
ReliNoC: A Reliable Network for Priority-Based
On-Chip Communication

Mohammad Reza Kakoee
DEIS

University of Bologna
Bologna, Italy

m.kakoee@unibo.it

Valeria Bertacco
CSE

University of Michigan
Ann Arbor, USA

valeria@umich.edu

Luca Benini
DEIS

University of Bologna
Bologna, Italy

luca.benini@unibo.it

Abstract—The reliability of networks-on-chip (NoC) is threat-
ened by low yield and device wearout in aggressively scaled
technology nodes. We propose ReliNoC, a network-on-chip ar-
chitecture which can withstand failures, while maintaining not
only basic connectivity, but also quality-of-service support based
on packet priorities. Our network leverages a dual physical
channel switch architecture which removes the control overhead
of virtual channels (VCs) and utilizes the inherent redundancy
within the 2-channel switch to provide spares for faulty elements.
Experimental results show that ReliNoC provides 1.5 to 3 times
better network physical connectivity in presence of several faults,
and reduces the latency of both high and low priority traffic by
30 to 50%, compared to a traditional VC architecture. Moreover,
it can tolerate up to 50 faults within an 8x8 mesh at only 10 and
40% latency overhead on control and data packets for PARSEC
traces [24]. Synthesis results show that our reliable architecture
incurs only 13% area overhead on the baseline 2-channel switch.

I. INTRODUCTION

It has been predicted that future designs will consist of
hundreds of billions of transistors, with upwards of 10% of
them being defective due to wearout and process variation.
Consequently, we must soon learn how to design reliable
systems from unreliable components, managing both design
complexity and process uncertainty [9].

The interconnect architecture in a chip multiprocessor be-
comes a single point of failure as it connects all other compo-
nents of the system together. A faulty processing element may
be shut down entirely, but the interconnect architecture must be
able to tolerate partial failure and operate with performance or
latency overhead [4]. Networks-on-chip provide opportunities
to address this issue, as redundant paths exist from point to
point, potentially allowing for reconfiguration around failed
components. A Network on Chip (NoC) is a high performance
and scalable communication mechanism, for transferring data
among the cores in a multi processor SoC [13]. The relia-
bility of NoC designs is threatened by transistor wearout in
aggressively scaled technology nodes. Wear-out mechanisms
such as oxide breakdown and electromigration become more
prominent in these nodes as oxides and wires are thinned to
the physical limits. These breakdown mechanisms occur over
time, so traditional post burn-in testing will not capture them.
NoCs provide inherent structural redundancy and interesting
opportunities for fault diagnosis and reconfiguration.

On the other hand, NoCs significantly affect performance,
latency, power and area of the chip. NoC latency reduction
is essential for SoC performance as it is introduced to every
communication stream within the SoC. Latency may become
vital in the case of SoCs with critical timing demands (real-
time SoCs). Priority-based NoC architectures are a well-known
approach to provide quality of service (QoS) in networks and
to reduce the latency of certain packet classes whose priorities
is high [12], [14]. Virtual Channels (VCs) over a physical
channel have statically assigned priorities [12], [14], [15]: high
priority VCs are used for QoS traffic classes and the low
priority VCs are used for normal traffic classes.

Even considering that a VC switch can implement the
same amount of buffering resources of its VC-less counterpart
by simply re-structuring them into multiple smaller VCs
instead of a single queue, the incremental complexity when
augmenting a baseline switching fabric with virtual channels
is still severe [14], [15]. This is due to additional logic and
components for the virtual channel allocator. To address this
issue, the use of multiple physicals network on the same chip
has been proposed to improve performance and keep traffic
classes separate [17] instead of leveraging VCs. Gilabert et
al. in [1] showed that by replicating switches as many times
as the number of VCs, a simple yet efficient implementation
can be achieved providing the same (or even better) cycle time
at lower area and power.

Motivation and Contribution. The motivation behind this
work is having a priority-based NoC architecture that can
provide reliability in presence of many faults with minimum
overhead on area, and latency. We provide two main contribu-
tions in this work: first, we propose a new router architecture
which distributes the traffic to two different physical channels
based on the class of the traffic, which can be either QoS or
normal. We completely remove the overhead of VCs by repli-
cating the components inside the switch as proposed in [1]. In
addition to [1], we also replicate the links between routers and
remove the hardware overhead at input ports. Note that, other
complementary QoS techniques such as circuit switching can
be applied on this 2-channel router for guaranteed throughput
traffics.

Second, we propose ReliNoC switch which is based on
the mentioned 2-channel switch architecture. In the ReliNoC978-3-9810801-7-9/ DATE11/ c©2011 EDAA

switch, we take advantage of the redundant components in
switches and use them as replacements in presence of faults.
Our architecture can tolerate several faults in the network.

Experiment results show that our 2-channel switch architec-
ture can decrease the latency of both QoS and normal traffic
by 30 to 50 percent compared to the VC-based switch in
an 8x8 NoC with synthetic traffic. In addition, ReliNoC can
tolerate up-to 50 faults inside the 8x8 mesh with 10 and 40%
overhead on control and data packets latencies, respectively,
in real traffic. Moreover, it provides almost 1.5 to 3 times
better network physical connectivity compared to a VC-based
architecture. Synthesis results show that ReliNoC switch has
only 13% area overhead with respect to the baseline 2-channel
switch.

II. PREVIOUS WORK

A number of works has evolved the VC switch microar-
chitecture to optimize latency and to develop an infrastructure
for QoS purposes in the Chip Multi-Processor (CMP) domain
[12], [14], [15]. Virtual channel flow control was first proposed
by Dally in [12] as an effective workaround for head-of-line
blocking. Since its implementation requires extra buffers, the
router power consumption will increase with the number of
VCs [14]. Moreover, VCs impose performance overhead due
to virtual channel allocators [16], [1].

S. Noh et al. in [16] proposed a multiplane virtual channel
router which has multiple crossbar switches and a modified
switch allocator. This is proposed as a way to increase the flit
transfer rate between input and output queues. Unfortunately,
their interesting finding ultimately implies increased switch
complexity and a critical path degradation. Gilabert et al. in
[1] proposed a simple yet efficient approach to VC imple-
mentation. Instead of replicating only buffers for VCs, they
replicated the entire switch and proved that their solution is
counter-intuitively more area/power efficient while potentially
operating at higher speeds. Our 2-channel switch is inspired
from their work; however, we also replicate the links and
provide two physical channels instead of virtual channels.
Moreover, we propose a reliable architecture integrated with
our 2-channel switch to recover different hardware failures in
the network.

Reliable network design was first introduced by Dally et al.
in [2]. This network used link-level monitoring and retrans-
mission to accommodate the loss of a single link or router
anywhere in the network, without interruption of service.
Constantinides et al. presented the BulletProof router, which
efficiently used a combination of spares and component-level
N Module Redundancy (NMR) techniques for router level
reliability [3]. However, NMR approaches are expensive, as
they require at least N times the silicon area to implement.

Fick et al. proposed Vicis, a NoC design that can tolerate
the loss of many network components due to wear-out induced
hard faults [4]. Each router has a built-in-self-test (BIST) that
diagnoses the locations of hard faults and runs a number of
algorithms like ECC, port swapping, and a crossbar bypass bus
to mitigate them. However, they use routing tables which needs
to be reconfigured after fault detection. This reconfiguration

logic imposes area and power overhead. Moreover, they did
not propose any technique to recover faults in routing tables,
port swapper, and arbiters.

Routing algorithms for fault-tolerant networks have been
extensively explored for network level reconfiguration [5], [6],
[7], [8]. These algorithms direct traffic around failed network
components in a way that avoids network deadlock. Although
we must also accomplish this, we additionally reconfigures
around faults using other methods as well. We adopt an
implementation of the routing algorithm described in [7] for
part of our network level fault recovery.

III. 2-CHANNEL SWITCH

In this section we describe the architecture of our 2-channel
switch. The switch has five directions: West, East, South,
North, and Local. Each direction has two input and two output
ports. Each pair of input/output port makes a channel, so
each direction has two channels. Channel one is dedicated
to QoS traffic, while channel two is shared between QoS and
normal traffic. We call these channels channel-1 and channel-2,
respectively. The switch is derived from a normal switch with 5
ports and 2 virtual channels. In the original switch each VC is
dedicated to one class of traffic. As it is proposed by Gilabert
et al. in [1], replicating the entire switch for each class of
traffic leads to better area and power for a given performance
compare to traditional VC-based switch where only buffers
are replicated. This is because replicating the entire switch
removes the need of virtual channel allocators and makes the
entire switch much simpler. Therefore, the critical path of this
switch is much shorter than the traditional VC-based switch.
This helps the synthesis tool to optimize the area and power
of the design for a given target frequency.

We replicate the internal components of each port as well as
the links and make 2-channel ports. Replicating links removes
the need of VC decoders at input ports. At the output ports we
need only one level of multiplexing because of link replication.
For each buffer at the input port we have a bit which shows
the type of traffic inside the buffer, and the arbiters decide
based on that bit and give the priority to the buffers which
contain QoS traffic.

We note that, VC-based switches are better when links
are off-chip, as they trade-off increased logic complexity for
better utilization of physical channels. When physical links
are expensive, e.g. for off-chip networks, this trade-off makes
sense. Also, VC-based switches are better when the number
of VC becomes very large and they are used rarely, but this is
not our case, as we have only two classes of traffic and high
utilization for both.

IV. RELINOC ARCHITECTURE

Utilizing the properties of the proposed 2-channel router,
ReliNoC switch is introduced to ensure fault-tolerant operation
of the NoC. In this section, we explore various possible failure
modes within an NoC router, and propose detailed recovery
schemes with minimum area cost. ReliNoC router architecture
possesses some inherent fault-tolerance due to its replicated
design. This additional operational granularity may be utilized

to allow replacement of a faulty component by another one,
thus allowing operation of the router with latency overhead
instead of a complete breakdown. Five major components of
the router i.e. routing computation units (RC), arbiters, buffers,
output MUXes, and links, are susceptible to permanent faults.
We propose ReliNoC switch to overcome faults in all these
components. The proposed switch architecture is shown in
Figure 1. Note that, only input channels of West port and
output channels of East port are shown in the figure. Four types
of components are added to the baseline 2-channel switch for
fault tolerance purposes: 1) two MUXes per each input channel
2) 5-bit input status register per each channel 3) one control
logic for both channels 4) 10-bit output status register for the
entire switch.

As shown in Figure 1, two MUXes are added to each
channel, one at the entry of buffer (MUXBUFF) and another
one at entry of RC (MUXRC). The muxes are added to enable
each channel to access both buffers and routing computation
units. There is a 5-bit register for each input channel storing
the faultiness status of five different components in that
channel including: link, MUXBUFF, MUXRC, RC, and buffer.
We call this register ISR (Input Status Register). One simple
control logic reads the ISR and generates appropriate control
signals to MUXBUFF and MUXRC based on the faultiness
of each component. Finally, there is a 10-bit register for the
entire switch tracing the faultiness of all output channels in that
switch. We consider one output channel as a faulty channel
if there is a fault in at least one of the following components
of that channel: arbiter, out-multiplexer, link, and the input
channel of the corresponding next router. We call this register
OSR (Output Status Register).

Fig. 1. ReliNoC switch. Each direction has two channels which are used
for QoS purposes in normal operation and for reliability purposes in case of
faults.

Every two connected routers in ReliNoC send the infor-
mation of their corresponding ISR and OSR to each other
by dedicated signals. Each router receives two signals from
its neighbour per each channel. One shows the status of
the neighbour’s input channel and another one is for the
output channel. We call these signals input-channel-faulty
(ICF) and output-channel-faulty (OCF) respectively. ICF and
OCF signals can affect on OSR and ISR registers. If router
A receives an active OCF signal from router B for a specific

channel, this means that router B never sends data to router
A on that channel. This is equal to having faults on the input
link of that channel in router A and, therefore, router A sets
the “link” faultiness bit in the corresponding ISR to ’1’. If
router A receives an active ICF signal from router B on a
specific channel, it means that router A should not send data
on the corresponding output channel. This is equal to having
faults on the output link of the related channel in router A
and, therefore, router A sets the corresponding bit in its OSR
to ’1’.

Based on the values in ISR, control logics generates appro-
priate signals for MUXBUFF and MUXRC of each channel.
The information in OSR is used by RC logic to specify
the appropriate output channel for each packet. Depending
on the status of ISR and OSR, several different cases exist
for each channel and each direction of the router. In the
following paragraphs we outline these cases for the East
direction and its two channels (E1 and E2) and describe our
fault recovery schemes for each situation. The mechanisms for
other directions are exactly the same as those of East.

All bits in ISRs of E1 and E2 are ’0’: this means all the
input components at East channels (E1 and E2) of the current
router and all the output components at West channels (W1
and W2) of its related neighbour are non-faulty. In this case
the router works in its normal operation.

The bit of buffer-1 in ISR is ’1’: this means buffer-1 is
faulty and can not be used any more. In this case we consider
channel-1 as faulty. As an ICF signal is already sent to the
previous router, no data will arrive at channel-1 and channel-
2 is utilized for both types of traffics. Thus, control logic
does not change control signals for MUXes. In this case RC-1
also remains idle. The same scheme is applied when buffer-2
is faulty. Note that, even in these cases the QoS traffic has
priority over normal traffic because of the priority bit.

The bit of MUXBUF-1 in ISR is ’1’: this means
MUXBUF-1 is faulty. This case is similar to the previous one.
No data will arrive at channel-1 and channel-2 is utilized for
both traffics. The same mechanism is applied on channel-2
when MUXBUF-2 is faulty.

The bit of link-1 in ISR is ’1’: this means Link-1 or the
output channel of previous router is faulty. Therefore, no data
will arrive at channel-1 because of ICF signal which is already
sent to the previous router. However, in this case if buffer-1
and MUXBUF-1 are non-faulty, they can be used by channel-
2. Here, control logic generates appropriate signals so that
channel-2 is connected to both buffer-1 and buffer-2. In this
case buffer-1 is used for QoS traffic and buffer-2 for both QoS
and normal traffic.

The bit of RC-1 in ISR is ’1’: this means RC-1 is faulty.
Clearly, since RC and MUXRC are driven only by the header
flit, their utilizations are relatively low compared to the flit-
by-flit operation of per-flit components like buffers. Thus, RC
of one channel can be shared during its unloaded periods with
another channel. However, this needs a more complex control
logic since two packets may arrive at the same time. To avoid
this, we do not share RCs between channels and, therefore,

consider channel-1 as faulty. The same mechanism is applied
on channel-2 when RC-2 is faulty.

The bit of MUXRC-1 in ISR is ’1’: this means MUXRC-
1 is faulty. This case is similar to the previous one and we
consider channel-1 as faulty. The same mechanism is applied
on channel-2 when MUXRC-2 is faulty.

The East-channel-1 bit in OSR is ’1’ and East-channel-
2 bit is ’0’: this means one of the components (arbiter, link,
multiplexer) at the output channel E1 is faulty or the input
channel of the next router which is connected to E1 is faulty
(ICF is ’1’). As all the RCs take the OSR bits into account,
in this case no traffic will go through E1, and E2 is used by
both QoS and normal traffic.

Both East-channel-1 and East-channel-2 bits in OSR
are ’1’: this means both output channels at East direction
are faulty. In this case, the packet cannot go to the East
direction and should be detoured to another direction. To do
so, we use Logic-Based Distributed Routing (LBDR) which
is a fault tolerant routing algorithm proposed by Rodrigo et
al. in [7]. This routing is a logic-based mechanism which can
be implemented on top of any distributed routing like XY to
detour the faulty link. This logic eliminates the need of routing
tables (either at routers or at end-nodes). Routing tables do not
scale in terms of latency, power consumption, and area, thus
being impractical for large NoCs [10]. As described in [7], the
area overhead of the added fault tolerant logic on top of the
traditional XY routing is around 4% which is much less than
that of table based routings. This additional logic increases the
timing path of RC by 20%. However, as the timing critical path
of the router is not through the RC logic and this module (RC)
is not the one setting the router frequency, this performance
overhead on the RC does not have any effect on the router
performance [7]. The added logic needs some status bits to
find the detour port [7]. Eight of them which represent the
faultiness of each output port are already in OSR. Three other
bits should be added to each direction to implement the fault-
tolerant logic on top of XY.

Since we do not recover faults in fault-status registers (ISR
and OSR), the recovery techniques in our architecture rely
on having robust design for these registers. Error correcting
codes (ECCs) [18] are good robust mechanisms for registers.
Various ECC mechanisms have been integrated within VLSI
chips with large internal memories and cache units [19] as
well as NoCs [4]. Also, TMR can be used for the reliability
of ICF and OCF signals.

Our reliability mechanism is based on knowing precisely
the location of faults in the switch. Built-in-self-test (BIST), a
well-known approach to diagnose faults, has been extensively
addressed as a post-silicon technique for fault detection during
the NoC lifetime [4], [20], [11]. To utilize our recovery
mechanisms, the network requires to go periodically into self-
test in regular intervals and update ISRs and OSRs.

V. EXPERIMENTAL RESULTS

To evaluate our ReliNoC architecture, we used Noxim [23]
which is a cycle accurate NoC simulator implemented in
SystemC. The switch model in this simulator has a 2-stage

pipeline and therefore has 2 cycles minimum latency. We
extended it to support both virtual and physical channels. We
also extended it for our reliability techniques.

A. NoC latency evaluation

To see the effectiveness of ReliNoC router with respect
to the VC-based router, we measured the average latency
on 8x8 Mesh networks of both routers. We applied different
synthetic traffic patterns including Unified Random, Butterfly,
Transpose, and Bit complement on both networks. We injected
two classes of traffic to the network including QoS and normal,
and measured the latency of both traffic types as a function
of packet injection rate of both traffic classes. The results
for unified random traffic are shown in Figure 2. In this
3-dimensional plot, the X and Y axes represent the packet
injection rate (PIR) of normal and QoS traffic respectively.
The Z axis shows the latency. The surfaces in Figure 2 are the
latency of QoS and normal traffic. As seen, in both routers the
PIR of normal traffic does not have effect on latency of QoS
traffic. This is because of the arbitration policy in the router
which gives high priority to the QoS traffic. However as can
be seen, the latency of normal traffic in ReliNoC is much less
than that of NoC with 2-VC switch. As shown in the plots,
increasing PIR of QoS traffic has much less impact on latency
of both traffic types in ReliNoC compared to that of NoC with
2-VC switch. As seen, the latency of both QoS and normal
traffic has been reduced by 30 to 50 percent.

B. Network connectivity

To see the effect of faults on the network, we injected
faults on the entire 8x8 NoC. Our fault model is based on the
area and covers seven different components (RC, MUXBUFF,
MUXRC, buffer, arbiter, out-MUX, link) of each channel
in each router. We injected faults on the network based on
the area portion of each component in the network. Those
components that have more portions of the total NoC’s area
have more probability to receive faults.

First, we compared the network connectivity of ReliNoC
with that of a network comprising 2-VC switches in presence
of different number of faults. In this experiment, we injected
different number of faults on the network on different random
components by giving higher probability to larger components.
Then, we checked statically if the network is fully connected
or not. We consider a network as fully-connected if there is at
least one physical path from each source to each destination
regardless of the routing algorithm. For any number of faults,
we injected that amount of faults on the network with 1000
different random seeds, and calculated the average number of
fully-connected networks out of 1000 possible fault distribu-
tions. We did this experiment for two types of networks: i) 8x8
ReliNoC and ii) 8x8 NoC with 2-VC switch. Figure 3 shows
the plot of network connectivity of both cases in terms of
number of faults. The Y axis in this chart is the probability of
having a fully-connected network as a function of “number
of faults”. As seen, ReliNoC has much better connectivity
in presence of faults. For example, in presence of 20 faults,
ReliNoC has 90% probability of fully-connected network,

Fig. 2. Latency vs. packet injection rate (PIR).

while that of NoC with VC-based switches is 70%. For 40
faults, ReliNoC shows 2 times better physical connectivity
compare to the VC-based architecture.

Fig. 3. Network Connectivity vs. number of faults.

C. NoC recovery evaluation
To see the effect of faults on the latency and to verify our re-

covery mechanism in ReliNoC, from previous experiments we
selected those fault configurations that have fully-connected
networks. Then we injected faults and ran the simulation
for different synthetic traffics. We measured both average
and worst-case latency among all configurations. Figure 4
shows the relation between average latency of both QoS and
normal packets and number of faults for 2 synthetic traffics:
random and butterfly. As can be seen, when the number of
faults increases, the latency of both QoS and normal packets
increases. However, in both benchmarks the QoS traffic pays
less latency penalty compare to that of the normal traffic.
Experiments showed that our recovery mechanism in ReliNoC
could handle all the fully-connected networks for up-to 50
faults, and all packets reached the destination with a reasonable
latency overhead.

We also calculated the worst-case latency overhead in all
fault configurations having fully-connected networks. Exper-
imentally, we found the worst-case latency overhead in Bit-
Complement traffic. Our Experiments showed that even in the
worst-case, the latency overhead on QoS packets was 30% for
up-to 25 faults. However, in the worst-case configuration, the
normal packets payed much more latency overhead in presence
of many faults compared to the QoS packets. The latency

Fig. 4. Average latency vs. number of faults for synthetic traffics in 8x8
ReliNoC.

overhead in normal packets of Bit-Complement traffic for 15
faults in the worst-case configuration was 5X.

In addition to the synthetic traces, we also performed
simulation to see the effect of faults on 5 real traffic traces
from PARSEC benchmarks, a suite of next-generation shared-
memory programs for CMPs [24]. The traces used are for a
64-node shared memory CMP arranged as a 8x8 mesh. Each
processor node has a private L1 cache of 32KB and 1MB
L2 cache (64MB shared distributed L2 for the entire system).
There are 4 memory controllers at the corners. To obtain the
traces, we used Virtutech Simics [25] with the GEMS toolset
[26], augmented with GARNET [27], simulating a 64-core
NoC. Like the previous experiments we chose those fault
configurations that give us fully-connected networks, injected
faults and ran the simulation for each benchmark trace. Each
trace contains two types of packets: data and control. We
considered control and data as QoS and normal packets
respectively. Figure 5 shows the relation between latency and
number of faults for each benchmark and for each packet type.
As can be seen, in real traffics ReliNoC can recover up-to 50
faults with a very low penalty on latency in both traffic types.
In all the benchmarks and for 50 injected faults, the maximum
latency penalty on control and data packets is 10% and 40%

Fig. 5. Latency vs. number of faults for PARSEC benchmarks in 8x8 ReliNoC.

respectively.

D. Cost of reliability hardware

To see the area overhead of our reliable schemes on the
original 2-channel switch, we synthesized the RTL version
of the ReliNoC switch which is based on Xpipes router [21]
in 65nm technology. We performed automatic BIST insertion
using Synopsys Design Compiler to find the BIST overhead.
We carried out this experiments for different size of input
buffers with a flit width of 32 bits. The results are shown in
Table I. As it can be seen, the area overhead is from 12.49% to
15.45% depending on the number of buffers. For a reasonable
number of buffers, i.e. 8, the area overhead of all components
including ISR, OSR, control logics, fault tolerant RC, and
BIST chain is only 12.8%. To efficiently perform physical
routing for the wires of 2-channel links, the bundled NoC
global link routing technique proposed by Kakoee et al. in
[22] can be utilized.

TABLE I
BIST AND OTHER LOGICS AREA OVERHEAD IN RELINOC SWITCH

of buffers Area Area Overhead
(no reliability) (with reliability)

2 7567 8736 15.5%
4 13873 15961 15%
6 20421 23066 13%
8 27004 30458 12.8%
16 52426 58972 12.5%

VI. CONCLUSIONS

A priority-based switch architecture which can provide
reliability in presence of several faults inside the NoC has
been proposed. First, a 2-channel switch architecture which
completely removes the control logic overhead of VCs was
introduced. Then, we proposed ReliNoC architecture which
utilizes the inherently redundant components inside the 2-
channel switch as replacements for the faulty elements.

VII. ACKNOWLEDGMENTS

This work is supported by HiPEAC and JTI-ENIAC-Modern
project.

REFERENCES

[1] F. Gilabert et al., “Improved Utilization of NoC Channel Bandwidth by
Switch Replication for Cost-Effective Multi-Processor Systems-on-Chip,” Proc.
ACM/IEEE NoCS, pp. 165-172, 2010.

[2] W. J. Dally et al. “The reliable router: A reliable and high-performance commu-
nication substrate for parallel computers,” Proc. PCRCW, pp. 241-255, 1994.

[3] K. Constantinides et al. “BulletProof: a defect-tolerant CMP switch architecture,”
Proc. IEEE HPCA, pp. 5-16, 2006.

[4] David Fick et al., “Vicis: A Reliable Network for Unreliable Silicon,” Proc.
ACM/IEEE DAC, pp. 812-817, 2009.

[5] D. Fick et al.,“A highly resilient routing algorithm for fault-tolerant NoCs,” Proc.
ACM/IEEE DATE, pp. 21-26, 2009.

[6] M. E. Gomez et al., “An efficient fault-tolerant routing methodology for meshes
and tori,” IEEE Computer Architecture Letters, vol. 3, No. 1, pp. 3-3, 2004.

[7] S. Rodrigo et al., “Addressing Manufacturing Challenges with Cost-Efficient Fault
Tolerant Routing,”, Proc. ACM/IEEE NoCS, pp. 25-32, 2010.

[8] C.-T. Ho et al., “A new approach to fault-tolerant wormhole routing for mesh-
connected parallel computers,” IEEE Trans. on Computers, Vol. 53, No. 4, pp.
427-439, 2004.

[9] S. Borkar,“Microarchitecture and design challenges for gigascale integration,”
Proc. ACM/IEEE MICRO, keynote address, pp. 3-3, 2004.

[10] J. Flich et al., “An efficient Implementation of Distributed Routing Algorithms for
NoCs,” Proc. ACM/IEEE NoCS, pp. 87-96 , 2008.

[11] A. Alaghi et al., “Online NoC Switch Fault Detection and Diagnosis Using a High
Level Fault Model,” Proc. IEEE DFT, pp. 21-29, 2007.

[12] W.J.Dally “Virtual-Channel Flow Control,” Proc. ACM/IEEE ISCA, pp. 60-68,
1990.

[13] T. Bjerregaard et al., “A survey of research and practices of network-on-chip,”
ACM Computer Survey, Vol. 38, No. 1, 2006.

[14] N.Banerjee et al., “A Power and Performance Model for Network-on-Chip Archi-
tectures,” Proc. ACM/IEEE DATE, pp. 21250, 2004.

[15] A.Mello et al., “Virtual Channels in Networks-on-Chip: Implementation and
Evaluation on Hermes NoC,” Proc. ACM/IEEE SBCCI, pp. 178-183, 2005.

[16] S.Noh et al. “Multiplane Virtual Channel Router for Network-on-Chip Design,”
Proc. IEEE ICCE, pp. 348-351, 2006.

[17] Young Jin Yoon et al.“Virtual channels vs. multiple physical networks: a compar-
ative analysis,” Proc. ACM/IEEE DAC, PP. 162-165, 2010.

[18] W. Peterson et al., Error-Correcting Codes, 2nd ed. Cambridge, MA: MIT Press,
1972.

[19] A. Agarwal et al., “Process variation in embedded memories: Failure analysis and
variation aware architecture,” IEEE J. Solid-State Circuits, Vol. 40, No. 9, pp.
1804-1814, 2005.

[20] M. Hosseinabadi et al., “A Concurrent Testing Method for NoC Switches,” Proc.
ACM/IEEE DATE, pp. 1171-1176, 2006.

[21] D. Bertozzi et al., “Xpipes:A network-on-chip architecture for gigascale system-
on-chip,” IEEE Circuits Syst. Mag., Vol. 4, No. 2, pp. 18-31, 2004.

[22] M. R. Kakoee et al., “A new physical routing approach for robust bundled signaling
on NoC links,” Proc. ACM/IEEE GLSVLSI, pp. 3-8, 2010.

[23] F. Fazzino et al, Noxim: Network-on-chip simulator [Online].
http://noxim.sourceforge.net

[24] Christian Bienia et al., “The PARSEC benchmark suite: characterization and
architectural implications,” Proc. ACM PACT, pp. 72-81, 2008.

[25] P. S. Magnusson et al., “Simics: A full system simulation platform,” IEEE
Computer, Vol. 35, No. 2, pp. 50-58, 2002.

[26] M. M. K. Martin et al., “Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset,” SIGARCH Computer Architecture News, Vol. 33, No.
4, pp. 92-99, 2005.

[27] L.-S. Peh et al., “GARNET: A detailed on-chip network model inside a full-system
simulator,” Proc. IEEE ISPASS, pp. 33-42, 2009.

