Cycle-based Symbolic Simulation of Gate-level Synchronous Circuits

Valeria Bertacco' Maurizio Damiani* Stefano Quer#?
TVera Group *Advanced Technology Group
Synopsys, Inc. Synopsys, Inc.
Palo Alto, CA 94303 Mountain View, CA 94043
ABSTRACT ther upon finding an error or by completing the visit of all

Symbolic methods are often considered the state-of-the-art’€achable states. Current symbolic traversal tools often be-
technique for validating digital circuits. Due to their com- COmeé impractical for circuits with over one hundred latches,
plexity and unpredictable run-time behavior, however, their for many reasons: 1) the size of the BDDs involved in the
potential is currently limited to small-to-medium circuits. COmMputation to represent and maintain state sets grows too
Logic simulation privileges capacity, it is nicely scalable, 'arge; 2) the time for computing the new frontier siet.(im-
flexible, and it has a predictable run-time behavior. For this @3€ computation) gets too long; 3) the circuit is sequentially
reason, it is the common choice for validating large circuits. {00 deep; 4) the BDD of the next-state function (or relation)
Simulation, however, typically visits only a small fraction of 1S too large. The solution (exact or approximate) to these bot-

expertise of the designer of the test stimuli. tually, symbolic traversal is not very informative from a de-

In this paper we consider symbolic simulation approach sign debugglng.standpomt: If a bug is fqund, it is nontrivial
e o2 to construct an input trace that exposes it.

to the validation problem. Our objective is to trade-off be- . . o

tween formal and numerical methods in order to simulate a For these reasonsycle-based smulation[4, 5, 6] is still the

circuit with a “very large number” of input combinations and t&chnology of choice for the validation of large synchronous

sequences in parallel. We demonstrate larger capacity withSystems. Logic simulation is nicely scalable. The mem-

respect to symbolic techniques and better efficiency with re- Ory image of a circuit is proportional to its gate count, and

spect to cycle-based simulation. We show that it is possi- SO iS the time to propagate values from inputs to outputs.

ble to symbolically simulate very large trace sets in parallel Moreover, itis flexible: Practical cycle-based simulators al-

(over 100 symbolic inputs) for the largest ISCAS benchmark low for circuits with multiple clocks and interface to event-

circuits, using 96Mbytes of memory. based simulation [7]. Today’s cycle-based simulators allow
the simulation of large systems (up to a few million gates)

1. INTRODUCTION with an execution rate of up to #@-input gates/second on a

The complexity of digital circuits and systems is making the ;g?eMcr:(Z:uci:tPU machine, or 100 states/second for a 1-million

validation of their functionality a daunting task. Sequen-
tial circuits, in particular, constitute a hard problem. Two Simulation, however, is not a satisfactory solution to the val-
approaches to attack circuit validation are symbolic search idation problem. Each run only proves the correctness of the
techniques and cycle-based simulation. design under test (DUT) for that particular sequence of stim-
uli. Only one DUT state and input combination are visited
per simulated clock cycle. The number of DUT states and
input values visited is thus a very small fraction of the state
space of the circuit. The design of the input stimuli is left to
the designer, and it is an obviously crucial task. Expensive
emulation engines can also be used to speed up simulation
and reach more states. The simulation set-up, however, of-
ten requires weeks of work.

In this work, we consider a tradeoff between symbolic search
and simulation. In our approach, at each clock cycle, the
DUT inputs can assume constant values, as in simulation, or
they can be free, as in symbolic search. A (possibly) minimal
number of inputs is tied to constants. In this way, we : 1)
avoid representing the full next-state function, and 2) obtain
an easy-to-represent frontier subset. At the same time, we

Search algorithms [1, 2, 3] (e.g, breadth-first search), are a
convenient way to visit the state diagram of a sequential cir-
cuit. They require maintainingfeontier and areached state

set. A search step consists of computing the image of the
frontier state set under all possible input combinations (“in
parallel”). Newly discovered states form the new frontier,
while the old frontier is merged into the set of reached states.
Given enough time and memory, a search can terminate ei-

1Stefano Quer is also with Politecnico di Torino, Dipartimento di Auto-
matica ed Informatica, Turin, Italy

SYMBOLICVERIFICATION (8, A, S) { CYCLEBASEDSIMULATION (3, A, S, T){

1 Reached = To = From = New = {S}; 1 From = &y;
2 ety L0 D RO T
3 CHECKOUTPUTS (¥ A(New, 1)) 5 CHECKOUTPUTS ()E (%:’rom t));
4 To= 6(From),7 6 To = & (From, t);
5 New = To N Reached; 7 From = To:
6 Reached = Reached U New; 1}
7 F = BEST.BDD (New, Reached); - - -
1! rom (New, Reached) Figure 2. Cycle-based simulation approach.

vin__ out_in__ out_ lin_ Outoin out
Figure 1. Forward traver sal-based reachability analysis. 1 @o @Oi o1 @11 b @k @3 @k+1 Qe

simulate many input combinations in parallel and (hopefully)
reach a large number of states. start

We adopted parametric representation of frontier sets [8]. state] 1
This representation can be constructed and manipulated very Sgo | Se1
efficiently. The selection of which inputs to tie and to what
value is based on the “ease of construction” of this repre-
sentation. Alternatively, this selection can be left to the user step,d(From) determines the staté® reached from the set
or to the tool: By freeing inputs selectively, it is possible to From. SetNew contains theTo states that have not yet been
symbolically simulate any “neighborhood” of an input trace visited. Reached states accumulateRiached. After the
generated by the test bench. first step, function BsT.BDD [11] selects a subseétom

The parametric representation allows us also to avoid the With & simple BDD representatiorfrom ranges fromNew
computation and representation of the global next state func- 0 Reached. The code terminates when no movew states
tions of the circuit, thereby avoiding a lengthy simulation &re reached.

set-up time. Finally, no reached state set is maintained, so its2.2. L ogic ssmulation

representation is not a bottleneck. Fig. 2 shows the pseudo-code of a simple functional sim-
We demonstrate on several benchmarks (all the larger IS-ulation loop. T contains the test vectors. In compiled code
CAS benchmarks, as well as other industrial designs) that simulation [4], gates and combinational RTL components are
with these techniques only a few inputs need be assigned amapped to machine instructions, while latches are mapped to
constant value. We show experimentally that symbolic sim- memory locations: The netlist is effectively compiled into a
ulation allows us to speed up logic simulation by a factor of program.
over 1G for circuits that cannot be handled by current veri- | interpreted simulation, the netlist is a graph structure in
fication techniques, on a 96Mbyte PC. main memory. Each node contains typ&lD, OR , ...), fanin
2 PRELIMINARIES and / or fanout information. The simglgtion code is inde-
pendent from the netlist structure. It visits each node of the
Let B denote the sef0,1}. A logic functionf is a mapping graph and computes the node output from the inputs, accord-
f:B™— B". Therangeof f is the set of-tuples that can ing to the node type. In either compiled-code or interpreted

HSak+1

Figure 3. Symbolic simulation approach.

be asserted by. It will be denoted byRange(f). Theifh simulation,d is still represented by the circuit’s netlist. The
component off will be denoted byfi. The support off is memory occupation of the circuit is thus linear in the cir-
the set of variables for which f(v=0) # f(v=1). itis cuit size. Approaches based on a BDD representation of the

denoted byBupp(f). We assume functions to be represented netlist were proposed in [12, 13, 14].
by their BDDs [9, 10]. We indicate byf| the number of

In “oblivious” simulation all gates are evaluated at each
nodes of a BDD off.

clock tick. Alternatively, only value changes across the

We indicate with {4, --+, im), (01, -, Oo), and €y, ..., S), netlist are propagated. Although there are typically many
input, output, and state variables. Next state functions are more gates than value changes, in practice, the additional
indicated withd(s,i), and output functions with(s,i). So is data structure requirements and checks appear to favor obliv-
the initial state. ious simulation. Today, compiled-code oblivious simulation
2.1. Symbolic search appears to produce the most compact circuit representation

and fastest execution.
Fig. 1 shows the pseudo—code of a verification algorithm for

a synchronous circuit, using mbolic forward traversal. 2.3. Symbolic smulation

CHECKOUTPUTSrepresents a generic checker. It evaluates Fig. (3) shows the iterative model of a synchronous circuit.
the correctness of. Its actual functionality depends on the In symbolic simulation, at each time stlethe expression of
final application of the traversal routine. At each traversal the primary outputs and state variables is computed, in terms

en S,

E 3bit | s,

W o

Figure 4. a 3-bit down counter with enable.

of thevariablesiningyo, - - -, ingk. Example (1) illustratesthis
construction for a 3-bit down counter.

Example 1 Fig.(4) shows a 3-bit down counter with enable.
Outputs coincidewith the state variables. Starting from state
0, the expressions of the outputs are

time=0 outgo = (0,0,0);
time=1 Outgr = (engo,eN@o,eN@o);
time=2 Out@z = (en@o+ en@1, eN@o + ENg@z,
) enao d en@1);
time=3 . ---
Notice that the state variables do not appear in the output
expressions.

If abug is found at some time k the expression of out can
provide the entire set of input sequences of length k that ex-
pose it. Unfortunately, however, these expressions quickly
become large and intractable, making the whole approach
practically infeasible. One obvious simplification consists of
resorting to state variables. When computing the expression
of d at timek+ 1, instead of using the expressions of the state
variables sgy, one keeps track only of the possible configu-
rations that these variables can assume (i.e. the simulation
frontier at time k). A symbolic simulation loop is then es-
sentially the forward reachability analysis loop of Fig. (1),
without lines 5, 6. BEST_BDD just returns To. It aso inher-
its al the drawbacks of reachability analysis, except for the
computation of Reached. In particular, one looses informa-
tion on how acertain state is reached. This makes debugging
more compl ex.

3. OUR APPROACH

We based our method on the following observations. Con-
sider the situation of Fig. (3). Although & in genera can be
complex, in practice at time 0 its components are often very
simple (constants, copies of an input, or complement of an
input), because the state variables are replaced by constant
values. Moreover, an input variable may be copied into sev-
eral state variables: there are then functional dependencies
among the various state bits [15, 16]. We use these func-
tional dependencies to obtain a simplified representation of
oattimel.

In practice, we never build explicitly d. Rather, at each clock
tick k, we build asimplified version d¢ of 8. We use thefunc-
tional dependencies among the components of o at time k

Figure5. Our symbolic simulation approach.

SYMBOLICSIMULATION (0, A, So, T) {

0=

while (ISNOTEMPTY (T)) {
{0k ,Ar} (inputs, intermediates) = SIMULATE(O);
CHECKOUTPUTS (Ar);
{p, 0} = DECOMPOSE (&, T);

)

Figure 6. Pseudo-code of our approach .

to build aversion of ¢ at time k+ 1. If, in spite of our ef-
forts, O becomes*“complex”, few inputs are tied to constant
valuesin order to simplify it.

3.1. Using functional dependencies.

We discover and exploit functional dependencies using a
parametric representation of the reached state set [8]. Fig.
(5) illustrates the approach. We introduce some inter mediate
variablest;j. At ageneric clock tick k, we inspect the BDDs
of or and build afunction o(t;) such that

Range(o) = Range(dk). @)
In practice, we will settle for a o such that 1) the number of
parameter variablest; is small, and 2) Range(o) isa“large”
and easily identifiable subset of Range(dr). Section(3.2)
provides the details on ¢ and its construction. The BDD
of &g (i1, -,im,0) is then built, and a new o constructed.
Notice that state variables are effectively replaced by these
intermediate variables.

In addition, we build a second mapping p. This second map-
ping expresses each t; as a function of inputs and interme-
diates at the previous tick. Also p should be “simple’, for
the following reason. Suppose a bug is discovered at time
k. Thereisthen an assignment of primary inputs and inter-
mediates at time k that exposes the bug. We need to be able
to map the assignment of intermediates to an assignment of
inputs and intermediates at time k — 1, and then iteratively
back to primary inputsat timek—2,---,0.

Fig. 6 shows the proposed approach.

Procedure SIMULATE substitutes latch output variables with
their expressions in o. It then simulates symbolically the
combinational portion of the circuit and returns the arrays
of BDDs & and Ar. DECOMPOSE is shown in Fig. 7.
It performs two main operations. First, it makes sure that
Range(dr) can be parameterized in linear time. If thisis not

DECOMPOSE (0, T) {
C = FINDCOMPLEXVARIABLES(®F);
Or = ASSIGNANDCOFACTOR(®, C, T);
F = FINDSHAREDVARIABLES(OF);
OF = ASSIGNANDCOFACTOR(Of, F, T);
{p,0} = REWRITE(0F);

}

Figure 7. Pseudo-code for the function DECOMPOSE.

the case, it identifies variables for assignment, and cofactors
OF accordingly. The actua constant values are provided by
the test bench input T. It then decomposes d¢ into o and
p. Functions FINDCOMPLEXVARIABLES, FINDSHARED-
VARIABLES, and REWRITE are described in Sections 3.2
and 3.3, respectively.

3.2. Identifying intermediate variables

We show hereaway to identify quickly afunction o such that
Range(o) isa“large” subset of Range(dr). Thisreguiresthe
following definitions.

Definition 1 Avariablex istermed simpleif thereisa com-
ponent &g of & such that Supp(dr,) = {x}. Given a func-
tion Or, let Sdenotethe set of simple variables. A component
Or,i istermed simpleif Supp(dr;) C S

Definition 2 Let again S denote the set of simple vari-
ables. A non-constant function of; is termed complex if
Supp(3g,;) NS# @and Supp(dg,;) NS# ¢ For a complex
function &g, a variable belonging to Supp(dr;) NSis also
termed complex. A variable or function is unbound if it is
neither simple nor complex.

Definition 3 Two components dg,dr,; of & are termed
equivalent if they are unbound and 8rj = & j or O = 6;:71-.
Definition 4 Given an equivalence class € of functions, we
indicate with Supp(¢) the set of variables belonging to the
support of any function in €. A variable x € Supp(of) is
said to be bound if it belongs only to the support of a single
equivalence class of d¢. It istermed shared otherwise.

Suppose first that the components of & are only: 1) con-
stants, 2) functions of a single variable, or 3) functions of
variables also appearing as single variables in other compo-
nents (that is, smple functions). One such case would be,
for example,

O (%y) = (%X,Y,0, f(xy),9(%,y),y") @)
An exact parametric description is obtained by replacing x,y
with two parameters:

o= (to,té,tl,o, f(to,tl),g(to,tl),ti) ©)]
Noticethat p isjust adata-transfer: to = x;t; = .
Suppose now that & consists only of simple and complex
functions. By assigning a value to complex variables, some
complex variable may become simple:
Example 2 Consider

OF (P, 0,1, X,Y) = (XY, X+ Y+ p+0, p+X0). 4)
Or o and 0F 1 are simple. 8> and & 3 are complex, as vari-

FINDCOMPLEXVARIABLES (3) {
S=C=0,
foreach (Or; € OF) {
if (|Supp(r;)| ==1) {
S= FUNCTIONTYPE (O, Simple);
S= SUSUpp(6F,);

b}
foreach (Or; € OF) {
if (Supp(dri)NS#0) {
Temp = SUPP(F,) NS
if (Temp #£ 0) {
C = FUNCTIONTYPE (9F,j, Complex);
C =CU Temp;

}

return(C); }
Figure 8. Identifying Simple and Complex Variables.

ables p and q are complex. By assigning a value to p and
g, complex components become simple and & can have a
simple parametric representation.

Simple and complex variables (and functions) are identified
in a two-pass scan of the BDDs of dr. Fig. (8) shows the
pseudocode. Initially, functionsand variables are labeled Un-
bound. Thefirst foreach loop finds the support of each compo-
nent of & and identifies Simple variables. Thistakes O(|0g|)
time. The second foreach loop identifies complex variables
and placestheminC.

After complex variablesareidentified and removed, the com-
ponents of O are labeled as either smple or unbound. Un-
bound functions have no support variablesin S. We now ex-
amine unbound functions. The simplest case occurs when
one unbound function has support digoint from all other
components. For example, in Eq. (5) below:

O = (f(p,q),X,y,g(X,y)). ®)
thefirst component is unbound and has support disjoint from
al others. The component can be replaced by an inde-
pendent intermediate variable: o = (to,t1,t2,9(t1,t2)) where
to=f(p,q);t1 =Xt =Y.

Consider the more general situation:

6,::(f(p,q),f’(p,q),x,y). (6)
The first and second component of o can be replaced by
to, ty, respectively.

Definition 4 partitions the set of unbound functions in &
into equivalence classes. These classes can be discovered in
asingle scan of the array 0. Consider assigning a value to
al shared variables. The support of each equivalence class
will contain only bound variables, so each class can be re-
placed by an independent parameter.

Example 3 Consider

O = (X+y+zXyZ,Zw,Zw). 7
By assigning z = 0, the components of dr become:

6F = (X+y7 (X+y),7W7W)' (8)
A parametric representation of Range(dg) isthen

o= (to,té,tl,tl), 9

FINDSHAREDVARIABLES (&F) {
Shared = EqvClasses = 0;
foreach(Or; € OF) {
if(FUNCTIONTYPE(F,i) == Unbound) {
Class = FINDORMAKENEWCLASS(OF);
EqvClasses = EquClasses U { Class } ;
TAG(Supp (OF;), Class);
b}
foreach(Class € EqvClasses) {
foreach (x € Supp (Class)) {
if (Tag(x) # Class) Shared U= { X };
I

return(Shared); }

Figure9. Identifying Bound and Shared Variables.

wherety = X+ y;t; = w.
Fig. (9) illustrates the algorithm for finding shared variables.

3.3. The REWRITE function.

REWRITE generates p,o as follows. For a circuit with m
inputs (i1,---,im) and n state variables (s1, - - -, &), exactly n
intermediatest; are introduced. Somet; may end up unused.
The BDD ordering of the intermediates reflects that of the
state variables: if variable sj has rank k, then variabletj will
have rank k.

Once complex and shared variabl es are removed, the compo-
nents of OF are either ssimple variables, or simple functions,
or functions bound to equivalence classes. The components
of o arethen obtained by replacing each simple variable and
equivalence class by an intermediate t;. The BDD of simple
functions must be re-written in terms of the new interme-
diatestj. To make this re-writing simple (i.e. linear in the
BDD size), adynamic replacement procedure is established,
as follows. A replacement table with m+ n entries is kept.
The K" entry of the table represents the k" variable in the
BDD ranking, from the top. The entries are visited in order.
Thefirst variablethat appearsasasimplevariableis replaced
by t1, the second one by t», and so on. Each equivalenceclass
& isthen assigned one of the still unassigned ty.

4. EXPERIMENTAL RESULTS

We implemented a symbolic simulator and tested it on a PC
based on a 150MHz Pentium with 96 Mbytes of memory,
running Linux. The simulator is interpretive and oblivious.
We tested it on the largest circuitsin the ISCAS 89 [17] and
| SCAS' 89—addendum suite, plus two medium-size commer-
cia designs. Each 2-input gate takes 16 bytes of memory. A
proprietary BDD package was used.

We evaluated the simulator by running it for 2000 cycles on
each benchmark circuit. Complex and shared variables are
assigned random values. Table (1) reportsthe relevant circuit
metrics and summarizes the experimental results. For each
circuit we report the number of primary inputs # PI, primary
outputs # PO, memory elements # FF, and gates # G.

The following measures are important for our purposes: 1)
the average size of the support of dg, and 2) the average num-
ber of states reached at each simulated clock tick.

Interms reports the average number of intermediate variables
appearing in 0. The average number of states visited at each
clock tick is 2/"terms The support of 3¢ has size Interms +
#PI . This support can be used for the detection of bugsin
the output of the DUT. This number gives us the parallelism
in the computation of g and Agr. It is reported in column
In-OF .

Column Assd reportsthe average number of (input + interme-
diate) variables assigned by DECoMPOSE, during the con-
struction of 0. The parallelism in computing the function o
is thus given implicitly by Interms + #PI - Assigned. This
number is reported in Free. The actual number of parallel
tracesis 2Free,

Column Memory indicates the total memory consumption of
the simulation in Mbytes. This includes the netlist and the
BDDs.

Column CPU reports the time for 1000 simulation cycles.
Column CPU-sim indicates the time spent for 1000 cycles
of compiled-code simulation. Finally, column efficiency con-
tains the ratio 2F"¢€ x (CPU-sim /CPU). It represents the num-
ber of symbolic simulations executed in the time spent in one
numerical simulation.

Several | SCAS benchmarks seem to contain “ highly sequen-
tia” components (such as counters). If the state bits of a
counter take constant value at some point in time (that is,
they are represented by constants), then aso the at the next
clock tick they will be represented by constants. The last
two circuits are more data-path intensive: they contain sev-
eral large data-transfer or arithmetic operations. It is easier
in these cases to assign state bits independently. Hence the
larger number of parameter variables.

5. CONCLUSIONSAND FUTURE WORK

We presented an approach towards a symbolic simulation of
synchronouscircuits. The approach is based on the quick re-
writing of frontier setsin terms of Boolean parameters. It al-
lows the designer to construct a symbolic simulation around
anumerical cycle-based one, by selectively “freeing” some
(if not all) of the circuit inputs. This approach allows us
to deal with more than one state and many input combina-
tions at atime. The equivalent execution rate is boosted by
alarge factor over cycle-based ssimulation for the larger cir-
cuits. Moreover, it seems to increase as the circuit size in-
creases.

Severa tradeoffs need be explored further. For instance,
since the execution of a gate is non-trivial, event-based exe-
cution may outperform a cycle-based one.

Counters and sequencers occur several times in the bench-
marks. A large number of constant bits of course lowers the

Circuit #Pl #PO #FF #G Interms In-Of Ass.d Free Mem. CPU CPU-sim Effic.

prolog 36 73 136 1845 28.06 6496 2398 4098 | 0.36 4.29 022 | 1.11x10™
51269 18 10 37 771 076 18.76 13.18 558 | 0.37 1.85 0.07 1.80
s1423 17 5 74 830 1.00 18.00 13.07 493 | 0.05 2.09 0.12 1.76
s1512 29 21 57 990 320 3220 1650 15.69 | 0.08 1.78 013 | 3.87x10%
$3271 26 14 116 2166 6.38 32.38 25.89 6.49 | 055 17.76 0.20 1.01
$3330 40 73 132 2020 | 2893 68.93 23.80 4503 | 057 4.44 0.23 | 1.86x10%2
53384 43 26 183 1734 | 3279 7579 4070 3500 | 0.65 5.83 025 | 157x10°
54863 49 16 104 2492 291 5191 418 1005 | 0.15 5.94 024 | 430x10t
$5378 35 49 179 3973 12.80 47.89 3093 1696 | 0.64 7.96 031 | 4.95%x10%
$6669 83 55 230 3272 | 7536 15836 7658 8178 | 36.77 | 94761 052 | 2.28x10%
$9234.1 36 30 211 6585 17.96 53.96 19.65 3431 | 0.24 11.25 0.34 | 6.42x108
$13207 31 121 669 9539 1441 4541 464 4077 | 061 21.09 0.78 | 6.94x1010
s13207.1 | 62 152 638 9539 | 57.30 119.30 1352 10578 | 1.36 34.29 087 | 1.76x10%
515850 14 87 597 11316 439 1839 2582 1557 | 0.50 21.54 078 | 1.76x10%
s15850.1 | 77 150 534 11316 17.19 9419 5573 3846 | 1.75 | 100.01 085 | 3.22x10°
535032 35 320 1728 23085 1.00 36.00 35.00 1.00 | 0.96 56.59 219 | 7.75x1072
538417 28 106 1636 27648 | 46.90 7490 819 66.71 | 2.89 80.73 2.70 | 4.05x1018
538584 12 278 1452 24619 6.36 1836 5.04 1242 | 10.25 | 316.08 216 | 3.74x101
$38584.1 | 38 204 1426 24619 751 4551 2444 2107 | 2240 | 1248.26 188 | 3.31x103
dmac 44 149 328 5926 | 8243 12643 6539 61.04 | 23.08 91.80 0.45 | 1.16x10%°
matmult | 37 97 83 9660 | 32.65 69.65 17.45 5220 | 18.43 | 604.10 0.86 | 7.36x10%2

Table 1. Average number of intermediate variables and freevariables for each simulation cycle.

parallelism of simulation.

Improving the designer’s confidence in the technique is the
main topic of future work: Larger and larger trace sets must
be considered in parallel. Therefore, investigating ways of
increasing the number of free variables in each symbolic
simulation cycle isimportant.

References

[1]

(2]

(3]

[4]

(5]
6]

[7]

8]

O. Coudert, C. Berthet, and J. C. Madre. Verification
of Sequential Machines Based on Symbolic Execution.
In Lecture Notes in Computer Science 407, Springer
Verlag, pages 365-373, Berlin, Germany, 1989.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit state enumeration
of finite state machinesusing BDD's. In Proc. ICCAD,
pages 130-133, November 1990.

J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dill.
Symbolic Model Checking for Sequentia Circuit Ver-
ification. 1EEE Transactions on CAD, 13(4):401-424,
April 1994.

Z. Barzilai, J. L. Carter, B. K. Rosen, and J. D. Rut-
ledge. Hss- a high-speed simulator. IEEE Trans. on
CAD/ICAS pages 601-617, July 1987.

C. Hansen. Hardware logic simulation by compilation.
In Proc. DAC, pages 712—715, June 1987.

L.T. Wang, N. E. Hoover, E. H. Porter, and J. J. Zasio.
Ssim: A software levelized compiled-code simulator.
In Proc. DAC, June 1987.

C.J. DeVane. Efficient circuit partitioning to extend cy-
cle simulation beyond synchronous circuits. In Proc.
ICCAD, pages 154-161, nov 1997.

P. Jain and G. Gopaakrishnan. Efficient symbolic

(9]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

simulation-based verification using the parametric form
of boolean expressions. IEEE Trans. on CAD/ICAS,
13:1005-1015, August 1994.

R. E. Bryant. Graph-based algorithms for boolean
function manipulation. [1EEE Trans. on Computers,
35(8):677—691, August 1986.

R. E. Bryant. Symbolic Boolean Manipulation with
Ordered Binary—Decision Diagrams. ACM Computing
rveys, 24(3):293-318, September 1992.

H. Cho, G. Hachtel, S. Jeong, B. Plessier, E. Shwarz,
and F. Somenzi. Atpg aspects of fsm verification. In
Proc. ICCAD, pages 134-137, November 1990.

P. McGeer, K. McMillan, A. Saldanha, A. Sangiovanni-
Vincentelli, and P. Scaglia. Fast discrete function eval-
uation using decision diagrams. In Proc. ICCAD, pages
402-407, November 1995.

P. Ashar and S. Malik. Fast Functional Simulation us-
ing Branching Programs. In Proc. ICCAD, pages 408—
412, San Jose, California, November 1995.

Y. Luo, T. Wongsonegoro, and A. Aziz. Hybrid
Techniques for Fast Functional Simulation. In Proc.
IEEE/ACM DAC' 98, pages 664-667, San Francisco,
California, June 1998.

A. Hu and D. Dill. Reducing bdd size by exploiting
functional dependencies. In Proc. DAC, pages 266—
271, June 1993.

C.AJ. vanEijkand J. A. G. Jess. Exploiting functional
dependenciesin fsmverification. In Proc. EDAC, pages
9-14, February 1996.

F. Brglez, D. Bryan, and K. Kozmifiski. Combinatorial
Profiles of Sequential Benchmark Circuits. In Proc.
|EEE | SCAS 89, pages 1929-1934, May 1989.

