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ABSTRACT
Two misconceptions have been plaguing the electronic design au-
tomation (EDA) industry for decades: i) EDA solutions scale to
larger complexities at an insufficient rate to keep pace with im-
provements in silicon designs; and ii) since EDA applications tar-
get silicon chip developments, the growth of EDA as an industry is
bounded by the growth of the semiconductor industry.

With this paper we address these misconceptions and we argue
that they can both be overcome. To this end, we overview a num-
ber of initial studies highlighting possible directions that EDA can
pursue to (i) break off from its traditional ways of scaling solutions
and applications to larger complexity, that is, by developing better
heuristics for its complex algorithms. (ii) We also discuss alterna-
tive domains where EDA technology can be applied, beyond that
of silicon design, so that the semiconductor industry is no longer
the limit of EDA growth.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; B.6.3
[Logic Design]: Design Aids—automatic synthesis, optimization,
verification

General Terms
Algorithms, Design, Verification

Keywords
EDA, Human Computing, Social Networks, Satisfiability

1. INTRODUCTION
The Electronic Design Automation (EDA) industry has been de-

veloping solutions to support silicon design for over 40 years. Dur-
ing this time, the scale and complexity of the problems that the
industry could solve have made great strides: from supporting the
development of the few-thousands-transistors chips of the 70’s to
that of the billion-transistors chips of the present day. However,
EDA has been plagued for a long time (at least two decades) by a
few misconceptions:
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1. The design complexity that EDA solutions can tackle is
scaling at an increasingly slow and incremental pace. This
perception is mainly motivated by the increasing costs of sil-
icon design developments. However, modern designs do not
just have a larger scale than their previous generation coun-
terparts. They also present a vast number of challenges that
were not concerning just a few years ago, from parasitic ef-
fects, to clocking complexity, to hard-to-validate highly con-
current execution over complex communication protocols.
Even if EDA is lagging in addressing and finding system-
atic solutions for these issues, over the past few decades it
has delivered one of the best scaling trends ever observed in
computing. Because of the needs outlined, however, we still
ask whether we can do better (and the semiconductor indus-
try demands it).

2. The growth of EDA as an industry is limited by the semi-
conductor industry growth. Because EDA is dedicated to
developing tools and algorithmic solutions for the semicon-
ductor industry, its market size can only grow if and at the
rate that the electronics industry demand allows it. A com-
mon metric to evaluate this demand is to track the number of
new ASIC design starts each year, which has suffered a per-
sistent downtrend during the past decade, due to the steep in-
crease in development and manufacturing costs of nanoscale-
technology silicon chips [15, 20]. What we investigate in this
work, though, is whether there are opportunities for EDA to
serve other industries beside semiconductors, and thus un-
lock the potential for new growth.

With this work we explore some answers to the challenges dis-
cussed above. To address the first question, we investigate initial
solutions that have the potential to break off the traditional prac-
tice of improving the scalability of EDA algorithms by relying on
the performance improvements of the underlying computing hosts
or by tuning and improving the algorithmic search heuristics in
performance and quality. What we propose is to leverage human-
computing and crowdsourcing solutions to EDA problems to de-
velop completely different approaches that break off from our tra-
ditional way of thinking. Moreover, we want to learn from the way
humans attack the complexity of these problems, and derive from
it new approaches to developing automated heuristics.

To address the second challenge we look at possible additional
domains to which EDA solutions can be applied. In particular,
we consider the fast growing market of human-related and human-
serving applications, such as social networks. Social networks are
quickly expanding to provide a large number of services to hu-
mans. Their members are quickly growing in number, with Face-
book leading at an estimated 845 millions registered members in
2011 [19], and more than 12 distinct social networks exceeding the



100,000,000 members level [27]. If EDA could provide services to
these communities, or to companies that provide services to these
communities, its applications would serve a much larger market
than they are today.

The Design Automation Conference has witnessed a handful of
studies in the past few years that have proposed alternative appli-
cations for the EDA field, for instance, by applying EDA solutions
to the page ranking problem in web searches [12], and to social
networks [7] (as we will discuss below).

2. HUMANS FOR EDA
Human computing is an approach to computing that has gained

increasing interest in the past decade. In human computing, a com-
putational process is carried out by outsourcing certain or all steps
to humans. This computational model is effective when the tasks
assigned to humans are those that are notoriously challenging for
computers but straightforward and efficient for humans; examples
of such tasks include image recognition, translation, etc. The term
“crowdsourcing” is used when the process involves networks of in-
dividuals to achieve its goals. Humans are motivated to take part
to the process by a wide range of “rewards”, ranging from mone-
tary compensation, to enjoyment in game-like processes, to gaining
online reputation, etc.

The goal in using human computing to solve EDA problems is
to break off from traditional approaches for algorithm scaling. The
hope is to find completely new approaches to solving a problem
by leveraging skills that are typical of humans, or by developing
new solutions based on the way humans attack the problem. The
main challenge in pursuing this venue is that the complexity of the
problems instances in EDA is often beyond what can be managed
by humans.

An example of a human computing solution for EDA is Fun-
SAT [6]. FunSAT is a visual puzzle game recently developed in
our research group. The game presents the player with visual puz-
zles derived from instances of the SATisfiability problem [8]. The
goal is for human players to leverage their unique visual reasoning
and pattern recognition abilities to solve the puzzle, that is, find a
satisfiable assignment for the SAT instance.

2.1 FunSAT single-player
FunSat has some similarity with a handheld electronic game,

called “Lights Out”, a logic puzzle where the player manipulates
a grid of buttons, some lit up and some off: every move lights up
some buttons and turns off some others, while the player strives to
organize his moves so to switch off all the lights [1].

In FunSAT, the game’s board includes (i) rectangular control
buttons representing the Boolean variables in the instance and (ii)
circles of varying size representing clauses. Users can click on
variables to cycle through their Boolean value assignment (true,
false, not assigned) while the game shows which clauses are satis-
fied (green), falsified (red) or still unresolved (gray). In addition,
the game represents clauses with circles of size proportional to the
number of literals they include, so that players can visualize the
size of each clause, and intuitively gain a sense of how easy or dif-
ficult is to satisfy each of them (larger clauses include more literals
and thus present more opportunities to be satisfied). FunSAT also
uses varying gray color intensity for unresolved clauses to indicate
how many unassigned literals are left in the clause; that way players
can prioritize their attention in addressing unresolved clauses: the
darker an unresolved clause, the most critical the situation, since
there may be just one unassigned literal remaining. As a result,
small, dark gray circles require top priority attention by a user: they
correspond to clauses comprising just a few literals, most of which

have already been assigned.
Finally, players can zoom in and out in the game board to ap-

proach the problem by region, and can hover over a clause to see
all of the variables it depends on. Figure 1 shows a screenshot of
the game. At the beginning, all clauses are unresolved (grey), they
become green when a partial assignment satisfies them, and red if
they are falsified. To leverage the human ability of spatial percep-
tion and area, we lay out clauses in a grid. Variables surround the
“clause grid”. Players advance in the game by levels, after solving
an instance they are offered a more complex one in the next level.

Figure 1: Screenshot of FunSAT - single-player. Circles rep-
resent clauses; rectangular buttons are Boolean variables con-
trols. Assignments are applied by clicking a button; switch-
ing the corresponding variable from unassigned (grey), to blue
(true), to yellow (false). Hovering over a clause highlights all
the variables it depends on.

Through the game, human players can approach the challenge
of solving SAT instances in a very unique way, compared to algo-
rithmic solvers, using such skills as intuition and visual perception.
As they click on different variables, they observe the visual im-
pact on the grid of clauses and can progressively and intuitively
tune their selection towards assignments that lead to a large frac-
tion of satisfied clauses (visually perceivable by a higher fraction
of green circles), until the entire grid is green, indicating that the
instance has been solved. Classic SAT solving techniques, such as
random restarts[16] and backtracking, are also naturally included
in the game strategy, but with a “human twist”. For instance, back-
tracking is naturally used by players when they feel that they are at
a dead-end corner of the search, and simply change the assignment
of a few variables to move away from the situation. Learning also
occurs when players identify color and shape patterns that are gen-
erated by their selection and use this visual learning in developing
their game strategy. This game appeared online in 2009 [4] and it
is implemented in Java.

2.2 Crowdsourcing FunSAT
Scaling FunSAT to large instances presents a challenge, as it is

limited by screen real estate, human patience and humans’ ability
to deal with complex problems. To address this aspect, we have
recently developed a massively multi-player online version of this
game [13]. To still leverage the visual intuition skills of humans
we developed a new representation of the problem: clauses from a
SAT instance are now presented in polar coordinates on a circle par-



titioned into one or more concentric sections. The controlling vari-
ables are placed along the outer perimeter of the circle (see Figure
2). This representation is much more compact for large instances,
which typically have a large clauses-to-variables ratio. In addition,
the game provides capabilities for zooming in and out conic sec-
tions of the circle, so that each player can visualize only a portion
of the instance. Finally, a summary representation of the instance is
provided in the fashion of a “world map” on the left side of the main
game board, so that users can keep an eye on the overall situation
at all times. This structure, along with the overall game controls is
represented in Figure 2.

Figure 2: A FunSAT multi-player board. A game board is
shown on the right with an assignment of variables (control
buttons at the perimeter of the circle) that leaves 13 clauses fal-
sified. Clauses are placed along two concentric inner circles.
The smaller board on the left is a world map, useful when a
player is zooming into a small portion of the game board. In
between are several controls to zoom and rotate the board, cre-
ate a random initial assignment and undo/redo moves.

The game setup lends itself to a wide range of multi-player inter-
action strategies. The one implemented in the first released version
of the game is a collaborative strategy, where each user is assigned
and controls a fraction of the instance’s variables and players are
meant to interact with each other to coordinate their assignments
and satisfy the instance. The game is organized in game rooms;
within each room, a game leader controls when to start a new level
and/or end the game; incoming players can choose to start a new
game room or join an existing one. The game room management
and the coordination of moves among players is coordinated by a
central server, which can be setup by any entity that wants to pro-
vide the online game to its community. To communicate, users can
use the chat window in the game’s GUI, or other chat and/or voice
interaction mediums, such as Ventrilo [9].

Figure 3 is a snapshot of an advanced level of FunSAT multi-
player, where clauses are laid out on several concentric circles (as
shown in the world map) and one of the players is studying a conic
section of the problem. Players can observe the dependency be-
tween clauses and variables by highlighting a clause or a variable.
We tested this setup several times within our research group – in
our case players could talk live to each other during the game – and
found that collaboration enabled them to solve complex instances,
of much larger size than those in the single-player version.

Other game strategies that we considered were antagonistic strate-
gies, where the most effective players could over time take control

Figure 3: FunSAT multi-player, advanced game level. One the
players in this game is studying a conic section of the board to
evaluate if she should modify the assignment of the variables
she controls or if she should negotiate an assignment modifica-
tion with another player.

over other player’s variables. This approach would provide pos-
itive feedback and motivate players not only with the completion
of a game level, but also by increasing a player’s variable control
while he is solving a level.

The game is implemented in HTML5 [11] with a Python[17]
back-end and requires a central server to synchronize and distribute
moves across multiple players. One such central server is available
at the University of Michigan and serves the players that connect to
the game’s website at our institution.

3. EDA FOR HUMANS
The second misconception that we want to address in this work

is that EDA as an industry is limited by the market’s demand of the
semiconductor industry. In contrast, over the past decades, EDA
has developed highly scalable and effective solutions to a number
of problems that arise in many other domains. As discussed in the
introduction, there has been a persistent downtrend of new ASIC
design starts over the past decade: while this is a major source of
concern in the industry, the shrinking size of the traditional EDA
market could encourage companies to broaden their horizons and
apply some of their solutions to alternative domains.

An area that has been growing at a very fast pace in the last
decade is that of applications that provide services to humans: their
social needs, their knowledge, their connection and communica-
tion needs. There are more than 100 social networks available on-
line today, several of which have more than 100,000,000 registered
members. Studying the characteristics and the connectivity of these
networks would be a natural application for EDA’s formal verifica-
tion solutions. Indeed, the typical membership size of a large social
network is approximately equivalent to the number of states in a Fi-
nite State Machine (FSM) representing a digital system with tens
to a few hundreds storage bits: a system with 100,000,000 states
requires at least 27 bits. This is a size that is commonly tackled by
formal verification tools.

It seems that formal verification tools would be apt to analyzing
graphs representing relational aspects of a social network group
and extract a wide range of collective information: how strongly
connected the group is, or which are the closely knit subgroups,
whether two members could indirectly communicate with each other,
etc. Other tasks with a more direct commercial aspect to them in-



clude searching the graph for users with similar interests, activities
or background (that could be represented by edges to specific types
of nodes) for the purpose of job hunting, community organizing
or even match making. A similar analysis could be carried out
across multiple social networks to gather more information about a
member than what can be extracted from a single network and/or
validate his/her identity by comparison. Studying groups of mem-
bers instead of individuals could benefit targeted advertising. For
instance, a high connectivity to other network members is a good
indicator that the member is an influential individual in the com-
munity and would be an ideal candidate to promote a new service
or product. Min-cut algorithms [3], very common in place & route
solutions, are valuable in this context to identify a subgroup with
relevant characteristics for the desired type of advertisement.

We recently pursued a study in this space, proposing to lever-
age model checking tools to analyze social networks [7]. Model
checking is an approach to formal verification of digital designs
that has been gaining increasing momentum and scaling to complex
designs, so that today it is possible to model check complex prop-
erties over fairly involved design units. The design under study is
modeled as a FSM, where each state of the design is represented by
one vertex of the graph, while edges represent valid transitions be-
tween nodes. To analyze social networks, we can construct similar
graphs, with vertices representing members and edges representing
relevant relational properties. We performed a first evaluation of
this alternative EDA application by studying the relational proper-
ties of the customer base of a Twitter [22] application startup [21]
(that is, the customers are a subset of Twitter’s members). We de-
scribed the aspects of the group that we wanted to check as formal
properties described in Computational Tree Logic (CTL); we then
verified them using NuSMV [5]. Our study considered a portion
of the network including only approximately 50,000 members and
was able to prove or disprove the properties in a matter of seconds.

After this initial study, we strove to push the scale of our analysis
further. We considered a larger Twitter subgroup of approximately
40,000,000 members [14] as the target for model checking. The
main issue we encountered was in dealing with the explicit repre-
sentation of the graph, that is, file size (25GB) and memory access
delays. To reduce the size of the representation we pre-analyzed the
graph to extract cycles (subgraphs where each user can communi-
cate to all other users, possibly through third parties) and abstracted
them away. We also needed to explore some implementation opti-
mizations to minimize the disk seek time. This allowed us to verify
some of the simpler formal properties in this large subgraph. We
are currently considering the application of min-cut to aggressively
abstract the graph and then apply model checking iteratively at an
increasingly fine granularity, so to only expand the relevant por-
tions within the social network graph.

4. RELATED WORK
Amazon made available one of the first human computing solu-

tions with its Mechanical Turk [2], inspired by the “Turk”, a fake
chess-playing machine from the 18th century. The Turk was built
to appear as an automaton that could play chess, while in reality it
hid a human chess master inside who would control the machine.
Similarly, Amazon’s Mechanical Turk leverages a pool of human
users to solve problems of disparate nature. The Mechanical Turk
consists of task listings, ranging from categorizing products to writ-
ing articles, and offering a wage to anyone who completes a task: It
appears to be an effective way to motivate a large group of people
to perform menial, yet essentially human tasks.

Recently, a number of online human computing processes have
also gained popularity, including the ESP game [24], re-captchas

[23] and duolingo [26]. All these solutions leverage humans’ de-
sire to play fun games that use their skills in image recognition and
language translation, tasks that are extremely challenging for com-
puters. The ESP game [24] is an internet game asking players to tag
images: by collecting several tags from distinct individuals for each
picture, the game can provide high quality tags for a large number
of pictures available online, and thus greatly boosts the quality of
image searches. Re-captchas [23] leverage humans to type words
from scan images of books where character recognition software
has failed. Finally, duolingo [26] uses human computation to trans-
late documents between languages. To provide an estimate of the
amount of human computation cycles available, von Ahn [25] re-
ports that in 2003 humans have collectively played 9 billions hours
of computer solitaire.

Complementary to these efforts, recent research has attempted
to infer the computational model of the human brain [10], and has
found that this model can deliver notable advantages for certain
tasks (such as image recognition) over traditional computation. In
addition, a recent work [18] proposes to leverage functional mag-
netic resonance imaging (fMRI) techniques to observe the brain ac-
tivity in digital designers while at work. By studying the observed
neural patterns, the authors hope to boost designers’ productivity
by developing better learning techniques to support their training
and by selecting the most promising talent.

On the front of pursuing alternative venues and applications for
EDA’s solutions and algorithms, a few works have appeared in re-
cent years at the Design Automation Conference. As an example,
[12] proposes to apply the algorithmic solutions developed for par-
asitic extraction in silicon designs to page ranking in web searches.

5. CONCLUSIONS
In this paper we outlined approaches to overcome two classic

misconceptions in EDA: (i) that scaling in EDA has been improv-
ing at a slower pace in recent years, insufficient to tackle the de-
mands of the semiconductor industry; and that (ii) the application
of EDA’s solutions is limited by the needs of silicon design devel-
opments. We have shown that bringing humans into the equation
has the potential to overcome both these issues.

On the first front, human computing can provide and inspire new
ways to solve difficult algorithmic challenges and break the scala-
bility barrier. Along this direction we overviewed an example solu-
tion that employs humans to solve SAT problem instances by pre-
senting them as a game. On the second one, EDA’s solutions and
tools appear to be well positioned to solve large scale challenges in
domains beyond semiconductors, such as those that directly benefit
humans as a group. Specifically, we discussed the application of
formal verification techniques to the study of social networks.

Overall, both these research directions have just began to attract
the attention of a handful of EDA researchers, and we believe that
much more can be gained by pursuing them further.
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