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ABSTRACT
The challenge of verification of multi-core and multi-processor
designs grows dramatically with each new generation of sys-
tems produced today. Validation of memory coherence and
memory consistency of the entire system, which includes
multiple levels of cache and complex protocols, remains a
major fraction of this difficult task. Unfortunately, current
tools are incapable of addressing these new challenges, lead-
ing to an unacceptably high risk that critical bugs could
slip into designs, and make software behave unpredictably
or cause wrong computation results.

In this work we present a scalable approach to the veri-
fication of memory coherence and consistency protocols in
large multi-core and multi-processor systems. We accom-
plish this task with multiple cooperating agents, which feed
the cores or processors with stimuli, attempting to both
achieve their own verification goals and support other agents
on their. The agents can dynamically change the stimuli
that they generate based on coverage and pressure observed
during the validation. Since each agent has a minimal knowl-
edge of the entire system, their communication and decision
process is greatly simplified. Moreover, since the agents’
view of the system is independent of the number of nodes
in it, our approach can be efficiently scaled to target large
multi-processor systems. Our experimental results on two
common memory coherence protocols demonstrate that this
technique can reach 100% coverage of the individual agents’
verification goals and of the system-level coherence protocol
FSM much faster than a constrained-random approach.

1. INTRODUCTION
Multi-processor systems have been the foundation of high-

performance computing for several decades. Supercomput-
ers developed by companies such as Cray, IBM and SGI,
featuring hundreds and thousands of processors all working
in parallel, allowed several critical scientific problems to be
solved in a timely manner and with great precision. Systems
with fewer processors, on the other hand, were traditionally
used by companies as databases and web servers. Recently,
however, multi-processor and multi-core systems started to
permeate the consumer market due to the inability of single-
processor systems to support the programming trends of the
market with just frequency scaling and microarchitectural
improvements. Processors such as the IBM Cell [5], the Sun
T1 (Niagara) [6] and the Intel 80-core 1.28 TFLOP proces-
sor [13] feature multiple cores which themselves are rela-
tively simple, when compared to high-end processors that
target single thread performance. Moreover, these parallel

systems are attractive due to lower power dissipation and
higher reliability, in addition to their high performance on
multi-threaded applications. Nonetheless, the complexity of
these systems is increasing exponentially, with the number
of cores or processors presenting a growing challenge to ver-
ification engineers.

Formal verification tools, such as SAT solvers and theorem
provers, use mathematical reasoning to check if a design ad-
heres to the specification. Unfortunately, often the capabil-
ities of formal verification tools fall short of the complexity
of today’s high-end single processor systems, let alone multi-
processors. Although these tools can prove fundamental
properties in coherence protocols, such as absence of illegal
transitions, they cannot handle the actual implementations
of multi-processor systems and require much of the design
to be abstracted away. On the other hand, constrained-
random simulation-based approaches are quite scalable and
can be used for verification at various levels of abstraction:
high-level protocol model, low-level RTL, or even gate-level
implementations. However, the shortcoming of these tools
is their non-exhaustive nature: they can only guarantee the
correct behavior of the execution scenarios that they inves-
tigate. Often the notion of coverage, or verification thor-
oughness, is used to assert the effectiveness of constrained-
random methods and enable an engineer to design new tests
to validate uncovered scenarios. Because of this, human
evolvement in simulation-based verification remains a ma-
jor bottleneck of the validation process in today’s industry,
while insufficiently tested designs such as processor cache
controllers are still being manufactured.

1.1 Contributions
In this work we present MCjammer - an adaptive veri-

fication tool for Multi-Core designs that uses closed-loop
feedback to dynamically adjust its simulations to effectively
test corner cases of design behavior. MCjammer is specifi-
cally designed for the verification of the memory subsystem,
namely cache controllers, memory controllers and intercon-
nect. MCjammer uses multiple cooperating agents that cre-
ate and correlate test sequences trying to satisfy their cov-
erage goals. Instead of fully understanding the system-level
FSM of a coherence protocol, each agent uses a simplified
view of the system to formulate its goals and produce se-
quences of memory accesses to achieve them. In addition,
coverage and frequency of conflicting memory requests are
analyzed dynamically by the agents, so that they can track
progress on their goals, produce test sequences with large
amount of “stress” on the system, and try to expose design
errors. Finally, the data that agents supply to the design



under test is uniquely tagged and can be used to detect
a variety of errors, including violations of memory coher-
ence or even faults in the interconnect. Both simplicity of
the system and data tagging enables us to easily scale and
adapt MCjammer to large multi-processor designs. In ad-
dition it allows us to use MCjammer with a variety of co-
herence/consistency protocols and with different representa-
tions of designs, from high-level simulation of the protocol
level FSM to RTL code implementing processors, memory
and caches. Our experiments with two common cache coher-
ence protocols demonstrate that MCjammer achieves better
coverage with lower effort than an open-loop constrained-
random simulation approach.

The rest of the paper is organized as follows: First we
briefly overview the structure of multi-processor / multi-core
systems and the challenges of their verification in Section 2,
as well as related prior work in this field in Section 3. We
then go over the structure of the MCjammer tool in Section
4 and explain in detail its feedback and consistency check
mechanisms in Section 5. Section 6 presents the experimen-
tal results, and Section 7 concludes the paper.

2. BACKGROUND
In a shared-memory multi-core/multi-processor system sev-

eral processors communicate via an interconnect structure
(bus, network, etc.) to the main memory or with each other,
as shown in Figure 1. Unfortunately, the latency of a mem-
ory access in such a system can be significantly higher than
in a single-processor machine since memory is physically lo-
cated much further away. A processor’s request often must
go through a network interface and make multiple hops to
reach the memory controller and then return back with data.
Therefore, caches, which reside at each core/processor and
amortize the access time, become vital for performance. Un-
fortunately, this also complicates the interaction between
processors since some of them might have more recent data
in their caches than what main memory has.
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Figure 1: Structure of a multi-core/multi-processor
system. Multiple cores/processors P1 through Pn have
separate caches, but communicate with each other and the
shared main memory via interconnect.

To make sure that all processors have a coherent view of
each memory location, and all data changes are propagated
through the entire system with the best possible perfor-
mance, a variety of cache coherence protocols are used. Fig-
ure 2 presents a model of MESI coherence protocol, where
from the point of view of each cache controller a particular

memory location can be in one of the four states: ‘Modified’,
‘Exclusive’, ‘Shared’ or ‘Invalid’. ‘Invalid’ means that loca-
tion is not present in the cache and to load it, the processor
would have to send a request to the main memory. If the
location is in ‘Modified’ at one of the caches, then the data
was fetched by this processor from the main memory, and
then modified by a store. However, the updated data is not
visible to the rest of the system at this time. The proces-
sor can perform any operation on this data: loads, stores
and evictions from the cache. All other processors at this
point must have the same memory location marked as ‘In-
valid’, so if they try to load the data, they must request it
from the main memory, which in turn will retrieve it from
the processor that modified it. If the memory location is
marked ‘Shared’ it is guaranteed to be consistent with data
in the main memory, and there may be other processors that
have the same location in ‘Shared’ state as well. A processor
can perform loads to a ‘Shared’ memory location or evict it
without notifying other processors or the memory. ‘Exclu-
sive’ state means that the processor is the one who owns
the right to modify the location. Note that, if one proces-
sor has a location in either ‘Exclusive’ or ‘Modified’ state,
others must have it in ‘Invalid’. A more thorough descrip-
tion of the MESI protocol, as well as other cache coherence
protocols can be found in [3].
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Figure 2: MESI cache coherence protocol. Each mem-
ory location can be in one of the following states in each
cache controller: ‘Modified’, ‘Exclusive’, ‘Shared’ or ‘In-
valid’. ‘I’ when the location is not available in the cache,
‘E’ when only the corresponding processor can modify the
data, and ‘M’ after the value has been updated in the cache.
The controller is in the state ‘S’ when the data loaded in the
cache but cannot be modified.

Note that, the finite state machine of the protocol shown
in Figure 2 only reflects the view of a single processor on
the state of the memory location. Therefore, the full system
protocol FSM for a single memory location is a product of
n finite state machines (FSM), where n is the number of
processor nodes in the system. An example of a product
FSM for a MESI-based system with three nodes is shown
in Figure 3. Thus, verification of the memory coherence in



a multi-core / multi-processor system includes verification
of this system-level FSM. The main aspect to verify is the
absence of invalid transitions and invalid states, for exam-
ple, a state where several processors have the same memory
location marked as ‘Modified’ in their caches.
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Figure 3: Full system FSM of three processor MESI-
based system. Each processor follows the MESI protocol
presented in Figure 2. A unique memory location in the
system can be in one of the shown fourteen states.

Another crucial aspect of multi-core computing is mem-
ory consistency, which defines the order of memory accesses
that are legal in a particular machine. The issue of con-
sistency arises from the fact that scalable interconnects in
multi-processors may re-order request messages, thus dif-
ferent processors may see the global sequence of loads and
stores in different orders. For example, Strict Consistency
demands that memory operations occur in the order they
were issued. On the other hand, Sequential Consistency [7],
requires that the same order is observed by all processors,
although it may differ from the order in which accesses are
issued. Other models, such as Processor Consistency and
Total Store Ordering, pose even fewer restrictions on the or-
der in which actions may occur. However, their implementa-
tions require special memory ordering commands so software
developers can have precise, although expensive in term of
performance, control over memory accesses. Memory consis-
tency is typically hard to verify since implementable models
tend to have a large range of possible behaviors that need
to be tested. Failure to do this validation may result in
unexpected software behavior.

3. PRIOR WORK
Verification of multi-processor systems was a strong fo-

cus of academic and industrial communities for a long time.
Since the introduction of massively parallel supercomputers
this effort mostly relied either on direct tests (programs)
or constrained-random simulation-based techniques. Wood
et al. [14] used random test generation to verify coherence
of the cache controller in a shared-memory SPUR machine

designed and built at UC Berkeley. Recently Sorin et al.
worked on several approaches to dynamically verify cache
coherence [12] and sequential consistency [10] in multi-pro-
cessors. Note that these dynamic verification techniques re-
quire additional hardware for on-the-fly error detection and
correction. In contrast, our approach aims at verifying the
multiprocessor at design time and preventing bugs from es-
caping into the final design.

There are also several formal verification tools available
that specifically target multi-processor designs, including
Murϕ [4] developed by Dill. Murϕ includes a special lan-
guage for cache coherence protocol specification and a ver-
ification tool for protocol formal analysis. Our approach is
different from this work in that we do not require a new
language to specify the protocol and do not conduct ver-
ification via state enumeration. This makes our approach
more scalable and applicable to simulation-based verifica-
tion flows used heavily in today’s industry.

In addition, industry investigated several approaches to
multi-processor verification, including work done at Cray
Corp. [1] and IBM [11, 8]. Notably, the work of Malik et al.
[8] used product state machine coverage for autonomous test
generation, however, it is unclear how efficient this system
would be in a large multi-core/multi-processor design. An-
other notable work from IBM includes the Genesys Pro test
generator [2] that can be used to generate colliding memory
accesses based on a set of templates given by the user. Un-
like our solution, this tool requires significant user input for
fine-tuning the simulation and is dependent on the configu-
ration of the target system.

4. MCJAMMER TOOL
MCjammer is a simulation-based verification tool designed

specifically to target multi-core/multi-processor systems with
various interconnects and memory hierarchies. The tool con-
siders the system at a very high level, which brings the ad-
vantage of being portable between multiple representations
of the same system: abstract FSM, C simulator, protocol-
based RTL or full RTL implementation. It is also eas-
ily tuned to work with different cache coherence protocols,
memory hierarchies and memory consistency models. The
tool employs multiple agents that generate concurrent and
colliding memory access patterns, while at the same time
helping each other to achieve postulated goals. This section
gives an overview of the tool.

4.1 Overall Structure
MCjammer institutes a collection of cooperating adaptive

agents attached to each of the processors or cores of the de-
sign (see Figure 4). An agent is responsible for identifying
verification goals as well as actions taken by the individual
processors during the validation process. The agents also
check the coverage reports obtained after each attempt to
reach the desired goals and adjust their actions so they i.)
are more likely to see the desired goal and ii.) increase the
pressure on the memory system to maximize the number
of collisions and expose possible design errors. Both goals
and the overall coverage are calculated in terms of transi-
tions in a dichotomic finite-state machine (DFSM), which
depends on the coherence protocol of the system. A DFSM
is a simplified view of the system, where an agent only dis-
tinguishes between its own actions and the actions of the
”environment”, i.e. all other agents combined.
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Figure 4: Structure of MCjammer. Each proces-
sor/core in the system is assigned an agent. During each
round agents formulate their goals in terms of transitions in
the dichotomic finite-state machine (DFSM) of the memory
coherence protocol specified by the user. During each at-
tempt agents choose if they want to attempt to achieve their
own goals, provide support to another agent or execute a
random transition. A consistency checker observes the data
that the memory and the individual processors receive and
checks that consistency was preserved.

4.2 Dichotomic Finite-State Machine
As was pointed out in the introduction of this work, the

number of processors and individual cores used in today’s
chips is increasing rapidly every new generation. Therefore,
the number of possible states and state transitions in the
cache coherence protocol that each processor can experi-
ence increases exponentially. As a result, tools that supply
processors with stimuli and deterministically infer which of
these states/transitions were not visited during the verifi-
cation process become unscalable. In designing MCjammer,
we decided to divide the large problem of validating all possi-
ble transitions in the finite-state machine of the full system’s
coherence protocol (full system FSM) into a set of smaller
problems each with a simplified FSM. Instead of one agent
formulating test sequences for the multi-processor system
based on coverage or collision metrics, we chose to create a
set of simpler agents cooperating with each other. However,
for simplicity reasons, agents don’t have an understanding
of the full system FSM of the protocol and instead use a di-
chotomic finite-state machine (DFSM) to represent the pro-
tocol. States in a dichotomic finite-state machine are only
comprised of the state of the processor itself and the state
of the “environment”, i.e. the rest of the agents. The agent
in this framework is not capable to distinguish which other
processor has the memory location in a certain state, but it
knows that at least one processor in the system has it.

An example of a DFSM for a MESI protocol is shown in
Figure 5. A state in this figure represents the protocol for
a single memory location at the agent’s cache (first letter)
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Figure 5: Dichotomic Finite State Machine for a
MESI protocol. This state diagram represents a simpli-
fied view of the global states that each memory location in
the system might have. An agent using this DFSM only
distinguishes between actions of its own and actions of the
“environment” or the rest of the agents. It is not able to
distinguish among the states and actions of other agents,
making the DFSM similar to a two-processor MESI product
FSM. Transitions in the DFSM are labeled with the corre-
sponding action that the agent (subscript s) or one of other
agents(subscript o) must take. Actions include load (LD),
store (ST ), and eviction (E).

and at some other agent’s cache (second letter). For in-
stance, in the state SI the agent has the cache line marked as
‘Shared’, while some other agent has it as ‘Invalid’. Transi-
tions between states correspond to actions of the agent itself
(subscript s - self) or other agents (subscript o - other) and
include such actions as load (LD), store (ST ) or cache evic-
tion (E). Note that in a dual-processor/dual-core system,
the DFSM corresponds exactly to the full system finite-state
machine, since there are only two agents present. However,
if the number of processors increases, the complete FSM
would change (recall Figure 3), but individual agents would
retain this DFSM structure, and each state of the DFSM can
be mapped to multiple states of the full FSM. Additionally,
each state of the full system FSM may map to several DFSM
states. In other words, in a four-processor system state SI
in the DFSM of a single agent maps to all states where this
agent has the cache line as shared and at least one other
agent has the line as invalid. At the same time a protocol
state SSSI (shared in three caches, invalid in the fourth)
maps to states SS and SI of agents one through three and
state IS of the fourth agent. Similar relations can be estab-
lished between transitions in dichotomic state machine and
full system FSM.

The division of the complex protocol state machine into
simple DFSMs allows us to retain the simplicity of individ-
ual agents and their interactions regardless of the number
of agents in the system. On the other hand, if a single
agent had precise knowledge of the entire system, i.e. the
full system FSM, the complexity of its decision and com-



munication processes would not be scalable beyond just a
few cores/processors. For example, the system FSM for a
16 processor MESI system would have 65568 states and an
order of magnitude more transactions, making the collabo-
ration between agents extremely complicated. The MCjam-
mer for such system, on the other hand, would have partial
overlapping DFSM with 8 nodes per processor, resulting in
just 128 nodes in total for the 16 processor system. By di-
viding the problem into a smaller set of problems we can
create a tool with manageable complexity.

4.3 Agents’ Goals
Goals of individual agents in our framework are formu-

lated as individual transitions in the DFSM that individual
agents would want to verify in a particular round. For ex-
ample, in Figure 4, agent 1 had chosen transition IM→SS
as its goal. Since transitions in DFSM are labeled with ac-
tions that the agent and/or other agents need to perform for
the transition to occur, generating actions to test a partic-
ular goal is straightforward. Note, however, that due to the
many-to-many relation, we must add additional constraints
to the coverage so the full system FSM is thoroughly veri-
fied. In our framework a transition in a DFSM is considered
verified only if it has been observed several times. This in-
creases the probability that all transitions in the protocol
are verified.

Since each agent has a simplified view dictated by the
DFSM, the algorithm governing its activity, shown in the
pseudocode of Figure 6, is straightforward. The activity is
divided into rounds during which individual agents formu-
late the goals using function ChooseUnverifiedTransition().
Each round consists of several attempts where agents decide
if they will pursue their own goal, help another agent, or ex-
ecute a random transaction (function ChooseAction()). Ac-
tions are then merged by function MergeActions into a pro-
gram that is fed into a simulator. Results of the executions
are then analyzed for presence of bugs (CheckConsistency)
and coverage.

If, during a particular attempt, an agent chooses to work
for itself, there is no guarantee that another agent will help
it or that a transition of interest occurs. However, if an
agent did not observe the desired transition, it would at-
tempt to change the timing between its stimuli and request
any of the helping agents to do the same. The process of
delay reduction is based on the pressure metric discussed in
Section 5.1. If the coverage report indicates that a transi-
tion of interest did occur a sufficient number of times during
an attempt, an agent chooses another action based on the
list of unreached goals and signals all agents who helped to
do the same. There are several ways a round can terminate:
when all goals are verified, or the specified number of at-
tempts was reached but not all of the goal transitions are
sufficiently verified.

4.4 Implementation Insights
In designing MCjammer, we decided to eliminate strict

partnership, where agents deterministically choose partners
to test various transitions. First of all, this simplifies the
complexity of the agent algorithm. Secondly, we do not
eliminate the possibility of executing the right sequence of
tests to verify a transition, while at the same time creating
various interaction scenarios between agents, stressing the
consistency protocol.

for round = 1:N ROUNDS
begin

foreach Agent
ChooseUnverifiedTransition(DFSM);

for attempt = 1:N ATTEMPTS
begin

foreach Agent
ChooseAction( Goal, Coverage, Pressure );

MergeActions;
RunSimulator;
CheckConsistency;
Coverage, Pressure = AnalyzeResults;

if ( AllGoalsVerified )
break;

end
end

Figure 6: Agent algorithm. In each round each agent
formulates its goal to verify a particular transition in the
DFSM. Then during multiple attempts each agent chooses
either to pursue its own goal, help another agent or exe-
cute a random transition. After the simulation consistency
is checked and coverage report and pressure metric are com-
puted. Actions taken in the subsequent attempts by individ-
ual agents are based on coverage and pressure observed.

Also, it should be pointed out that our implementation
of MCjammer is simulator-independent and is connected
to a particular environment via the MergeActions function.
Given actions associated with edges of the DFSM the func-
tion combines them and translates them into a format ac-
ceptable by the simulator. As we show in Section 6.2, in our
experiments for this work we used the Wisconsin Multifacet
[9] simulator with minor modification. One distinctive fea-
ture of the memory tester that is generated by this simula-
tion environment is that it requires a single file with load and
store instructions for multiple processors. Therefore, the
translation method used in MCjammer had to combine ac-
tions of multiple agents into a single list of loads and stores.
Alternatively, for simulation environments where separate
program files need to be specified for distinct processor/cores,
this method can be changed to produce these programs.
This detachment of the verification intelligence (agents) from
the actual simulator allows the tool to be highly portable not
only between different simulators, but between various lev-
els of simulation as well. For example, no changes, besides
those to a MergeActions function are required to go from
high-level C simulation to an RTL simulation of the system.
Ultimately, our environment can be used even in gate-level
simulations if verification of the implementation is required.

5. FEEDBACK AND CORRECTNESS
This section introduces the coverage model and coverage-

directed feedback in MCjammer. We also discuss pressure,
which is a metric of “stressfullness” of a simulation run.
Finally, we show how MCjammer uses pressure as additional
feedback parameter to increase the test quality.

5.1 Coverage and Pressure
Coverage is the measure of thoroughness of the verification

process and assurance that all of the design behaviors are
tested. Often coverage is only reported by verification tools
to the engineer, who then designs the next test based on
unverified regions of operation of the design. Unfortunately,
this human intervention becomes a very high-latency and



high-cost part of the verification process. In MCjammer
we chose to automate this process and close the loop with
coverage and pressure feedback from simulation results to
test sequence generator.

A natural coverage metric for a cache coherence and mem-
ory consistency protocol is the coverage of the states or tran-
sitions in the full system state machine of the protocol, since
it is independent on its particular implementation. However,
as was shown above, the number of states in this FSM grows
enormously when number of processors increases. Therefore,
using protocol state machine coverage for automated reason-
ing about the test thoroughness is a prohibitively complex
task. In MCjammer, however, we chose to use coverage of
DFSM transitions as the main metric for agents to reason
about the effectiveness of the test and postulate new goals.

After each run, the agent identifies DFSM transitions were
explored and records the information. Note that since the
agent does not distinguish among the other agents, there
exist a mapping from one DFSM transition to several tran-
sitions in the full system state machine. Therefore, a single
traversal of an edge in DFSM is insufficient to guarantee
that corresponding DFSM transitions were verified. So MC-
jammer agents are required to verify each DFSM transition
multiple times before marking it as covered. In our tests we
considered a transition to be covered when it was seen 2 ∗ n
times, where n is the number of processors in the system.
Since agents do not have a global view of the entire system,
it is possible that multiple transitions with the same pair
of nodes occur and yet not all of the possible interactions
between some pairs of nodes are tested. Nevertheless, we
believe that threshold of 2 ∗ n allows for substantial diver-
sity in the stream of generated transactions while keeping
the number of repeated transitions fairly low.

Note that since agents record all transitions observed,
even a non-goal transition can become covered during the
simulation. Once a transition is seen the set number of times
by a particular agent, it is appropriately marked and could
not be chosen as the agent’s goal. The goals of the agents
in MCjammer are adjusted dynamically with every coverage
report obtained from each attempt of each round. This fine
granularity of feedback allows us to efficiently direct tests
towards unverified areas of design operation and requires no
human effort or oversight.

In addition to coverage feedback, MCjammer uses a mea-
sure of pressure on the memory system to adjust the gener-
ated tests between consecutive attempts. In designing MC-
jammer we assumed that the most crucial for verification
design functions involve “stressfull” operation of the sys-
tem, when actions of different processors interfere with each
other. An example of a collision in the MESI protocol shown
in Figure 5 would be a situation where one processor tries
to load a previously un-cached location from the memory
and is in the process of going from ‘Invalid’ to ‘Exclusive’
state, and another processor tries to store to this location
in the middle of this transition. Pressure in MCjammer is
computed as a mean time between such colliding events at
the caches and memory controller and is use to maximize
the “stress” on the system proportionally. If the pressure
is low function ChooseAction() (see Figure 6) will reduce
the timing between actions done by the agents. Namely,
the largest delay in the sequence of actions performed by
an individual agent is reduced by a factor proportional to
the pressure value. This increases the chance that a con-

flicting request arrives during an ongoing transaction and,
therefore, increases collision possibility in future attempts.
Moreover, since each agent changes its delays independently
of the others this may cause a change in the order of issued
actions to produce the transaction of interest. Higher pres-
sure also causes a small reduction of some randomly selected
delays between agents’ actions in the attempt to change their
order and investigate other execution scenarios. As our ex-
periments demonstrate, pressure and coverage feedback help
MCjammer to quickly create high-quality test sequences and
achieve better coverage than an open-loop system.

5.2 Consistency Check
To check memory consistency and detect bugs in data or

address manipulations we employ a data tagging technique.
The data for each store in the system contains the unique
ID of the agent issuing the store, the unique ID of the store
operation at that processor, and a subset of the address bits
of the store. Therefore, consistency and other invariants can
be defined as a set of rules based on the store tags. Given
the result of a load we can quickly identify which store is
observed by this load operation, check the timing of the
store and decide if a violation had occurred by consulting
the consistency rules.

For example, in a system implementing Sequential Con-
sistency all processors must see all store operations in the
same order. By checking the tags of the data loaded by each
processor, we can quickly establish if this rule was preserved
during the simulation. Analogously, if Processor Consis-
tency model is used in the system, these rules can be re-
laxed to allow writes from different processors be perceived
in any order. However, writes from a single processor still
must be seen in the same order by all of the other proces-
sors. Data tagging allows identifying if such order was pre-
served. Therefore, the consistency checker doesn’t need a
fully-specified memory reference model to establish that a
violation has occurred, and only the axioms of load/store
ordering are required. We believe this is a very powerful
technique for multiprocessor validation, since most of the
memory consistency models are defined in terms of such in-
variants. Although this framework does not directly allow
to specify invariants such as absence of deadlock and races,
such violations can also cause an inconsistency in tags re-
trieved by loads, and the system will alert the verification
engineer. For example, if a memory access doesn’t complete
successfully until the end of the attempt due to a deadlock,
MCjammer issues a “missing access” warning.

It is also important to note that the data tagging allows
us to quickly identify problems with data and address trans-
mission and other manipulations (storage, retrieval, buffer-
ing). If either data or address is corrupted while traversing
the network or in caches/memories we can quickly detect
this error by checking the tag. For example, if an address
gets corrupted in a request message and a load returns data
from a wrong memory location, the address bits encoded in
the data may reveal the problem. Alternatively, the problem
may appear as a consistency error when store ID or agent ID
bits of the data get corrupted. In any case this will attract
attention of the verification engineer who will investigate it
more thoroughly to establish the cause of misbehavior.

Note that our system also keeps track of the state of each
memory location, so coherence problems can also be recog-
nized. For example, if a memory location is reported to



be in ‘Modified’ state in one cache and in ‘Shared’ state in
another the checker will report the state as incoherent and
alert the user.

6. EXPERIMENTAL RESULTS
In this section, we first introduce our experimental eval-

uation framework and the protocols and coverage metrics
that we used to analyze the performance of our approach.

6.1 Experimental Framework
To analyze the performance of MCjammer we conducted

several experiments on two multi-processor protocols us-
ing the Multifacet GEMS simulator [9]. In particular, we
used the Ruby Simulator to model the interconnect, caches
and memory and coherence controllers. We augmented the
tester program included in Ruby to allow multiple nodes
in the system to initiate overlapping memory operations.
Memory operations such as loads and stores, as well as
timing between their initiations, were supplied as a file to
the Ruby tester, which also was modified to output addi-
tional information relevant to load and store data. Two
protocols that we used in these experiments were MOSI,
(MOSI SMP Bcast 1level in the Ruby model), and MESI,
(MESI SMP LogTM directory). Both of these benchmarks
closely resemble real-life multi-processors and include com-
plex FSMs with protocol and intermediate states, multiple
queues for messages of different types (i.e. data and coher-
ence messages), variable interconnect latencies, etc. The sys-
tems were configured to have four nodes, each containing
only two banks of a fully-associative L1 cache. Consecu-
tively, eviction from the cache was modeled as two back-to-
back loads to specific memory locations.

MCjammer was implemented as a tester input file genera-
tor (written in C) and parser (written in Perl) that took the
output of the Ruby tester, checked consistency axioms, and
reported coverage and pressure back to the generator. De-
scriptions of DFSMs for both MESI and MOSI designs were
created manually based on the protocol specifications. For
performance evaluation during the simulation we monitored
the average number of DFSM edges covered per node as well
as state coverage of the full system FSM. In the experiments,
the performance of MCjammer was compared to that of a
constrained random memory access generator that did not
use pressure feedback from the simulator and cooperating
agents. The number of rounds in each of the simulation
was increased from 2 to 128, while number of attempts was
kept constant at 64. Therefore, for the random generator
each round consisted of exactly 64 simulations with ran-
domly generated patters, while MCjammer, which featured
early termination, could have fewer than 64 attempts in each
round. The random generator also included DFSMs for each
of the processor nodes identical to the ones in MCjammer
to allow for DFSM coverage measurements.

6.2 Results
In the first experiment we used the number of DFSM tran-

sitions as coverage metric to gauge the performance of both
MCjammer and a constrained-random generator (RAND).
In Figures 7 and 8 we plot the average number of transitions
covered by each of the agents in the four-core system against
the number of rounds, i.e. the verification effort. As it is seen
from the figures, MCjammer starts off with better coverage
even for the smallest number of rounds and reaches full cov-

erage faster, unlike RAND, which never reaches 100% cover-
age. It is also important to notice that MCjammer usually
requres fewer than 64 simulation runs (attempts) per round,
while a round of RAND execution contained exactly 64 at-
tempts. Therefore, the graph depicts the worst case perfor-
mance for MCjammer, when none of the early termination
techniques were used throughout the entire simulation.

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

RAND

MCjammer

Effort (# rounds)

D
F

S
M

 tr
an

si
tio

n 
co

ve
ra

ge
 (

%
)

Figure 7: MOSI DFSM transition coverage. On aver-
age, MCjammer is able to cover more transitions in DFSMs
at each node with of a four-node MOSI system with less
effort than RAND.
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Figure 8: MESI DFSM transition coverage. On aver-
age, MCjammer is able to cover more transitions in DFSMs
at each node with of a four-node MESI system with less
effort than RAND.

In the second experiment we analyzed the state coverage
of the full system FSM for a single memory location. Al-
though DFSM coverage is an easy-to-measure metric, cov-
erage of the system FSM is a more concrete measure of the
thoroughness of the verification process. Note that MCjam-
mer agents do not observe the full system FSM and, more-
over, for a large multiprocessor the FSM would be impossi-
ble to represent explicitly. The purpose of this experiment
is, therefore, to gauge the effectiveness of MCjammer with
its distributed agents and DFSM coverage and compare our
technique to constrained-random simulation.

The results of the experiments are shown in Figures 9
and 10, for MOSI and MESI designs, respectively. As you
can see, the constrained-random simulator achieves signifi-
cantly lower coverage of the entire FSM than MCjammer.
We believe this is due to the lack of coordination between
the memory accesses performed by the individual nodes in
RAND, as well as low probability of generating colliding
memory accesses. MCjammer, on the other hand, tries to



orchestrate accesses so not only DFSM coverage is improved,
but various global states are explored. In addition, pressure
feedback provides a useful metric to create multiple colliding
memory access patterns.
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Figure 9: MOSI full system FSM state coverage.
MCjammer is able to cover more states of the four-node
MOSI protocol FSM with less effort than RAND.
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Figure 10: MESI full system FSM state coverage.
MCjammer is able to cover more states of the four-node
MOSI protocol FSM with less effort than RAND.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented MCjammer, a novel scalable

tool designed specifically for verification of memory coher-
ence and consistency in multi-core/multi-processor systems.
MCjammer uses multiple adaptive agents that are attached
to individual processors in the system and that work to-
gether to generate concurrent, and often conflicting, mem-
ory accesses. This coordination allows MCjammer to thor-
oughly cover the behavior of the design under test while also
gradually increasing pressure on it to test “stressful” oper-
ation of the design. To set verification goals and measure
coverage, each agent has a simplified view of the full sys-
tem FSM of the coherence protocol that is independent of
the number of processors/cores in the system. Additionally,
MCjammer features unique data tagging that allows it to
quickly verify if memory consistency rules were violated in
the design or even detect errors in the interconnect. These
features make MCjammer highly portable among designs
with different protocols, number of nodes and cache hier-
archies. Our experiments with two four-processor systems

indicate that MCjammer achieves 100% coverage with lower
effort than an open-loop constrained random simulation.

In future work we plan to extend our tool to work with
RTL simulations and systems with a large number of nodes,
and more complex protocols and memory hierarchies. Ad-
ditionally, we intend to establish a more detailed relation
between the DFSM coverage and the actual protocol cover-
age metrics, including transition and path coverage.
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