
Distance-Guided Hybrid Verification with GUIDO

Smitha Shyam Valeria Bertacco
smithash@umich.edu valeria@umich.edu

Advanced Computer Architecture Lab
University of Michigan, Ann Arbor, MI 48109

ABSTRACT
Constrained random simulation is a widespread technique
used to perform functional verification on complex digital
designs, because it can generate simulation vectors at a very
high rate. However, the generation of high-coverage tests
remains a major challenge even in light of this high per-
formance. In this paper we present Guido, a hybrid verifi-
cation software that uses formal verification techniques to
guide the simulation towards a verification goal. Guido is
novel in that 1) it guides the simulation by means of a dis-
tance function derived from the circuit structure, and 2) it
has a trace sequence controller that monitors and controls
the direction of the simulation by striking a balance between
random chance and controlled hill-climbing. We present ex-
perimental results indicating that Guido can tackle complex
designs, including a picoJava microprocessor, and reach a
verification goal in far fewer simulation cycles than random
simulation.

1. INTRODUCTION
Functional verification has become the most critical devel-

opment factor for digital designs in terms of cost and time re-
sources. The reasons for this preponderant resource demand
lie in the growing complexity of digital integrated systems,
paired with the shrinking of design cycle times. Available
verification technologies are unable to tackle the complexity
of current designs, neither in terms of coverage, nor in terms
of sheer design size. While the predominant verification
strategy in industry still remains centered on simulation-
based approaches due to their linear scalability with design
size, there has been a rising trend in recent years towards the
complementary deployment of semi-formal verification tech-
niques, which promise to provide high-coverage results at an
acceptable performance cost. To support the verification en-
gineer, the design automation industry provides a rainbow
palette of tools and technologies that complement barebone
logic-simulation. These tools and technologies range from
testbench design languages [3, 10], to coverage evaluation
tools [4, 13, 2] and constrained random stimulus generators
[21, 16] to semi-formal verification tools [12, 11]. In contrast
with these solutions, the objective of this paper is to pro-
pose a novel hybrid verification approach that relies heavily
on the positive aspects of scalability and fast performance of
random simulation while deploying small-scale formal veri-
fication techniques to guide the simulation.

1.1 An overview of Guido
Guido is a new hybrid verification solution that enhances

coverage density of random simulation by guiding the sim-
ulation towards a specific verification goal. The simulator’s

search is directed by a “trace sequence controller” that re-
lies on the distance function associated with each state of
the design and forces the simulator to move incrementally
closer to the verification goal.

Guido can be used to reach a coverage target expressed
by a set of states in the design, or to disprove a general
safety property, or to target a verification “checker” in the
context of random simulation methodology. The random
simulation-centered solution proposed by Guido differenti-
ates itself from previous solutions in two main aspects:

• The cost function used in Guido provides a high-quality
evaluation of the distance from the goal since it is de-
rived from the portion of the design that most closely
affects the verification goal.

• The trace sequence controller is based on a hill-climbing
approach that employs an innovative way of balancing
random steps with deterministic improvement. This
technique leads Guido to exploit random simulation
alone when the verification goal is easily achievable;
When the goal requires stepping the simulation through
a narrow passage (in terms of state transitions), the
trace sequence controller resorts to a shallow SAT-
based search to accomplish this transition.

From a dynamic simulation standpoint, Guido can be viewed
as a technique to tunnel the exploration trace of random
simulation that leads to the verification goal. This dynamic
exploration is shown schematically in Figure 1, where the ar-
eas of varying grey intensity represent the partitions of the
search space in layers of increasing costs, based on the eval-
uation of the cost function. The trace sequence controller
guides the simulator through a random walk, where at each
step of simulation, a range of potential next states are con-
sidered and the one that will bring us closer to the goal is
then selected. Because of the coarse granularity of the cost
function, it is possible that none of the potential next states
are closer to the goal than the present state. In these situ-
ations, the trace sequence controller uses additional mecha-
nisms based on random selection, backtracking, or a deter-
ministic search, to select the next state. One by-product
of the transition of current verification practices towards a
methodology that makes use of semi-formal techniques, is
the increased use of formal properties to describe the correct
behavior of the design, usually derived from design specifi-
cations. Additionally, random simulation requires designers
to embed “checkers” of some sort into the design, which
are then used to detect additional bugs. Guido can target
both checkers and properties to flush out many of the bugs
present in the design. We envision Guido to be comple-
mentary to formal verification software. In fact, it can be
deployed in the first stage of property verification to expose



�����

�����
������

�����

�����	
�����
�����
�����	�
��


��������	�


����
��	�����

�����
���������
���������

�

�

�

�

�

Figure 1: Guido’s trace sequence controller guides

the random simulation towards the verification tar-

get by classifying the design’s state space into

equidistant layers on which the simulator hill climbs.

bugs, providing scalability and performance comparable to
a logic simulator. Once Guido cannot find any more bugs,
heavier formal verification tools are brought in to flush out
the remaining issues. When random simulation is the tech-
nique of choice, Guido can be viewed as a smart random
simulator that boosts the bug-finding rate by keeping the
simulator focused on the goal of invalidating checkers.

The remainder of the paper is organized as follows. The
next section discusses related work. Section 3 introduces
the Guido architecture, its components and the verification
flow. Section 4 discusses advanced heuristics to overcome
the limitations of the abstract model. Experimental results
and conclusions are given in Section 5 and 6.

2. RELATED WORK
Traditional formal verification techniques provide the high-

est confidence in the correctness of a design by simply prov-
ing or disproving specific properties associated with its func-
tionality. When formal verification finds that a property is
not valid, it can automatically produce a bug trace, that is,
a compact test vector that will pinpoint the problem [7, 14].
Because of the exponential nature of these techniques, pure
formal verification can be applied only to small designs, with
sizes up to a few hundred latches, or to properties affecting
only a very small portion of a complex design.

To cope with the aforementioned limitation, within the
past few years we have witnessed the emergence of a range
of hybrid verification approaches. In this domain, a solution
which has also become a commercial product is presented
in [12], where the authors time-interleave a random simu-
lation with a symbolic simulation to prove properties that
are hidden deeply in the sequential behaviour of complex
block. Additionally, a parallel reachability analysis is also
ran on an abstract model of the design with the objective
of ruling out unreachable configurations and, thus, prun-
ing the space to be explored. Another example which has
also been used in an industrial context, is by Aagaard et

al.[1], where theorem-proving techniques are used to coordi-
nate multiple model checking runs. An approach of a guided
counter-example generation based on abstraction was pro-
posed in [6]. Similar to Guido, the authors use the results of
the analysis on an abstract model to guide the search. How-

ever in that solution the actual search is performed by an
ATPG/BMC engine, whereas in Guido the bulk of the work
is done by a logic simulator and, consequently, is much more
scalable. Furthermore the abstraction strategy of Guido is
modular compared to the heuristic register addition tech-
nique used in this work.

In the specific domain of target-driven logic simulation,
one of the first efforts is by Yang et al. [20]. This work
proposes to direct a random simulator to hit a goal by en-
larging a verification target through backward traversal, so
that it is sufficient for the simulator to hit any of the states
in the enlarged target. However, the pre-image computa-
tion required in this algorithm cannot usually go past 4 or 5
time steps. Consequently it is often difficult for the simula-
tor to reach any of the states in the enlarged target. In [15]
a probabilistic guiding algorithm is presented, which assigns
values to design states based on their estimated probabil-
ity of leading to the target state. As values are assigned
by approximate analysis, there is no apparent mechanism
to escape from dead-end situations. An approach that at-
tempts to reach a target by exploring a range of potential
next states in a simulation environment was suggested by
[9]. Their solution is a cost function based on the hamming
distance between the current configuration reached by logic
simulation and the target state. At each step of simulation a
set of alternative next states is considered and the one lead-
ing to the minimum hamming distance state is chosen. The
advantage is that the computation of the hamming distance
can be performed very efficiently at the time of simulation.
The downside of this approach, however, is that this measure
is usually not a good indication of the distance to the target
state and could mislead the simulator, as it is possible that
two adjacent states in a state transition graph of a sequential
system have very high hamming distances. Subsequent work
in this direction [19] adds the use of automatically-generated
“lighthouses”, intermediate goals to direct the simulator to-
ward a goal deep in the design.

3. GUIDO ARCHITECTURE
Guido consists of three main components: an abstraction

engine, a distance function generator and a trace sequence
controller. The trace controller makes decisions based on
the analysis of the other two components and thereby con-
trols the state exploration path of a random simulator. The
distance function in Guido is based on an exact reachabil-
ity analysis performed on a design’s abstraction. The ab-
straction is generated by considering the verification goal at
hand, as well as some of the design components that most
closely affect it. During random simulation a set of can-
didate next states are explored and the one with the best
potential of reaching the target is chosen based on the com-
puted distance function. Thus, the distance associated with
the abstract states guides the simulation.

From an architectural standpoint, Guido operates as a
module interacting with a logic simulator and a random
stimulus generator guiding the logic simulator towards a
property goal. If Guido finds an input assignment that vio-
lates the property, then a bug trace is produced by simply
logging the simulator input sequence. Figure 2 shows how
Guido interfaces with the simulator and the random stim-
ulus generator by selecting the direction of the next sim-



��������	
������

�����	��

�����

���
�
����	��

�	
���


���	���	
���

��
��

�
�	�����

����	
��

������

���������

���	������

�
�
�
��
	�
	�

Figure 2: Guido uses a distance function to control

the random stimulus generator and direct the sim-

ulator towards the goal.

ulation step among a range of possible steps suggested by
the random generator. Guido also samples the current state
from the simulator to evaluate the progress towards the ver-
ification goal. The three main components of Guido and
their interaction are also represented in Figure 2. A detailed
analysis of each of these components is presented below.

3.1 Abstraction Engine
Guido uses an abstract model of the design to compute a

cost function, which is then used to guide the random sim-
ulator. The abstraction engine selects a small number of
critical design modules, together with the property descrip-
tion, to generate a product finite state machine(FSM).

A digital design is commonly described by a hierarchical
structure of modules (simpler design components) intercon-
nected together. If we represent each module as a single
FSM, it is easy to see how any subset of the design’s mod-
ules can be represented by a product machine obtained by
composing the FSMs of the component modules. At the
limit, the complete design can be represented by an FSM
obtained by computing the product of all instantiated mod-
ules. This machine represents the full design behavior, while
all the intermediate products correspond to design abstrac-
tions. From a practical standpoint, the computation of the
product machine is intractable for all but those abstractions
involving just a few components. To overcome the compu-
tational complexity of performing a full state traversal, we
select only a few “critical” design modules for our abstrac-
tion. The selection process is automated. It always includes
the checker module, that is, the module describing the ver-
ification goal. The additional modules to be included into
the abstraction are selected based on the following criteria:
1. Proximity to the checker module: This is based on the
observation that closely interacting components are more
prone to removing spurious behavior from the abstract ma-
chine, compared to the product of two non-interacting mod-
ules. Interacting modules are modules instantiated at the
same level that communicate directly through I/O signals,
or modules which are instantiated hierarchically from within
each other. For instance, with reference to Figure 3, the
modules controller and cliA are directly interacting with the
checker, and, thus, they belong to our first layer of consid-
eration for inclusion in the product machine.
2. Complexity of each module: We maintain an estimation
of how complex the resulting product machine will be based
on the number of memory elements that each module con-
tains. If the inclusion of the closest layer of modules does

not generate a product FSM that is deemed “too complex”,
based on our estimation, then we consider components at
the next layer, that is modules interacting directly with the
ones already included. If the inclusion of a module leads
to a machine that is estimated to be too complex, we slice
through it or skip it and consider another component in the
same layer.

�������

������		��


������

��

�	��

�	��

�
�
�
��
�
�

�
�
�

�
�
�

���������	
��	�	
�
��

Figure 3: Guido computes the abstraction using

the checker module and the components that most

closely interact with it. In the example above, con-

troller and cliA are included in the abstract FSM.

3.2 Distance Function
The distance function assigns a value to all reachable ab-

stract states. This value measures the shortest distance of
each state to the goal. The cost is stored as a set of char-
acteristic representations of all states that have a specific
distance from the goal. During simulation, each visited de-
sign configuration is mapped to one of the distance values
by sampling the values of the latches that belong to the
abstract FSM.

Since the characteristic equidistant functions are repre-
sented by BDDs, we strive to maintain a set of BDDs of
minimal size. For this objective, we store for each distance
k a BDD of minimal size in the interval:

[Pre(Rk−1)/Rk−1, P re(Rk−1) ∪ Rk−1] (1)

where Rk−1 represents the set of states at distance k−1 from
the goal and Pre() is the pre-image function. The accuracy
of the cost function depends on the refinement quality of the
abstraction. In general, because the cost function is com-
puted on an abstract representation, the abstract FSM will
include state transitions that do not exist in the real design.
The implication is that it is possible for the simulator to
reach a state at cost C from which there is no transition to
a state at cost C − 1, even if in the abstract machine such
a transition was present, as indicated by the derived cost
function. Section 4 discusses how to handle these dead-end
situations.

3.3 Trace sequence controller
The trace sequence controller in Guido uses the cost as-

sociated with each state in the abstract machine to guide
the random simulator towards the goal. At each simulation
step, the trace sequence controller tries different sets of ran-
dom input vectors and then selects, among all the possible
“next states” obtained, the one with the shortest abstract
distance. The best search is an informed search algorithm;
it uses a heuristic to rank the potential “next states” based
on their estimated cost [8].



During the simulation, we maintain a queue Q of states
that we have already visited and that are good candidates
as starting points for the “next state” transition. At each
step of the search, we first consider the “current state” CS,
that is, the state from which we are going to perform the
upcoming transition. A “current state” under consideration
is obtained by removing it from the queue. If its cost is 0,
then we stop, having reached the goal. Otherwise we remove
it from the queue Q and the random simulator starts gen-
erating a pre-determined number of successor states from
CS. Each of these successors is evaluated by the cost func-
tion and added to the queue Q. At this point, the best of
the candidates in the queue is selected as the new “current
state” and the process is repeated until a goal is found.

When a search plateaus at a certain cost, there is a non-
zero probability of selecting from the queue, a candidate
from the past simulation steps, which is equi-distant,but
belongs to a search path that was previously abandoned.
Retrieving search directions that had not been explored is
the first mechanism that allows Guido to move away from
dead-end simulation paths.

4. ADVANCED HEURISTICS
The best search algorithm described in Section 3.3 is of-

ten not sufficient by itself to guide the simulator to a target.
Because our cost function is computed on an abstract ma-
chine, situations may arise that force the random simulation
to a corner from which there is no transition to a lower-cost
configuration. In some cases, the only path in the real de-
sign to a lower-cost configuration is through a higher cost
configuration. With the support of an example we illustrate
some of the situations that may arise.

�

�

�

�

�

�

� �

	




���������

�

�

�

�

�

�

� �

	




�

� �

������������������

Figure 4: An example clustering of real design states

based on a Guido cost function.

Example 1. Consider the diagram in Figure 4. The states
labeled by a capital letter represent all the real states of
a DUV. The large circles group these states in equivalence
classes of equal cost based on the cost function and its re-
lated abstract FSM. The following are possible scenarios:
1. that the present simulation state is D. Among the six
“next states” from D, five are other states at the same cost
and only one is a state of lower cost. Moreover, all the other
states at cost 3 are tightly interconnected, with only a few
transitions toward lower cost states. Statistically, there is a
low probability that the random simulator will generate a
transition to state C. If this does not happen the simula-
tion will continue iterating among states of cost 3 and never
progress toward the goal.
2. Due to the abstraction, it is possible that configurations
in the real design that are at greater distance from the goal
are incorrectly assigned a low cost by the cost function. This

can happen because the abstract machine may have extra
transitions that are not available in the real design. With
reference to Figure 4, if for instance, state D is effectively
at cost 3 from the goal, then state E must be at cost 4.
However, the cost function clamps them together because of
the additional behavior seen by the abstract machine.
3. The set of modules in the abstract machine are not se-
lected carefully, meaning, the abstract machine is composed
by two disconnected components, then all the states in one of
the components will have to have the highest cost (since the
goal is not reachable from there). In the real machine that
will be inaccurate. The additional modules of the real ma-
chine bring the disconnected component to a finite distance
from the goal. This problem can be avoided by carefully
selecting the modules for the abstraction.

The situations described in the example suggest that spe-
cial techniques need to be deployed to provide sufficient likli-
hood of progress. This is necessary to provide a good proba-
bility of forward progress even in complex cases, when plain
hill-climbing approaches are not sufficient. We are propos-
ing two techniques that help to steer the simulation away
from a plateau region. These techniques, called SimSearch
and SimSAT, are presented below.

4.1 SimSearch
Guido uses a modified version of the best search algorithm

described in Section 3.3, called SimSearch. The pseudo-code
of SimSearch is given in Figure 5. When the cost of a can-
didate “next state” is the same as the “current state” CS,
the candidate state is not added to the queue Q. Simula-
tion is continued along that “next state” for NUM FWD
steps in the hope of discovering a state with higher cost.
If such a state exists within NUM FWD steps, then it is
a good candidate and it is added to the queue. The num-
ber NUM FWD of forward steps is parameterized to allow
experimenting with different trade-offs.

1 SimSearch(){
2 CS = initial state

3 while(CS!=goal state)

4 loop Num Successors

5 curr sample = sample next state(CS)

6 loop NUM FWD

7 if Cost(curr sample)�=Cost(curr state)

AND Is not in queue(curr sample)

8 add priority queue(curr sample)

9 break

10 else

11 curr sample=sample next state(curr sample)

12 end;end

14 best next state = priority queue.head

15 CS = best next state

16 end

Figure 5: Pseudocode of the SimSearch algorithm.

With reference to Example 1, if the present state is E,
and the randomly generated vectors lead to states D, H
and I, SimSearch can discern between H, a state whose
only outgoing transition is to a higher cost state, and D and
I, which are also at the same cost level as all the others, but
have outgoing edges leading to lower cost states. Among
these alternatives, H will be discarded in favor of D or I.



4.2 SimSAT
When the simulator reaches a state with a very tight filter

to a lower cost configuration, random generation is not suf-
ficient to progress in the simulation, thereby making all our
previous techniques fall short. A situation, such as this, was
described in the first case of Example 1,where only one of
the possible outgoing transitions from state D led to a lower
cost configuration. In this type of situation we use SimSAT,
a SAT checking procedure that simply checks if there is a
one-step transition from the present state to a lower cost
state in the real design. If the problem is satisfiable, we
use the answer to perform the transition, otherwise we must
backtrack to a previous state. The inputs to the SAT solver
are the present state of the real design (which has a cost C),
the combinational portion of the design and all the states
at cost C − 1 in the abstract model, as shown in Figure 6.
To this end, the values of all the present state registers are
gathered on the fly and translated into the CNFPS formula.
The combinational logic is also converted to CNFCKT . Fi-
nally the minimal BDD stored for the cost level C − 1 is
translated and written as CNFC−1.

�
��
�
�
�
��
�
�	
��



��
�	
�
�
�
�� �����	����	�

������

�
�	
��
��
�
��
	
�



��
�	
�
�
�
��
��

�������� ����������������∧∧

����������
�	�����	������	�����	���

�������
��	
	����
���	

���
��������
���
	��
���	

Figure 6: The SimSAT flow.

SimSAT’s objective is to find if a transition to a lower
cost state exists. If a solution is found, then the SAT solver
returns a valid input assignment for the transition. The in-
puts are fed into the present state and a transition to the
next state with a lower cost is made. If no solution exists,
and the transition found in the abstract model was due to
over-approximation, we can infer that the present state is
not at cost C from the goal in the real design, and, there-
fore, abandon that state. Note that our SimSAT procedure
uses a SAT instance that includes only one copy of the cir-
cuit’s combinational logic, in contrast with SAT/BMC ver-
ification techniques [5], which require unrolling the circuit
many times. The relative compactness of our SAT instances
contributes to control the overall complexity of SimSAT.

A crucial aspect of incorporating SAT techniques into
Guido is the decision of when to deploy SimSAT. It is a
tempting option to use SimSAT to move from state to state
raising the cost level at each step all the way to the goal.
However, due to the complexity of SAT solvers, this solu-

tion would become prohibitively expensive after just a few
simulation cycles. Hence, only when the trade-off is advan-
tageous and the random simulation-based algorithms are un-
able to take the simulation towards better cost states in the
given time window, is it wise to recur to the deterministic
SimSAT. SimSAT not only validates the abstraction model,
but also accelerates the random simulator towards the goal
with small computational overhead.

5. EXPERIMENTAL RESULTS
We tested Guido on a number of publicly available test-

benches, namely, a MSI cache-coherence protocol, a PCI bus
from the VIS benchmark suite [18], and a picoJava proces-
sor from SUN [17]. A few relevant properties were targeted
for each of these testbenches. In evaluating the quality of
Guido, we compared it with a baseline constraint-based ran-
dom simulation and a commercially available semi-formal
verification tool.

5.1 Designs and properties for the experiments
The MSI design is a cache-coherence protocol used in a

multiprocessor environment with shared memory. In this
testbench, individual processors monitor the cache bus and
respond accordingly to the activities of the other processors.
We checked two known-false properties that were available
with the benchmark suite. The second testbench is a PCI
bus model interconnecting peripheral components with a
core processor or memory. We changed this design to be
synthesizable from the benchmark suite.

We also tested properties on the entire picoJava design
processor and a few of its individual modules, specifically
the ICU (Instruction Cache Unit) and a home-crafted test-
bench obtained by combining ICU with the Stack Manage-
ment Unit (SMU) and the Bus Interface Unit(BIU). We refer
to this testbench as “BSI” in the table. We verified a prop-
erty on the validity of the buffer control signal for both of
these testbenches. For BSI we also checked some additional
properties related to the SMU unit. For all our experiments,
a rough design environment was created to generate valid
stimuli during simulation.

Testbench In/Out Latches Logic Gates

MSI 14/15 43 1674
ICU 28/80 64 1797
BSI 84/62 108 4778
PCI 20/4 275 10078
PJava 44/76 3646 189895

Table 1: Design size and complexity.

5.2 Results
Table 2 shows the quality of the Guido exploration in

terms of simulation cycles executed before reaching the ver-
ification goal. We ran the experiments on a Linux machine
running at 1Ghz and equipped with 1GB of memory. The
results show the comparison between the trace lengths gen-
erated by Guido, a plain constrained random simulator and
an industrial semi-formal tool. Each row of the table cor-
responds to one design-property pair of those described in
the previous section. The first column reports the simula-
tion length of the random simulator. The second and third



columns report the performance of Guido, the leftmost being
the final trace length to the bug that Guido finds (column
“Guido trace”), and the rightmost (column “Guido total”)
the total number of simulation steps executed by Guido. As
described in Section 3.3, Guido explores different search di-
rections at each step and then selects the best option. In col-
umn “Guido total” we report the total number of simulation
steps which includes “exploration” steps. The fourth column
reports the trace lengths found by a commercial semi-formal
verification tool. All simulations were run with a wide range
of random seeds in an attempt to gain a sense of the quality
of these results independent of the random factor. We found
that results were fairly consistent and we reported the best
results for both the random simulator and Guido.

Random Guido semi- Guido TimeTest
simul. trace total formal Abs Run

MSI P1 444 47 239 3933 4.2s 8.9s
MSI P2 106 15 85 9 12.1s 18.3s
ICU P1 11917 81 363 2882 30.8s 60.2s
BSI P1 110855 130 650 5168 113.0s 230.0s
BSI P2 61444 33 153 2332 113.2s 179.0s
BSI P3 20 5 21 9 25.2s 30.2s
BSI P4 TO 4 12 10 25.1s 29.1s
PCI P1 TO 245 2386 2000 52.8s 105.0s
PCI P2 TO 10 50 20 28.0s 49.1s
PCI P3 TO 12 56 20 27.5s 45.4s
PJava P1 12364 14 89 9419 64.1s 98.3s
PJava P2 1800K 17 108 250209 64.1s 98.8s

Table 2: Comparison of Guido trace and simulation

lengths vs. random simulation and a semi-formal ver-

ification software. For each testbench, simulation has

been run multiple times with distinct random seeds. In

a few cases random simulation timed-out (TO) at the

five million cycles cut-off.

We have also reported the time taken by Guido for build-
ing the abstraction model and its total execution time. Guido
produced shorter counter-example traces with less execu-
tion time. When compared to random simulation, run-times
were nearly one-half as long for Guido. In some cases, ran-
dom simulation could not produce a result within 5 million
cycles (indicated by TO in the table). Trace lengths for
random simulation where orders-of-magnitude longer. Mor-
ever, compared to the commercial semi-formal tool, run-
times were only slightly faster for Guido but trace lengths
were consistently shorter. Clearly, abstraction-guided simu-
lation provides both run-time and trace quality advantages
over previous approaches.

6. CONCLUSIONS
In this paper we presented a novel hybrid verification tech-

nique which deploys a distance function derived from an
abstract model of the design under verification to guide a
random simulator towards a verification goal. We discussed
various issues that arise due to the difference between the
coarseness of the distance function and the real design, and
we showed experimental results indicating that the Guido
approach is effective for a range of publicly available test-
benches. We are exploring alternative mechanisms to select
the components of the abstract machine, so that it can be
dynamically adaptive to the quality of the random explo-
ration that Guido is undertaking.

7. REFERENCES
[1] M. Aagaard, R. Jones, and C.-J. Seger. Combining theorem

proving and trajectory evaluation in an industrial
environment. In Proc. DAC, pages 538–541, June 1998.

[2] S. Asaf, E. Marcus, and A. Ziv. Defining coverage views to
improve functional coverage analysis. In Proc. DAC, pages
41–44, June 2004.

[3] J. Bergeron. Writing Testbenches: Functional Verification
of HDL Models. Kluwer Academic Publishers, 2nd ed., ‘03.

[4] J. Bergmann and M. Horowitz. Improving coverage analysis
and test generation for large designs. In Proc. ICCAD,
pages 580–583, Nov. 1999.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without bdds. In Proceedings of Tools and
Algorithms for the Analysis and Construction of Systems,
LNCS vol.1579, 1999.

[6] P. Bjesse and J. Kukula. Using counter example guided
abstraction refinement to find complex bugs. In Proc.
DATE, pages 156–161, Mar. 2004.

[7] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill.
Sequential circuit verification using symbolic model
checking. In Proc. DAC, pages 46–51, June 1990.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2nd edition, 2001.

[9] M. Ganai, A. Aziz, and A. Kuehlman. Enhancing
simulation with bdds and atpg. In Proc. DAC, pages
385–390, June 1999.

[10] F. I. Haque, K. A. Khan, and J. Michelson. The Art of
Verification with Vera. Verification Central, 2001.

[11] S. Hazelhurst, O. Weissberg, G. Kamhi, and L. Fix. A
hybrid verification approach: Getting deep into the design.
In Proc. DAC, pages 111–116, June 2002.

[12] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano,
V. Bertacco, J. Taylor, and J. Long. Smart simulation
using collaborative formal and simulation engines. In Proc.
ICCAD, pages 120–126, Nov. 2000.

[13] R. Ho and M. Horowitz. Validation coverage analysis for
complex digital designs. In Proc. ICCAD, pages 146–151,
Nov. 1996.

[14] A. Hu. Formal hardware verification with BDDs: An
introduction. In IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing
(PACRIM), pages 677–682, 1997.

[15] A. Kuehlmann, K. McMillan, and R. Brayton. Probabilistic
state space search. In Proc. ICCAD, pp. 574-580, 1999.

[16] K. Shimizu and D. L. Dill. Deriving a simulation input
generator and a coverage metric from a formal
specification. In Proc. DAC, pages 801–806, 2002.

[17] Sun Microsystems. PicoJava technology. http://
www.sun.com/microelectronics/communitysource/picojava.

[18] Texas 97 benchmark suite. http://www-
cad.eecs.berkeley.edu/Respep/Research/vis/texas-97.

[19] P. Yalagandula, V. Singhal, and A. Aziz. Automatic
lighthouse generation for directed state space search. In
Proc. DATE, pages 237–242, Mar. 2000.

[20] C. H. Yang and D. Dill. Validation with guided search of
the state space. In Proc. DAC, pages 599–604, June 1998.

[21] J. Yuan, K. Schultz, C. Pixley, H. Miller, and A. Aziz.
Modeling design constraints and biasing using bdds in
simulation. In Proc. ICCAD, pages 584–590, Nov. 1999.


