
SAGA: SystemC Acceleration on GPU Architectures ∗

Sara Vinco
Dip. Informatica

Università di Verona, Italy
sara.vinco@univr.it

Debapriya Chatterjee
EECS Department

University of Michigan, USA

dchatt@umich.edu

Valeria Bertacco
EECS Department

University of Michigan, USA

valeria@umich.edu

Franco Fummi
Dip. Informatica

Università di Verona, Italy
franco.fummi@univr.it

ABSTRACT

SystemC is a widespread language for HW/SW system simulation
and design exploration, and thus a key development platform in
embedded system design. However, the growing complexity of
SoC designs is having an impact on simulation performance, lead-
ing to limited SoC exploration potential, which in turns affects de-
velopment and verification schedules and time-to-market for new
designs. Previous efforts have attempted to parallelize SystemC
simulation, targeting both multiprocessors and GPUs. However,
for practical designs, those approaches fall far short of satisfactory
performance. This paper proposes SAGA, a novel simulation ap-
proach that fully exploits the intrinsic parallelism of RTL SystemC
descriptions, targeting GPU platforms. By limiting synchroniza-
tion events with ad-hoc static scheduling and separate independent
dataflows, we shows that we can simulate complex SystemC de-
scriptions up to 16 times faster than traditional simulators.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

General Terms

Design, Performance

Keywords

Parallel SystemC, CUDA simulation acceleration

1. INTRODUCTION
Design simulation has traditionally been a key technique to val-

idate digital systems and to conduct early performance and con-
straints evaluations. However, the increasing complexity of modern
designs has been pushing the scalability limits of this technology:
as of today its poor performance on complex systems has heavy
impacts on the development timeline and ultimately on a system’s
time-to-market [2].

∗This work has been partially supported by EU project FP7-ICT-
2011-7-288166 (TOUCHMORE) and the Gigascale Systems Re-
search Center

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM ACM 978-1-4503-1199-1/12/06 ...$10.00.

SystemC module

CPU-based simulation:
one scheduler dispatches all

processes

Memory

Scheduler Th0

P1
P2 P3

P6
P7 P8

P5

P4

P1

P6
P4

P2

P7
P5

P3

P8

P1 P2 P3

P6 P7 P8P5

P4

Memory

Th1 Th1

Process

Multipr Multipr Multipr

SAGA, GPU-based simulation:
processes can execute concurrently

on different multiprocessors

CoreCoreCore

Figure 1: Methodology overview.

One of the most common languages for modeling many digital
designs, and particularly embedded systems, is SystemC [8]. Sys-
temC extends C/C++ with libraries to describe HW constructs. It
is widely deployed in early-stage analyses and design-space explo-
rations. However, its simulation performance is fairly slow, typ-
ically 10x slower than other RTL languages’ simulations [2]. To
make things worse, the most common SystemC simulation ker-
nel (OSCI) uses application-level threading (co-operative threads),
thus it is intrinsically sequential because the operating system can-
not dispatch co-operative threads to different processing elements.
When simulating transaction-level models (TLMs) these limitations
do not have a major impact because the scheduler intervenes rarely
and does not introduce heavy overhead. In contrast, RTL simu-
lation requires frequent scheduler operations, leading to a heavy
performance impact.

Several works in the literature have attempted to optimize and
parallelize SystemC simulation, targeting heterogeneous architec-
tures in order to reduce synchronization overheads and improve
performance [1, 4, 10, 9]. Among them, the most promising di-
rection targets GP-GPUs, highly parallel architectures designed for
graphical applications and used in a wide range of scientific appli-
cations. Early solutions available in this space, such as [6], forego
many performance benefits available when simulating SystemC de-
signs on GP-GPU platforms. Looking ahead, a successful GP-GPU
based solution for RTL SystemC simulation would bring additional
benefits in integrated CPU-GPU architectures [5]. Indeed, the GPU
could simulate embedded system’s hardware while the CPU would
remain available to execute embedded software applications, pro-
viding fast simulation of the entire system as a result.

Contributions. This paper proposes SAGA, a novel approach
for concurrent SystemC simulation that leverages the massive par-
allelism available on GP-GPUs. Figure 1 overviews our approach

115

and compares it to a traditional SystemC simulation flow. The main
contributions of our work are:

• A new concurrent simulation model for SystemC that ex-
ploits static scheduling to eliminate the need of frequent syn-
chronization.

• A novel partitioning technique to carve independent data-
flows; these are then mapped to distinct threads and multi-
processors to achieve concurrency in the execution.

We show the effectiveness of SAGA by applying it to a set of
industrial SystemC designs and comparing its performance against
that of simulating on chip multiprocessors (CMPs) and against that
of previous GPU-based solutions.

The rest of this paper is organized as follows: Section 2 pro-
vides background, Section 3 highlights our contributions and the
proposed simulation model. Finally, Section 4 presents our experi-
mental evaluation and Section 5 concludes the presentation.

2. RELATED BACKGROUND
This section overviews a typical SystemC simulation flow and

the CUDA programming model and architecture. It also discusses
state-of-the-art solutions in concurrent SystemC simulation.

2.1 SystemC simulation

Runnable

processes?

Update runnable

processes

Update all signals

Events

generated?

Update simulation

time

End

Update runnable

processes

TIME

UPDATE SIMULATION

CYCLE

DELTA

CYCLE

EVALUATION

SIGNAL AND

EVENT UPDATE

Y

N

Y

N

Y

N

Execute all runnable

processes

Events

generated?

Figure 2: Traditional SystemC simulator scheduler.

SystemC uses an event-based architecture, where a centralized
scheduler controls the execution of processes based on events (syn-
chronizations, time notifications or signal value changes). Figure 2
depicts the execution flow of a typical SystemC simulator kernel.
The flow is iterated until no event is left to be processed, indicat-
ing the end of the simulation. A simulation cycle completes at the
end of each iteration through the complete flow. Within each cycle,
there is first an evaluation phase, during which all runnable pro-
cesses are executed. Signals are updated at the end of the execution
of each process. If a signal value change occurs, all processes sen-
sitive to that signal are added to the runnable queue (this is called
signal and event update phase). Finally, during the time update
phase, the time of the next simulation cycle is determined by set-
ting it to the earliest of (i) the time at which the simulation ends,
(ii) the next time at which an event occurs, or (iii) the next time at
which a process is scheduled to resume. If simulation time is not
increased, the next simulation cycle will be a delta cycle. When no
new event is fired, simulation ends.

The scheduler in a SystemC simulator coordinates the activation
of all processes and manages both delta and simulation cycles. Be-
cause of this centralized approach, traditional SystemC simulators
cannot take advantage of the concurrency of modern CMPs.

2.2 GP-GPU programming through CUDA
NVIDIA’s Compute Unified Device Architecture (CUDA) [7]

has been proposed to facilitate GP-GPU programming with a gen-
eral purpose interface. In the CUDA execution model, the GPU is

a co-processor capable of executing many threads in parallel, fol-
lowing the single instruction multiple data (SIMT) model of execu-
tion. A data parallel computation process, known as a kernel, can
be offloaded to the GPU for execution. The collection of threads
represented by a kernel is divided into a grid of thread-blocks.

The CUDA architecture (Figure 3) consists of a number of multi-
processors contained in a single GPU chip. Multiprocessors are re-
sponsible for the execution of the thread-blocks that can be mapped
to each of them, as dictated by resource limits. Each multipro-
cessor is comprised of multiple stream processors that have com-
mon instruction fetch and support a large number of concurrent
threads. Since all resident threads in a multiprocessor execute on
a fixed number of stream processors with a common instruction
fetch unit, each thread-block executes groups of threads at a time
(known as a warp) in a time-multiplexed fashion, with frequent
context-switches from one warp to another. Because of the shared
fetch unit, execution path divergence between threads of a same
warp is detrimental to performance as only one branch path can be
executed at a time. Thus, if threads in a same multiprocessors must
execute different code paths, the least penalizing solution is to map
them to different warps.

Each multiprocessor has access to low latency scratchpad mem-
ory, divided between local registers and shared memory. All mul-
tiprocessors also have access to a region of global memory called
device memory, which has higher access latency. Communication
with the host CPU’s main memory is achieved by means of direct
memory access (DMA) transfers. Thus, it is important to keep com-
munication between the host and the GPU to the bare minimum.

Multiprocessor n

Multiprocessor 1

...

H
O
S
T

...

D
e
v
ic
e
M
e
m
o
ry

Shared Memory 16-48 KB

1 cycle away

SP 0 SP 1 SP 31

0.25-

2GB

~300
cycles
away

Multiprocessor 0

DMA

communication

bottleneck

SP: Stream Processor

common instruction fetch

kernel

Thread 0 Thread 1 Thread

*

Thread 31

Thread

32

Thread

33

Thread

�

Thread 63

Warp 0

Warp 1

Figure 3: NVIDIA CUDA architecture.

2.3 Concurrent SystemC simulation
Several works in the literature propose to take advantage of the

inherent parallelism of SystemC processes to speedup simulation [1,
4, 10, 9]. In SystemC, the order of process execution within a delta
cycle does not affect the simulation’s output since the simulator
presents the same system’s status to all those processes. Thus, pro-
cesses that are activated within the same delta cycle can be executed
in parallel, either by using multiple threads or by designing a dis-
tributed scheduler. For instance, in [4] SystemC processes are ex-
ecuted as distinct threads on multiple CPUs. Simulation relies on
a simulation platform (ArchSim) that introduces heavy overhead,
thus making this approach ineffective. In [1], each processing node
includes a copy of the scheduler and it simulates a subset of the
application modules. All scheduler’s copies must synchronize after
each delta cycle to update the value of shared signals and of simula-
tion time, thus generating many synchronization events among the
separate processors. A different approach is proposed in [9], which
transforms the modules’ structure. The methodology analyzes Sys-
temC modules and it identifies those blocks within processes that
can be executed within one simulator’s phase and can be scheduled
according to their data and control dependencies. All these solu-
tions rely on code modifications or introduce overhead, as they rely

116

on an existing simulator [1, 10].
A different approach is proposed by the authors of [6], who also

target the massive parallelism offered by today’s GP-GPUs. In their
solution, independent SystemC processes are mapped into parallel
threads that synchronize at each iteration of a delta cycle (Figure 2),
through a barrier synchronization, to maintain the correct producer-
consumer relation among threads. Since typical SystemC processes
contain few word-level and arithmetic operations, this can lead to
more time spent on synchronization than execution.

START SIMULATION

P1 P2 P3 P4 P5 P6 P7 P8

P1 P2 P3 P4 P5 P6 P7 P8

P1 P2 P3 P4 P5 P6 P7 P8

STOP SIMULATION

END

?

END

?
END

?

END

?
END

?

END

?

END

?

END

?

P9

P9

P9

END

?

barrier

barrier

P1
P2

P3
P4

P5

sync overhead
P6

P7

sync overhead
P8

P9

sync overhead

warp

0

warp

1

warp

2

warp

3

warp

4

clock updates

MP0

Figure 4: Scheduling example based on [6].

More importantly, the authors of [6] propose to map distinct pro-
cesses to distinct threads in a same thread-block, so that they can
leverage the fast intra-block synchronization mechanisms. How-
ever, this is unattainable for most practical SystemC descriptions,
since different processes tend not to share the same code. The eval-
uation in [6] uses unusual designs, such as a 10-stage buffer, that
do present lots of inter-process code similarity; however, this is not
the common case. Our approach differs from [6] in that we do use
distinct multiprocessors to map distinct processes. Then we pro-
pose a new scheduler design to minimize the number of synchro-
nizations necessary. As a result we gain concurrent execution even
in the common case of processes not sharing any code similarity.
Figure 4 illustrate briefly their approach: on the left we show their
planned scheduling of processes and on the right the timeline of
computation for a same set of non-identical processes on a CUDA
platform (i.e., processes are serialized because they do not share
the same SystemC code). The evaluation section compares their
performance improvement with that of SAGA.

3. MAPPING SYSTEMC TO CUDA
Exposing parallelism in a SystemC simulator is not trivial, since

the simulation is neither embarrassingly parallel, nor homogeneous.
However, some parallelism can be extracted when treating pro-
cesses active in a same delta cycle as concurrent tasks. SAGA ex-
ploits this aspect through three steps, as depicted in Figure 5:

1. construction of the dependency graph based on the signals
read and written by each process, to build a static schedule
for the SystemC processes (Section 3.1);

2. partitioning of the static schedule into parallel dataflows,
that will be executed concurrently in different warps on the
CUDA architecture (Section 3.2);

3. levelization of processes within each dataflow based on a se-
quential order. The resulting process blocks will be executed
by concurrent thread-blocks in the GP-GPU (Section 3.3).

3.1 Construction of process dependency graph
In our construction, we assume that there is no circular depen-

dency loop between processes and we arrange them in a producer-
consumer order based on the I/O direction of their connecting sig-
nals. To this end, we build a process-graph PG = (V;E) where
each process is represented by a vertex V ; a directed edge E from
vertex v1 to vertex v2 represents a process dependency due to a

P5P1 P2 P3 P4

P6 P7

P8 P9

R2 nextR1 next @clock

edge

@clock

edge

primary output

primary inputs

1. Static schedule of the

SystemC model's

Process Graph (PG)

P5P3 P4

P7

P9

P1 P2 P3 P4

P6 P7

P8

dataflow 0 dataflow 1

2. Dataflow partitioning

to enhance concurrency

P5P3 P4

P7

P9

P1
P2
P3
P4

P5

P6

P7

P8

P9

sync overhead

P1 P2 P3 P4

P6 P7

P8

P4
P3

P7

MP 0 MP 1dataflow 0 dataflow 1

clock updates

3. Process levelization and

detailed scheduling

R1 prev R2 prev

Figure 5: SAGA methodology steps.

signal generated by v1 and consumed by v2. We do not repre-
sent synchronous statements in the process-graph, since they create
a dependency between present-state values and next-state values
through time, while we focus on exploring the concurrency within
a same time tick. The PG is a directed acyclic graph (DAG), and
thus we can apply a topological sort to it. Processes dependent only
on delta events at their primary inputs and at synchronous variables
occupy the lowest level; the other levels are established by the edge
connections.

Figure 5.1 shows an example of a process graph built for a Sys-
temC module. Nodes in grey represent synchronous processes (e.g.,
P8), while white corresponds to asynchronous ones (e.g., P6). Sig-
nals R1 and R2 are written by synchronous statements, thus they
have a current value (R1 prev and R2 prev) and a future value (R1
next and R2 next). Their current value will be updated once the
dataflow execution has completed (as suggested by the dashed ar-
rows). Steady-state values at the primary output signals and next
state values for the synchronous signals can be obtained by exe-
cuting the processes level-by-level. Because of how delta cycles
operate in a traditional simulator, at stable state the PG-based sim-
ulator is guaranteed to provide the same results as a traditional one.

Moreover, our construction leveraging static scheduling presents
an intrinsic advantage for parallel platforms, since there is no need
for a central scheduler to manage events and to activate processes.
Note that we can still benefit from the advantages of an event-driven
simulation: if we only execute a process conditionally to a change
at its inputs, then we are basically using an event-based approach.
This optimization brings upon a 10% performance improvement on
average over our baseline solution.

3.2 Partitioning into concurrent dataflows
There are several ways of partitioning the process graph obtained

in the previous section: we select one based on the constraints of
our target GPU platform. A straightforward approach would map
different processes to distinct threads, one thread per process. We
can then execute all processes in a same schedule level concur-
rently. However, this could lead to some of the same shortcomings

117

of the previous work discussed in Section 2.3, if the processes do
not share the same source code. Thus, to extract as much paral-
lelism as possible, we devise a novel scheme in which the static
schedule of the process graph is partitioned into multiple indepen-
dent dataflows. These are then mapped to distinct multiprocessors
for concurrent execution since those have distinct fetch units. The
dataflows we create are segments of the scheduled process graph
that can be executed independently. When necessary we may repli-
cate some portions of the process graph to attain independence
among dataflows.

The partitioning algorithm is outlined Figure 6. First, we select
processes in the static schedule that do not activate any other pro-
cess asynchronously, that is, they are root processes in the PG graph
(line 4) (e.g., P8 and P9 in Figure 5.1). For each of these nodes,
we select their fan-in cone in the PG (line 5–12), as illustrated in
the second step in Figure 5. Processes that are common to mul-
tiple cones are replicated (e.g., the processes in the dashed circles
in the Figure) so to make the cones independent of each other and
to enable concurrent execution. Even though we need to replicate
some portions of the PG, thus increasing the amount of simulation
required, replication ultimately eliminates the need of communicat-
ing values among dataflows, thus leading to an important reduction
in communication cost through device memory.

1: list queue;
2: for each node n ∈ V do
3: list current_dataflow;
4: if n has no exiting edges then
5: queue.add(n);
6: while queue is not empty do
7: Node current_node = queue.pop();
8: current_dataflow.add(current_node);
9: for all incoming edges edge of current_node do

10: queue.add(edge.getSource());
11: end for
12: end while
13: end if
14: end for
15: dataflow_list.add(current_dataflow);

Figure 6: Dataflow partitioning algorithm for SAGA’s step 2.

3.3 Parallel execution in CUDA
The cones built in the previous step are process dependency trees,

that must be executed level-by-level to respect the internal depen-
dency constraints. Thus, for each dataflow obtained in the previous
step, we now generate a total serial order of processes that satisfies
the level-to-level dependencies.

First of all, we levelize the cones by following the algorithm in
Figure 7. If the current node has no incoming edges (and thus it
is not activated by any other process in the dataflow), then it be-
longs to the lowest scheduling level (lines 3–4). Otherwise, the
node is scheduled at a level higher than that of all its fan-in pro-
cesses (line 6-11). This step strengthens the dependency relation
between processes (e.g., in the example in Figure 5.3, not only P3
and P4 execute before P7, but also P5 does). Then, processes in
each dataflow are serialized, starting from the lower levels up to
the root processes (processes at the same level can be executed in
any sequential order). It is advantageous to create such sequential
order for each dataflow, since it eliminates the need of frequent syn-
chronization after each level. An example timeline obtained from
this example is shown on the right hand side of Figure 5.3.

At this point SAGA generates the CUDA code corresponding to
the generated process schedule. A simulation kernel manages da-
taflow execution, and it is constructed by listing all the dataflows
and predicating each by a thread-block ID condition, so that only
a specific thread-block is responsible for executing a certain data-
flow. The body of each individual process is replaced by equivalent
CUDA code, which might require translation of SystemC datatypes
into native datatypes, as reported in Section 4.1. The simulation

1: for each dataflow dataflow in dataflow_list do
2: for each node n in dataflow do
3: if n has no incoming edges then
4: n.setLevel(0);
5: else
6: n.setLevel(-1);
7: end if
8: end for
9: while at least one node has not been assigned a non-negative level

do
10: for each node n in dataflow do
11: if for each incoming edge edge, the source node

edge.getSource() has a non-negative level then
12: for each incoming edge edge of n do
13: if n.getLevel() ≤ edge.getSource().getLevel() then
14: n.setLevel(edge.getSource().getLevel() + 1);
15: end if
16: end for
17: end if
18: end for
19: end while
20: end for

Figure 7: Dataflow levelization algorithm for SAGA’s step 3

kernel alternates execution with a value-update kernel, responsi-
ble for transferring the next-state values into the corresponding
present-state values and performing testbench actions. A simula-
tion cycle is completed by one execution of the simulation kernel
followed by one execution of the update kernel.

Since device memory accesses are particularly slow, as indicated
in Section 2.2, we allocate only variables written by synchronous
processes in global memory, since their value must be persistent
among different kernel executions. All other variables can be de-
clared as local variables, and will consequently be mapped to reg-
isters with much faster access latency.

4. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of SAGA, provide

insights on its intermediate data structure and compare it against
other state-of-the art solutions in this space. Section 4.1 discusses
our experimental setup; Section 4.2 compares SAGA’s performance
against that of a sequential simulator, while Section 4.3 evaluates
the performance of code compilation in SAGA. A comparison with
other available solutions is provided in Section 4.4. Finally, Section
4.5 provides insights on the scalability of our solution.

4.1 Experimental setup
SAGA considers as input a SystemC design, it transforms it as

discussed in Section 3, producing all the CUDA code necessary
to run the corresponding simulation on a GPU as output. The code
can then be off-loaded to a GPU platform and executed. All experi-
ments discussed below were evaluated on a NVIDIA GTX480 GPU
and a Intel quad core i7 operating at 2.8Ghz and running Linux
RedHat 5.7. In addition, we leveraged the HIFSuite framework [3]
to parse the SystemC code and generate an intermediate data struc-
ture that is used by SAGA for its internal transformations.

The first task in SAGA consists of considering a SystemC de-
scription and translating it into the HIFSuite’s internal format (HIF)
by using the HIFSuite sc2hif tool. The code generated at this point
is a tree-structured XML-like representation of the original code,
where semantic objects are represented with TAGS.

SAGA then applies a number of pre-processing steps to the HIF
description. First it extracts all the processes and builds an ini-
tial dependency graph, according to signal dependencies among
processes. It then applies the 3-step transformation described in
Section 3. At this stage SystemC data types are substituted with
native C/C++ data types and all corresponding data structures are
built. Finally, SAGA generates the code for the kernel functions,
and outputs the generated HIF description representing the detailed
scheduled dataflows obtained with our algorithm. As a last step,

118

the resulting HIF code is converted into C code by means of the
HIFSuite hif2c tool. This representation is ready to be compiled
for the target CUDA architecture.

Table 1 presents our testbench designs. The designs are part of a
complex embedded platform that was developed in the context of a
European project together with silicon vendor industry partners:

• ECC is an error correction code device.
• ClockGen, ResGen, Sync and RegCtrl are part of a complex

DSPI system. ClockGen is a multiple clock generator. Res-
Gen transforms and outputs the computed results in the spec-
ified format. Sync is a specialized synchronization function
among a number of components. RegCtrl is a register con-
troller for a set of registers.

• 8b10b is a module performing encoding and decoding byte-
wide data according to the 8b/10b protocol.We evaluated SAGA on the individual designs and on two more

complex SoC design assemblies: Half Platform, comprising ECC,
ClockGen, ResGen and Sync; and Platform integrating all the de-
signs previously discussed. For each design, Table 1 reports the
number of processes in the original SystemC description (Processes
(#)), the lines of code (SystemC (loc)) and the number of dataflows
extracted (Dataflows (#)). Column Replic. proc. (#) reports the
amount of code replication due to our step 2 (see Section 3) as
number of replicated processes and the maximum amount of repli-
cation for these processes.

Design Processes(#) SystemC Dataflows Replic.
Synch. Asynch. (loc) (#) proc. (#)

ECC 4 7 582 4 4 / 3
ClockGen 6 15 741 12 7 / 3
ResGen 3 6 478 9 0 / 0
Sync 4 22 641 23 0 / 0
RegCtrl 18 32 2677 43 17 / 8
8b10b 7 30 799 7 9 / 3
Half Platform 18 51 2355 48 11 / 3
Platform 42 112 5643 98 37 / 8

Table 1: Characteristics of the designs.

4.2 Performance
Table 2 compares SAGA’s performance with that of a SystemC

sequential execution as discussed in Section 2. For each design,
Table 2 reports simulation time of the SystemC simulation (Col-
umn SystemC simul. (ms)) and of the SAGA-generated CUDA code
(Column SAGA simul. (ms)). It then reports their comparative per-
formance in terms of SAGA’s speedup over sequential execution
(Column Speedup (x)). The results show that the SAGA simulation
is always faster than its corresponding SystemC sequential sim-
ulation. However, the speedup is moderate when comparing the
small, individual component designs, leading to up to a 3.89 times
improvement. Note, however, that even in presence of highly het-
erogeneous and complex processes SAGA achieves a respectable
performance improvement. In addition the speedup achieved with
the two more complex designs is much higher, ranging from 10 to
almost 16x. This result suggests that SAGA is a promising solution
that can extract even more concurrency from the more complex de-
signs, where there are more processes available, leading to a better
utilization of the parallel resources available on the GP-GPU.

The speedup achieved by SAGA is bounded by the amount of
concurrency that can be extracted from each module and by the
amount of computation they require. When both these factors are
high, the generated code greatly outperforms sequential SystemC
simulation. A low level of parallelism (ECC and ClockGen) or non-
intensive computation (ResGen and Sync) lead to lower speedups,
due to a heavier contribution of synchronization not balanced by
computation, or because the limited concurrency is not offset by its
setup overhead.

Our performance results also indicate that the benefits of repli-
cation far outweigh the costs. Indeed, as indicated in Table 2, even
designs with the heaviest replication maintain a good speedup over

a sequential simulator, since replication reduces communication by
reducing the need of synchronization.

Design SystemC SAGA Speedup
simul. (ms) simul. (ms) (x)

ECC 11.99 5.05 2.37
ClockGen 18.00 7.13 2.52
ResGen 8.97 5.22 1.71
Sync 9.98 5.73 1.74
RegCtrl 41.97 13.05 3.21
8b10b 15.99 4.11 3.89
Half Platform 83.98 8.143 10.31
Platform 228.96 14.34 15.97

Table 2: Performance of SAGA vs. sequential simulation.

4.3 Compilation
Table 3 compares the costs of compilation for the target plat-

form between a sequential simulator and our proposed SAGA flow.
Column SystemC comp. (ms) reports the time needed to compile
the original SystemC code. Column Code generation indicates the
time needed to generate the target CUDA code in SAGA. For this
component we report both the time spent in the execution of the
SAGA algorithm presented in Section 3 (SAGA (ms)) and time re-
quired for the intermediate language transformations by the HIF-
Suite tools (HIFSuite (ms)). Finally, we show the time required to
compile and generate the code to be off-loaded to the GPU.

The time spent in SAGA for code generation is a very small frac-
tion of overall compilation time, which is dominated by the CUDA
compiler and the HIFSuite transformations. Moreover, the total
compilation time is within a factor of 2 of the compilation time
of the sequential SystemC simulator. We expect that in a mature
version of our solution, SAGA could parse and operate directly on
the original SystemC source code, thus eliminating the need of re-
sorting to the HIF intermediate format. Furthermore, since many
simulations can be run for each model compilation, the value of
SAGA does not lie in its compilation performance, but rather on the
performance of the simulation generated.

Design SystemC Code generation CUDA
comp.(ms) SAGA(ms) HIFSuite (ms) comp.(ms)

ECC 3,893 44 2,356 3,133
ClockGen 3,321 28 878 2,572
ResGen 2,863 16 864 2,457
Sync 3,027 24 180 2,608
RegCtrl 4,154 56 692 3,232
8b10b 3,354 40 3,284 2,936
Half Platform 965 101 3,850 6,431
Platform 10,960 187 7,428 6,824

Table 3: Comparison of compilation times for the sequential
SystemC simulator and SAGA.

4.4 Architecture comparison
In order to show the effectiveness of the proposed methodology,

we compared the performance of SAGA against two other concur-
rent solutions for SystemC simulation. For this study we report
results on only two designs for sake of brevity. However, these two
designs are representative of typical behavior and we found that the
other designs lead to similar outcomes.

We first considered a concurrent SystemC simulator implement-
ing the SAGA approach on a CMP architecture, where each data-
flow is mapped to a different pthread. Furthermore, we compare
the SAGA approach against the SCGPsim GPU-target simulation
solution [6], which we implemented based on the authors’ descrip-
tion, as outlined in Section 2. We report our findings in Table 4,
where speedups are normalized to the performance of the sequen-
tial simulator.

119

The table indicates that SAGA is the fastest solution, providing a
speedup of 2 to 4x over [6], and even more over the CMP design.
Also note that the other solutions do not provide a performance im-
provement over the sequential simulation for ECC. Upon further
inspection we found that the CMP solution does not achieve good
concurrency because distinct processes are mapped to co-operative
threads, as discussed in Section 1. SCGPsim’s performance is lim-
ited because design processes do not share the same code, and thus
they are executed sequentially when mapped on a same multipro-
cessor. We believe that the authors of [6] experienced much higher
speedups because they evaluated their solution only on SystemC
descriptions where processes had identical code. However, this is a
very rare situation for any practical design.

Implementation ECC ClockGen
Time (ms) Speedup Time (ms) Speedup

SystemC 11.99 1x 18.00 1x
Multiprocessor 94.00 0.13x 20.00 0.9x
SCGPsim [6] 20.08 0.59x 14.77 1.22x
SAGA 5.05 2.37x 7.13 2.52x

Table 4: Performance comparison of SAGA vs. a CMP concur-
rent simulator and the SCGPSim simulator.

In order to evaluate the speedup trends of SAGA against the so-
lution in [6], we repeated a portion of functionality described in
each process of the two designs, ECC and ClockGen, a number
of times and then compared the simulation times achieved by all
three solutions on these variants of the two designs. Figure 8 plots
our findings; on the X axis we report the number of times that the
functionality was repeated, and on the Y axis we indicate the cor-
responding simulation time. It can be noted from the graphs that
SAGA outperforms SCGPsim and the sequential simulator even in
this artificially larger designs with repeated functionality. However,
note that the sequential simulator follows an exponential trend, as
expected, while SCGPsim appears to follow a fairly constant trend,
although with a higher baseline than SAGA.

0

10

20

30

40

50

60

70

80

1 10 100 1000
SystemC

SCGPSIM

SAGA

0

5

10

15

20

25

30

1 10 100 1000

ECC ClockGen

Repetition factor Repetition factor

S
im

u
la

ti
o

n
 t

im
e

 (
m

s)

S
im

u
la

ti
o

n
 t

im
e

 (
m

s)

Figure 8: Simulation trends for SCGPsim and SAGA.

4.5 Scalability
To estimate the scalability of SAGA, we evaluated the GPU re-

source usage of our solution, so that we could determine when a
SystemC design would reach a complexity that would exhaust the
resources available on the GPU platform. A required resource in
our solution is device memory; however, we only need to store
there the values of the synchronous signals in the SystemC design
and thus the usage of device memory is negligible, even for the
largest designs (less than 1% of the available memory).

All other SystemC signals are stored as local variables and they
exclusively require registers. As expected, the demand on registers
is thus much more pressing, and these constitute a scarce resource
that we need to consider in evaluating the scalability of SAGA. To

this end we analyzed the register usage information for each of our
testbench designs and used it to determine the maximum amount
of dataflow concurrency that can be achieved. Figure 9 plots the
fraction of concurrent resources used by our testbeds, based on this
analysis. If a design reaches the limit of available concurrent re-
sources, a portion of the computation will be serialized. Note, from
Figure 9, that none of our designs reaches this limit, although the
Platform testbench, our most complex design, was close, at 80%.

0

20

40

60

80

100

C
o

n
cu

rr
e

n
t

re
so

u
rc

e
s

u
se

d
 (

%
)

Figure 9: Percentage of available GPU concurrency required
by our designs.

5. CONCLUSION
This paper presented SAGA, a novel solution for concurrent sim-

ulation of SystemC designs on GPU architectures. SAGA achieves
its goal by extracting independent dataflows from a static schedule
of SystemC designs, thus reducing synchronization overheads. As
a result, the simulation is more efficient than both a sequential Sys-
temC simulator and other state-of-the-art concurrent approaches.
Experimental results show that we achieve the best speedups on
complex designs, highlighting the effectiveness of the methodology
when targeting complex industrial designs. Future work will focus
on developing further optimizations for SAGA to further boost its
performance and on evaluating the fitness of our solution for other
hardware description languages.

6. REFERENCES
[1] P. Combes, E. Caron, F. Desprez, B.Chopard, and J. Zory. Relaxing

synchronization in a parallel SystemC kernel. In Proc. Of ISPA, 2008.
[2] W. Ecker, V. Esen, L. Schonberg, T. Steininger, M. Velten, and

M. Hull. Impact of description language, abstraction layer, and value
representation on simulation performance. In Proc. of DATE, 2007.

[3] EDALab. HIFSuite, 2011. http://www.hifsuite.com/.

[4] P. Ezudheen, P. Chandran, J. Chandra, B. Simon, and D. Ravi.
Parallelizing SystemC kernel for fast hardware simulation on SMP
machines. In Proc. of PADS, 2009.

[5] L. Gwennap. Sandy bridge spans generations. Microprocessor
Report (www.MPRonline.com), September 2010.

[6] M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla.
SCGPSim: A fast SystemC simulator on GPUs. Proc. of ASP-DAC,
2010.

[7] NVIDIA. NVIDIA CUDA Compute Unified Device Architecture -
Programming Guide, 2008. http://developer.download.nvidia.com.

[8] Open SystemC Initiative. SystemC Language Reference, 2011.
http://www.systemc.org/downloads/standards.

[9] N. Saviou, S. Shukla, and R. Gupta. Design for Synthesis, Transform
for Simulation: Automatic Transformation of Threading Structures in
High Level System Models. University of California at Irvine, 2008.
Technical Report TR-01-58.

[10] H. Ziyu, Q. Lei, L. Hongliang, X. Xianghui, and Z. Kun. A parallel
SystemC environment: ArchSC. In Proc. of ICPADS, 2009.

120

