
Event-Driven Gate-Level Simulation with GP-GPUs

Debapriya Chatterjee, Andrew DeOrio and Valeria Bertacco

Department of Computer Science and Engineering, University of Michigan
{dchatt, awdeorio, valeria}@umich.edu

ABSTRACT

Logic simulation is a critical component of the design tool flow
in modern hardware development efforts. It is used widely – from
high-level descriptions down to gate-level ones – to validate several
aspects of the design, particularly functional correctness. Despite
development houses investing vast resources in the simulation task,
particularly at the gate-level, it is still far from achieving the per-
formance demands required to validate complex modern designs.
In this work, we propose the first event-driven logic simulator

accelerated by a parallel, general purpose graphics processor (GP-
GPU). Our simulator leverages a gate-level event-driven design to
exploit the benefits of the low switching activity that is typical of
large hardware designs. We developed novel algorithms for circuit
netlist partitioning and optimized for a highly-parallel GP-GPU
host. Moreover, our flow is structured to extract the best simula-
tion performance from the target hardware platform. We found that
our experimental prototype could handle large, industrial scale de-
signs comprised of millions of gates and deliver a 13x speedup on
average over current commercial event-driven simulators.

Categories and Subject Descriptors. B.6.3 [Logic De-
sign]: Design Aids—Simulation; C.1.2 [Processor Architectures]:
Multiple Data Stream Architectures (Multiprocessors)—Parallel
Processors

General Terms. Verification, Performance
Keywords. Gate-level simulation, High-performance simulation,
General Purpose Graphics Processing Unit(GP-GPU)

1. INTRODUCTION
Logic simulation is the validation workhorse of modern digital

designs. It is used to verify designs at the behavioral level, as well
as the structural level, ensuring that a synthesized circuit’s netlist
matches the functionality and timing of the behavioral model. Struc-
tural netlists are particularly cumbersome for simulation because
of their low-level specification and the fine granularity of the struc-
tural definition, which consists of gate primitives in the target tech-
nology library. It is typical for design houses to invest the computa-
tional power of large simulation “farms” to complete as many simu-
lation cycles as possible before final design tapeout. However, even
with such investment in today’s development efforts, large portions
of a design go unverified. The result is unforeseen bugs that are re-
leased into silicon, which may have drastic impacts, ranging from
silicon respins to market recalls.
The root cause of this situation lies in the vast complexity of

modern designs (several million gates) and the fact that the perfor-
mance of commercial logic simulators is inversely proportional to
their size. In addition, the technology in commercial logic simula-
tors today is fairly mature, thus their performance improvement be-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2009, July 26 - 31, 2009, San Francisco, California, USA.
Copyright 2009 ACM ACM 978-1-60558-497-3 -6/08/0006 ...$10.00.

tween subsequent releases largely relies on the performance trends
of the underlying simulating hardware host.
Modern gate-level simulators proceed in two phases: during the

first phase, the circuit netlist to be simulated is restructured and
optimized (compilation phase); in the second phase, the netlist is
simulated (“executed”) using the input stimuli specified in the test-
bench. The performance of the simulator is driven by this second
phase, since the compilation step is only required once per netlist.
In this work, we propose a novel simulator design that leverages
the high-performance of general purpose graphics processing units
(GP-GPUs) for the execution phase of the simulation, leading to a
major improvement in simulation performance. During the compi-
lation phase, a netlist is “levelized”, that is, gates are organized into
levels so that all the gates in one level depend only on simulation
values generated in previous levels. Thus, gates in a same level are
not directly connected and can be simulated in parallel, an advan-
tage that can be leveraged when many parallel processing units are
available, as in GPUs. During the execution phase, gates are sim-
ulated by level; however, in an event-driven simulation, a gate is
simulated only if at least one of its input values had changed, while
in an oblivious simulator all gates are evaluated with each cycle.
While oblivious simulation has the advantage of simple, efficient
static gate scheduling, event-driven simulation has been noted to
perform better in practice. This is because it is typical for large
designs to only simulate a small fraction of the gates (1 to 10%)
during any given cycle. Thus, even in face of a more complex dy-
namic scheduling architecture, most commercial simulators rely on
an event-driven approach for performance reasons.
The recent availability of general purpose computing program-

ming models for high-performance and highly parallel GPUs led
us to explore a new simulation architecture targeting these hard-
ware platforms, with the hope of delivering a conspicuous per-
formance advantage at a small hardware cost (that of a GPU pe-
ripheral). Specifically, the NVIDIA’s CUDA architecture provides
a programming interface that enables users to develop software
applications for their vastly parallel co-processor GPU. However,
CUDA exposes its parallel architecture directly to the programmer,
with the result that applications must be designed specifically for
this structure in order to derive benefit from it.

1.1 Contributions
In this work, we present the first event-driven GPU-based logic

simulator, which leverages GPUs’ massive parallelism to achieve
large performance speedups over commercial logic simulators. Our
solution leverages a novel macro-gate segmentation algorithm, de-
signed specifically to benefit from the CUDA architecture. Amacro-
gate comprises several gates of the original netlist connected to
each other. The macro-gates generated cover the entire circuit’s
netlist; they are compiled into a suitable data structure and trans-
ferred to the GPU’s memory. During simulation, those macro-gates
that require simulation because their input values have changed,
are tagged for execution and handed over to the CUDA’s low-level
scheduler. We developed a prototype of our simulator and applied
it to a range of designs, including a SPARCmultiprocessor of more

than a million gates. We developed several testbench infrastruc-
tures, from random generators running on the GPU, to assembly
programs for processor designs; and simulated the designs for mil-
lions of cycles. We found that our GPU-based simulator delivers
performance speedups from 4 to 44 times over the performance of
a top-end commercial simulator, with 13 times being the average.

2. RELATED WORK
Research on logic simulators bloomed in the 1980s, when the

concepts of circuit netlist compilation, oblivious and event-driven
simulation were first explored [6, 3, 14, 2]. In particular, [2] pro-
vides a comparative analysis of early attempts to parallelize event-
driven simulation by dividing the processing of individual events
across multiple machines with fine granularity. This fine granular-
ity would generate a high communication overhead and, depending
on the solution, the issue of deadlock avoidance could require spe-
cialized event handling. Parallel logic simulation algorithms were
also proposed for distributed systems [16, 15] and multiprocessors
[12]. In these solutions, individual execution threads would oper-
ate on distinct netlist clusters and communicate in an event-driven
fashion, with a thread being activated if switching activity was ob-
served at the inputs of its netlist cluster. Both conservative [7, 17,
10] and speculative techniques, such as time warp [5, 4], were pro-
posed to handle synchronization in these discrete event algorithms.
Today, several commercial simulators building on these concepts
are available: they execute on a single CPU and adopt aggressive
compiled-code optimization techniques to boost their performance.
In addition, specialized hardware solutions (emulation systems)

have also been explored to boost simulation performance. These
systems typically consist of several identical hardware units con-
nected together, with units optimized for the simulation of small
logic blocks. To emulate a circuit netlist, a “compiler” partitions
the netlist into blocks and then loads each block into separate units
[9, 1, 13]. Modern emulators can deliver 3-4 orders of magnitude
speedup and they can handle very large designs. However, their
cost is prohibitively large and the process of successfully mapping
a netlist to an emulator can take up to few months.
Most recently, a few research solutions have been proposed to

run simulations on GPUs: a first attempt by Perinkulam [20] did
not provide performance benefits due to lack of general purpose
programming primitives for their platform and the high communi-
cation overhead generated by their solution. An oblivious simulator
solution was proposed in [8]: their software design is simpler, and
can be optimized statically, but simulating all gates in each cycle
limits the performance of this approach. Moreover, the size of the
circuits that can be simulated with the solution in [8] is severely
limited by the size of the shared memory in the GPU platform.
Another recent solution in this space [11] introduces parallel fault
simulation on a CUDA GPU target. It derives its parallelism by
simulating distinct fault patterns on distinct processing units, with
no partitioning within individual simulations or the design. In con-
trast, we target fast simulation of complex designs, thus we must
explore circuit partitioning and optimizations techniques in order
to leverage the parallelism of the target platform. Moreover, we
optimize the performance of individual simulation runs, in contrast
with [11], which optimizes over all faults simulations.

3. INTRODUCTION TO CUDA
The architecture of modern graphic processing units (GPUs) com-

prises a large number of data streaming processing units. They are
commonly fairly simple, programmable and together can execute
an astonishing amount of floating point (or integer) instructions
in parallel. Typically, GPUs can be programmed via a graphics

library interface, however NVIDIA has made available a general
purpose programming interface for their CUDA platform (Com-
pute Unified Device Architecture [18]), enabling the development
of a broader range of applications. A CUDA GPU consists of a set
of multiprocessors (Figure 1, each comprising several functional
units (FUs), which can execute multiple program threads concur-
rently (up to 512). Threads are organized into blocks; with one or
more blocks in concurrent execution on individual multiprocessors.
All threads running in a multiprocessor have fast access (1 cycle)
to a small shared local memory (16KB), and also to a much larger
device memory (up to 1GB - 300-400 cycles latency for access).
The CUDA architecture can be programmed using C language ex-
tension in a SIMD (single-instruction-multiple-data) fashion: all
FUs across the entire GPU must be executing the same code, op-
erating on different data. Finally, data placement to shared or de-
vice memory must be handled explicitly by the programmer. When
executing a program on CUDA, also called a kernel, the host com-
puter uploads the data and compiled program (in our case the netlist
and simulation code) to the GPU’s device memory, and then relin-
quishes control to the GPU scheduler, which executes all required
threads autonomously until simulation completes.

multiprocessor n

D
e
v
ic
e
 M
e
m
o
ry

CUDA

multiprocessor 1

...

Local Shared Memory

multiprocessor 0

...FU FU FU

thread block

Figure 1: NVIDIA CUDA architecture. A GPU includes a num-
ber of multiprocessors, each comprising 8 execution units. Sev-
eral threads (up to 512) may execute concurrently within a multi-
processor and communicate through a small shared memory bank
(16KB). The larger device memory has much higher access latency.

4. OVERVIEW
Our event-driven CUDA-accelerated simulator first applies a com-

pilation phase, during which it transforms the netlist to leverage
the raw performance of the target architecture. This is followed by
a simulation phase where the compiled netlist is uploaded to the
GPU co-processor and one or more simulations may be executed
with different input testbenches.
The compilation phase is responsible for segmenting a large mono-

lithic netlist into blocks amenable to simulation by individual ex-
ecution units within the GPU. This requires segmenting the netlist
into macro-gates: a set of several connected gates within the netlist
of ideal size, optimizing the logic within each macro-gate, and fi-
nally producing the data structures and the CUDA programs neces-
sary to carry out the simulation. During simulation, both program
and data reside on the GPU. Testbenches can be implemented using
many different solutions; if they are encoded in a CUDA program
(possibly with associated stimuli data), then the simulation can be
completely offloaded from the host with direct performance bene-
fits. If the testbench resides on the host, control alternates between
host and GPU to simulate and generate stimuli.

4.1 Netlist generation
The first step of compilation considers a digital design and syn-

thesizes it to a flattened netlist using a target technology library (we

used the GTECH library by Synopsys for our experiments). If the
design is a gate-level description (as in the case of synthesis valida-
tion), the synthesis step may be unnecessary. Finally, the combina-
tional portion of the netlist is extracted for further processing, while
the storage elements will be mapped to memory during simulation.
Note that in our implementation, we excluded tri-state buffer and
latches from the synthesis library to obtain a simple synchronous
netlist. Latches could be easily included by adapting our simulator
to operate at a finer granularity, that is, time units instead of clock
cycles. Tri-state elements can be included by using 4-valued logic
instead of binary. Both of these are straightforward extensions to
the simulator. The combinational netlist is finally levelized, that is,
logic gates are organized into levels, so that the fanin of all gates
in one level is computed in previous levels. With this organization,
it is possible to simulate the entire netlist one level at a time, from
inputs to outputs, with no backward dependency. In our prototype
implementation, we used an ALAP (as-late-as-possible) leveliza-
tion, though other solutions are also possible.

4.2 Segmentation into macro-gates
To exploit the parallelism available in the GPU, we must segment

the gate-level netlist into several logic blocks (called macro-gates),
and assign the simulation of each macro-gate to a distinct CUDA
multiprocessor. During simulation, we maintain a sensitivity list of
nets at the inputs of each macro-gate: if any net in a sensitivity list
changes value, then the corresponding macro-gate will be affected
by the change and must be simulated (i.e.activated). Otherwise, the
macro-gate can be skipped during the current cycle.
In determining how to partition the netlist into macro-gates, we

took into consideration several factors: (i) the time required to sim-
ulate a macro-gate should be greater than overhead of determin-
ing which macro-gates to simulate; (ii) CUDA’s multiprocessors
can only communicate through device memory, thus macro-gates
should not share data. To this end, we occasionally duplicate small
portions of logic, so that each macro-gate can compute the value of
its outputs independent of other concurrent macro-gates. Finally,
(iii) we want to avoid cyclic dependencies between macro-gates, so
to simulate each macro-gate at most once per cycle.
To address the constraint list, we segment the netlist by partition-

ing the netlist into layers: each layer encompasses a fixed number
of the netlist’s levels. Macro-gates are then defined by selecting a
set of nets at the top boundary of a layer, and including its cone of
influence back to the input nets of the layer. The number of levels

primary inputs / register outputs

primary outputs / register inputs macro-gate

g
a
p
 (
le
v
e
ls
)

lid (gates)

overlap

la
y
e
r
1

la
y
e
r
2

la
y
e
r
3

Figure 2: Segmentation topology. The levelized netlist is par-
titioned into layers, each encompassing a fixed number of levels
(gap). Macro-gates are then carved out by extracting the transi-
tive fanin from a set of nets (lid) at the output of a layer, back to the
layer’s input. If an overlap occurs, the gates involved are duplicated
to all associated macro-gates.

within each layer is called the gap and corresponds to the height of
the macro-gate. By using this procedure, it is possible that a given
logic gate is assigned to two or more macro-gates. In this case, we
duplicate it, so that each macro-gate can compute the value of its
output nets without sharing any data with other macro-gates (sec-
ond requirement). Finally the number of output nets used to gen-
erate each macro-gate is a variable parameter (called lid), whose
value is selected so that the number of logic gates in all macro-
gates is approximately the same. Figure 2 shows a schematic of the
segmentation technique, while figure 3 presents the pseudo-code of
the algorithm. The set of nets that cross the boundary between each
pair of layers is monitored during simulation to determine which
macro-gates should be activated.
Section 5 discusses the process that we used to select optimal

values for gap and lid, so as to achieve a high-level of parallelism
during simulation with little macro-gate overlap and low activation
rates. Note that, in our prototype implementation, we fixed gap
and lid across the entire netlist: additional performance could be
achieved if each layer had its own associated gap and each macro-
gate had an associated lid.

segmentation (netlist, gap, lid) {

levelized_netlist = ALAP_schedule(netlist)

layers = gap_partition(levelized_netlist)

for (layer in layers) {

macro-gates = lid_partition(layer)

macro-gates_pool = append(macro-gates);

compute_monitored_nets (layer);

}

return macro-gates_pool }

Figure 3: Macro-gate segmentation algorithm. The levelized
netlist is partitioned into layers: several macro-gates are carved
from each layer and appended to the macro-gates pool to be simu-
lated. The nets to be monitored are also tagged at this stage.

4.3 Macro-gate balancing
Each macro-gate is designed to be simulated in a single CUDA

multiprocessor. Because our lowest-level primitives are basic logic
gates, we designed our CUDA simulation program so that the ex-
ecution threads simulate all the gates in the same level, then move
on to the next level, and so on, until an entire macro-gate has been
simulated. Thus the gap is directly proportional to layer simulation
performance. However, the segmentation procedure tends to gen-
erate macro-gates with a large base (many gates) and a narrow tip.
Correspondingly, we have many active threads in the lower levels,
and just a few in the top levels.
To maximize concurrency throughout the simulation, we opti-

mize each macro-gate individually with a balancing step, as out-
lined in the schematic of Figure 4. This is the last step of the
compilation phase: it exploits the slack available in the leveliza-
tion within each macro-gate and restructures macro-gates to have
approximately the same number of logic gates in each level. As a
result, a smaller number of threads will be required to simulate the
base of the macro-gate. Note that it is always possible to “shrink”
the size of the base, at the price of an increased gap.

4.4 Simulation phase
As mentioned earlier in this section, simulation is carried out

directly on the GPU co-processor. Each multiprocessor is respon-
sible for the simulation of one or more macro-gates. Each macro-
gate corresponds to one thread block. In determining the number of
macro-gates that should be simulated concurrently on a multipro-
cessor, the number of concurrent thread blocks allowed in a mul-
tiprocessor (3), was the limiting factor. A single allocation would
enable larger macro-gates, however, mapping several smaller ones

g
a
p

macro-gate

balancing

lid

...

idleidle

...

width

threads

la
rg
e
r
g
a
p

less width

threads

Figure 4: Macro-gate balancing. The balancing algorithm ex-
ploits the levelization slack within a macro-gate to restructure it
so that fewer execution threads are required to simulate the lower
levels, and idle threads are minimized at the top levels.

concurrently allows us to hide the memory latency in retrieving
structural netlist data from device memory. We found experimen-
tally that the latter solution provides better performance.
The overall simulation alternates executing all active macro-gates

in a layer, with analyzing the corresponding monitored nets to de-
termine which macro-gates should be activated for the next layer.
The CUDA scheduler is responsible for assigning activated macro-
gates to individual multiprocessors. Figure 5 illustrates the lay-
ered structure of macro-gates and monitored nets. It also shows
how activated macro-gates are transferred from the pool to a multi-
processor for execution. Within a macro-gate simulation, multiple
concurrent threads simulate all the gates in same level, then syn-
chronize, and finally advance to the next level, until completion.
Data placement is organized as follows: primary inputs, outputs,

register values and monitored nets are mapped to device memory,
since they must be shared among several macro-gates (multipro-
cessors). Truth tables for the gates in the technology library are
mapped to shared memory because of their frequent access. In ad-
dition, intermediate net values generated within a macro-gate are
also placed in shared memory. Finally, the netlist structure is stored
in device memory and accessed during each macro-gate simulation.

5. OPTIMIZATIONS

5.1 Macro-gate sizing and activation
In segmenting a netlist into macro-gates, the selection of gap and

lid values have critical impact on the simulation performance (see
also Section 4.2). During the compilation phase, we select these
values by evaluating a range of solution points; for each candidate
value we collect several metrics: number of macro-gates, number
of monitored nets, size of macro-gates and activation rate. The ac-
tivation rate is obtained by a mock-up of the simulation on a micro
testbench. We then select the locally optimal values and perform

monitored nets

thread blocks

sync

sync

sync

macro-gate

pool

layer 3

layer 2

layer 1

macro-gate

Figure 5: The event-driven simulation operates by layer. Within
each layer, it simulates activated macro-gates and then analyzes the
monitored nets to tag additional macro-gates for activation. Ac-
tivated macro-gates are transferred by the CUDA scheduler to an
available multiprocessor for simulation.

0

50

100

150

200

250

300

350

400

50 100 150 200

lid (gates)

s
im

u
la

ti
o

n
 t

im
e

 (
s

)

gap = 3 levels

gap = 5 levels

gap = 7 levels

gap = 10 levels

Figure 6: Estimation of optimal gap and lid for the LDPC test-

bench design. We run a mock simulation with a micro testbench
using a range of gap and lid values and found that optimal perfor-
mance is achieved for gap=5 and lid=100.

detailed segmentation. Figure 6 shows an example of this selection.
The chart reports the simulation times for the LDPC benchmark de-
sign when running the micro-testbench: each bar corresponds to a
unique <gap,lid> value pair. In this example the best estimates are 5
for gap and 100 for lid. The boundaries for the range of gap values
considered are derived from the number of monitored nets gener-
ated: we only consider gap values for which no more than 50% of
the total nets are monitored. In practice, small gap values tend to
generate many monitored nets, while large gap values trigger high
activation rates. For lid determination, we bound the analysis by es-
timating how many macro-gates will be created at each layer: We
strive to run all the macro-gates concurrently. The GPU used for
our evaluation included 14 multiprocessors and the CUDA sched-
uler allows at most three thread blocks in concurrent execution on
a same multiprocessor. Thus we only consider lid values that gen-
erate no more than 14 · 3 = 42 macro-gates per layer. Note that
this analysis is performed only once per compilation.
After the simulation of all active macro-gates in a layer is com-

pleted, the GPU executes a scheduling kernel that evaluates the ar-
ray of monitored nets to determine which macro-gates should be
activated in the next layer. This array is organized as a bit vector,
with each monitored net being implicitly mapped to a unique lo-
cation in the array. If a macro-gate simulation modifies the value
of any of these nets, its corresponding location is tagged. Each
macro-gate has a corresponding sensitivity list where all the input
nets triggering its activation are tagged. With this structure, a sim-
ple bit-wise AND operation between the monitored nets array and
a macro-gate’s sensitivity list determines if any input change has
occurred and the macro-gate should be activated. The alternative
of maintaining the sensitivity lists as linked lists within the moni-
tored nets array would require variable size data structures, which
are extremely cumbersome to manage in a GP-GPU architecture.

5.2 CUDA-specific optimizations
We also explored a few optimizations that are specific of the

CUDA architecture. For instance, CUDA has an additional mem-
ory block, called texture memory that can be used as an intermedi-
ary to access device memory. The texture memory controller op-
erates by conglomerating adjacent memory accesses and sending
block requests to device memory. We leveraged this memory when
retrieving the netlist structure of a macro-gate during simulation:
since gates in a same level are placed in contiguous locations in
device memory, the access through texture memory could bypass
most of the latency for these data.

6. EXPERIMENTAL RESULTS
We evaluated the performance of our simulator on a broad set

of designs ranging from purely combinational circuits such as an

Design Testbench # Gates # Flops

Alpha no pipeline recursive Fibonacci program 17546 2795

Alpha pipeline recursive Fibonacci program 18222 2804

LDPC encoder random stimulus 62515 0

JPEG decompressor 1920x1080 image 93278 20741

3x3 NoC routers random legal traffic 64432 13698

4x4 NoC routers random legal traffic 144098 23875

OpenSPARC core OpenSPARC regression suite 262201 62001

OpenSPARC-2 cores OpenSPARC regression suite 610670 124002

OpenSPARC-4 cores OpenSPARC regression suite 1221340 248004

Table 1: Testbench designs for evaluation of the simulator.

LDPC encoder, to a multicore SPARC design containing over 1
million logic gates. Designs were obtained from OpenCores [19]
and from the Sun OpenSPARC project [21]; the Alpha proces-
sors and NoC designs were developed in advanced digital design
courses by student teams at the University of Michigan.
We report in Table 1 the key aspects of these designs: number

of gates, flip-flops and type of stimulus that was used during sim-
ulation. The first two designs are processors implementing the Al-
pha instruction set, the first can execute one instruction at a time,
while the second has a 5-stage pipelined architecture. Both were
simulated executing a binary program that computed Fibonacci se-
ries recursively. The LDPC encoder outputs an encoded version
of its input; for this design we developed a random stimulus gen-
erator that run directly on the GPU platform. The JPEG decom-
pressor would decode an input image. The NoC designs consist of
a network of 5-channel routers connected in a torus network and
simulated with a random stimulus generator sending legal packets
through the network. Finally, the OpenSPARC designs use proces-
sors from the OpenSPARC T1 multi-core chip (excluding caches)
and run a conglomeration of assembly regressions provided with
Sun’s open source distribution. We built several versions of this
processor: single-core, two cores, and four cores and we simulated
local cache activity by using playback of pre-recorded signal traces
from processor-crossbar and processor-cache interactions.

6.1 Macro-gates
We studied several aspects of the compilation phase of our simu-

lators and report here our findings. Figure 7 shows the total number
of macro-gates generated for each design when using the gap and
lid values determined in Section 5.1. On average each macro-gate
includes 400 logic gates. In addition, we indicate the number of
layers used in the segmentation of each design. Note that the largest
design include many more macro-gates in each layer that could be
simulated concurrently(42 as per section 5.1).
As mentioned in Section 4.2, gate duplication is a necessary con-

sequence of the high communication latency between multiproces-
sors. However, we strive to keep duplication low, so not to inflate
the number of simulated gates during each cycle. Figure 8 plots the
fraction of gates that were duplicated, averaged over all our exper-
imental designs: more than 80% incurred no duplication, less than

0

500

1000

1500

2000

2500

3000

3500

N
o

pi
pe

Pip
el
in

e

LD
PC

JP
EG

N
oC

-3
x3

N
oC

-4
x4

SPAR
C

SPAR
C
-x

2

SPAR
C
-x

4

#
 m

a
c

ro
-g

a
te

s

23 26 7 28 7
7

28

28

28

Figure 7: Macro-gates and layers. The plot shows the total num-
ber of macro-gates for each design. The value above each bar indi-
cates the number of layers in the segmentation.

0

20

40

60

80

100

no

duplication

2 3 4 5+

times duplicated

%
 t
o
ta
l
g
a
te
s vsimp4 71% noc3x3 76% sparcx1 17%

vsimp4_fwd 64% noc4x4 35% sparcx2 24%

ldpc 18% djpeg 14% sparcx4 36%

Figure 8: Gate duplication due to macro-gate overlap. The
graph reports the number of times that gates were duplicated. The
overlapping table indicates the gate inflation that each design in-
curred as a result of duplication.

10% were duplicated once, very few incurred more than one dupli-
cation. The table reports the overall rate of “gate inflation” in each
design, resulting in an overall average of 39%.

6.2 Monitored nets
The number of monitored nets has a high impact on the simu-

lator performance thus segmentation strives to keep the fraction of
nets that are monitored low. As an example, in Figure 9 we plot the
structure of the LDPC encoder design after segmentation: for each
layer, we plot the corresponding number of macro-gates and moni-
tored nets. Note how middle layers have more macro gates and how
lower layers tend to generate the most monitored nets. Finally, we
analyzed the fraction of total nets in the design that require moni-
toring because they cross layer boundaries. The compilation phase
should strive to keep this fraction low, since it is directly related to
the size of the sensitivity list that must be checked when evaluating
a macro-gate for possible activation. Figure 10 reports our findings
for experimental testbench designs after the segmentation phase.

6.3 Macro-gate activity
The activation rate of macro-gates is an important metric for

event-driven simulation (an oblivious simulator has an activation
rate of 100% on any design). The goal of an event-driven simula-
tor is to keep this rate as low as possible, thus leveraging the fact
that not all gates in a netlist switch on every cycle. Figure 11 re-
ports the macro-gate activation rates for a number of our designs.
Plots show the cumulative distribution of activation rates among all
the macro-gates for distinct designs. Note how, for most designs,
the majority of the macro-gates have an activation rate between 10
and 30% only. However, for LDPC, most macro-gates experience
a high activation rate (> 80%): this is due to the inherent nature
of this design. The designs that are not reported had a cumulative
distribution similar to that of the OpenSPARC and NoC designs.
Note that activation rate in our solution does not directly relate to
performance gain over oblivious simulation. As an example, the
JPEG decoder has an average activation rate of 40%. This does
not mean that, on average, the JPEG decoder is simulated 2.5 times
faster when compared to an oblivious simulation. Indeed, even if

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

n
e
tl
is
t
la
y
e
r

macro-gates and nets

macro-gates

monitored nets (x100)

Figure 9: Segmented structure for LDPC encoder design. The
plot shows the geometry of the LDPC encoder after segmentation.
For each layer we report the number of macro-gates and of moni-
tored nets in hundreds.

0

10

20

30

40

N
o

pi
pe

Pip
el
in

e

LD
PC

JP
EG

N
oC

-3
x3

N
oC

-4
x4

SPAR
C

SPAR
C
-x

2

SPAR
C
-x

4

%
 t

o
ta

l
n

e
ts

Figure 10: Fraction of monitored nets. Percentage of all nets that
are monitored for each testbench design

very few macro-gates are activated, one for each layer, the perfor-
mance would be just the same as if several macro-gates were simu-
lated in each layer. This is because the parallel processing units can
hide much of the additional computation required when activating
many macro-gates, while the synchronization barriers force macro-
gates to be simulated in layer-order. The overall performance of the
JPEG design in event-driven simulation is 1.55 times faster than in
oblivious simulation.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

switching activity (%)

c
u
m
u
la
ti
v
e
 d
is
tr
ib
u
ti
o
n

In-Order

NoC-3x3

SPARC-x4

JPEG

LDPC

Figure 11: Cumulative distribution of macro-gates w.r.t. to ac-

tivation rate. The plots show which fraction of macro-gates have
an activation rate below a threshold indicated on the x axis. Most
designs have very low activation rate (<30%).

6.4 Performance Evaluation
Finally, we evaluated the performance of our prototype event-

driven simulator against that of a commercial, event-driven sequen-
tial simulator. Our graphics coprocessor was a CUDA-enabled
8800GT GPU with 14 multiprocessors and 512MB of device mem-
ory, operating at 600 MHz for the cores and 900MHz for the mem-
ory. The current implementation has 83% occupancy and achieves
a bandwidth of 20.4 GB/s. The commercial simulator was run on
a 2.4 GHz Intel Core 2 Quad running RH-EL5, enabling 4 parallel
simulation threads. For each design, Table 2 reports the number of
cycles simulated, the runtimes in seconds for both the GPU-based
simulator and the commercial simulator (compilation times are ex-
cluded), and the relative speedup. Note that our prototype simula-
tor outperforms the commercial simulator by 4 to 44 times. Despite
the LDPC encoder having a very high activation rate, we report the
best speedup for this design. As mentioned before, most gates in
this design are switching in each cycle: this affects our activation
rates, but hampers the sequential simulator performance. Thus, the
speedup obtained is due to sheer parallelism of our architecture.

7. CONCLUSIONS
In this work, we have presented a novel event-driven simulator

architecture that leverages the high-level of parallelism of general
purpose GPUs. By extracting parallelism in the simulation of gate-
level netlists, we are able to realize a 13 times speedup over tradi-
tional sequential simulators, on average. Our simulator carves out

sim seq GPU speed
design cycles sim(s) sim(s) up

Alpha no pipeline 12,889,495 31,678 2,567 12.15x

Alpha pipeline 13,423,608 54,789 7,781 7.04x

LDPC encoder
1,000,000 115,671 2,578 44.87x

10,000,000 >48h 25,973 43.49x

JPEG decompressor 2,983,674 12,146 599 20.28x

3x3 NoC routers 1,967,155 3,532 397 8.90x

4x4 NoC routers 10,000,001 28,867 3,935 7.34x

sparc core x1 1,074,702 27,894 6,077 4.59x

sparc core x2 1,074,702 40,378 8,229 4.91x

sparc core x4 1,074,702 61,678 10,983 5.62x

Table 2: GP-GPU simulator performance. Performance compar-
ison between our CUDA-based event-driven simulator and a com-
mercial event-driven simulator. Our prototype simulator outper-
forms the commercial simulator by 13 times on average.

macro-gates from the structural netlist of a design and schedules
them for simulation on the multiprocessors of the NVIDIA CUDA
architecture, only if they are activated by switching events at their
inputs. We show in our experimental results that the simulator is
capable of delivering a remarkable performance speedup on large,
industrial-scale designs of over a million gates, thus bringing about
new validation frontiers for the digital design industry. In the fu-
ture, we plan to explore further optimizations in the segmentation
algorithm to deliver even higher simulation performance.

8. REFERENCES
[1] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agarwal.
Logic emulation with virtual wires. IEEE Trans. on CAD, 1997.

[2] W. Baker, A. Mahmood, and B. Carlson. Parallel event-driven logic
simulation algorithms: Tutorial and comparative evaluation. IEEE
Journal on Circuits, Devices and Systems, 1996.

[3] Z. Barzilai, J. Carter, B. Rosen, and J. Rutledge. HSS–a high-speed
simulator. IEEE Trans. on CAD, 1987.

[4] H. Bauer and C. Sporrer. Reducing rollback overhead in time-warp
based distributed simulation with optimized incremental state saving.
Proc. ANSS, 1993.

[5] O. Berry and G. Lomow. Speeding up distributed simulation using
the time warp mechanism. In Proc. of workshop on Making
distributed systems work, 1986.

[6] R. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler. COSMOS: a
compiled simulator for MOS circuits. In Proc. DAC, 1987.

[7] K. Chandy and J. Misra. Asynchronous distributed simulation via a
sequence of parallel computations. Comm. ACM, 1981.

[8] D. Chatterjee, A. DeOrio, and V. Bertacco. High-performance
gate-level simulation with GP-GPUs. In Proc. DATE, 2009.

[9] M. Denneau. The Yorktown simulation engine. Proc. DAC, 1982.

[10] R. Fujimoto. Parallel discrete event simulation. Comm. ACM, 1990.

[11] K. Gulati and S. Khatri. Towards acceleration of fault simulation
using graphics processing units. Proc. DAC, 2008.

[12] H. Kim and S. Chung. Parallel logic simulation using time warp on
shared-memory multiprocessors. Proc. IPPS, 1994.

[13] Y.-I. Kim, W. Yang, Y.-S. Kwon, and C.-M. Kyung.
Communication-efficient hardware acceleration for fast functional
simulation. Proc. DAC, 2004.

[14] D. Lewis. A hierarchical compiled code event-driven logic simulator.
IEEE Trans. on CAD, 1991.

[15] N. Manjikian and W. Loucks. High performance parallel logic
simulations on a network of workstations. Proc. of workshop on
Parallel and distributed simulation, 1993.

[16] Y. Matsumoto and K. Taki. Parallel logic simulation on a distributed
memory machine. Proc. EDAC, 1992.

[17] J. Misra. Distributed discrete-event simulation. ACM Computing
Surveys, 1986.

[18] NVIDIA. CUDA Compute Unified Device Architecture, 2007.

[19] Opencores. http://www.opencores.org/.

[20] A. Perinkulam and S. Kundu. Logic simulation using graphics
processors. In Proc. ITSW, 2007.

[21] Sun microsystems OpenSPARC. http://opensparc.net/.

