
CASPAR: Hardware Patching for Multicore Processors

Ilya Wagner Valeria Bertacco
iwagner@umich.edu valeria@umich.edu

University of Michigan, Ann Arbor, MI 48109

ABSTRACT

Ensuring correctness of execution of complex multi-core pro-
cessor systems deployed in the field remains to this day an
extremely challenging task. The major part of this effort is
concentrated on design verification, where different pre- and
post-silicon techniques are used to guarantee that devices
behave exactly as stated in the specification. Unfortunately,
the performance of even state-of-the-art validation tools lags
behind the growing complexity of multi-core designs. There-
fore, subtle bugs still slip into released components, causing
incorrect computational results, or even compromising the
security of the end-user systems.

In this work we present Caspar – an approach for in-the-
field patching of the memory subsystem hardware in multi-
core chips. Caspar relies on a checkpointing system, which
periodically logs the state of the chip, and a novel error de-
tection and recovery scheme, which uses a simplified mode of
operation to bypass cache coherence and consistency errors.
The implementation of Caspar employs hardware detectors:
on-die programmable circuits to identify system’s configu-
rations that may lead to bugs, and to trigger recovery and
bypass. Our experimental results show that Caspar can be
used effectively to detect and bypass a variety of memory
subsystem bugs, with as little as 2% performance impact
and 6% area overhead during bug-free operation.

1. INTRODUCTION
Correctness of execution is one of the most crucial char-

acteristics of any digital design and, in particular, micropro-
cessors, which permeate our modern surroundings. Unfortu-
nately, processor manufacturers cannot provide guarantees
for the correctness of these products due to their extreme
complexity. Despite the best efforts in pre- and post-silicon
validation, subtle corner case interactions between on-chip
components are often overlooked and slip through the verifi-
cation process. Once systems are deployed in the field, these
erroneous behaviors may lead to effects ranging from rela-
tively innocuous to devastating. Examples of these critical
issues include the F00F bug [1] and a recent bug in AMD’s
Phenom chips [2]. The last one is particularly interesting
because it occurred in a multi-core design – an increasingly
common architecture today. Multi-core chips offer signifi-
cant performance advantages, but this benefit comes at the
cost of a much more involved verification effort, since the
communication among the system’s cores must also be val-
idated. With the number of cores growing to 64 [5], 80 [14]
and beyond, the complete verification of the communication
protocol becomes prohibitively complex, allowing bugs to
seep into released products.

In the majority of modern multi-core processors, the com-
munication protocols are implemented through shared mem-
ory and, therefore, require verification of memory coherence

and consistency. Memory (or cache) coherence guarantees
that individual cache lines are properly handled, so that any

read access always returns the value from the last write. Un-
fortunately, the implementation of even simple coherence
protocols introduces multiple intermediate states, making
the cache lines’ state machines exponentially more complex.
Memory consistency, on the other hand, imposes the allowed
order in which accesses to distinct addresses can be inter-
leaved during execution. Several consistency models ranging
in complexity and flexibility have been proposed [6], yet val-
idation of even the simpler ones remains a challenging task.

As multi-processor systems move away from buses toward
distributed interconnects with non-deterministic delays, the
aforementioned properties become harder to verify, so it can
be expected that, in the future, bugs of this type will slip
into designs more frequently. To cope with this challenge
and prevent costly re-spins, researchers have proposed sev-
eral runtime validation systems, which can be divided into
two groups: checker-based [3, 9, 10] and patching [12, 15]
solutions. In the former, the detection is done by a spe-
cial checker block, which dynamically analyzes the execu-
tion trace and detects anomalies or violations of invariants
at runtime. Patching-based techniques, on the other hand,
use hardware that is programmed at startup with patterns
describing the known errors and can detect when the system
state matches one of these patterns. The drawback of patch-
ing approaches is the need for off-line debugging to develop
the proper patterns; their main advantage is that they incur
significantly smaller area penalty than checkers.

1.1 Contributions
In this work we present Caspar (CAche Subsystem PAtch-

ing and Repair) – a novel patching-based runtime validation
solution designed specifically for multi-core processors. Cas-
par relies on a checkpointing system to record the state of
processor’s cores and caches. In addition, the technique in-
corporates on-die cache-event detectors to identify erroneous
situations. Each detector is programmed at system startup
with error-condition patterns that are compared to the local
cache line state each time a transition occurs in a local or
shared cache. The patterns themselves are created by the
manufacturer’s support team and are distributed to end-
customers when new errors are discovered and debugged.
When a memory-related error is detected by Caspar, a re-
covery and bypass sequence is triggered. The recovery mech-
anism itself relies on a reduced-complexity operation mode
of the system, where only one memory access is performed
at a time. This style of execution ensures that there are
no interactions between processor cores, therefore, memory
coherence and consistency can be guaranteed. Finally, after
running the recovery and bypass for a pre-defined period of
time, the system resumes regular operation.

One of the key advantages of Caspar is its small perfor-
mance impact in the absence of bugs. On the other hand,
when the processor contains errors, the performance of the
system depends on the frequency of error occurrence. More-
over, the event detectors in Caspar occupy less than 0.01% of

the die area (for the OpenSPARC T1 machine), and the ma-
jority of the area overhead is due to the checkpoint storage
space. Note that, checkpointing can be leveraged for pur-
poses beyond error recovery (e.g. post-silicon debugging),
potentially amortizing the cost of implementing Caspar.

The rest of the paper is organized as follows: In Section
2 we survey prior work in runtime verification and compare
it to Caspar. We then overview our technique in detail and
describe its additional potential applications. Then, Sec-
tion 4 discusses the experimental framework that we used
to evaluate Caspar. Finally, Section 5 concludes the paper.

2. PRIOR WORK
Patching and checker-based runtime (or dynamic) verifi-

cation of microprocessors have been a focus of research in-
vestigations in both industry and academia for almost two
decades. DIVA [3] is one of the first checker-based solutions
for ensuring correctness of execution in a single core proces-
sor. A more recent work by Meixner, et al. [9] describes an-
other checker-based runtime verification solution for simple
processor cores, which uses distributed checkers and lever-
ages compile time information. When an error is detected,
the system invokes a backward error-recovery scheme known
as SafetyNet [13]. SafetyNet can also be used as the under-
lying recovery scheme in checker-based solutions for runtime
verification of multi-core chips, such as the one in [10]. Cas-
par differs from these techniques because it relies upon pro-
grammable detectors to identify errors, in contrast with non-
programmable checkers based on system invariants. Thus,
although Caspar requires off-line debugging to produce the
error patterns, it incurs significantly smaller area footprint
than checker-based solutions, and requires fewer alterations
to the chip architecture. In minimize the area impact fur-
ther, in this work we implemented a checkpointing scheme
that is more light-weight than SafetyNet, and does not re-
quire augmentation of the chip with additional clock net-
works for synchronization. This allows our checkpointing
scheme to occupy less die area than SafetyNet (6% vs. esti-
mated 8.3% for the target system), while incurring slightly
higher performance penalty. It is, however, important to
note that the error detection component of Caspar is obliv-
ious of the particular checkpointing scheme, as long as it
allows for timely roll-back and recovery after an error is
found. Therefore, Caspar can be used with SafetyNet or
even more sophisticated checkpointing schemes that incor-
porate processor I/O [11].

Patching-based approaches for detection and recovery from
silicon errors have been introduced by the industry in the
late 1990’s, when Intel augmented its Pentium Pro CPUs
with microcode patching capabilities. A more recent solu-
tion for silicon patching was introduced by Wagner, et al.

in [15], where a small matcher was added to observe the
control state of a processor’s pipeline and to force a recov-
ery when an error was matched. Note that this solution
could only detect an erroneous state of the design, while
Caspar’s detectors match both state and transition trigger.
Another related work [12] presented a more involved solu-
tion with multiple recovery schemes; however, both of these
techniques concentrate on single core chips. Caspar is differ-
ent from all of the approaches described above because it is
designed specifically for patching the shared-memory hard-
ware in multi-cores. Programmable coherence controllers,
such as the one in [4], can also be loosely classified under

patching-based solutions, since they allow for the protocol
firmware to be updated after system’s release. However, this
flexibility comes at the cost of slower operation, compared
to Caspar, which is specifically designed for error patching.

3. CASPAR OVERVIEW
In this section we overview the structure and the oper-

ation of Caspar. We assume a generic multi-core architec-
ture, similar to the one in Figure 1. As shown in the fig-
ure, the CPU usually consists of multiple cores, each with
a local L1 cache. Controllers manage the caches, satisfying
local requests, as well as requests from other cores received
through on-chip interconnect. In addition to the local data
storage, the cores have access to a larger shared second-level
cache. To deploy Caspar in such a system we require the
addition of a few hardware modules to the baseline system
(hashed blocks in the figure). Note that our solutions is not
limited to this architecture and can be used in other multi-
core designs with multiple levels of caches, interconnect, etc.
The majority of the area overhead is due to system-wide re-
covery, which requires storage space as it is implemented
through checkpointing. In Caspar we create a checkpoint
of each core’s state by logging the values of its architec-
tural registers. For caches we implement a copy-on-write
policy and record state and value of a line upon change.
Note that checkpoints in Caspar use local storage, elimi-
nating the need to transfer logged snapshots. In addition to
checkpoint storage, Caspar augments each cache with a pro-
grammable cache-event detector – a specialized circuit that
compares transitions experienced by individual lines with a
pre-defined pattern, thereby identifying memory subsystem
errors. If a cache transition matches a detector pattern,
Caspar alerts the cache controller, which, in turn, signals
the second-level cache to initiate recovery and bypass.

L1 Cache

Checkpoint Checkpoint

L2 $ Controller

Detector

On-chip Interconnect

L2 Cache

Data

C
oh

er
en

ce
 s

ta
te

Core
0

Cache

CTRL

DetectorChkpnt

L1 Cache

Checkpoint

Core
N-1

Cache

CTRL

DetectorChkpnt

Figure 1: Architecture of a multicore system augmented with
Caspar hardware. Multiple processing elements (cores), each
having a private L1 cache, are connected through onchip intercon
nect to each other and to an L2 cache. The additional hardware
required to implement Caspar is shown in hashed blocks and in
cludes checkpoint storage space and cacheevent detectors.

Caspar’s operation is organized in epochs, as shown in
the schematic of Figure 2. We assume that Caspar event
detectors are loaded with appropriate patterns describing
erroneous events at startup. At the end of each check-

pointing epochs the system is synchronized and its state is
recorded. Synchronization in our framework is initiated by
one of the cache controllers (L1 or L2) and forces completion

of all cache transactions in flight. During the synchroniza-
tion phase no new memory accesses are allowed to enter the
system, thus all cache lines reach stable protocol states, af-
ter which, at the end of the epoch, a distributed checkpoint
is taken. In the second epoch shown in the figure, one of the
detector circuits identifies a cache transition corresponding
to a known coherence issue and triggers the recovery pro-
tocol, which stops program execution and restores the last
checkpoint. The L2 cache controller then starts polling indi-
vidual cores, allowing only one memory access at a time over
the entire system, thus ensuring absence of coherence race
conditions and enforcing strict ordering of memory accesses.
When a pre-determined number of accesses completes, Cas-
par stores a new checkpoint, and the cores resume operation
at full performance. Note that after completion of the last
memory operation in bypass mode, the system is again in a
stable state, since during recovery only one memory opera-
tion was executed at a time.

C
h

ec
kp

o
in

t

E
p

o
ch

C
h

ec
kp

o
in

t

E
p

o
ch

Synchronization
request

Checkpoint
Synchronization

Program
Execution

Checkpoint

Error
Detected

Program
Execution

Execution

Recovery & Bypass

Error

T
im

e

Figure 2: Timeline of Caspar operation. Cacheevent detectors
are initially loaded with patterns of cache transitions corresponding
to errors. In the example no errors occur during the first epoch,
which completes with system synchronization and checkpointing.
However, during the second epoch an error occurs and is detected,
triggering the recovery mechanism. The previous checkpoint is
restored, then the system attempts to bypass the error by forcing
strict ordering of accesses. After forward progress is made, a new
checkpoint is taken and the next epoch commences.

As discussed above, Caspar can be decomposed into three
major components: the checkpointing system that periodi-
cally records the system’s state, the event detectors, which
identify bugs, and the recovery and bypass mechanism that
allows Caspar to restore valid state and circumvent the er-
ror. In the rest of the section we will discuss each of these
components and detail their implementation in Caspar.

3.1 Checkpointing
Checkpointing in Caspar is designed to allow fast and ef-

ficient system recovery if an erroneous event is detected. As
mentioned above, the storage for checkpoints is distributed
throughout the system to reside locally with the module
whose state it records. The implementation of the core
checkpoints is straightforward, since in microprocessor pipelines
only the architectural state must be recorded. In Caspar we
implement the checkpoint storage for the cores with shadow
registers that store the architectural state at each snapshot.
Caches and memories are too large to be checkpointed in
such a way, so for them Caspar adopts a copy-on-write pol-
icy, recording the previous value or the coherence state of a
cache line only upon its first change event after the begin-
ning of a new epoch. To this end we augment each cache

line with two modification bits indicating the modification
of a line’s data and state during the current epoch. We also
create a local log organized as a hardware queue that records
address, original state and data of altered lines. The queue
and the modification bits are accessed in parallel with the
main cache operation and are cleared when a new checkpoint
is taken. Then, if a line’s state is altered during an epoch,
we set the state modification bit in the cache and append
the line’s address and previous state to the log queue. It is
important to note that if only the state is modified the line’s
data is not copied to the log, allowing for better utilization
of the queue storage space. If the block is subsequently al-
tered again, the new change will not be logged, since we
are only recording the information necessary to recreate the
system’s state at the time of the last checkpoint. To restore
the last checkpoint state, Caspar suspends the core’s oper-
ation and performs the following two tasks in parallel: the
core’s architectural state is restored from the shadow regis-
ters and, simultaneously, Caspar traverses the log queue in
reverse order, restoring the state and/or data of the modified
cache lines from the log while clearing the modification bits.
When the traversal is completed, the log queue is cleared.

C
or

e
0

...
1.a. L2 watchdog

timer signal

1.b. L1 request
for checkpoint

2. L2 broadcast
sync msg

C
or

e
N

-1

L2
C

TR
L

C
or

e
0

...

3. All acks
received

4. L2 broadcast
chkpnt msg

C
or

e
N

-1

L2
 C

TR
L

Figure 3: Synchronization for checkpointing in Caspar. Syn
chronization requests are initiated either by the watchdog timer in
the L2 controller (1.a) or by a local cache controller that exhausted
its log space (1.b). Following the request, the L2 controller broad
casts a synchronization message to all cores (2), who stop issuing
new memory accesses, wait for completion of all pending opera
tions and, finally, acknowledge synchronization (3). As final step,
L2 sends a checkpoint message causing architectural state of the
cores and local caches to be saved.

Although cache checkpoints in the system are distributed,
their recording must be synchronized, ensuring a consis-
tent system state after recovery. In designing our solution
we decided to avoid special physical clocks, as required by
solutions such as SafetyNet, to synchronize the cores for
checkpointing. Such clock networks would require signifi-
cant routing effort to be implemented in a large multi-core
CPU, and incur additional power and area overhead. In-
stead, Caspar relies on a four-step procedure illustrated in
Figure 3. The synchronization is invoked by either a sig-
nal from the watchdog timer in the second-level cache (1.a
in the figure) or a message from a cache controller that
has exhausted its logging resources (1.b). Subsequently,
the second-level cache controller broadcasts an explicit syn-
chronization message (2) stopping program execution in all
cores. Once all cores have acknowledged completion of all
pending operations, the L2 broadcasts a checkpoint message
and the state of the chip is recorded as the new checkpoint.

3.2 Detection and Coverage
Caspar is designed specifically for patching errors in the

memory subsystem by comparing events (cache state ma-

chine transitions) to pre-loaded patterns describing known
bugs. Thus, Caspar can cover a wide class of functional
errors associated with unexpected events that are either
handled improperly or not handled by the coherence con-
troller. Moreover, as we demonstrate later, Caspar can be
extended to detect and recover from memory consistency
errors. However, in its current implementation, Caspar is
ineffective against bugs that cannot be represented through
local state-machine transitions and are caused by invalid
request timing, etc. The detection feature is implemented
with event detectors – small programmable blocks residing
at each of the system’s caches. Since each coherence tran-
sition of a cache line is uniquely defined by the line’s state
and the input trigger, the error patterns in the detectors
consist of two fields, matching the state and the trigger, re-
spectively. Each field is stored as a bit vector, where a 1
in a particular position matches a certain trigger or a state.
Note that multiple bits in a pattern can be set to encode
combinations of erroneous events.

The diagram of the hardware event detector is shown in
Figure 4. During every coherence transition the line’s local
state and trigger are passed to one-hot encoders, which con-
vert them to bit-vectors describing the event. The vectors
are then separately compared with stored patterns on a bit-
by-bit basis. The error detection signal, however, is asserted
only if the match occurs in both fields. Caspar detectors in
general would contain several entries, each identical to the
one in the figure, to perform multiple matchings in parallel.

State Vector

Trigger Vector

Error DetectedState 1-Hot Encoder

Trigger

Bitwise
EQV

Bitwise
EQV

1-Hot Encoder

Error pattern
loaded at startup

Figure 4: Structure of Caspar hardware event detector. Bug
patterns are divided into a state and trigger fields and stored as bit
vectors, where a set bit indicates an erroneous state or transition
trigger. During each cache access, the detector encodes the current
event as two onehot vectors and compares them with the stored
pattern, asserting an error detection signal only if both match.

We illustrate Caspar’s detection in the following example.
Assume that a core is performing a store and the line is
in the intermediate state “SM” (half-way between “Shared”
and “Modified”), when an invalidation message arrives from
another core. If the cache’s finite state machine was incor-
rectly implemented, this race could result in a deadlock or
coherence violation in a non-Caspar system. However, by
programming Caspar with a pattern describing this state
(“SM”) and trigger (invalidation), we can detect and avoid
this error at runtime.

In addition to coherence errors, Caspar framework en-
ables coverage of more complex and subtle issues related to
memory consistency. As it was demonstrated in [10], con-
sistency can be ensured if three system-wide invariants are
guaranteed: i) uniprocessor ordering, ii) absence of illegal
re-orderings and iii) cache coherence. As discussed above,

event detectors in Caspar recognize dangerous transitions
in the L1 and L2 caches, thus ensuring that the third in-
variant is upheld. Moreover, as was demonstrated in [10],
the checkers for the former two properties can be imple-
mented in efficient small logic blocks (non-programmable)
that can signal errors similarly to event detectors. With the
addition of such checkers the coverage of our approach can
be increased to include bugs which manifest themselves as
memory consistency violations.

3.3 Recovery and Bypass
Once an error in the program execution is detected, Cas-

par initiates a system-wide mechanism to recover from the
bug and circumvent it. To return the system to a know-
correct state Caspar forces all cores, as well as the local
and shared caches, to restore the last checkpoint. Then
the system attempts to bypass the error to ensure forward
progress. Since errors in the memory subsystem are trig-
gered by interactions of simultaneous accesses, we designed
a bypass system to eliminate such race conditions, at a cost
of reduced performance. During this phase of operation, we
only allow one outstanding memory access in the system
at a time, reconfiguring the L2 cache controller to poll cores
directly for requests. Note that, in this case, coherence tran-
sitions in the system are never interrupted in intermediate
states, and cache operations simplify to the level of the un-
derlying coherence protocol. Thus correctness of the bypass
operation can be validated using powerful formal techniques.
Moreover, since the L2 explicitly orders each core’s memory
accesses, consistency in bypass mode can also be ensured.

After a pre-programmed number of accesses complete in
bypass mode, the L2 controller broadcasts a new checkpoint-
ing request, so that the stable state reached in bypass is
saved, and the normal execution resumes. Note that many
more accesses are usually performed during an epoch’s nor-
mal execution than during bypass, therefore, it is possible
that the offending sequence of instructions is re-executed
and triggers an error again. However, in this case the sys-
tem rolls back to the new checkpoint reached after the last
recovery, thus guaranteeing forward progress, so the error is
eventually circumvented. Moreover, since the network and
message buffers are drained during recovery, the interaction
of accesses after bypass is often different than the one that
triggered the recovery originally. Thus, it is possible that
when the normal operation resumes, the execution of the
same sequence does not produce again the erroneous event.

4. EXPERIMENTAL EVALUATION
In this section we introduce the experimental platform

used for Caspar’s evaluation, and present detailed analyses
of bug-finding ability and overheads of our solution. We
investigate both the area and the performance overheads due
to checkpointing, as well as the recovery penalty for thirteen
complex bugs inserted into our baseline design. Finally, we
analyze the area impact of Caspar’s event detectors.

4.1 Experimental Platform
We simulated the operation of Caspar in a 16-node multi-

core processor using the Wisconsin Multifacet GEMS archi-
tectural simulator [8]. The local L1 caches were 64KB each,
while the shared L2 cache had a size of 4MB. The cores
were interconnected with a mesh network and used MOESI
directory protocol for coherence. Caspar was implemented

inside the GEMS memory tester module (Ruby) as a col-
lection of functions to initiate checkpointing, recovery and
bypass procedures, and manage the event detectors, which
were inserted into system’s caches and directory controller.

Caspar was tested using a set of twenty benchmarks that
included ten traces of SPLASH2 benchmarks [16] and ad-
ditional randomly generated stimuli. The real-world bench-
mark traces were each 10M instructions long, while the ran-
dom benchmarks contained 1M memory accesses and varied
in degree of data sharing and total address space used.

4.2 Checkpointing Overheads
In our first study we analyzed the overhead of Caspar’s

checkpointing process. Recall that, to take a checkpoint,
the system must synchronize, and thus the execution of
some memory accesses must be delayed. Therefore, longer
epochs result in a less frequent synchronization. On the
other hand, due to the copy-on-write policy for cache check-
pointing, longer epochs can only be achieved with larger log
sizes, which imposes a higher area overhead. We investi-
gate this tradeoff in Figure 5, where we plot slowdown and
area penalty for a range of epoch lengths. The area over-
head is calculated as a percentage of cache lines that were
modified during the simulation and thus had to be logged.
Each data point is computed as an average over the twenty
benchmarks. Individual benchmarks deviated slightly from
this average: less than 4% for synthetic random programs
and less than 1% for real-world applications. As the figure
indicates, longer epochs lead to better performance, how-
ever, in presence of errors, this will cause more time to be
spent in bypass and thus it will incur greater slowdowns.
For the subsequent experiments we set the checkpointing
epoch length to 8,000 cycles, which translates to roughly
2.4% performance impact and 5.8% area overhead.

Performance overhead

Area overhead

0

2

4

6

8

10

2,000 4,000 6,000 8,000 10,000 12,000 14,000

Epoch length (cycles)

O
v
e

rh
e

a
d

 (
%

)

Area overhead

Performance overhead

Figure 5: Overhead of Caspar checkpointing. Percent slowdown
and area overhead required to provide checkpointing infrastructure
over varying epoch lengths.

4.3 Error Resiliency Analysis
In our second study, we inserted thirteen bugs, listed in

Table 1, into various modules of the multi-core processor un-
der test. The errors were derived from publicly available er-
rata of commercial multi-core processors and adapted to our
evaluation framework. Each bug was associated with a par-
ticular state machine transition and described uniquely by
the error patterns loaded in Caspar. For each error, we cal-
culated the frequency of occurrence by computing the num-
ber of times the state and trigger occurred during normal
operation (i.e., with checkpointing and detection disabled).
These errors represent complex corner cases of operation of
the L1, L2 and directory, when multiple accesses race for

Table 1: Names, descriptions and frequency of occurrence (oc
currences/1M cycles) of errors injected in the experimental system.

Bug name Description of the error Freq.

L1 Store race L1 transitions from S to M while 0.32
another cache issues a store

L1 WBack L1 evicting dirty data while 0.72
+Load another cache issues a load

L1 Owner L1 owner evicting dirty data while 0.04
Evict+Load another cache issues a load

L2 Block L2 blocked, waiting for ack while 34.3
+Unblock requester issues unblock

L2 Block L2 blocked, waiting on directory 0.03
+Load while L1 issues a load to the line

L2 Load race L2 load while another load arrives 0.12

L2 WB L2 WB while dirty data arrives 2.72

Dir Block Directory blocked on a load while 35.1
+Unblock L2 issues unblock

Dir Clean Directory blocked on WB while 12.3
WB mem clean WB forwarded to mem

Dir Dirty Directory blocked on WB while 21.7
WB mem dirty WB forwarded to mem

Dir Clean Directory blocked on WB while 0.04
WB L2 clean WB forwarded to L2

Dir Clean Directory blocked on WB while 0.09
WB L2 dirty WB forwarded to L2

Dir Store Directory blocked on a store while 34.2
+Unblock L2 issues unblock

resources or an unexpected request arrives when the system
is in an intermediate state. Without Caspar enabled, these
errors could lead to cache corruption or deadlock, however,
when patterns identifying the bugs were loaded into the de-
tectors, all simulations completed correctly.

4.4 Caspar Recovery Performance
In addition to the resiliency analysis, we investigated the

overhead associated with execution of the 20 benchmarks in
presence of different bugs. In this study, we fixed the bypass
length to 2,000 instructions, and recorded the fraction of
the execution time that the system spent in each of the four
phases: normal operation, synchronization for checkpoint,
recovery and bypass. The results of the study are shown
in Figure 6, where we also plot the average of the thirteen
bugs and provide the bug occurrence frequencies for refer-
ence. As the experiment demonstrates, for more frequent
bugs, a significant portion of execution is spent in recovery
and bypass, while, for rare errors, this fraction is negligible.
Note that all errors were detected by Caspar precisely, since
they were all associated with unique transitions of the cache
finite state machines. In this study we observed that some-
times several detections were required to bypass a single bug
instance. This was the case when the error occurred late in
an epoch and a 2,000-instruction bypass was insufficient to
circumvent the problem after the first recovery. In addition,
we observed cases where several potential errors, clustered
together in program execution, were circumvented with just
one bypass. Therefore, longer bypass sequences may be ben-
eficial for bugs that are frequent or tend to occur in groups.

To analyze the impact of the bypass sequence length on
the system’s performance we conducted an additional study
on five errors that varied widely in frequency of occurrence.
In this experiment the bypass length varied from 500 to
5,000 instructions and the overall performance slowdown of
the system was recorded (see Figure 7). As you can see,
a longer bypass was beneficial for frequent errors, primar-
ily because it guaranteed that the error would be circum-

0

20

40

60

80

100

L1 Store
race

L1 WBack+
Load

L1 Owner Evic
t+Load

L2 Block+
Unblock

L2 Block+
Load

L2 Load race

L2 W
B

Dir Block
+Unblock

Dir Clean WB
mem

Dir Dirty
WB mem

Dir Clean W
B L2

Dir Clean W
B L2

Dir Store+Unblock
AVG

Bug ID

Bypass

Recovery

Sync for checkpoint

Normal operation

0
.3

2

0
.7

2

0
.0

4

3
4
.3

0
.0

3

0
.1

2

2
.7

2

3
5
.1

1
2
.3

2
1
.7

0
.0

4

0
.0

9

3
4
.2

E
x
e
c
u

ti
o

n
 t

im
e
 (

%
)

Bug ID

AVG

Figure 6: Execution time breakdown. Percentage of time the sys
tem spends in the four execution phases (normal operation, check
pointing, recovery and bypass) for each of the thirteen errors.

vented on the first attempt and there was a higher chance
that multiple errors would be covered by a single bypass.
On the other hand, we noticed the opposite trend for rare
bugs (L1 WBack+Load and L2 Block+Load). In these cases,
errors instances were significantly farther from each other,
thus a longer bypass did not reduce the number of recoveries
and only incurred higher performance overhead. From this
study we conclude that Caspar’s fixed-length bypass strat-
egy is not optimal for all bugs. Indeed, the system could
be improved to load the number of instructions to run in
bypass together with the bug pattern, or calculate the by-
pass length dynamically based on where the last error was
detected from the beginning of the epoch.

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Dir Block+Unblock

L2 Block+Unblock

Dir Clean WB mem

L1 WBack+Load

L2 Block+Load

0 1000 2000 3000 4000 5000

Recovery Instructions

S
lo

w
d

o
w

n
 (

%
)

Figure 7: Performance vs. bypass length. For frequently oc
curring errors, a longer bypass is more beneficial, for it allows
multiple bug instances to be covered together. For rare bugs, on the
other hand, a longer bypass results in larger penalties due to longer
execution at lower performance.

4.5 Event Detector Area Overhead
Finally, we investigated the area overhead of Caspar’s

event detectors. To this end we implemented the detectors
for the L1 and L2 caches in Verilog HDL and synthesized
them using the TSMC 90nm technology. The area of the
L1 and L2 cache detectors was found to be 984.2µm2 and
2,422µm2 , respectively. In comparison, an OpenSPARC T1
chip, which has eight cores with private caches and a shared
4-bank L2 cache, has an approximate area of 378mm2 [7].
Thus, placing event detectors in each private cache and in
each L2 bank incurs an area overhead of 0.005%, a negligi-
ble penalty compared to the area of the checkpointing log
storage analyzed in Section 4.2. Considering that the area
overhead of the checkpointing is calculated as a percentage
of the area of the caches, we find that in the OpenSPARC

T1 design the checkpointing logs and detectors of Caspar
will occupy less than 3% of the total die area.

5. CONCLUSION
In this work we presented Caspar – an effective solution

for in-the-field patching and repair of the memory subsys-
tem in modern multi-core processors. Caspar relies on pe-
riodic system checkpointing and hardware event detectors
programmed with descriptions of known erroneous transi-
tions of the system’s state machines. When an error is
detected during operation, Caspar stops the execution, re-
covers the correct state, and attempts to bypass the bug
by enforcing race-free operation. Our experimental results
demonstrate that Caspar’s checkpointing scheme incurs lit-
tle performance and area penalty (2.4% and 5.8%, respec-
tively, for the target system in our experiments). Thus, with
no errors present in the design, the impact of our solution is
kept quite small. When errors do occur, recovery can poten-
tially become expensive; however, we found experimentally
that with low error frequencies (which is expected given that
the system has undergone heavy design-time verification)
the overall performance penalty is also small. These fea-
tures allow Caspar to work as an effective patching solution,
protecting even the most complex of today’s designs.

6. REFERENCES
[1] Intel(R) Pentium(R) Processor Invalid Instruction Erratum

Overview, July 2004.
www.intel.com/support/processors/pentium/sb/cs-013151.htm.

[2] Revision Guide for AMD Family 10h Processors, Apr. 2008.
http://www.amd.com/us-en/assets/content_type/white_papers_

and_tech_docs/41322.PDF.

[3] T. M. Austin. DIVA: A dynamic approach to microprocessor
verification. Journal of Instruction-Level Parallelism, 2000.

[4] L. A. Barroso, K. Gharachorloo, M. Ravishankar, and R. Stets.
Managing complexity in the piranha server-class processor
design. In Workshop on Complexity-Effective Design, 2001.

[5] S. Bell et al. TILE64 processor: A 64-core SoC with mesh
interconnect. In Proc. ISSCC, pages 88–598, Feb 2008.

[6] D. Culler, A. Gupta, and J. Singh. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[7] A. Leon, K. Tam, J. Shin, D. Weisner, and F. Schumacher. A
power-efficient high-throughput 32-thread SPARC processor.
IEEE Journal of Solid-State Circuits, 42(1), Jan. 2007.

[8] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,
A. Alameldeen, K. Moore, M. Hill, and D. Wood. Multifacet’s
general execution-driven multiprocessor simulator (GEMS)
toolset. ACM Computer Architecture News, 33(4), 2005.

[9] A. Meixner, M. E. Bauer, and D. J. Sorin. Argus: Low-cost,
comprehensive error detection in simple cores. IEEE Micro,
28(1):52–59, 2008.

[10] A. Meixner and D. Sorin. Dynamic verification of memory
consistency in cache-coherent multithreaded computer
architectures. In Proc. DSN, pages 73–82, 2006.

[11] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas.
ReViveI/O: efficient handling of I/O in highly-available
rollback-recovery servers. In International Symposium on
High-Performance Computer Architecture, Feb. 2006.

[12] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder,
and J. Torrellas. Patching processor design errors with prog-
rammable hardware. IEEE Micro Special Issue, 27, Jan. 2007.

[13] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet:
improving the availability of shared memory multiprocessors
with global checkpoint/recovery. In Proc. ISCA, 2002.

[14] S. Vangal et al. An 80-Tile sub-100-W TeraFLOPS processor in
65-nm CMOS. Journal of Solid-State Circuits, 43(1), 2008.

[15] I. Wagner, V. Bertacco, and T. Austin. Using field-repairable
control logic to correct design errors in microprocessors. IEEE
Transactions on Computer-Aided Design, 27(2), Feb. 2008.

[16] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological
considerations. In Proc. ISCA, 1995.

