
Cycle-based Symbolic Simulation of Gate-level Synchronous Circuits

Valeria Bertacco† Maurizio Damiani‡ Stefano Quer‡1

†Vera Group

Synopsys, Inc.

Palo Alto, CA 94303

‡Advanced Technology Group

Synopsys, Inc.

Mountain View, CA 94043

ABSTRACT
Symbolic methods are often considered the state-of-the-art
technique for validating digital circuits. Due to their com-
plexity and unpredictable run-time behavior, however, their
potential is currently limited to small-to-medium circuits.
Logic simulation privileges capacity, it is nicely scalable,
flexible, and it has a predictable run-time behavior. For this
reason, it is the common choice for validating large circuits.
Simulation, however, typically visits only a small fraction of
the state space: The discovery of bugs heavily relies on the
expertise of the designer of the test stimuli.

In this paper we consider asymbolic simulation approach
to the validation problem. Our objective is to trade-off be-
tween formal and numerical methods in order to simulate a
circuit with a “very large number” of input combinations and
sequences in parallel. We demonstrate larger capacity with
respect to symbolic techniques and better efficiency with re-
spect to cycle-based simulation. We show that it is possi-
ble to symbolically simulate very large trace sets in parallel
(over 100 symbolic inputs) for the largest ISCAS benchmark
circuits, using 96Mbytes of memory.

1. INTRODUCTION

The complexity of digital circuits and systems is making the
validation of their functionality a daunting task. Sequen-
tial circuits, in particular, constitute a hard problem. Two
approaches to attack circuit validation are symbolic search
techniques and cycle-based simulation.

Search algorithms [1, 2, 3] (e.g, breadth-first search), are a
convenient way to visit the state diagram of a sequential cir-
cuit. They require maintaining afrontier and areached state
set. A search step consists of computing the image of the
frontier state set under all possible input combinations (“in
parallel”). Newly discovered states form the new frontier,
while the old frontier is merged into the set of reached states.
Given enough time and memory, a search can terminate ei-

ther upon finding an error or by completing the visit of all
reachable states. Current symbolic traversal tools often be-
come impractical for circuits with over one hundred latches,
for many reasons: 1) the size of the BDDs involved in the
computation to represent and maintain state sets grows too
large; 2) the time for computing the new frontier set (i.e. im-
age computation) gets too long; 3) the circuit is sequentially
too deep; 4) the BDD of the next-state function (or relation)
is too large. The solution (exact or approximate) to these bot-
tlenecks is still the subject of intense current research. Even-
tually, symbolic traversal is not very informative from a de-
sign debugging standpoint: If a bug is found, it is nontrivial
to construct an input trace that exposes it.

For these reasons,cycle-based simulation [4, 5, 6] is still the
technology of choice for the validation of large synchronous
systems. Logic simulation is nicely scalable. The mem-
ory image of a circuit is proportional to its gate count, and
so is the time to propagate values from inputs to outputs.
Moreover, it is flexible: Practical cycle-based simulators al-
low for circuits with multiple clocks and interface to event-
based simulation [7]. Today’s cycle-based simulators allow
the simulation of large systems (up to a few million gates)
with an execution rate of up to 108 2-input gates/second on a
100MHz CPU machine, or 100 states/second for a 1-million
gate circuit.

Simulation, however, is not a satisfactory solution to the val-
idation problem. Each run only proves the correctness of the
design under test (DUT) for that particular sequence of stim-
uli. Only one DUT state and input combination are visited
per simulated clock cycle. The number of DUT states and
input values visited is thus a very small fraction of the state
space of the circuit. The design of the input stimuli is left to
the designer, and it is an obviously crucial task. Expensive
emulation engines can also be used to speed up simulation
and reach more states. The simulation set-up, however, of-
ten requires weeks of work.

In this work, we consider a tradeoff between symbolic search
and simulation. In our approach, at each clock cycle, the
DUT inputs can assume constant values, as in simulation, or
they can be free, as in symbolic search. A (possibly) minimal
number of inputs is tied to constants. In this way, we : 1)
avoid representing the full next-state function, and 2) obtain
an easy-to-represent frontier subset. At the same time, we

1Stefano Quer is also with Politecnico di Torino, Dipartimento di Auto-
matica ed Informatica, Turin, Italy

SYMBOLIC VERIFICATION (δ, λ, S0) f
1 Reached = To = From = New = fS0g;
2 while (New 6= /0) f
3 CHECKOUTPUTS(8i λ(New, i));
4 To = δ(From);
5 New = To \ Reached;
6 Reached = Reached [New;
7 From = BEST BDD (New, Reached);

g g

Figure 1. Forward traversal-based reachability analysis.

simulate many input combinations in parallel and (hopefully)
reach a large number of states.

We adopted aparametric representation of frontier sets [8].
This representation can be constructed and manipulated very
efficiently. The selection of which inputs to tie and to what
value is based on the “ease of construction” of this repre-
sentation. Alternatively, this selection can be left to the user
or to the tool: By freeing inputs selectively, it is possible to
symbolically simulate any “neighborhood” of an input trace
generated by the test bench.

The parametric representation allows us also to avoid the
computation and representation of the global next state func-
tions of the circuit, thereby avoiding a lengthy simulation
set-up time. Finally, no reached state set is maintained, so its
representation is not a bottleneck.

We demonstrate on several benchmarks (all the larger IS-
CAS benchmarks, as well as other industrial designs) that
with these techniques only a few inputs need be assigned a
constant value. We show experimentally that symbolic sim-
ulation allows us to speed up logic simulation by a factor of
over 103 for circuits that cannot be handled by current veri-
fication techniques, on a 96Mbyte PC.

2. PRELIMINARIES

Let B denote the setf0;1g. A logic function f is a mapping
f : Bm ! Bn. Therange of f is the set ofn-tuples that can
be asserted byf . It will be denoted byRange(f). The i th

component off will be denoted byf i. The support off is
the set of variablesv for which f (v = 0) 6= f (v = 1). it is
denoted bySupp(f). We assume functions to be represented
by their BDDs [9, 10]. We indicate byj f j the number of
nodes of a BDD off .

We indicate with (i1, � � �, im), (o1, : : :, o0), and (s1, : : :, sn),
input, output, and state variables. Next state functions are
indicated withδ(s; i), and output functions withλ(s; i). S0 is
the initial state.

2.1. Symbolic search
Fig. 1 shows the pseudo–code of a verification algorithm for
a synchronous circuit, using asymbolic forward traversal.
CHECKOUTPUTS represents a generic checker. It evaluates
the correctness ofλ. Its actual functionality depends on the
final application of the traversal routine. At each traversal

CYCLEBASEDSIMULATION (δ, λ, S0, T)f
1 From = S0;
2 while (ISNOTEMPTY (T)) f
4 t = NEXTVECTOR (T);
5 CHECKOUTPUTS (λ (From, t));
6 To = δ (From, t);
7 From = To;

g g

Figure 2. Cycle-based simulation approach.
in

@0
in

@1 in
@k

in
@0

@0
s

@1
s

@1
out @k

out
@k+1

out in
@k+1

@k
s @k+1

s

start
state

@0
out

Figure 3. Symbolic simulation approach.

step,δ(From) determines the statesTo reached from the set
From. SetNew contains theTo states that have not yet been
visited. Reached states accumulate inReached. After the
first step, function BEST BDD [11] selects a subsetFrom
with a simple BDD representation.From ranges fromNew

to Reached. The code terminates when no moreNew states
are reached.

2.2. Logic simulation
Fig. 2 shows the pseudo-code of a simple functional sim-
ulation loop.T contains the test vectors. In compiled code
simulation [4], gates and combinational RTL components are
mapped to machine instructions, while latches are mapped to
memory locations: The netlist is effectively compiled into a
program.

In interpreted simulation, the netlist is a graph structure in
main memory. Each node contains type (AND, OR , ...), fanin
and / or fanout information. The simulation code is inde-
pendent from the netlist structure. It visits each node of the
graph and computes the node output from the inputs, accord-
ing to the node type. In either compiled-code or interpreted
simulation,δ is still represented by the circuit’s netlist. The
memory occupation of the circuit is thus linear in the cir-
cuit size. Approaches based on a BDD representation of the
netlist were proposed in [12, 13, 14].

In “oblivious” simulation all gates are evaluated at each
clock tick. Alternatively, only value changes across the
netlist are propagated. Although there are typically many
more gates than value changes, in practice, the additional
data structure requirements and checks appear to favor obliv-
ious simulation. Today, compiled-code oblivious simulation
appears to produce the most compact circuit representation
and fastest execution.

2.3. Symbolic simulation
Fig. (3) shows the iterative model of a synchronous circuit.
In symbolic simulation, at each time stepk, the expression of
the primary outputs and state variables is computed, in terms

3-bit

ADD

en

s

s

s

0

1

2

Figure 4. a 3-bit down counter with enable.

of the variables in in@0; � � � ; in@k. Example (1) illustrates this
construction for a 3-bit down counter.
Example 1 Fig.(4) shows a 3-bit down counter with enable.
Outputs coincide with the state variables. Starting from state
0, the expressions of the outputs are

time = 0 : out@0 = (0;0;0);
time = 1 : out@1 = (en@0;en@0;en@0);
time = 2 : out@2 = (en@0+ en@1;en@0+ en@1;

en@0� en@1);
time = 3 : � � �

Notice that the state variables do not appear in the output
expressions.
If a bug is found at some time k the expression of out can
provide the entire set of input sequences of length k that ex-
pose it. Unfortunately, however, these expressions quickly
become large and intractable, making the whole approach
practically infeasible. One obvious simplification consists of
resorting to state variables. When computing the expression
of δ at time k+1, instead of using the expressions of the state
variables s@k, one keeps track only of the possible configu-
rations that these variables can assume (i.e. the simulation
frontier at time k). A symbolic simulation loop is then es-
sentially the forward reachability analysis loop of Fig. (1),
without lines 5, 6. BEST BDD just returns To. It also inher-
its all the drawbacks of reachability analysis, except for the
computation of Reached. In particular, one looses informa-
tion on how a certain state is reached. This makes debugging
more complex.

3. OUR APPROACH

We based our method on the following observations. Con-
sider the situation of Fig. (3). Although δ in general can be
complex, in practice at time 0 its components are often very
simple (constants , copies of an input, or complement of an
input), because the state variables are replaced by constant
values. Moreover, an input variable may be copied into sev-
eral state variables: there are then functional dependencies
among the various state bits [15, 16]. We use these func-
tional dependencies to obtain a simplified representation of
δ at time 1.

In practice, we never build explicitly δ. Rather, at each clock
tick k, we build a simplified version δF of δ. We use the func-
tional dependencies among the components of δF at time k

s@0

@0
out

@1
out

@k
out

s@k

@0t
@0t

in

@1t

in

@kt
@k-1t

state
start

in in in

in

in

s@k+1

@k+1
out

δ
F

δ
F

δ
F

ρ σ1 1
ρ σk k

δ
F

σρ
0 0

Figure 5. Our symbolic simulation approach.

SYMBOLICSIMULATION (δ, λ, S0, T) f
σ = S0;

while (ISNOTEMPTY (T)) f
fδF ;λFg (inputs, intermediates) = SIMULATE(σ);
CHECKOUTPUTS (λF);
fρ, σg = DECOMPOSE (δF , T);

g g

Figure 6. Pseudo-code of our approach .

to build a version of δF at time k+ 1. If, in spite of our ef-
forts, δF becomes “complex” , few inputs are tied to constant
values in order to simplify it.

3.1. Using functional dependencies.

We discover and exploit functional dependencies using a
parametric representation of the reached state set [8]. Fig.
(5) illustrates the approach. We introduce some intermediate
variables ti. At a generic clock tick k, we inspect the BDDs
of δF and build a function σ(ti) such that

Range(σ) = Range(δF): (1)
In practice, we will settle for a σ such that 1) the number of
parameter variables ti is small, and 2) Range(σ) is a “ large”
and easily identifiable subset of Range(δF). Section(3.2)
provides the details on σ and its construction. The BDD
of δF(i1; � � � ; im;σ) is then built, and a new σ constructed.
Notice that state variables are effectively replaced by these
intermediate variables.

In addition, we build a second mapping ρ. This second map-
ping expresses each ti as a function of inputs and interme-
diates at the previous tick. Also ρ should be “simple” , for
the following reason. Suppose a bug is discovered at time
k. There is then an assignment of primary inputs and inter-
mediates at time k that exposes the bug. We need to be able
to map the assignment of intermediates to an assignment of
inputs and intermediates at time k� 1, and then iteratively
back to primary inputs at time k�2; � � � ;0.

Fig. 6 shows the proposed approach.

Procedure SIMULATE substitutes latch output variables with
their expressions in σ. It then simulates symbolically the
combinational portion of the circuit and returns the arrays
of BDDs δF and λF . DECOMPOSE is shown in Fig. 7.
It performs two main operations. First, it makes sure that
Range(δF) can be parameterized in linear time. If this is not

DECOMPOSE (δF , T) f
C = FINDCOMPLEXVARIABLES(δF);

δF = ASSIGNANDCOFACTOR(δF , C, T);

F = FINDSHAREDVARIABLES(δF);

δF = ASSIGNANDCOFACTOR(δF , F , T);

fρ;σg = REWRITE(δF);
g

Figure 7. Pseudo-code for the function DECOMPOSE.

the case, it identifies variables for assignment, and cofactors
δF accordingly. The actual constant values are provided by
the test bench input T. It then decomposes δF into σ and
ρ. Functions FINDCOMPLEXVARIABLES, FINDSHARED-
VARIABLES, and REWRITE are described in Sections 3.2
and 3.3, respectively.

3.2. Identifying intermediate variables
We show here a way to identify quickly a function σ such that
Range(σ) is a “ large” subset of Range(δF). This requires the
following definitions.

Definition 1 A variable x is termed simple if there is a com-
ponent δF;i of δF such that Supp(δF;i) = fxg: Given a func-
tion δF , let S denote the set of simple variables. A component
δF;i is termed simple if Supp(δF;i)� S.

Definition 2 Let again S denote the set of simple vari-
ables. A non-constant function δF;i is termed complex if
Supp(δF;i)\ S 6= φ and Supp(δF;i)\ S 6= φ. For a complex
function δF;i, a variable belonging to Supp(δF;i)\ S is also
termed complex. A variable or function is unbound if it is
neither simple nor complex.

Definition 3 Two components δF;i;δF; j of δF are termed
equivalent if they are unbound and δF;i = δF; j or δF;i = δ0F; j.

Definition 4 Given an equivalence class ε of functions, we
indicate with Supp(ε) the set of variables belonging to the
support of any function in ε. A variable x 2 Supp(δF) is
said to be bound if it belongs only to the support of a single
equivalence class of δF . It is termed shared otherwise.

Suppose first that the components of δF are only: 1) con-
stants, 2) functions of a single variable, or 3) functions of
variables also appearing as single variables in other compo-
nents (that is, simple functions). One such case would be,
for example,

δF(x;y) = (x;x0;y;0; f (x;y);g(x;y);y0) (2)
An exact parametric description is obtained by replacing x;y
with two parameters:

σ= (t0; t
0

0; t1;0; f (t0; t1);g(t0; t1); t
0

1) (3)
Notice that ρ is just a data-transfer: t0 = x; t1 = y:

Suppose now that δF consists only of simple and complex
functions. By assigning a value to complex variables, some
complex variable may become simple:
Example 2 Consider

δF(p;q;r;x;y) = (x;y;x+ y+ p+q; p+ xq): (4)
δF;0 and δF;1 are simple. δF;2 and δF;3 are complex, as vari-

FINDCOMPLEXVARIABLES (δF) f
S =C = /0;
foreach (δF;i 2 δF) f

if (jSupp(δF;i)j== 1) f
S = FUNCTIONTYPE (δF;i, Simple);
S = S[Supp(δF;i);

g g
foreach (δF;i 2 δF) f

if (Supp(δF;i)\S 6= /0) f
Temp = Supp(δF;i)\S;
if (Temp 6= /0) f

C = FUNCTIONTYPE (δF;i, Complex);
C =C[Temp;

g
g g
return(C); g

Figure 8. Identifying Simple and Complex Variables.

ables p and q are complex. By assigning a value to p and
q, complex components become simple and δF can have a
simple parametric representation.
Simple and complex variables (and functions) are identified
in a two-pass scan of the BDDs of δF . Fig. (8) shows the
pseudocode. Initially, functions and variables are labeled Un-

bound. The first foreach loop finds the support of each compo-
nent of δF and identifies Simple variables. This takes O(jδF j)
time. The second foreach loop identifies complex variables
and places them in C.

After complex variables are identified and removed, the com-
ponents of δF are labeled as either simple or unbound. Un-
bound functions have no support variables in S. We now ex-
amine unbound functions. The simplest case occurs when
one unbound function has support disjoint from all other
components. For example, in Eq. (5) below:

δF = (f (p;q);x;y;g(x;y)): (5)
the first component is unbound and has support disjoint from
all others. The component can be replaced by an inde-
pendent intermediate variable: σ= (t0; t1; t2;g(t1; t2)) where
t0 = f (p;q); t1 = x; t2 = y:

Consider the more general situation:
δF = (f (p;q); f 0(p;q);x;y): (6)

The first and second component of δF can be replaced by
t0; t 00, respectively.

Definition 4 partitions the set of unbound functions in δF

into equivalence classes. These classes can be discovered in
a single scan of the array δF . Consider assigning a value to
all shared variables. The support of each equivalence class
will contain only bound variables, so each class can be re-
placed by an independent parameter.
Example 3 Consider

δF = (x+ y+ z;x0y0z0;z0w;z0w): (7)
By assigning z = 0, the components of δF become:

δF = (x+ y;(x+ y)0;w;w): (8)
A parametric representation of Range(δF) is then

σ= (t0; t
0

0; t1; t1); (9)

FINDSHAREDVARIABLES (δF) f
Shared = EqvClasses = /0;
foreach(δF;i 2 δF) f

if(FUNCTIONTYPE(δF;i) == Unbound) f
Class = FINDORMAKENEWCLASS(δF;i);

EqvClasses = EqvClasses [f Class g ;
TAG(Supp (δF;i), Class);

g g
foreach(Class 2 EqvClasses) f

foreach (x 2 Supp (Class)) f
if (Tag(x) 6= Class) Shared [= f x g;

g g
return(Shared); g

Figure 9. Identifying Bound and Shared Variables.

where t0 = x+ y; t1 = w:
Fig. (9) illustrates the algorithm for finding shared variables.

3.3. The REWRITE function.
REWRITE generates ρ;σ as follows. For a circuit with m
inputs (i1; � � � ; im) and n state variables (s1; � � � ;sn), exactly n
intermediates ti are introduced. Some ti may end up unused.
The BDD ordering of the intermediates reflects that of the
state variables: if variable s j has rank k, then variable t j will
have rank k.

Once complex and shared variables are removed, the compo-
nents of δF are either simple variables, or simple functions,
or functions bound to equivalence classes. The components
of σ are then obtained by replacing each simple variable and
equivalence class by an intermediate ti. The BDD of simple
functions must be re-written in terms of the new interme-
diates ti. To make this re-writing simple (i.e. linear in the
BDD size), a dynamic replacement procedure is established,
as follows. A replacement table with m+ n entries is kept.
The kth entry of the table represents the kth variable in the
BDD ranking, from the top. The entries are visited in order.
The first variable that appears as a simple variable is replaced
by t1, the second one by t2, and so on. Each equivalence class
εi is then assigned one of the still unassigned tk.

4. EXPERIMENTAL RESULTS
We implemented a symbolic simulator and tested it on a PC
based on a 150MHz Pentium with 96 Mbytes of memory,
running Linux. The simulator is interpretive and oblivious.
We tested it on the largest circuits in the ISCAS’89 [17] and
ISCAS’89–addendum suite, plus two medium-size commer-
cial designs. Each 2-input gate takes 16 bytes of memory. A
proprietary BDD package was used.

We evaluated the simulator by running it for 1000 cycles on
each benchmark circuit. Complex and shared variables are
assigned random values. Table (1) reports the relevant circuit
metrics and summarizes the experimental results. For each
circuit we report the number of primary inputs # PI, primary
outputs # PO, memory elements # FF, and gates # G.

The following measures are important for our purposes : 1)
the average size of the support of δF , and 2) the average num-
ber of states reached at each simulated clock tick.

Interms reports the average number of intermediate variables
appearing in σ. The average number of states visited at each
clock tick is 2Interms. The support of δF has size Interms +

#PI . This support can be used for the detection of bugs in
the output of the DUT. This number gives us the parallelism
in the computation of δF and λF . It is reported in column
In-δF .

Column Assd reports the average number of (input + interme-
diate) variables assigned by DECOMPOSE, during the con-
struction of σ. The parallelism in computing the function σ
is thus given implicitly by Interms + #PI - Assigned. This
number is reported in Free. The actual number of parallel
traces is 2Free.

Column Memory indicates the total memory consumption of
the simulation in Mbytes. This includes the netlist and the
BDDs.

Column CPU reports the time for 1000 simulation cycles.
Column CPU-sim indicates the time spent for 1000 cycles
of compiled-code simulation. Finally, column eÆciency con-
tains the ratio 2Free�(CPU-sim=CPU). It represents the num-
ber of symbolic simulations executed in the time spent in one
numerical simulation.

Several ISCAS benchmarks seem to contain “highly sequen-
tial” components (such as counters). If the state bits of a
counter take constant value at some point in time (that is,
they are represented by constants), then also the at the next
clock tick they will be represented by constants. The last
two circuits are more data-path intensive: they contain sev-
eral large data-transfer or arithmetic operations. It is easier
in these cases to assign state bits independently. Hence the
larger number of parameter variables.

5. CONCLUSIONS AND FUTURE WORK

We presented an approach towards a symbolic simulation of
synchronous circuits. The approach is based on the quick re-
writing of frontier sets in terms of Boolean parameters. It al-
lows the designer to construct a symbolic simulation around
a numerical cycle-based one, by selectively “ freeing” some
(if not all) of the circuit inputs. This approach allows us
to deal with more than one state and many input combina-
tions at a time. The equivalent execution rate is boosted by
a large factor over cycle-based simulation for the larger cir-
cuits. Moreover, it seems to increase as the circuit size in-
creases.

Several tradeoffs need be explored further. For instance,
since the execution of a gate is non-trivial, event-based exe-
cution may outperform a cycle-based one.

Counters and sequencers occur several times in the bench-
marks. A large number of constant bits of course lowers the

Circuit #PI #PO #FF #G Interms In-δF Ass.d Free Mem. CPU CPU-sim EÆc.

prolog 36 73 136 1845 28.96 64.96 23.98 40.98 0.36 4.29 0.22 1.11�1011

s1269 18 10 37 771 0.76 18.76 13.18 5.58 0.37 1.85 0.07 1.80
s1423 17 5 74 830 1.00 18.00 13.07 4.93 0.05 2.09 0.12 1.76

s1512 29 21 57 990 3.20 32.20 16.50 15.69 0.08 1.78 0.13 3.87�103

s3271 26 14 116 2166 6.38 32.38 25.89 6.49 0.55 17.76 0.20 1.01

s3330 40 73 132 2020 28.93 68.93 23.89 45.03 0.57 4.44 0.23 1.86�1012

s3384 43 26 183 1734 32.79 75.79 40.70 35.09 0.65 5.83 0.25 1.57�109

s4863 49 16 104 2492 2.91 51.91 41.86 10.05 0.15 5.94 0.24 4.30�101

s5378 35 49 179 3973 12.89 47.89 30.93 16.96 0.64 7.96 0.31 4.95�103

s6669 83 55 239 3272 75.36 158.36 76.58 81.78 36.77 947.61 0.52 2.28�1021

s9234.1 36 39 211 6585 17.96 53.96 19.65 34.31 0.24 11.25 0.34 6.42�108

s13207 31 121 669 9539 14.41 45.41 4.64 40.77 0.61 21.09 0.78 6.94�1010

s13207.1 62 152 638 9539 57.30 119.30 13.52 105.78 1.36 34.29 0.87 1.76�1030

s15850 14 87 597 11316 4.39 18.39 2.82 15.57 0.50 21.54 0.78 1.76�103

s15850.1 77 150 534 11316 17.19 94.19 55.73 38.46 1.75 100.01 0.85 3.22�109

s35932 35 320 1728 23085 1.00 36.00 35.00 1.00 0.96 56.59 2.19 7.75�10�2

s38417 28 106 1636 27648 46.90 74.90 8.19 66.71 2.89 80.73 2.70 4.05�1018

s38584 12 278 1452 24619 6.36 18.36 5.94 12.42 10.25 316.08 2.16 3.74�101

s38584.1 38 204 1426 24619 7.51 45.51 24.44 21.07 22.40 1248.26 1.88 3.31�103

dmac 44 149 328 5926 82.43 126.43 65.39 61.04 23.08 91.80 0.45 1.16�1016

matmult 37 97 836 9660 32.65 69.65 17.45 52.20 18.43 604.10 0.86 7.36�1012

Table 1. Average number of intermediate variables and free variables for each simulation cycle.

parallelism of simulation.

Improving the designer’s confidence in the technique is the
main topic of future work: Larger and larger trace sets must
be considered in parallel. Therefore, investigating ways of
increasing the number of free variables in each symbolic
simulation cycle is important.

References
[1] O. Coudert, C. Berthet, and J. C. Madre. Verification

of Sequential Machines Based on Symbolic Execution.
In Lecture Notes in Computer Science 407, Springer
Verlag, pages 365–373, Berlin, Germany, 1989.

[2] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit state enumeration
of finite state machines using BDD’s. In Proc. ICCAD,
pages 130–133, November 1990.

[3] J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dill.
Symbolic Model Checking for Sequential Circuit Ver-
ification. IEEE Transactions on CAD, 13(4):401–424,
April 1994.

[4] Z. Barzilai, J. L. Carter, B. K. Rosen, and J. D. Rut-
ledge. Hss- a high-speed simulator. IEEE Trans. on
CAD/ICAS, pages 601–617, July 1987.

[5] C. Hansen. Hardware logic simulation by compilation.
In Proc. DAC, pages 712–715, June 1987.

[6] L.T. Wang, N. E. Hoover, E. H. Porter, and J. J. Zasio.
Ssim: A software levelized compiled-code simulator.
In Proc. DAC, June 1987.

[7] C.J. DeVane. Efficient circuit partitioning to extend cy-
cle simulation beyond synchronous circuits. In Proc.
ICCAD, pages 154–161, nov 1997.

[8] P. Jain and G. Gopalakrishnan. Efficient symbolic

simulation-based verification using the parametric form
of boolean expressions. IEEE Trans. on CAD/ICAS,
13:1005–1015, August 1994.

[9] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. on Computers,
35(8):677–691, August 1986.

[10] R. E. Bryant. Symbolic Boolean Manipulation with
Ordered Binary–Decision Diagrams. ACM Computing
Surveys, 24(3):293–318, September 1992.

[11] H. Cho, G. Hachtel, S. Jeong, B. Plessier, E. Shwarz,
and F. Somenzi. Atpg aspects of fsm verification. In
Proc. ICCAD, pages 134–137, November 1990.

[12] P. McGeer, K. McMillan, A. Saldanha, A. Sangiovanni-
Vincentelli, and P. Scaglia. Fast discrete function eval-
uation using decision diagrams. In Proc. ICCAD, pages
402–407, November 1995.

[13] P. Ashar and S. Malik. Fast Functional Simulation us-
ing Branching Programs. In Proc. ICCAD, pages 408–
412, San Jose, California, November 1995.

[14] Y. Luo, T. Wongsonegoro, and A. Aziz. Hybrid
Techniques for Fast Functional Simulation. In Proc.
IEEE/ACM DAC’98, pages 664–667, San Francisco,
California, June 1998.

[15] A. Hu and D. Dill. Reducing bdd size by exploiting
functional dependencies. In Proc. DAC, pages 266–
271, June 1993.

[16] C.A.J. van Eijk and J. A. G. Jess. Exploiting functional
dependencies in fsm verification. In Proc. EDAC, pages
9–14, February 1996.

[17] F. Brglez, D. Bryan, and K. Koźmiński. Combinatorial
Profiles of Sequential Benchmark Circuits. In Proc.
IEEE ISCAS’89, pages 1929–1934, May 1989.

