
Shielding Against Design Flaws
with Field Repairable Control Logic

Ilya Wagner Valeria Bertacco Todd Austin
Advanced Computer Architecture Lab, The University of Michigan – Ann Arbor, MI

{iwagner,valeria,austin}@umich.edu
ABSTRACT
Correctness is a paramount attribute of any microproces-
sor design; however, without novel technologies to tame
the increasing complexity of design verification, the amount
of bugs that escape into silicon will only grow in the fu-
ture. In this paper, we propose a novel hardware patch-
ing mechanism that can detect design errors which escaped
the verification process, and can correct them directly in
the field. We accomplish this goal through a simple field-
programmable state matcher, which can identify erroneous
configurations in the processor’s control state and switch the
processor into formally-verified degraded performance mode,
once a ”match” occurs. When the instructions exposing the
design flaw are committed, the processor is switched back to
normal mode. We show that our approach can detect and
correct infrequently-occurring errors with almost no perfor-
mance impact and has approximately 2% area overhead.

Categories and Subject Descriptors. B.8.1 [Perfor-
mance and Reliability]: Reliability and Fault-Tolerance;
B.5.2 [Register-Transfer-Level Implementation]: De-
sign Aids-Verification
General Terms: Reliability, Verification
Keywords: Hardware patching, Processor verification.

1. INTRODUCTION
End-users of microprocessor-based products rely on the

hardware to function correctly at all times. To meet this
expectation, microprocessor design houses perform exten-
sive validation of their designs before production and release
to the marketplace. The success of this process is crucial
to the survival of the company, as the financial impact of
microprocessor bugs can be devastating (e.g., the infamous
Pentium FDIV bug, which cost Intel $475 million).

Designers address correctness concerns through verifica-
tion, the process of extensively validating all the functional-
ities of a circuit throughout the development process. Simu-
lation-based techniques are central to this process: they ex-
ercise a design with relevant test sequences trying to expose
latent bugs. However, this approach is often incapable of
fully exercising the design space of modern processors. For
example, the simple out-of-order core that we use in the ex-
periments for this work has a total of 210441 distinct states,
each with up to 2128 outgoing edges. In contrast, the veri-
fication of the Pentium 4, which used a pool of 6,000 work-
stations, was only able to test as many as 237 states prior
to tape-out [4]. It is obvious, that engineers must be very
selective in the configurations that they choose to validate.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

Formal verification techniques have grown to address the
non-exhaustive nature of simulation-based methods. For-
mal methods utilize mechanisms such as theorem proving
and model checking to show that a component violates or
upholds a certain property. The primary drawback of formal
techniques, however, is that they do not scale to the com-
plexity of modern designs, constraining their use to only a
few components within the processor. For example, the ver-
ification of the Pentium 4 heavily utilized formal verification
techniques, but their use was limited to proving properties of
the floating-point execution units, the instruction decoders,
and the dynamic scheduler [5].

Unfortunately, the situation is deteriorating with expo-
nentially increasing design complexity and slower growth
rate in the capabilities of design verification tools. Thus,
without better verification solutions, or techniques to shield
the system from design errors, we can only expect future
designs to be more and more flawed.

In this paper, we introduce an expressive, reliable and low-
cost control logic patching mechanism that allows a wide
range of control-logic design bugs in a processor pipeline to
be fixed in the field after manufacturing.

Our approach employs a control state matching mecha-
nism, the state matcher, that identifies when the processor
has entered a control state associated with a design bug.
Once a match occurs, the pipeline is flushed and forced into
a degraded performance mode of operation to execute the
next instruction. We formally verified the correctness of the
system in this mode of execution, guaranteeing correct for-
ward progress past the occurrence of the flawed configura-
tion by running in degraded mode. We specifically designed
the control state matcher to detect multiple design errors
with minimal false-positive triggering.

In the experimental result section we show that the area
and performance impact of our solution are minimal. When
multiple design errors must be corrected, we show that our
state matcher can effectively trade-off area for false positive
rate. Our solution goes beyond instruction and microcode
patching because it can effectively address design errors that
relate to a particular instruction, combination of instruc-
tions, and even errors that are not associated with any spe-
cific instruction, for instance a non-maskable interrupt.

The remainder of the paper is organized as follows. Sec-
tion 2 makes a case for repairable control logic, by examin-
ing types of bugs that escape verification. Section 3 details
our approach to field-repairable control logic and Section 4
evaluates its performance and area overhead. Finally, we
present our conclusions in Section 5.

2. ESCAPED BUGS AND IN-FIELD REPAIR
In this section we present an analysis of design errors

in modern commercial microprocessors and the main ap-
proaches used to fix them in the field.

2.1 Escaped errors in commercial processors
We studied a number of escaped errors reported for ARM[2],

x86[1, 9], and PowerPC[3] processors. We show here that a
large fraction of them is related to the control portion of the
design. The results of the study are summarized in Table 1.
Errors are classified into one of the following categories:
Processor’s Control Logic: These are the escape bugs
addressed by this work, they are the result of incorrect deci-
sions made at the occurrence of important execution events
and bad interactions between simultaneous events. For ex-
ample, in the early 486 processors, two simultaneous events
of writing to register TR5 and a pending memory prefetch
would cause the processor to hang [9].
Functional Units: These are errors in the design of a func-
tional unit which cause it to produce an incorrect result, in-
cluding bugs in components such as branch predictors and
TLBs. An (infamous) example of this type of error is the
flawed lookup table in Pentium FDIV bug [1].
Memory System: These are bugs in the the on-chip mem-
ory systems, caches, and memory interfaces.
Microcode: These are (software) bugs in the implementa-
tion of the microcode for a particular instruction.
Electrical faults: These are design errors occurring when
certain logic paths do not meet timing under exceptional
conditions. Consequently, if a processor is run well below the
specified maximum frequency, these faults will often not oc-
cur. An example is the Load Register Signed Byte (LDRSB)
instruction of the StrongARM SA-1100 which does not meet
timing when reading from the pre-fetch buffer [2].
As we discussed above, control logic escapes dominate the
errata reports of the processors. The high frequency of such
escapes is due to the complexity of the processor’s control
logic. Related studies on the sources of design errors cor-
roborate our finding. For example, Van Campenhout’s work
[6] reported that many flaws were the result of incorrectly
implemented interactions between major modules.

Bug type Occurrences Incidence
Processor’s control logic 19 52%
Functional units 3 8%
Memory system 7 19%
Microcode 2 5%
Electrical faults 6 16%
Total 37 100%

Table 1: Classification of escaped design errors
reported in [1,2,3,9]

2.2 Related in-field repair solutions
Currently the two main approaches for correcting design

flaws in the field are instruction and microcode patching.
Instruction Patching: Software patching can sometimes
correct the execution of an erroneous instruction [11]. In
this approach, the program code is inspected and, if a bro-
ken instruction is encountered, it is replaced with an alter-
native implementation, typically a procedure that emulates
the instruction. This technique was used as the initial work-
around for the Pentium FDIV bug [11].
Microcode Patching: Intel and AMD processors report-
edly have the ability to update their microcode after tape-
out [10, 8, 7]. During the system startup, microcode patches
are loaded into an on-chip buffer, which overrides exist-
ing microcode in on-chip ROMs. A microcode patch can
change the semantics of any instruction, similar to instruc-

tion patching; however, no changes to the binary are needed,
since the patching occurs in hardware in decode stage.

While these techniques have proven their positive impact
in commercial solutions, their value is impaired by their in-
ability to cope with complex control bugs and by the po-
tential cost in performance. For example, with the Pentium
FDIV, all divide instructions had to be replaced with an
emulated version, resulting in significant slowdowns. Addi-
tionally, many control logic bugs cannot be easily bound to
a particular instruction, and thus they could not be fixed by
any of these techniques. For instance, in the 486 processor,
if a non-maskable interrupt (NMI) occurred at the same cy-
cle as a global segment violation, the violation would not be
detected [1]. Short of emulating every instruction, this bug
could not be fixed with instruction patches.

3. FIELD REPAIRABLE CONTROL LOGIC
Figure 1 illustrates our approach to correcting design er-

rors in the field. We complement the processor with a field-
programmable state matcher, which by default is empty. If
an error is found after design tape-out, the set of states asso-
ciated with the bug are encoded into a state matching pat-
tern. This pattern is then distributed to customers, where
it is loaded into the state matcher. When a buggy state is
detected by the state matcher, the processor switches to a
degraded mode with formally verified execution semantics.
Thus, we can rely on this mode for the processor to com-
plete the next instruction correctly, guaranteeing forward
progress. After the instruction is committed, normal execu-
tion mode is resumed.

3.1 Matching flawed configurations
The correct state transition graph (STG) of a device con-

sists of all the legal states (configurations of internal ele-
ments) Si. The states are connected by the legal transitions
between them. In this framework an error is represented by
an erroneous transition from a legal state to an illegal state,
or an invalid transition between two legal states, or by the
lack of a transition that should exist. In our field-repairable
control logic solution, we add hardware support which al-
lows us to detect erroneous states, that is, states which are
sources of illegal transitions.

Our state matcher is implemented as a content-address-
able memory (CAM), loaded with a control state pattern,
which is matched against the current pipeline state at every
cycle. The state matcher can be thought of as a fully-
associative cache with the width of the tag being equal to the
entire control state vector. For each control configuration,
if such a tag exists in the cache, then a hit occurs. We also
modified the CAM to allow for don’t care bits in the state
vector to be matched. Essentially these don’t care bits mask
out some of the bits in the state when they are compared
to the specified bits in the CAM entry. In other words, the
string representing an entry in the CAM can be specified in
a format similar to the following: 011xxxx11xx0x1. In this
case 0’s and 1’s represent the fixed value bits in the state,
while x’s represent the don’t cares in the entry and they can
match any value in the corresponding control state bit.

Constructing the state patterns for the matcher is a two-
step process. First, all relevant erroneous states are iden-
tified when a new bug is found. A specific pattern is then
constructed for each of these states: all relevant control bits

Figure 1: Field Repairable Control Logic. 1. Matcher detects a state associated with a bug. 2. Pipeline is
flushed to a known state. 3. Processor runs in degraded mode. 4. Processor resumes normal mode operation.

are specified, while the remaining are left as don’t cares. If
this step generates fewer patterns than the number of entries
in the matcher, then the patterns are simply loaded into it.

However, if the number of patterns to be uploaded to the
matcher is larger than the the number of entries available,
then we need to apply a compression mechanism. This sit-
uation may arise when a bug affects a large number of con-
figurations or when multiple bugs need to be corrected.

The state compression algorithm maps a number k of state
patterns into a r-entries state matcher CAM. To do so, it
first builds a proximity graph where each vertex represents a
pattern, and edges connecting vertices are assigned a variant
of the hamming distance metric. Specifically, we compare
the corresponding bits of the patterns and each 0 − 1 pair
contributes 1 to the weight, while each 1 − x or 0 − x pair
contributes 0.5 to the weight. As an example, the two pat-
terns 101xx1 and 1001x1 would have a connecting edge with
weight 1.5. The reasoning behind this weighing system is
fairly straightforward: if the two patterns above were to be
compacted into a single entry, it would have to be encoded
as 10xxx1. So, each discording bit pair contributes the same
amount of approximation in the entry generated. However,
pairs such as 1 − x or 0 − x, have an approximating impact
only on one of the patterns (the one with the 0 or 1).

Once the proximity graph is built, the two patterns con-
nected by the minimum-weight edge are merged together. If
r = k − 1, the compression is completed, otherwise a new
proximity graph is built and the process is repeated until
the number of patterns is small enough to fit in the CAM.

Note also that the compression algorithm generates pat-
terns that over-approximate the number of erroneous con-
figurations. The resulting state matcher will still be capable
of flagging all the erroneous configurations, i.e. it never
produces false negatives, however, it will also flag additional
(false positive) configurations that arise due to merging. The
impact on the overall system will not be one of correctness,
but one of performance. We measure the amount of approx-
imation in the matcher as its specificity. The specificity is
the probability that a state matcher will not flag a correct
control state configuration as erroneous. Specificity can also
be thought of as 1 − false positive rate.

3.2 Processor recovery
Once a bug state has been identified, the processor is

forced into a formally verified degraded performance mode,
which executes one instruction and then resumes the normal
mode. By finishing one instruction reliably before return-

ing to normal operation, forward progress in the presence
of any patched bug is guaranteed. To strengthen the re-
covery mechanism, we formally verified the degraded mode
of operation of our design. Since only one instruction will
be present in the pipeline at a time in recovery mode, the
control logic is greatly simplified, making formal verification
possible. In our experiments we used Magellan from Synop-
sys to verify the degraded mode of operation of the processor
designs used in our experiments.

4. EXPERIMENTAL EVALUATION
In this section we detail a prototype system with field-

repairable control logic support. Using simulation-based
analysis, we examine the specificity of our design for a num-
ber of design error scenarios and varied state matcher stor-
age sizes. In addition, we examine the area costs of adding
this support to a simple microprocessor. Finally, we examine
the performance impact of degraded mode of execution, to
evaluate the extent of error recovery which can be tolerated
before the performance degradation becomes apparent.

4.1 Experimental Framework
To gauge benefits and costs of our field-repairable con-

trol logic, we inserted it in two prototype processors that
we used in earlier research projects. The first processor de-
sign (In-Order) is a 5-stage in-order pipeline implementing
a subset of the Alpha ISA. For this design, the state vector
passed to the matcher consisted of 26 control bits, including
logic governing forwarding, branch misprediction, memory
operations, and ALU functions.

The second processor (Out-of-Order) is a larger out-of-
order 2-way super-scalar pipeline also implementing a sub-
set of the Alpha ISA. The design has four reservation sta-
tions for each of the function units and 32 re-order buffer
(ROB) entries to hold speculative results. The flushing
of the core on a branch mispredict is performed when the
branch reaches the head of the ROB. The state vector sent
to the state matcher consists of signals from the retirement
logic in the ROB, as well as control signals from reservation
stations and renaming logic. Both cores were outfitted with
256 byte direct-mapped instruction and data caches and a
global-history branch predictor. For performance analysis,
we ran a battery of programs, designed to fully exercise the
processor while providing small code footprints. For both
designs we used state matchers with 4 and 8 entries.

4.2 Design Defects
To test the performance of our field-repairable control

logic, we manually inserted a variety of bugs into our de-

signs, and then examined the performance of the designs op-
erating with field-repaired control logic. The high-level bugs
consisted of bad interactions between multiple instructions
in the pipeline. For example, opA-forward-wb breaks for-
warding from WB stage on one operand, and 2-branch-ops
prevents two consecutive branching operations from being
processed properly. Medium-level bugs introduced incorrect
handling of instruction computations, such as store-mem-op,
which causes store operations to fail. Low-level bugs where
highly-specific failure scenarios, for example, r31-forward is
a bug in which forwarding on register 31 is performed in-
correctly. Finally, the multi-bugs are examples of combined
bugs, where the state matcher is required to recognize mul-
tiple bug states. For example, multi-all is a design that
contains all bugs simultaneously.

4.3 Matcher Specificity Under Varied Load
Figure 2 graphs the specificity of the state matcher for

bugs in the In-Order and Out-of-Order processor designs.
Recall that the specificity is the fraction of recoveries that
are due to an actual bug. Thus, if the specificity is 1 the
state matcher only recovers the machine when the bug is
encountered. And if the specificity is 0.80, then 20% of the
time the machine is recovered, the bug did not occur.

0

0.2

0.4

0.6

0.8

1

rob-full-store rob-full-mem double-retire double-retire-
full

double-
mispred

rs-flush load-data multi-all

S
p

e
c

if
ic

it
y

4 entry matcher

8 entry matcher

0
0.2
0.4
0.6
0.8

1

2-mem-
ops

opA-
forward-

wb

opA-
forward-

conf

2-
branch-

ops

store-
mem-op

load-
branch

mult-
branch

mult-
depend

r31-
forward

multi-1 multi-2 multi-3 multi-4

S
p

e
c
if

ic
it

y

4 entry matcher

8 entry matcher

O
u

t-
o

f-
O

rd
er

In
-O

rd
er

Figure 2: Specificity of Design Error Detection

It can be noted that, for many of the bugs, the specificity
of either matcher design is 1.0, thus no spurious recoveries
were initiated. Also, some combinations of multiple bugs
(e.g., multi-1 and multi-2) had low specificities until the size
of the state matcher was increased. For these combinations
of bugs, a four entry CAM was too small to accurately de-
scribe the state space associated with them. Finally, for
some of the bugs, e.g., mult-depend and load-data, even a
larger CAM did not improve specificity. This however was
not caused by the pressure on the CAM, but rather insuf-
ficient access to critical control state. Consequently, these
experiments had to initiate recovery whenever a potential
error would occur, which led to the lower specificities.

0

100

200

300

400

0.001 0.01 0.1 1Frequency of Recovery

%
 S

lo
w

do
w

n

In-Order

Out-of-Order

Figure 3: Performance Impact of Recovery

4.4 State Matcher Area Overheads
Field-repairable control logic requires the addition of the

control state matcher, resulting in some area overhead. To

calculate it, both the In-Order and Out-of-Order designs
were synthesized and mapped to Artisan standard cell logic
in a TSMC 0.18um technology. We found that the 4-entry
matcher incurred a 0.02% overhead for Out-of-Order design
with 64kB cache and 1.10% overhead for In-Order design
with 256B cache. The 8-entry matcher incurred 0.02% and
2.20% area overhead respectively. Given the simplicity of
our designs, we would expect the overheads for commercial
designs to be even lower.

4.5 Performance Impact of Recovery
In the event the state matcher identifies a bug state, the

processor is switched into recovery mode for one instruc-
tion, after which the pipeline is returned to normal oper-
ation. During recovery, only one instruction at a time is
permitted in the pipeline, thus instruction-level parallelism
is lost and program performance suffers accordingly. Figure
3 graphs the performance of the In-Order and Out-of-Order
processors as a function of increasing recovery frequency. As
shown in the graph, program performance is not adversely
impacted until the rate of recovery is 1 out of 100 cycles,
after which the performance impact rises quickly. In addi-
tion, the In-Order design is affected sooner by recovery than
the Out-of-Order processor, due to the fact that the Out-of-
Order core is able to better tolerate the loss of parallelism
with its more capable instruction scheduler.

5. CONCLUSIONS
In this paper we introduced the concept of field-repairable

control logic, and presented a design that can detect when a
processor enters a bug state and switch to a low-complexity
reliable execution mode until the bug is bypassed. We de-
scribed a low-cost CAM-based state matching mechanism to
detect and recover from bugs. With moderate size matchers
we can ensure highly accurate detection of bug states, as
nearly all of our experiments demonstrate a specificity of 1.
We found the area cost of the technique to be about or below
2%. Finally, we found that if the bug matching frequency
is less than one recovery per 100 instructions, performance
impacts are negligible.

6. REFERENCES
[1] DDJ Microprocessor Center. http://www.x86.org/.

[2] Intel(R) StrongARM(R) SA-1100 Microprocessor
Specification Update, Feb. 2000.

[3] IBM PowerPC 750GX and 750GL RISC Microprocessor
Errata Notice, July 2005.

[4] B. Bentley. Validating a modern microprocessor. In Proc. CAV,
July 2005.

[5] B. Bentley and R. Gray. Validating the Intel Pentium 4
Microprocessor. Intel Technology Journal, pages 1–8, 2001.

[6] D. V. Campenhout, T. Mudge, and J. P. Hayes. Collection and
analysis of microprocessor design errors. IEEE Design & Test,
17(4):51–60, 2000.

[7] A. Carbine. U.S. Patent no. 5253255: Scan mechanism for
monitoring the state of internal signals of a VLSI
microprocessor chip, Nov. 1990.

[8] J. K. P. Kevin J. McGrath. U.S. Patent no. 6438664:
Microcode patch device and method for patching microcode
using match registers and patch routines, Oct. 1999.

[9] D. Koncaliev. Bugs in the Intel Microprocessors.
http://www.cs.earlham.edu/∼dusko/cs63/.

[10] D. S. C. Michael D. Goddard. U.S. Patent no. 5796974:
Microcode patching apparatus and method, Nov. 1995.

[11] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. SIGPLAN Not.,
39(4):528–539, Apr. 2004.

