events for a particular register
follow program order, which is a key tenet for the mechanism of
our solution. This step computes the RU length for each register
in the golden trace’s epoch, and compares it against the value
obtained from the accelerator. For each register with a different
length, our checker attempts to move RU events in the golden

RU length [pyv Gold | RUlength DUV Gold
[R2] =N [R2] = N+2
| R
Matching IC Matching IC
event event

Fig. 3: An example of RU event adjusting step. The two epochs from the
accelerator and the golden model have a matching IC event boundary. However
the golden model has two additional updates for register 2, which we push
forward to the next epoch.

model across the epoch’s boundary, until it can attain a match.
The process considers one register at a time. It operates in
the golden model trace, since we only have a digest of the
accelerator trace. It first adds or subtracts, to the number of
RU events computed for the epoch, those RU events that have
been propagated forward or borrowed backward from the previous
epoch. If, at this point, the sum matches that of the digest, the
work for this register is completed. Otherwise, it pushes forward
to the next epoch, or borrow from it, the number of RU events
required to make the two sums match.

Note that this stage only needs to work within the neighboring
epochs. Indeed, epoch length must be selected to be sufficiently
long so that RU events can never land more than one epoch before
or after the IC event to which they relate. If we cannot find a set
of RU events that matches the digest, we flag a bug for missing
register updates. Figure 3 illustrates this process with an example.
In this example, the golden model trace has two additional RU
events associated with register 2. Thus the adjustment step pushes
the last two RU events relating to register 2 to the following epoch.
3. Checksum computation: This is the final step of the checking
process. While the previous steps have already ruled out many bug
manifestation possibilities, other manifestation types still remain.
For example, RU events may occur with incorrect register values.
Moreover, the wrong ordering among RU events updating a same
register is also an indicator of a bug, often leading to erroneous
behavior. To address these types of issues in our SBS-checking
scheme, we calculate a set of checksums for all architectural
registers and for the PC values of all IC events from the golden
model’s trace for the epoch, and compare it against the checksum
from the accelerator’s digest. If everything matches, we move on
to the next epoch; otherwise we flag a bug for incorrect event
orderings or corrupted event values.

The checking process iterates through these three steps for the
entire regression, one epoch at a time. Whenever any of the steps
report a failure, then the coarse-grained analysis terminates. Our
solution then launches the fine-grained bug diagnosis phase to
find the bug’s first occurrence down to the granularity of tens of
instructions.

B. Checksum computation

To compare the digests, we compare the checksum vector from the
digest against the one generated from the golden model’s trace.
If any pair of checksums are not equal, our checker reports an
error. There are a few desirable characteristics that the checksum
scheme of choice should have:

i) small logic footprint in hardware;

ii) on-the-fly checksum computation (instead of block-based), so
that less storage is required;

iii) a checksum that is sensitive to event ordering, so to capture
bugs manifesting as a wrong event order;

iv) low aliasing.

We study below three simple checksum schemes, architectural-
state, XOR and rotate-and-XOR, and analyze their qualities with
respects to the characteristics above. In addition, we also consid-

ered and evaluated a cyclic-redundancy check scheme (32-bits)
and we summarize our evaluation in Section VI-D.

Architectural state checking. Architectural state checking is the
most popular checking scheme in industry. In this scheme, the
checker regularly compares the register file and the PC register
values of the accelerator’s digest and the golden model. This
scheme is an ideal approach in terms of the extra logic footprint
and on-platform storage needed. Unfortunately, according to Sec-
tion VI-D, this scheme is insensitive intra-epoch event reorderings,
and has a high probability of aliasing.

XOR checksum. The XOR checksum scheme simply updates the
checksum by applying an exclusive-or operation between the cur-
rent epoch’s temporary checksum value and the next architectural
event through the entire epoch. This scheme features an extremely
small logic footprint. However, XOR cannot preserve information
ordering between events and, in practice, this drawback renders
XOR an untenable candidate for our SBS checking framework.
We will note in Section VI-D that this checksum is very vulnerable
to certain kinds of errors.

Rotate-and-XOR checksum. One direct improvement to XOR
checksum is to apply a rotation operation before updating the
checksum, to take the ordering information into account. The
rotate-and-XOR scheme left-rotates the accumulated checksum by
one bit before updating it with a new message. This successfully
preserves ordering information to some extent, at the cost of a
small extra overhead, usually entailing only several short wires.

IV. BUG DIAGNOSIS

Once the SBS checking process completes, we have identified
most bugs down to an epoch-long interval, usually 10K to 100K
instructions long. At this point we re-tune our solution to support
the diagnosis of the bug, but analyzing only the identified interval
to narrow down the bug to a window of tens of instructions.
Most, if not all, acceleration platforms include checkpoint/restore
capabilities so that one portion of a same test can be re-executed
many times — this feature is typically used for diagnostic purposes.
We leverage precisely this feature to carry out our SBS diagnostic
solution and we set up the checkpoint/restore mechanism to take
snapshots of the system’s architectural state at the beginning of
each epoch. It is straightforward to setup the golden model to also
take checkpoints at the beginning of each epoch.

As soon as a bug is detected by SBS, the remote host signals the
acceleration platform to suspend execution and restore the previ-
ously checkpointed architectural state, while the same rollback is
applied to the golden model’s execution. We then run our SBS
solution starting from this initial state and with a much smaller
epoch length (a tenth or a hundredth of the original length), and
perform exactly the same checking activity at a finer granularity.
This process can be iterated until the epoch length is sufficiently
small to diagnose the root cause of the issue. Note that any epoch
length used in this process must still be greater than the parameter
k (Section II-A) and representing how much RU events can be
displaced from their corresponding IC event (for our experimental
evaluation, the parameter k£ = 10).

V. HARDWARE REQUIREMENTS

To compute the digest of the DUV, every architectural register
should be equipped with logic to compute and store the check-
sums. In addition we need counters to count the number of RU
events on a per-register basis and the number of IC events. Finally,
we need logic and storage to compute the checksum of PC values
corresponding to instructions that were committed.

RU events are counted by extracting the register index of each
register file write-operation and incrementing the corresponding
counter. IC events can be counted by monitoring the number

of instruction completions. Checksum values are accrued on an
epoch-by-epoch basis in dedicated checksum registers.

Because of our high compression rate, in our setup, the time it
takes to generate an event digest is much longer than the time
to transfer that digest off-platform. Thus we only need storage
for 2 trace buffers: at any point one is being generated and the
other is being transfered. The actual overhead entailed by the two
trace buffers depends on the checking granularity selected for the
analysis under consideration, but fluctuates within 2-2.4kB for
storage. As for logic footprint overhead, we need one XOR gate
for each bit of the checksum computation (32 bits wide) for each
of the registers in the sytem (7230 in our case), for an estimated
total of 7500 XOR gate or, equivalently, 30,000 NAND gates.
Since modern processor cores map to at least a few millions logic
gates, our overhead for checksum computation is no more than
2-3%. Note that special-purpose registers have usually fewer bits,
leading to significantly smaller overhead than estimated here.

Finally, we assume that the platform is already equipped with
checkpointing/rollback capabilities. Usually, this entail maintain-
ing a shadow copy of each architectural register in the system.
In addition, we require storage to store a digest being transferred
off platform while the next digest is being generated. Digests
are particularly small in our design, so this little storage allows
the simulation to continue uninterrupted until a bug is detected.
Overall, these hardware additions are minimal and we estimate
them to have little impact on the platform’s performance.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the bug detection accuracy and the
recording rate required by our solution. We also compare SBS
checking against an architectural-state checker solution, which
constitutes the state-of-the-art approach in the industry. This
architectural checker operates by taking a snapshot of the system’s
state at the end of each epoch and comparing it against the
corresponding snapshot from the golden model.

A. Experimental setup

Our experimental environment is built on the gem5 simulator [2].
We chose the ARMv7 ISA as the underlying architecture, which
has a total of 64 integer registers (int regs) and 168 special-
purpose registers (misc regs). We collected architectural traces,
consisting of register-update events (RU events) and instruction-
commit events (IC events), by executing test programs using
the cycle-accurate out-of-order O3CPU model in gem5. The
design was augmented with the components described in Section
V: counter, 32-bit checksum-register and logic to compute the
checksums for each architectural register. The bitwidth we used
for the counters varies with each experiment, depending on the
epoch length selected. We used 8 distinct testbenches from the
in SPEC CPU2006 integer benchmarks [10], with full or partial
execution of each testbench (depending on its length). To exercise
the system broadly we strove to include a broad spectrum of
applications in our pool.

B. Bug model and symptoms

The main type of bugs targeted in acceleration are deep and
complex functional bugs manifesting at the microarchitectural and
architectural level. Indeed, electrical bugs, those due to transistor
sizing, to logic implementation, or layout cannot be detected
with this methodology, since the design is mapped to a non-
native infrastructure, either FPGA or specialized logic-computing
units. To recreate this type of bugs in our evaluation, we model
functional bugs in the design as random bit flips and occasional
instruction losses. These manifestations represent the effect of a
complex bug manifesting only when certain rare conditions occur
together during the test execution. We strive to inject bugs broadly

in each of the key design modules: fetch stage, instruction buffer,
execution stage and register file.

Only one bug is injected during each testbench execution. We
select the injection time randomly among an early, middle or
late phase of the execution. The bug is activated for a varying
amount of time and then de-activated: this is to emulate the
temporary occurrence of a rare execution scenario. Each testbench
is executed many times (approximately 350); we then eliminate
redundant situations. Most of them are due to many runs where
the bug does not manifest — that is, the execution is unperturbed
by the bug injection, a byproduct of the fact that we inject very
narrow bugs, which only manifest when a rare combination of
events occurs in the design. After this pruning, we are left with
approximately 30 buggy variants for each testbench execution. We
keep a few non-buggy traces to evaluate the sensitivity to false
positives of our solution. Inspired by [6], we then classify the
traces based on the first symptom that manifests in them:

o VanishedRU: an architectural register update event takes place
in the golden model, but not in the accelerator trace.

o ExtraRU: an architectural register update event appears in the
accelerator trace, but not in the golden model.

e CorruptedRU: the value of a register update in the accelerator
trace does not match the one from the golden model.

e ReorderedRU: two or more register update events are out or
order with respect to the golden model.

e VanishedIC: an instruction commit is missing from the accel-
eration trace.

e CorruptedIC: a mismatch in the program counter values
between acceleration and golden model for instructions commits.
e ReorderedIC: one or more IC events are generated out of order
in the acceleration with respect to the golden model.

C. Recording bit rate

We evaluate the proposed framework by analyzing its effective-
ness in detecting bugs and its performance from a recording rate
perspective. We first demonstrate the efficacy of our SBS approach
by comparing the recording bit rate of our approach with that of
a classic IBI solution.

Assuming that in our SBS checking scheme, we transfer one
digest off-platform every N cycles, the recording rate Rgpg can
be calculated as follows:

RRgps = [Reg(RUcnt + RUcps) + ICeps + PC] x

where Reg is the number of registers; RUcp¢ is the size of the
RU counters, and RU,; and IC,;, are the sizes of the RU and
IC checksums; PC refers to the number of bits for recording the
PC value of the last IC event of the epoch and I PC indicates the
number of instruction committed per cycle.

We also notice that IBI checking is a special case of SBS with
N = 1. IBI checking does not require counters because it records
register values for each instruction. It only requires one register
checksum and a few bits to indicate which register did the update.
So, for IBI, the recording rate can be computed as:

RR;pr = [(RUcks + RU;4,) X EPI + ICcks] x I[PC
where E'PI represents the average number of RU events reported
per instruction. For our analysis we set EPI =2 and IPC = 0.9.
Note also that our target ARM architecture is 32-bit wide and has
64 integer registers and 168 special-purpose registers.

Table I reports a number of solutions points for both IBI and SBS
checking. An IBI checking scheme that does not compress RU and
IC events (RU.s = IC.s = 32bits), IBI(32) for short, presents
a recording rate of 100.8 bits/cycle. If events are compressed
down to 5-bits checksums as in [6], the recording rate is 27.9
bits/cycle. In contrast, the recording rate of our solution is highly
dependent on epoch length, and can be unacceptable for small

1PC

TABLE I: Comparison of recording rates of several epoch-length for our
scheme (SBS) against two IBI checking approaches and the epoch-based
architectural-state checking.

Checking scheme Epoch length

1 10 100 1,000 10,000 100,000
IBI(32) 100.8 - - - - -
IBI(5) 27.9 - - - - -
SBS(32) 6048 75744 8201 883 097 0.10
ArchState 2248 2248 2248 225 022 0.02

lengths: for a SBS scheme using 32-bit checksums and an epoch
length of 10 — SBS(10,32) — the recording rate adds up to a
whopping 757.44 bits/cycle (mostly due to the additional counters
and PC value). Fortunately at more reasonable epoch lengths,
such as SBS(32,1000) or SBS(32,10000), the recording rate is
much smaller, even much smaller than for IBI, and very practical.
Indeed, at practical epoch lengths, we can attain a 99% reduction
in the recording bit-rate compared to an IBI solution. Finally,
note that the architectural-state checking approach requires similar
recording rates as SBS. We show in the next section that , while
these latter two solutions are comparable in required recording
rate, their bug detection accuracy is very different.

D. Detection accuracy

We evaluated bug detection accuracy (fraction of bugs that is
detected by comparing the digests with the golden model) of
SBS using both checksum schemes described in Section III-B,
and compared them against that of the architectural-state checker.
Figure 4 indicates that the XOR and rotate-and-XOR checksum
scheme achieved a detection ratio of >85% and 93%, respectively,
on average. Moreover, both schemes are practically insensitive to
aliasing, as suggested by the fact that the quality of results is
unaffected by the epoch length. We further analyzed the false
negative situations with a small epoch length (i.e., 100) and
the rotate-and-XOR scheme: we found a few to be caused by
checksum aliasing, and most to be due to a change in instruction
opcode but with no impact on the architectural state at any time
during the execution (i.e., no impact on any of the RU or IC
events.) Overall, these findings demonstrate that SBS is effective
in detecting bugs in acceleration and provides a valuable trade-
off between temporal vs. spatial accuracy in bug detection. The
results for the architectural-based checker in Figure 4 suggest
significantly lower accuracy in bug detection across all testbenches
and epoch lengths.

Finally, we analyze the relation between epoch length and de-
tection accuracy. Figure 4 indicates that SBS’ bug detection
accuracy is fairly insensitive to epoch length. Indeed the accuracy
degradation between an epoch length of 100 and one of 100,000
is only 7%. In contrast the architectural-state checker degrades
quickly with longer epochs, up to 30%. With the next study,
we also found that the rotate-and-XOR checksum scheme shines
particular by detecting rarely-occurring bugs, where its detection
accuracy is the only one to be consistently high over a broad range
of epoch lengths (Figure 5).

This final study evaluates the detection abilities of SBS for rarely-
occurring bugs, i.e., ReorderedRU and ReorderedIC. Since these
bugs are due events occurring out-of-order, they can be easily
masked by checksum schemes that are insensitive to order (XOR).
Moreover, these bugs are extremely challenging to generate; thus,
we inject them by manipulating the traces in post-execution.

We also tested an incremental CRC-32 scheme on these rarely-
occurring bugs over a range of benchmarks. While this scheme
can reach 87% in detection accuracy for the smallest benchmark
(i.e., mcf) when using an epoch length of 100, its detection
accuracy rapidly degrades to less than 60% as the epoch length

100

K 9 XOR = SBS XOR
£ 8 RnX = SBS rotate-and-XOR
z gg ArchState = arch. checking
S 50
3 40
S 30
c 20 epoch length 100
2 10
E 0 epoch length 1000
2
5 RO \\5@@ O st ‘\5@@ MR ‘&@@ IR \é@@ RO v‘;@@ RO @@&"' O ot ‘\5@@ O st ‘\5@@ m epoch length 10000
<& & & & & <& < o
w W w e » w w w M epoch length 100000
perlbench bzip2 mcf sjeng libquantum h264ref astar xalancbmk
Testbench
Fig. 4: Detection accuracy of the checking schemes under study over a range of testbenches.

__ 100
X 90 XOR = SBS XOR
£ ?8 RnX = SBS rotate-and-XOR
Z 60 ArchState = arch. checking
£ 50
3 40
S 30
s %8 II Il epoch length 100
g 0 = - epoch length 1000
k1 R e R 3 e R e R S+ e R e R S e R e R e
a RO R P LR O N R S LR Ry & A o B B m epoch length 10000

S& N& N@ w& w& S& N& w&

M epoch length 100000
perlbench bzip2 mcf sjeng libquantum h264ref astar xalancbmk
Testbench

Fig. 5: The detection accuracy of different checking schemes for bugs that produces ReorderedRU or ReorderedIC symptoms.

grows. With all other tested benchmarks, CRC-32’s accuracy
never exceeds 70%. Considering the complexity of a parallel
CRC-32 implementation [5,11] and its unremarkable detection
performance, we believe it is not the ideal choice for our goals.

Figure 5 plots the findings of this experiments. The chart indicates
that, while both SBS checking with XOR checksums and the
epoch-based architectural-state checking fail to effectively capture
bugs that manifest as ReorderedRU or ReorderedIC symptoms, the
rotate-and-XOR checksum scheme brings in vast improvements in
detecting bugs manifesting through these challenging symptoms,
achieving at least 80% of accuracy across all testbenches. More-
over, we can observe from the Figure that this scheme’s accuracy
remains almost unaffected over a broad range of epoch lengths,
making it an excellent candidate for the SBS checking flow. In
contrast, the other schemes’ detection degrades quickly at longer
epoch lengths because of the higher chance of mutual cancellation
of the reordering effects.

E. Performance overhead

Since our evaluation has been conducted on an architectural
simulator rather than an acceleration platform, it is impossible
to precisely estimate the performance overhead brought by our
checking infrastructure. Therefore, we estimate it by comparing
against the evaluation in [6], where the authors evaluate the
AWAN acceleration platform simulating an IBM’s POWER pro-
cessor. In [6], the authors find that the biggest contributors to
performance overhead are due to the draining of the trace buffers
and, with smaller incidence, the additional logic footprint. Based
on our Section V analysis, our logic overhead is much smaller than
in [6], while storage requirements are comparable, thus, overall,
we estimate a smaller contribution to performance overhead due
to extra logic. Our buffer-draining overhead, estimated to be
approximately 0.5%, is bound to be much smaller than theirs,
since we have a much lower recording rate.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel scheme for architectural
validation of microprocessor designs with acceleration platforms.
This method, called SBS-checking, enables not only a highly
accurate architectural validation at a very low recording rate
on platform, but also provides fine-grained diagnosis capability.
Overall, our solution enables much higher performance due to

a >90% reduction in recording bit-rate, for the same quality of
checking, compared to previous solutions.

Acknowledgements. This work was supported in part by NSF
grant #0746425 and by STARnet, a Semiconductor Research
Corporation program sponsored by MARCO and DARPA. We
would also like to thank Andrea Pellegrini for his contribution in
providing insightful suggestions and the setup of the experiments.

REFERENCES
[1] J. Babb et al. Logic emulation with virtual wires. IEEE Trans. on CAD,
16(6):609-626, 1997.
[2] N. Binkert et al. The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2), 2011.

[3] M. Boule, J.-S. Chenard, and Z. Zilic. Adding debug enhancements to
assertion checkers for hardware emulation and silicon debug. In Proc.
ICCD, 2006.

[4] Cadence. Palladium. http://www.cadence.com/products/sd/palladium_
series.
[S] G. Campobello, G. Patane, and M. Russo. Parallel crc realization. IEEE
Trans. on Computers, 52(10), 2003.
[6] D. Chatterjee et al. Checking architectural outputs instruction-by-
instruction on acceleration platforms. In Proc. DAC, 2012.
[7]1 J. Darringer et al. EDA in IBM: past, present, and future. /EEE Trans.
on CAD, 19(12), 2000.
[8] M. Denneau. The Yorktown simulation engine. In Proc. DAC, 1982.
[9] G. Ganapathy et al. Hardware emulation for functional verification of
K5. In Proc. DAC, 1996.
[10] J. Henning. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4), 2006.
[11] C. Kennedy and A. Reyhani-Masoleh. High-speed parallel CRC circuits.
In Proc. ACSSC, 2008.
[12] Y.-I. Kim et al. Communication-efficient hardware acceleration for fast
functional simulation. In Proc. DAC, 2004.
[13] J.-G. Lee et al. Simulation acceleration of transaction-level models for
SoC with RTL sub-blocks. In Proc. ASPDAC, 2005.
[14] A. Meixner, M. Bauer, and D. Sorin. Argus: Low-cost, comprehensive
error detection in simple cores. In Proc. MICRO, 2007.
[15] A. Meixner and D. Sorin. Error detection using dynamic dataflow
verification. In Proc. PACT, 2007.
[16] M. Shabtay et al. Building transaction-based acceleration regression
environment using plan-driven verification approach. In DvCon, 2007.

[17] P-S. Tseng et al. Simulation/emulation system and method, 1999. U.S.
Patent No. 6009256A.

