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ABSTRACT

Recent improvements in design verification strive to automate er-
ror detection and greatly enhance engineers’ ability to detect func-
tional errors. However, the process of diagnosing the cause of these
errors, and subsequently fixing them, remains one of the most dif-
ficult tasks of verification. The complexity of design descriptions,
paired with the scarcity of software tools supporting this task lead
to an activity that is mostly ad-hoc, labor intensive and accessible
only to a few debugging specialists within a design house.

This paper discusses some recent research solutions that support
the debugging effort by simplifying and automating bug diagno-
sis. These novel techniques demonstrate that, through the support
of structured methodologies, debugging can become a task pursued
by the average design engineer. We also outline some of the upcom-
ing trends in design verification, postponing some the verification
effort to runtime, and discuss how debugging could leverage these
trends to achieve better quality of results.
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1. INTRODUCTION
Digital integrated circuit design has reached unparalleled levels

of complexity. In this context, verification has become a pivotal
aspect of electronic design automation. In fact, various estimates
indicate that functional errors are still responsible for 40% of fail-
ures at first tape-out, and that verification accounts for two thirds of
the design cycle and effort [4, 18].

Resolving design bugs in the early development stages is, at the
same time, a sophisticated and time-consuming activity, as well as
a crucial task for the project development and for the success of
a design team. In the past few decades, much research has been
dedicated to improving the quality and the effectiveness of verifi-
cation, however, much less effort has been devoted to supporting a
design team in resolving a functional bug, that is, finding the root
cause of the bug and devising a modification to the design that cor-
rects it. A few commercial software applications are available that
provide minimal debugging support, for the most part in the form
of visualization tools that can connect a signal transition observed
in simulation to a specific location in the source Register-Transfer
Level (RTL) description [22]. While these aids are valuable when
investigating a bug, they are far from solving the problem, partic-
ularly when the problem manifests itself through a bug trace, sev-
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eral millions cycles long, producing an erroneous outcome at the
end. As a result, bug diagnosis and correction is an extremely time-
consuming challenge, with some bugs imposing delays of several
days, or even weeks, to the development schedule. Occasionally,
the correction of a bug may affect so many components of a cir-
cuit, that the design team may choose not to pursue it. This is
particularly prone to occur in the late development stages of a sys-
tem, or if the effects of the bug under evaluation may be countered
through other means (such as microcode or compiler patches). Fig-
ure 1 shows a schematic of the design flow, highlighting how de-

bugging, that is, bug diagnosis and correction, is an integral part
of the design/verification loop, often disregarded in high-level flow
diagrams and when planning a development schedule, but almost
always the most time-consuming component.

The debugging methodologies available today rely, for the most
part, on the skill and creativity of individual designers, making it
more of an art that only a few gifted people can pursue, than a
science that can be taught to the average engineer. While this is a
high risk proposition as it stands, the growing complexity of design,
verification, and even of simulation traces in validation are quickly
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module CPU_core
    input  clk, reset;    
    input [63:0] add_bus,       
                        data_bus;

input [31:0] IRQ_in;
output [63:0] data_bus_out;
reg [63:0] reg_file [0:31],

         PC_reg;
wire reg_wr_en = !stall & WB_valid; 
wire squash = EX_valid & br_misp;   

endmodule
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Figure 1: The design, verification and debugging cycle. During
integrated circuit development, the system is designed, usually by
means of a hardware description language, then verified by a com-
bination of simulation-based and formal techniques. Each time a
new bug is exposed in verification, it must be diagnosed and a de-
sign fix must be developed for it. This constitutes debugging. Once
the fix is deployed, the new version of the design must undergo ver-
ification again to detect additional bugs, and/or bugs introduced by
the fix. Overall debugging constitutes a major component, in terms
of time and effort, of a digital system development cycle.



making this approach crumble. What is critically needed to over-
come this situation are tools and techniques to support engineering
in debugging, so that the complexity of the task can be reduced and
constructive methodologies, accessible by people of ordinary skill,
can be developed.

This paper outlines some of the work that is ongoing in our re-
search group at the University of Michigan to address the problem
of resolving functional bugs exposed through verification. Specifi-
cally, I will present two key projects that support and automate both
diagnosis and correction of functional bugs. Both projects share a
very low barrier to entrance, that is, they complement the current
debugging methodology, without requiring any change to it. Since
most verification today still occurs by means of logic simulation,
the first solution, called Butramin tackles the complexity of debug-
ging based on simulation traces. Such traces are often tens or hun-
dreds millions of cycles long and may take hours or days just to
be replayed so to re-create the bug condition. Butramin leverages a
number of simulation-based analyses to reduce their size and length
(in simulation cycles) by three to six orders of magnitude.

The second solution, called REDIR, is an automatic diagnosis
technique that considers a set of bug traces and the corresponding
correct system responses. It then leverages the RTL description
of the design to isolate the root cause of a bug. The diagnosis is
presented to the user as a set of signals (wire, registers, etc.) in
the RTL that are responsible for the incorrect computation. Note
that, “correctness” for REDIR is simply defined with respect to the
traces and responses provided by the user. The correct behavior of
the system in response to other stimuli is unknown, since no golden
model is used, and the RTL contains functional bugs.

Finally, the industry today is becoming aware that design and
verification complexities are such that digital systems are bound to
be released with latent functional bugs. Thus, researchers are start-
ing to develop correction solutions to be deployed in silicon and
that operate at system runtime, being activated only if and when a
bug is manifested. While this trend by no means diminishes the
importance of debugging, it does allow for trade offs. For instance,
if a bug entails such a widespread set of modifications to endan-
ger design stability, it may be wiser to rely on runtime correction.
Or, when detailed diagnosis becomes extremely time consuming, a
better option may be to simply derive a system-level condition that
may trigger the bug, and use that in runtime verification.

2. FOCUSING TRACES ON A BUG
Among the techniques and methodologies available for func-

tional verification, simulation-based verification is prevalent in the
industry because of its linear and predictable complexity. A com-
mon methodology in this context is random simulation, where stim-
uli are provided by a constraint-based random generator. Such gen-
erators can automatically produce random legal input for the design
at a very high rate, based on a set of rules (or constraints) derived
from the specification document. In random simulation bugs are
detected by means of assertion statements, or checkers, embedded
in the design. When a bug is detected, the simulation trace leading
to it is stored aside and can be replayed at later times to analyze the
conditions that led to the failure. Because of the randomized nature
of this methodology, and because it is usually applied in late design
stages (when simple bugs have already been flushed out), it is very
common for the bug traces generated to be lengthy and complex.
Another family of techniques, attracting increasing attention from
industry, is that of semi-formal verification. These tools combine
a mix of formal and simulation-based techniques with the goal of
producing high-coverage verification results on complex designs
[1, 14, 12]. While semi-formal tools are a promising direction in

terms of high-quality verification for industrial size designs, little
concern has been given to the reduction in complexity for the bug
traces generated. As a result, once a bug is found, a copious amount
of effort goes into tracking it back to its root cause: either an incor-
rect design implementation or an erroneous property definition.
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Figure 2: Two trace minimization techniques used by Bu-

tramin. The schematic shows a bug trace within the design state
space (dashed line), starting from an initial state (circle) and ending
at a bug state (star). Butramin attempts to remove “loops” within
the trace using its loop elimination (LE) technique, it then explores
possible trace perturbations (PT) by eliminating cycles and input
events. These perturbations may lead to a shortcut in the trace. The
solid line in the picture represents a trace obtained after cycle elim-
ination and after discovering one of the PT shortcuts indicated.

The solution we set forth to address diagnosis of complex bug
traces is called Butramin (“BUg TRAce MINimization”) [7]. The
objective of Butramin is to consider a bug trace and the corre-
sponding checker (or property) that triggers the bug, and seek a
much shorter and simpler trace to falsify the same property. Pre-
vious work in this area has been mostly centered on using formal
techniques to simplify a property’s counterexample [20, 9]. In a
separate context, the problem of trace minimization has also been
addressed in software verification [11, 13]. We instead focus most
of the effort on simulation-based techniques so that we can apply
our solution to complex modules and designs, such as those devel-
oped in the industry. At the same time, we do not strive to obtain a
minimum-length bug trace, but simply one of manageable size for
debugging purposes. However, in our experimental evaluation, we
find that in practice our minimized traces are most often extremely
compact, of similar size than those obtained through formal mini-
mization techniques.

Butramin simplifies a trace by iteratively eliminating redundant
portions of the trace. For instance, it checks if there are redun-
dant sequential steps, or sequential loops that can be removed. It
also checks for possibly redundant combinational input events. In
addition, it attempts to "perturb" a trace by eliminating one full
simulation cycle, and/or one input event. The perturbed trace ob-
tained is re-simulated to check if it still exposes the original bug
(the original user-provided assertion is used for this purpose). If
the test is successful the new trace replaces the original one, oth-
erwise it is discarded. Often, perturbation leads to fairly different
traces that may expose the bug much earlier than the original ones.
When these mechanisms are exhausted, Butramin further simpli-
fies a trace by using X-value simulation to determine which input
signals are essential in exposing a bug. In the final stage, a SATis-
fiability (SAT)-based, fixed-window bounded model checker seeks
additional “shortcuts” in the trace obtained so far, typically already
much smaller than the original one.



As an example of some of the techniques Butramin uses, Figure
2 shows schematically how loop elimination (LE) and trace pertur-

bation (PT) work. Loop elimination removes sequential loops in a
trace by hashing the states encountered during re-simulation and
detecting when a trace enters the same state twice. Trace perturba-
tion uses a trial-and-error approach, whereby a trace is modified by
either removing one of more simulation cycles or eliminating input
events. Then Butramin checks if the new trace still reaches a bug
state through re-simulation.

We found experimentally that Butramin can reduce the size of a
bug trace by three to six orders of magnitude in terms of cycles in
the trace and, consequently, size of the trace. We note that traces
generated by constrained-random simulation are more susceptive to
benefit from Butramin, and also that traces derived from more com-
plex designs (which usually entail more events and longer traces)
present more opportunities for reduction. The impact of Butramin
appears to be uncorrelated with the frequency of occurrence of the
bug configuration targeted by the trace, that is, the number of dis-
tinct design states that expose the bug. In many cases we could
reduce traces of several million cycles down to a few tens or a few
hundreds cycles, that is, a trace that is much simpler to analyze and
to re-simulate. In terms of execution time, we did not focus on
optimizing the performance of this solution, but gave top consider-
ation to the quality of the results, since the engineering time saved
by the latter well outweighs the execution time of the software. We
envision a deployment scenario where Butramin is run overnight to
prepare simplified traces to be analyzed, and we found that all of
our execution times are well within this limit: most commonly just
one, or a few, hours. Butramin can be deployed in practically any
simulation-based and semi-formal verification methodology with
no effort: it is simply applied to bug traces generated in verification
to greatly reduce them before they are analyzed for diagnosis.

3. AUTOMATIC DIAGNOSIS
One of the most difficult aspects of debugging is diagnosis, that

is locating the error source within a design. REDIR (RTL Error
DIagnosis and Repair) [8] is a scalable and powerful RTL error
diagnosis and correction system, which adopts some of the hard-
ware analysis techniques prevalent at the gate-level into the more
designer-friendly and succinct RTL descriptions. The approach is
significantly more accurate than previous software-based solutions
in that it can analyze designs rigorously using formal verification
techniques. At the same time, it is also considerably faster and
more scalable than gate-level diagnosis because it models errors at
a higher abstraction level (RTL), and thus there is a smaller number
of candidate error sites to be evaluated.

The inputs of REDIR include a design containing one or more
bugs, a set of simulation vectors exposing them, and the correct
responses for the primary outputs over the given test vectors (usu-
ally generated by a high-level behavioral model). Note that REDIR
only requires the correct responses at the primary outputs of the
high-level model, not at any internal node. The correct output re-
sponses could be the primary outputs of the design, or the outputs
of a set of checkers in the context of assertion-based verification.
REDIR can then output a minimum cardinality set of RTL signals
that should be corrected in order to eliminate the erroneous behav-
ior. We call this set the symptom core. When multiple cores exist,
REDIR provides all of the possible minimal cardinality sets. In
addition, the framework suggests several possible ways of modify-
ing the signals in the symptom core to help in the correction of the
design. Our empirical evaluation shows that REDIR can diagnose
and correct multiple errors in design descriptions with thousands of
lines of Verilog code (corresponding approximately to 100K cells

after synthesis), a typical block size developed by individual engi-
neers. As a result, REDIR can assist in everyday debugging tasks
and fundamentally accelerate the design development.

The objective of error diagnosis is to identify a minimal num-
ber of variables in the RTL description that are responsible for the
design’s erroneous behavior. Moreover, errors can be corrected by
modifying the statements related to those variables. Each signal af-
fecting the design’s correctness is called a symptom variable. Cor-
recting all the symptom variables that contribute to a bug would
eliminate it. A key idea in REDIR is error modeling: we embed ad-
ditional constructs in the RTL design to evaluate a number of pos-
sible variants of the design and determine which of these variants
would produce the expected output responses for each input test
vector. Gate-level solutions for automatic diagnosis used a similar
concept applied at the gate-level.

module half_adder(a, b, s, c);

input a, b; output s, c;

assign s = a ˆ b;

assign c = a | b;

endmodule

module half_adder_MUX_enriched(a, b, sn, cn,

ssel, csel, sf, cf);

input a, b, ssel, csel, sf, cf;

output sn, cn;

assign s = a ˆ b;

assign c = a | b;

assign sn = ssel ? sf : s;

assign cn = csel ? cf : c;

endmodule

Figure 3: An RTL error-modeling example. Module half_adder
shows the original code, where c is erroneously driven by “a | b”
instead of “a & b”. Module half_adder_MUX_enriched shows the
corresponding MUX-enriched version. Differences are marked in
boldface. (Figure reproduced from [8])

To model errors in the design, we introduce conditional assign-
ments for each RTL variable, as shown in the example in Figure
3. Note that we insert only one conditional assignment even if
the variable contains multiple bits. These assignments allow the
REDIR framework to locate sites of erroneous behavior in RTL.
Suppose that the output responses of the design are incorrect be-
cause c should be driven by “a & b” instead of “a | b”. Obviously,
to produce the correct outputs, the behavior of c must be modified.
To model this situation, we insert a conditional assignment, “assign
cn = csel ? cf : c”, into the code. Next, we replace all uses of c

in the code with cn (but not the assignments to c). Variable csel

allows simulation of the design using cf instead of c; moreover cf

is what we call a free variable, that is, we can assign it as deemed
necessary to achieve the correct output response. If we can identify
the _sel variables that should be asserted, and the correct signals
that should drive the corresponding free variables to produce the
desired circuit behavior, we can diagnose and fix the errors.

Once errors are modeled as described, we rely on a Pseudo-
Boolean solver or RTL symbolic simulation to perform the diag-
nosis and infer which design signals are responsible for incorrect
output behavior. By forcing the Pseudo-Boolean solver to find a
set of assignments that satisfy all the given <test vector, output re-
sponse> pairs while minimizing the number of _sel variables as-
signed to true, we obtain the complete set of signals that concur to
the bug and that must be thus corrected.

The diagnosis capability of REDIR has been evaluated on a num-
ber of microprocessor modules and designs. The bugs injected
in the design ranged from using an incorrect operator or comple-
mented operand or simply wrong operand, to incorrect data for-



warding and to incorrect state transition or execution of an instruc-
tion. For one simple microprocessor design, we had available a
number of buggy versions [5] with bugs that were present in the de-
sign since its development and had been fixed in validation. Thus,
for this testbench, no artificial bug injection occurred. The ex-
perimental evaluation indicates that REDIR could isolate the bug
sources in each case, and that, because it addresses the problem at
a higher abstraction level (that is, RTL) it can cope with much more
complex designs than gate-level diagnosis solutions. The compu-
tation time of this diagnosis solution is also very practical, always
less than one hour, even for systems sufficiently complex that a
gate-level analysis would take more than two days, possibly run-
ning out of memory. One of the limitations of REDIR, however,
is that in performing diagnosis it may detect several distinct sets
of signals that can independently be modified to correct the bug.
Thus, a user would have to manually determine which of these sets
entails the minimum amount of source code modification.

Most techniques that have been proposed so far in this space tar-
get the gate-level description of a design [6, 17, 24, 25, 27] or even
the transistor-level [16]. However, most debugging effort occurs
in the early development phases of a design, when the system is
described by an RTL model. The lack of powerful and automatic
debugging tools at this level greatly reduces designers’ productiv-
ity when fixing even very simple errors. Recently, a few techniques
that work directly at the RTL have been developed. Some of them
[15, 19, 21] employ a software analysis approach that implicitly
makes use of multiplexers to identify statements in the RTL code
potentially responsible for the errors. These techniques can suffer
from a large number of false positives, and return too many candi-
date error sites. To address this problem, recent work by Staber et

al. [23] inserts multiplexers explicitly into the RTL code. This en-
ables the use of hardware analysis techniques and greatly improves
the accuracy of diagnosis. Other techniques, such as [10], analyze
an RTL description and failed properties using state-transition dia-
grams and model checking. REDIR is similar to several successful
gate-level methods [2, 3, 6, 24, 27] in that it only requires test vec-
tors and output responses to diagnose a functional error.

4. CONCLUSIONS
Looking forward, bug diagnosis can leverage and benefit from

current trends in verification. Until recently, the goal for verifica-
tion was to achieve complete functional correctness before tape-
out. However, today, due to the unattainable complexity of veri-
fication, this task is becoming more selective. In recent trends in
academia and, in lesser measure, in industry, engineering teams
strive to verify the most common system’s behaviors, and then they
complement this effort with runtime detection and correction tech-
niques for functional correctness. These techniques provide the
advantage of shortening the digital system development cycle, but
also come at a price in chip area and performance [26]. Thus, verifi-
cation is striking a new trade-off between development effort/time
and runtime performance, and development teams can choose to
halt verification, once they can guarantee than any residual bug
would occur with less than a specified frequency on average.

Bug diagnosis and correction can also benefit from this trend by
choosing to only fix bugs for which a correction is known that does
not run the risk to jeopardize the stability of a design close to tape-
out. Or, by budgeting the time that can be spent in finding a bug, or
a class of bugs, based on their criticality, frequency of occurrence,
etc. All the techniques discussed above and the trade-offs enabled
by novel runtime solutions contribute to taming the complexity of
bug diagnosis and make it a task that can be approached by mere
engineering mortals.
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