Vicis: A Reliable Network for Unreliable Silicon

David Fick, Andrew DeOrio, Jin Hu, Valeria Bertacco, David Blaauw, and Dennis Sylvester
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, M| 48109
{dfick, awdeorio, jinhu, valeria, blaauw, dmcsy@umich.edu

ABSTRACT

Process scaling has given designers billions of transistors to work
with. As feature sizes near the atomic scale, extensive variation and
wearout inevitably make margining uneconomical or impossible.
The ElastIC project seeks to address this by creating a large-scale
chip-multiprocessor that can self-diagnose, adapt, and heal. Creat-
ing large, flexible designs in this environment naturally lends itself
to the repetitive nature of network-on-chip (NoC), but the loss of
a single link or router will result in complete network failure. In
this work we present Vicis, an ElastIC-style NoC that can toler-
ate the loss of many network components due to wearout induced
hard faults. Vicis uses the inherent redundancy in the network and
its routers in order to maintain correct operation while incurring
a much lower area overhead than previously proposed N-modular
redundancy (NMR) based solutions. Each router has a built-in-
self-test (BIST) that diagnoses the locations of hard fault and runs
a number of algorithms to best use ECC, port swapping, and a
crossbar bypass bus to mitigate them. The routers work together
to run distributed algorithms to solve network-wide problems as
well, protecting the networking against critical failures in individ-
ual routers. In this work we show that with stuck-at fault rates as
high as 1 in 2000 gates, Vicis will continue to operate with approx-
imately half of its routers still functional and communicating.

Categories and Subject Descriptors

B.4.5 [Hardware]: Input/Output and Data Communications—Re-
liability, Testing, and Fault-Tolerance

General Terms
Algorithms, Design, Reliability

Keywords

Network-on-Chip, Fault Tolerance, Hard Faults, N-Modular Re-
dundancy, Reconfiguration, Torus, Built-in-Self-Test

1. INTRODUCTION

Silicon processes have continued to improve in transistor density
and speed due to aggressive technology scaling. However, each
generation increases variability and susceptibility to wearout as sil-
icon features approach the atomic scale. It has been predicted that
future designs will consist of hundreds of billions of transistors,
where upwards of 10% of them will be defective due to wear-out
and variation [5]. At that point we must learn to design reliable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC’09, July 26-31, 2009, San Francisco, California, USA.

Copyright 2009 ACM 978-1-60558-497-3/09/07 ...$5.00.

systems from unreliable components, managing both design com-
plexity and process uncertainty [6].

The ElastIC project approaches this challenge by having a large
network of processing cores that are individually monitored for var-
ious wearout mechanisms and operating conditions [20]. Each pro-
cessing core can be tested, repaired, powered down, or quarantined
individually. With proper lifetime management, the performance
of some cores can even be boosted for short periods of time when
needed [14]. The interconnect architecture becomes a single point
of failure as it connects all other components of the system to-
gether. A faulty processing element may be shut down entirely, but
the interconnect architecture must be able to tolerate partial fail-
ure and operate with partial functionality. Network-on-chip pro-
vides opportunities to address this issue, as redundant paths exist
from point to point, potentially allowing for reconfiguration around
failed components.

Network-on-chip is a distributed, router-based interconnect ar-
chitecture that manages traffic between IPs (intellectual proper-
ties, e.g., processing cores, caches, efc.) [4]. Traffic sent through
the network is organized into packets, of arbitrary length, which
are broken down into smaller, link-sized chunks called flits (FLow
unITS). This style of interconnect scales bandwidth with network
size, making it suitable for systems with many more communica-
tors than what could be supported by bus-based architectures. Re-
cent commercial designs include the Tilera TILE64 [2], Intel Po-
laris [21], and Ambric AM2045 [1, 12]. NoCs do not inherently
support fault tolerance - the first link or router failure in the net-
work will cause the entire network to deadlock.

The reliability of NoC designs is threatened by transistor wear-
out in aggressively scaled technology nodes. Wear-out mecha-
nisms such as oxide breakdown and electromigration become more
prominent in these nodes as oxides and wires become thinned to the
physical limits. These breakdown mechanisms occur over time, so
traditional post burn-in testing will not capture them. Additionally,
so many faults are expected to occur that in sifu fault management
will be economically beneficial. In order to address these faults, we
propose a framework with the following steps: 1) error detection,
2) error diagnosis, 3) system reconfiguration, and 4) system recov-
ery. Error detection mechanisms notices new faults by invariance
checks such as cyclic redundancy code checks on packets. Error
diagnosis determines the location of the new fault via a built-in-
self-test. System reconfiguration disables faulty components and
configures functional components to work around the faulty ones.
Lastly, system recovery restores the system to a previously known
good state or checkpoint.

Network-on-chip provides inherent structural redundancy and in-
teresting opportunities for fault diagnosis and reconfiguration. Each
router is comprised of input ports, output ports, decoders and FI-
FOs, which are duplicated for each channel. By leveraging the
redundancy that is naturally present in routers and the network, Vi-
cis is able to provide robustness at a low area cost of 42% while
exhibiting greater fault tolerance than the previously proposed N-
modular redundancy based solutions. We experimentally show that
Vicis is able to sustain as many as one stuck-at fault per every 2000
gates, and still maintain half of its routers.

M

BIST Controller D
A ¢ A i
routing Distributed -
table |« » Algorithm Ct(;rt])fllg'
il Engine ¥
] <]
—|8 4 \ / <
=1
- LE%— \/
=@ LR ———X -
—H I} -
— mﬂy%- / crossbar
decoder —Dbypass bus— | oyt
) put
input ECC

Figure 1: Architecture of the Vicis router. Enhancements include
a port swapper, ECC, crossbar bypass bus, BIST, and distributed
algorithm engine.

2. RELATED WORK

Reliable network design was first introduced by Dally et al. with
a reliable packet-switching network, focusing on protecting against
faulty board traces due to physical and thermal stress [8]. This
network used link-level monitoring and retransmission to allow for
the loss of a single link or router anywhere in the network, without
interruption of service.

Constantinides et al. demonstrated the BulletProof router, which
efficiently used NMR techniques for router level reliability [7].
However, NMR approaches are expensive, as they require at least
N times the silicon area to implement. Additionally, network level
reliability needs to be considered since some logic is impossible
or expensive to duplicate (e.g., clock tree) or spares may run out,
resulting in the loss of a router, and subsequently the network.

Pan et al. explored another strategy that exploits redundant com-
ponents [16]. Instead of using NMR, inputs are sent through two
copies of the same component and the outputs are then compared.
If they do not match, then an error is detected and can be repaired.
In addition, they included on-line testing and a built-in-self-test
(BIST) for correction.

A recent architecture was proposed by Park er al. that focused
on protecting the intra-router connections against soft errors [17].
They explored a hop-by-hop, flit retransmission scheme in case of a
soft error with a three-cycle latency overhead. Though each compo-
nent has localized protection, there is no guarantee that the network
will be operational if certain hard faults occur. Researchers have
also explored efficient bus encoding schemes to protect against
transient errors [3, 24].

Routing algorithms for fault-tolerant networks have been exten-
sively explored for network level reconfiguration [9-11, 13, 18, 19,
22,23]. These algorithms direct traffic around failed network com-
ponents in a way that avoids network deadlock. Although Vicis
must also accomplish this, it additionally diagnoses the location of
hard faults and reconfigures around them using other methods as
well. Vicis adopts an implementation of the routing algorithm de-
scribed in [9] for part of its network level reconfiguration.

3. THE VICIS NETWORK

Vicis is able to maintain and prolong its useful lifetime by accu-
rately locating faults, reconfiguring around them at the router level,
and then reconfiguring at the network level. The following section
is split into three parts, giving a top down view of Vicis. The first
section discusses how Vicis reconfigures around failed routers and

R Input Port Swap R

#

R RI;EIRXI'R

Two - [J 'nput Port Three
Functional Output Port Functional
Links R L] Output Po R Links

Figure 2: An example of port swapping. On the left side a failed
input port and a failed output port are part of two different links.
By swapping the failed input port to the link connected to the failed
output port, Vicis increases the number of functional links from two
to three.

links at the network level. The second section looks at how Vicis
uses ECC and a crossbar bypass bus to tolerate faults internally.
The last section discusses the built-in-self-test and how it is able to
accurately diagnose faults within the router with 100% coverage.

3.1 Network Level Reconfiguration

Network level reconfiguration addresses network visible prob-
lems by running distributed algorithms to optimize connectivity
and redirect traffic. The input port swapping algorithm runs first
in order to increase the number of available links in the network.
The network routing algorithm then rewrites the static routing table
(shown in Figure 1) to detour traffic around failed network links
and routers. These algorithms use fault information provided by
the router level reconfiguration discussed in Section 3.2.

3.1.1 Input Port Swapping

The routing algorithm needs fully functional bidirectional links
in order to safely route through the network. Each link is comprised
of two input ports and two output ports, all four of which must
be functional to establish a link. If one of these four ports fail,
then there are still three functional ports that might be used in other
places (three spares).

As shown in Figure 1, the input ports are comprised of a FIFO
and a decode unit which are identical for each lane of traffic. Vi-
cis includes a port swapper to the input of the FIFOs in order to
change which physical links are connected to each input port. A
port swapper is not included for the output ports due to their rela-
tively small area. The area of the input ports, however, is majority
of the total area of the router and will therefore attract the most
faults, so adding an input port swapper gives Vicis great ability to
move faults around the router. Since the outputs of the input ports
are connected to a crossbar, they do not need a second swapper.

Figure 2, shows an example of the input port swapper in use.
On the left side there is a failed input port and a failed output port.
Since these two failed ports are on different links, both links fail
and become unusable by the network routing algorithm. One of
the failed ports is a input port of the router in the center, so the
physical channel that is connected to can be changed. The port
swapping algorithm reconfigures the port swapper so that the failed
input port is instead connected to the neighboring failed output port,
as shown on the right side. By doing this, Vicis takes advantage of
the inherent redundancy in the router, and increase the number of
functional links from two to three.

The port swapper does not need to be fully connected, that is, not
every input port needs to be connected to every physical link. In
this implementation of Vicis, the link to the local network adapter

(BST) <+ (BIST)

——

ECC/DEC

—FEOT I B,;é

A

ECC/DEC

PRI I

—FROII I L\/‘
—e I L2

....... |

ECC-to-ECC Path

Figure 3: Convergence path of ECC-mitigated faults. Faults in the datapath can be corrected using ECC as long as no more than one is
encountered between corrections. The bypass bus and port swapper provide alternate paths between routers to reduce the number of faults in

each ECC-to-ECC path. There are six available paths in this example.

is able to connect to three different input ports, and the other links
are able to connect to two input ports. The port swapping algorithm
is a greedy algorithm that takes into account the ECC related infor-
mation described in Section 3.2.2. It also gives priority to the local
network adapter link, making sure that it is always connected when
possible.

After the port swapping algorithm finishes running, each router
knows which of its links are functional, and provides that informa-
tion to the routing algorithm, which completes the network recon-
figuration.

3.1.2 Network Rerouting

For a non-fault tolerant network, or a network that supports only
router level reliability, the first link or router failure will cause the
entire network to fail. Traffic that gets directed to that link or router
gets lost, and eventually the network will deadlock when traffic
flow tokens fail to be back propagated. In order to detour traffic
around faulty links and routers, Vicis uses a routing algorithm to
rewrite the routing tables shown in Figure 1. We selected the algo-
rithm described by Fick et al. in [9], since it does not need virtual
channels, it supports link-level faults, and it has a low overhead
implementation. Since it is a distributed algorithm, the loss of any
number of links or routers will not prevent it from running, and the
remaining routers will have correctly written routing tables.

3.2 Router Level Reconfiguration

Router level reconfiguration is used to contain faults within the
router so that they are not visible at network level in the form of
failed links and routers. The Vicis architecture, shown in Figure 1,
includes a crossbar bypass bus to protect against crossbar failures,
and single error correct, single error detect error correction codes
(SEC-SED ECC) to protect datapath elements. Information about
the location of faults is provided by the hard fault diagnosis stage,
described in Section 3.3.

3.2.1 Crossbar Bypass Bus

The bypass bus, parallel to the crossbar, allows flits to bypass a
faulty crossbar (see Figure 1). The crossbar controller is configured
by the BIST to direct traffic to either the crossbar or to the bypass
bus on a packet by packet basis. If multiple flits needs to use the
bypass bus (simultaneously), then one flit is chosen to proceed first
while the others wait until a later cycle. This spare path allows Vicis
to maintain operation when multiple faults appear in the crossbar,
trading off performance to maintain correct operation.

3.2.2 Error Correcting Codes (ECC)

ECC-protected units allow each datapath component to tolerate
a small number of faults while maintaining correct functionality
at the cost of minimal overhead. Any fault that manifests along an

ECC-guarded datapath can be corrected when the flit passes though
an ECC unit. In order to take full advantage of ECC, the BIST
tracks the location of every datapath fault and ensures that every
ECC-to-ECC path has at most one hard fault.

In Figure 3 we show the ECC-to-ECC path in Vicis. After en-
coding, a flit travels through the crossbar and bypass bus, the link
between the two routers, the input port swapper, and finally the
FIFO. At each mentioned unit along the path, the faults (if any) are
diagnosed and cataloged by the two BISTs. If two faults accumu-
late in the same datapath, the bypass bus and port swapper provide
alternative configurations to either avoid one of the faults or move
one of the faults to a different datapath, respectively.

For example, one fault could be in the crossbar, another in a link,
and a third in the default FIFO for the datapath. The ECC im-
plementation in Vicis can only correct one of these faults, so the
crossbar bypass bus and input port swapper need to mitigate two
of them. The bypass bus will be used to avoid the crossbar fault,
potentially resulting in a loss of performance. The input port swap-
per will be used to swap in a fault-free input port to the datapath,
moving the single-fault input port to another physical link that does
not have any faults. By doing this, full functionality is maintained,
even with three faults originally in the same datapath.

The FIFOs were designed to take advantage of ECC as well. The
FIFO is implemented as a circular queue, which results in a given
flit only ever entering a single line of the FIFO. In this way, a FIFO
could have upwards of one fault per entry while remaining opera-
tional, as it effectively adds only a single fault to the ECC-to-ECC
path.

3.3 Hard Fault Diagnosis

The techniques in Vicis rely on knowing precisely where faults
exist. A port cannot be swapped if it is not known what ports are
faulty and which are functional. The use of ECC requires that Vicis
knows precisely how many faults are in each part of the datapath.
In this section we discuss the strategies that Vicis uses to locate
faults with low cost, yet obtain 100% coverage.

3.3.1 Built-in-Self-Test (BIST)

The built-in-self-test (BIST) unit controls all of the router diag-
nosis and reconfiguration. It is power gated during normal opera-
tion in order to protect it from wearout. Because of this, the BIST
controls other units through a configuration table, which stays pow-
ered on at all times. The configuration table is tested as well, as part
of testing the units that it controls. Non-wear-out faults in the BIST
need to be found after fabrication, and the router disabled by the
manufacturer.

Figure 4 shows the built-in-self-test procedure that occurs when
the BIST is activated. One of network adapters will detect a net-
work failure by using a cyclic redundancy check or another invari-

(x) Propagate Error Status (Error Unit)
() Power up BIST
(x) Synchronize Network

(D) Test Router Configuration Table
(P) Test Error Propagation Unit

(P) Test Crossbar Controller

(P) Test Routing Table

(P) Test Decode/ECC Units

9: (P) Test Output Ports

10: (P) Test FIFO Control Logic

11: (D) Test FIFO Datapath

12: (D) Test Links

13: (D%) Test Swapper

14: (D) Test Crossbar

15: (D) Test Bypass Bus

Communicate ECC-to-ECC Path Information
17: (%) Run Port Swapping Algorithm

18: (%) Run Network Rerouting Algorithm
Power Down BIST

Resume Operation

O JO Ul WN -

Figure 4: Built In Self Test procedure. Distributed algorithms
are marked (*), datapath testing is marked (D), and pattern based
testing is marked (P).

ance check. Once a network adapter detects an error, it will send
an error status bit to its connected router, at which point the routine
in Figure 4 begins.

The network first broadcasts an error status bit via a low-overhead
error unit. The error unit also powers up the BIST for that router.
Once the BIST has been powered up, it performs a distributed syn-
chronization algorithm so that every BIST in the network runs the
rest of the routines in lock-step. Once synchronization completes,
each unit is diagnosed for faults. The diagnosis step does not use
information from previous runs of the routine, or from the detection
mechanism that started the routine, so all faults will be diagnosed
regardless of whether they caused the error or not. Once all units
have been tested, distributed configuration algorithms run, and fi-
nally the BIST powers down and normal operation resumes.

3.3.2 Functional Unit Wrappers

Each functional unit has a test wrapper so that the built-in-self-
test can control it during fault diagnosis. The wrapper consists of
multiplexers for each of the functional unit inputs, which switch
between the normal unit inputs, and a testing bus coming from the
BIST. A signature bus takes a copy of each of the outputs back
to the BIST for analysis. The wrappers are interlocked to guaran-
tee fault-coverage is not lost between each of the units. Although
a hard fault on a wrapper gate may be caught trivially, a hard fault
may occur on the gate driving the multiplexer select bit, forcing it to
always be in test mode. By reading the inputs after the multiplexer
to the next unit, this case will also be caught. Additionally, synthe-
sis might insert buffers between where the signature bus connects
and the other units connecting to the output - those buffers would
not be covered without interlocking wrappers. Cooperative testing
between routers is needed to test links, the input port swapper, and
their associated wrappers.

3.3.3 Datapath Testing

Lines marked with (D) in Figure 4 are part of a datapath test.
Units in the datapath need an exact count of ECC errors for each
unit so that the maximum number of errors is not exceeded for any
ECC-to-ECC path. The tests each send all 1’s or all 0’s through the
datapath, looking for bit-flips faults. A specially designed bit-flip
count unit determines if the datapath has zero, one, or more bit flips
so that multiplexers are not needed to inspect each bit individually.

C Built-in-Self-Test)
* I *
: |

Unit Unit

Figure 5: Functional Unit Wrappers. Vicis uses interlocking
functional unit wrappers to provide the BIST with access to each
unit for hard-fault diagnosis. Incoming patterns from the BIST are
shown with long dash arrows, outgoing signatures are shown with
short dash arrows, and normal operation paths are shown with solid
arrows.

Units like the FIFO reuse the same test for each instance, which
helps maintain a low overhead.

3.3.4 Pattern Based Testing

Lines marked with (P) in Figure 4 are part of a pattern based test.
These units are implemented with synthesized logic, so a hand-
written test would not have full coverage. To test these units, Vicis
uses a linear feedback shift register (LFSR) to generate a number
of unique patterns, and a multiple input signature register (MISR)
to generate a signature. Each unit tested with the pattern based test
receives the same sequence of patterns from the LFSR, but each
has its own signature. Identical units, such as all of the decoders,
have the same signature. A signature mismatch will flag the cor-
responding unit as unusable, and the unit is then disabled by the
BIST. Implementation of the pattern based test is lightweight due
to the simplicity of the LFSR and MISR.

Pattern based testing dominates the total runtime of the BIST,
taking approximately 200,000 cycles when 10,000 patterns are used
per test. The time between faults should be measured in hours,
however, so this is a relatively short amount of time.

4. EXPERIMENTAL RESULTS

In this section, we discuss Vicis’ effectiveness in improving net-
work reliability. First we discuss the experimental setup used to
evaluate Vicis. Next, we look at network reliability and compare
Vicis to a TMR based implementation. Then we look at router re-
liability and its Silicon Protection Factor. Finally, we show results
for network performance degradation.

4.1 Experimental Setup

We implemented Vicis in a 3x3 torus topology, as well as a base-
line router design. Each design routes flits with a 32-bit data por-
tion, and have 32-flit input port buffers, which is consistent with
the Intel Polaris router [21]. The baseline router has the same func-
tionality as Vicis, except for the reliability features. Both Vicis
and the baseline NoC were written in Verilog and were synthesized
using Synopsis Design Compiler in a 42nm technology. Compared
against the baseline NoC, Vicis has an area overhead of 42%, which
is much lower than the 100+% needed for NMR.

To test the reliability features of Vicis, we randomly injected
stuck-at faults onto gate outputs in the synthesized netlist. Selec-
tion of the gates was weighted based the area of the gate, which
is consistent with the breakdown patterns found experimentally in
Keane er al. [15].

Test packets were generated at each network-adapter. It was ver-
ified that each packet made it to the correct destination with the
correct data. For each error combination, we ran 10,000 packets of
a random uniform traffic distribution, each packet having between
2 and 11 flits.

Network throughput was measured using a custom made, cy-
cle accurate C++ simulator. Profiles of the network were gen-

100
)
o~
S 904
c
O 80
=
2 7
g TMR
O 60 —\/iCiS
°
@ 504
-
S
40
(&)
S 30-
T
O 20
o
L
= 10
()
4
=5 0 T T T T T T T T T

T
0 10 20 30 40 50 60 70 80 90 100
Network Faults

Figure 6: Reliability Comparison with TMR. TMR has proba-
bilistic reliability while maintaining performance, where Vicis has
probabilistic performance while maintaining reliability (see Figure

8.)

erated with the Verilog simulations described above, which were
then given to the C++ simulator to model longer simulation traces.
Throughput was measured using random uniform traffic for this test
as well.

4.2 Network Reliability

To test the reliability of the simple network, we randomly in-
jected faults into the system and monitored the packet traffic. Al-
though the full system is prone to wear-out, we primarily focused
on injecting faults into the router - a total of 20,413 gates. Since we
only consider wear-out induced faults, we power-gated the BIST,
thus making it immune to fault injection.

To rigorously test the system, we considered eleven different
cases with varying simultaneous faults: 1, 10, 20, 30, 40, 50, 60,
70, 80, 90, and 100, 100 being one fault for every 2000 gates. For
each number of simultaneous faults, we considered 1200 different
(random) error combinations.

In this series of tests there was a single failure that manifested
at 30-40 faults, but disappeared at 50 faults. The disappearance of
the failure is likely due to new faults being injected into the same
unit as the fault(s) that were previously overlooked by the BIST.
We expect the failure to be an implementation error, as opposed to
a problem with the described techniques. Either way, the reliability
of the network is dominated by the routing algorithm for larger
networks, as described in [9].

We compare the reliability of our design to a TMR-based imple-
mentation. Note that TMR only provides probabilistic reliability
- since the voter takes the most common signal of the three repli-
cated units, two well-placed faults could cause the system to fail.
In the worst case, a single fault could cause system failure if it
occurred in a clock tree or another non-replicable cell. Unlike Bul-
letProof [7] and other prior work that relies on maintaining total
functionality, Vicis is able to tolerate multiple, simultaneous faults,
including ones that render entire routers useless. Thus, Vicis is able
to maintain 100% reliability regardless of the number or occurrence
of faults, although performance becomes degraded.

In Figure 6 we show the reliability of TMR, which is based
on analysis from [7]. Where TMR provides 100% performance
and degrading reliability for 200+% area overhead, Vicis provides

Of~m_
0.9 B —m— Functional Router

1 —A— Connected Adapter
0.8 —k— Swapper Used

c
o
= 1 —@— Bypass Bus Used
@ 0.7
N 1
= 06
o .
T 054
gla .
= 04 .
© .
N
E 03] Lk
S] *—K—xk 2
Z o2 e =% l\.\
0.1 / Kk -
{1 x —0—0—0—,
/o—0—® 0-0-9-9—-0—-0—0_
00-4=@ T T T T T 1._’_,_._’4-*-“
0 2 4 6 8 10 12 14 16

Router Faults

Figure 7: Router reliability with increasing faults. Reliability
of an individual router as it receives stuck-at faults inside of a
faulty network. Ultilization of individual features is also shown.
Connected Adapter shows how many functional routers also have a
functional link to its adapter.

100% reliability and degrading performance for 42% overhead. Com-
paring TMR reliability degradation to Vicis performance degrada-
tion, TMR degrades much more quickly - at 100 network faults,
TMR’s reliability approaches zero whereas Vicis continues to op-
erate with half of its routers still functional and communicating.

4.3 Router Reliability

In Figure 7, we present the different internal router statistics
based on the tests described above. To fairly evaluate and collect
results for each router component, we injected faults on standard-
cell outputs in a network level netlist in order to consider the states
of the surrounding routers. A router is considered operational if it
has at least two functional bidirectional ports connected to either
other routers or network adapters.

4.3.1 Input Port Swapper

We found that the input port swapper was very successful at
keeping the cores (IPs) connected to the network. As shown in
Figure 7, only eight percent of the available routers not have a func-
tional network adapter. The swapper had a high utilization, being
used nearly 24% of the time for routers with seven faults.

4.3.2 Crossbar Bypass Bus

At seven faults, the crossbar bypass bus was used less than six
percent of the time. This is due to two reasons: 1) the crossbar
is relatively small - less than five percent of the total area of the
router, and 2) the crossbar is protected by both the input port swap-
per and ECC as well. We expect that an improved implementation
of the bypass bus will have an greater effect, and are pursuing that
in future work.

4.3.3 Silicon Protection Factor (SPF)

Constantinides et al. introduce the concept of Silicon Protection
Factor for router level reliability, defined as the number of faults
a router can tolerate before becoming inoperable, normalized by
the area overhead of the technique [7]. The normalization step is
to take into account the increase of gates since having more gates
means that the design will also experience more faults.

From Figure 7 we can interpolate to get the median value, which
is 9.3 faults before the system fails. Normalized to our area over-
head of 42%, this gives Vicis an SPF of 6.55. In comparison, the
best SPF provided by the Bulletproof router is 11.11, which incurs
a 242% area overhead. The lowest area overhead Bulletproof con-
figuration is 52% overhead, but provides an SPF of only 2.07.

Actual network reliability cannot be compared since a router fail-
ure in Bulletproof causes full network failure, whereas a router fail-
ure in Vicis only renders that single router inoperable. Additionally,
Bulletproof does not give a breakdown of what faults were critical
(first fault causes a failure) versus cumulative (multiple faults inter-
act to cause a failure). The number of critical failure points in the
Bulletproof router would place a limit on overall network reliabil-
ity, where that is not the case in Vicis.

4.4 Network Performance
In Figure 8, we demonstrate how network level performance

gracefully degrades as the number of faults in the network increases.

The black line with squares shows the number of available IPs con-
nected through the network to at least one other IP. At 90 faults,
which is more than 10 faults per router, or one fault per 2000 gates,
over 50% of the original IPs are still available. Since faults are in-
jected at the gate level, there would not likely be any functional IPs
to connect, as they would be experiencing the same fault levels.

In Figure 8, we also show the normalized network throughput
across different number of simultaneous hard faults (data points
as triangles). For the first 30-40 faults, the network experiences
a loss in normalized throughput. This is due to link failures (2+
faults within links), forcing packets to take longer paths and avoid
network obstructions. After 40 faults, however, the network loses
enough routers to effectively create a smaller network that intrin-
sically supports higher normalized throughput. The light shad-
ing behind the data line shows 5th-95th percentiles of normalized
throughput - the line itself is the median.

S. CONCLUSIONS

In this work we presented Vicis, a network-on-chip that is highly
resilient to hard-faults. By using the inherent redundancy in the
network and its routers, Vicis can maintain higher reliability than
NMR based solutions while incurring only a 42% overhead. Each
router uses a built-in-self-test (BIST) to diagnose the locations of
hard faults and runs a number of algorithms to best use ECC, port
swapping, and a crossbar bypass bus to mitigate them. The routers
work together to run distributed algorithms to solve network-wide
problems as well, protecting the networking against critical fail-
ures in individual routers. Ultimately, we show that with stuck-at
fault rates as high as 1 in 2000 gates, Vicis will continue to operate
with approximately half of its routers still functional and commu-
nicating. Additionally, we provide results detailing the utilization
of some of the architectural features, as well as a reliability com-
parison with triple modular redundancy and prior work.

6. ACKNOWLEDGMENT

This research was funded in part by the Gigascale Systems Re-
search Center and the United States National Science Foundation.
We would like to thank Synopsys for their generous support of this
project, and the reviewers for their detailed feedback.

7. REFERENCES

[1] Massively Parallel Processing Arrays Techhnology Overview. Ambric
Technology Overview, 2008.

[2] S. Bell et al. TILE64 processor: A 64-core SoC with mesh interconnect. Proc.
ISSCC, 2008.

[3] D. Bertozzi, L. Benini, and G. De Micheli. Low power error resilient encoding
for on-chip data buses. Proc. DATE, 2002.

-
S
[«
<
=]
=
» 2
3 K=
3 <
x©]
o 2
o

= z
©]
Z :
2] -
Fo2 =
4 —m— Available Routers L o1 §
—A— Network Performance ’ 2

0 T T T T T T T T T 0.0

0 20 40 60 80 100

Network Faults

Figure 8: Network performance with increasing faults. Nor-
malized network throughput is shown as the number of faults in the
network increases. Throughput is normalized to the bandwidth of
the remaining network adapter links. The shaded region show the
5th-95th percentiles, while the line is the median.

[4] T. Bjerregaard and S. Mahadevan. A survey of research and practices of

network-on-chip. ACM Computer Survey, 2006.

S. Borkar. Microarchitecture and design challenges for gigascale integration.

Proc. Micro, keynote address, 2004.

S. Borkar. Designing reliable systems from unreliable components: the

challenges of transistor variability and degradation. Proc. Micro, 2005.

[7]1 K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S. Mahlke,

T. Austin, and M. Orshansky. BulletProof: a defect-tolerant CMP switch

architecture. Proc. HPCA, 2006.

W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Xanthopoulos. The

reliable router: A reliable and high-performance communication substrate for

parallel computers. Proc. PCRCW, 1994.

[9] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw. A
highly resilient routing algorithm for fault-tolerant NoCs. Proc. DATE, 2009.

[10] C.J. Glass and L. M. Ni. Fault-tolerant wormhole routing in meshes without
virtual channels. IEEE Trans. on Parallel and Distributed Systems, 1996.

[11] M.E. Gomez et al. An efficient fault-tolerant routing methodology for meshes
and tori. IEEE Computer Architecture Letters, 2004.

[12] T. R. Halfhill. Ambric’s New Parallel Processor: Globally Asynchronous
Architecture Eases Parallel Programming. Microprocessor Report, 2006.

[13] C.-T. Ho and L. Stockmeyer. A new approach to fault-tolerant wormhole
routing for mesh-connected parallel computers. IEEE Trans. on Computers,
2004.

[14] E.Karl, D. Blaauw, D. Sylvester, and T. Mudge. Reliability modeling and

management in dynamic microprocessor-based systems. Proc. DAC, 2006.

J. Keane, S. Venkatraman, P. Butzen, and C. H. Kim. An array-based test circuit

for fully automated gate dielectric breakdown characterization. Proc. CICC,

2008.

[16] S.-J. Pan and K.-T. Cheng. A framework for system reliability analysis
considering both system error tolerance and component test quality. Proc.
DATE, 2007.

[17] D. Park, C. Nicopoulos, and J. K. N. V. C. Das. Exploring fault-tolerant
network-on-chip architectures. Proc. DSN, 2006.

[18] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide. Immunet: A cheap and
robust fault-tolerant packet routing mechanism. ACM SIGARCH Computer
Architecture News, 2004.

[19] S. Rodrigo, J. Flich, J. Duato, and M. Hummel. Efficient unicast and multicast
support for CMPs. Proc. Micro, 2008.

[20] D. Sylvester, D. Blaauw, and E. Karl. ElastIC: An Adaptive Self-Healing
Architecture for Unpredictable Silicon. IEEE Design & Test, 2006.

[21] S.R. Vangal et al. An 80-tile sub-100w teraflops processor in 65-nm cmos.
IEEE Journal of Solid-State Circuits, 2008.

[22] J. Wu. A fault-tolerant and deadlock-free routing protocol in 2D meshes based
on odd-even turn model. IEEE Trans. on Computers, 2003.

[23] J.Zhou and E. C. M. Lau. Multi-phase minimal fault-tolerant wormhole routing
in meshes. Parallel Computing, 2004.

[24] H. Zimmer and A. Jantsch. A fault model notation and error-control scheme for
switch-to-switch buses in a network-on-chip. Proc. CODES+ISSS, 2003.

[5

[6

[8

[15

