
StressTest: An Automatic Approach to Test Generation Via
Activity Monitors

Ilya Wagner Valeria Bertacco Todd Austin
Advanced Computer Architecture Lab

The University of Michigan – Ann Arbor, MI

{iwagner,valeria,austin}@umich.edu

ABSTRACT
The challenge of verifying a modern microprocessor design is
an overwhelming one: Increasingly complex micro-architec-
tures combined with heavy time-to-market pressure have
forced microprocessor vendors to employ immense verifica-
tion teams in the hope of finding the most critical bugs in a
timely manner. Unfortunately, too often size doesn’t seem
to matter for verification teams, as design schedules continue
to slip and microprocessors find their way to the marketplace
with design errors. In this paper, we describe a simulation-
based random test generation tool, called StressTest, that
provides assistance in locating hard-to-find corner-case de-
sign bugs and performance problems. StressTest is based on
a Markov-model-driven random instruction generator with
activity monitors. The model is generated from the user-
specified template programs and is used to generate the in-
structions sent to the design under test (DUT). In addi-
tion, the user specifies key activity points within the design
that should be stressed and monitored throughout the sim-
ulation. The StressTest engine then uses closed-loop feed-
back techniques to transform the Markov model into one
that effectively stresses the points of interest. In parallel,
StressTest monitors the correctness of the DUT response to
the supplied stimuli, and if the design behaves unexpect-
edly, a bug and a trace that leads to it are reported. Us-
ing two micro-architectures as example testbeds, we demon-
strate that StressTest finds more bugs with less effort than
open-loop random instruction test generation techniques.

Categories and Subject Descriptors
B.8.2 [Performance Analysis and Design Aids]: Archi-
tectural Simulation; B.5.2 [Register-Transfer-Level Im-
plementation]: Design Aids—Simulation

Keywords
Architectural simulation, High-performance simulation,
Directed-random simulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

1. INTRODUCTION
Microprocessor verification is one of the major bottle-

necks in the development of computing systems, in terms
of time and especially verification engineer effort. Recently,
the ITRS (an association of semiconductor companies) as-
sessed that it takes thousands of engineer-years to develop
top-end systems, yet processors still reach the market with
’hundreds of bugs’ [3]. Moreover, more than twice as many
resources are spent on verification compared to design in
the microprocessor arena, bringing the design-to-verification
gap to crisis proportions.

A variety of techniques have been deployed to efficiently
and effectively detect design errors in microprocessors. Sim-
ulation based random testing is a long-standing approach
used to locate design errors [5, 8, 9, 10, 12]. This technique
generates random instruction sequences that are then fed in
parallel to a design-under-test (DUT) and a known-correct
golden model. Any discrepancies between the two models
indicates a design error. Simulation-based random testing
tends to be myopic for complex micro-architectures, where
stateful logic blocks and complex interactions would require
more simulation time than can be accommodated by time-
to-market pressure.

Formal verification techniques have become a powerful
mechanism to provide high-coverage verification. However,
the intractability of performing formal verification on com-
plex designs has limited the use of these technologies pri-
marily to the verification of individual components. For
example, Intel invested 60 person-years of formal verifica-
tion effort on the Pentium 4, focusing on the verification
of floating-point units, instruction decoding, and dynamic
schedulers. While this investment proved to be quite ef-
fective, as no post-silicon bugs were found in the formally
verified portions of the design [5], the limited scope upon
which formal verification can be employed has not allowed
this approach to replace simulation-based random verifica-
tion. Even with a substantial formal verification team, the
Pentium 4 was still primarily tested using simulation-based
random testing.

One of the drawbacks of simulation-based random testing
is that there is often a gap between what the designer wants
to test and how often the random instruction sequence gen-
erator produces an effective test for the condition of inter-
est. Consequently, to achieve good test coverage and expose
hard-to-find bugs, specialized hand-written tests must be de-
veloped or significant human intervention and control must
be exercised over the testing process. Moreover, the special
hand-written test cases are often not portable between dif-

ferent hardware designs of similar nature and have to be vir-
tually created from scratch. A number of tools have been de-
veloped to enable verification engineers to have more control
over the generation of random tests. In particular, some of
these techniques involve the use of program templates that
define the structure of the desired test, along with primitives
to control the randomization of the related data, such as
opcodes, register operands, and memory addresses [4]. Im-
provements on these baseline techniques use coverage met-
rics to drive test program generation, either through Markov
models [11] (as in this work) or with Bayesian networks [7].

In this paper, we introduce a tool called StressTest that
employs an innovative approach to automatic test genera-
tion. StressTest requires minimum interaction and control
from the user, it is easily fine-tuned and highly portable,
since it considers the design under test at a very high ab-
stract level. Our approach poses very limited demands on
the verification engineering team, by requiring only to pro-
vide a simple template which describes the interface protocol
of the design. To assist the engineer in describing concise
and meaningful programs, our template language includes a
number of helpful features including parameterized depen-
dency variables. Based on this template, StressTest can gen-
erate a very broad spectrum of different testbench programs
to verify the design.

The underlying generation engine of StressTest uses a dy-
namically adjusted Markov model representing the set of
all valid inputs to the design under test. This, first of all,
indicates that the tool generates only valid test sequences,
eliminating the possibility of false-negatives. Additionally,
this approach combines advantages of both probabilistic and
self-guiding stimulus generation techniques, which allows us
to improve coverage while lowering overall verification effort.
Moreover, the template-based approach for representing the
input set allows for a very compact representation even for
large amounts of inputs, and increases the portability and
flexibility of StressTest.

For guidance in the test generation, StressTest uses activ-
ity monitors, which probe the internal state at user-specified
points in the design. Using closed-loop feedback techniques,
the measure of activity at these points is used to adjust the
weights on the edges of a Markov model and direct the test
generator engine towards instruction sequences with higher
activity and higher degrees of interaction. We find that our
approach achieves better coverage of complex bugs in fewer
cycles than random open-loop techniques.

1.1 Contributions
The main contribution of this paper is the development

of a novel closed-loop random test generation methodol-
ogy that effectively produces adaptive instruction sequences
to exercise user-specified micro-architectural activity points.
Additionally, we present an innovative template-based ap-
proach to random stimulus generation that includes a flex-
ible instruction specification technique and specialized ran-
dom variable types that can be parameterized to produce
a varied range of dependency and locality characteristics.
Both of these features contribute to performance of the de-
veloped software as well as its flexibility and portability.
Finally, we evaluate these techniques against open-loop ran-
dom instruction generation and demonstrate that it can find
more bugs with fewer instructions.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews random instruction testing and related work
on the subject. Section 3 introduces StressTest and details
the approach it uses for random test generation. Section 4
performs a systematic study of the performance of our pro-
posed approach, by comparing the effort and number of bugs
found (in two microprocessor designs) to open-loop random
and less sophisticated closed-loop techniques. Finally, Sec-
tion 5 draws conclusions and suggests future enhancements
to StressTest.

2. BACKGROUND AND PRIOR WORK
The issues involved in developing and evaluating the per-

formance of different random test generators (RTGs) for pro-
cessor verifications have been a strong focus in the academic
community and industry for quite a while. An overview of
the area can be found in [6], which discusses the general
framework of RTGs, comparison between random and di-
rected testing approaches, and identifies several key proper-
ties that test generators must have to simplify the work of a
verification engineer and improve performance. The gener-
ators are shown to be useful if their output is deterministic
and reproducible, and the engineers have clear and effective
ways of biasing the generator for directing a test towards a
specific area of interest. Key characteristics of an effective
RTG include grouping, or collective naming of sets of in-
puts with a short hand notation, simplicity of the language
directing the generator, and, of course, ability to generate
valid input sequences. As we will show later in the paper,
all of these features are implemented in our verification tool.

In addition to implementing these major features, some
of today’s general-purpose random test generators attempt
to dynamically direct the hardware verification process by
analyzing results of each generated test. Tools like Specman
Elite [2] and Vera [1] provide on-the-fly data assertion and
checking and methods for validation of generated tests. In
both cases the generation process is directed by dynamically
changing constraints based on functional coverage analysis.
Although these tools simplify the work of the end user with
GUI and powerful verification languages, most of the test
set up and decision process is still left to the verification
engineer, who must specify functional test plans [2] or im-
plement constraint adjustment policies [1].

A variety of research tools for directed random test gen-
eration were developed in academia as well as in industry.
Most of them also employ a coverage-directed generation
process, but use sophisticated techniques for representing
relationships between coverage and input generation like
Bayesian networks and computer learning [7]. Some of the
other engines are aimed specifically at the register level rep-
resentation of a design and focus on tag coverage [11], in-
stead of functional coverage.

Our approach is different from the tools mentioned above
in the way that we base the engine on an abstract repre-
sentation of the input model, not the circuit itself. This
allowed us to make StressTest virtually independent of a
particular implementation of a circuit and thus more flexi-
ble and portable. Additionally, we designed the tool to do
as much of the decision process internally as possible, easing
the burden on the verification engineer. Finally, we created
an easy to use language for representing the test generation
rules in a compact and flexible format, again, simplifying
the job of the user.

3. STRESSTEST ENGINE
StressTest provides a convenient platform for specifying

instruction sets using instruction protocol templates with
various dependency and locality parameters. A number of
activity monitors observe a small set of relevant circuit in-
ternal signals and drive the generator toward scenarios that
excite these signals. This section gives an overview of the
tool.

3.1 Overall Structure
StressTest’s self-guiding generation engine consists of two

major components: a Markov model and a set of activity
monitors (see Figure 1). The Markov model encapsulates
the set of legal inputs of the design as well as the proba-
bilistic information on generating sequences of inputs. The
activity monitors bind to several key nodes or signals of the
DUT and analytically evaluate the ”stress” on the design
due to the current input. The information collected by the
activity monitors is used as feedback to the Markov model
guiding the stimulus generation to maximize the design ac-
tivity.

Golden
model

=

StressTest

Correctness
Monitor

A
ct
iv
it
y

DUT

~

Activity Monitor

Templates

Markov Model

Testbench

In
p
u
t

Figure 1: StressTest structure

StressTest connects to the external instruction bus inter-
face of the DUT and internally simulates the instruction
memory for the DUT. In other words, the execution of the
test is not affected by the insertion of StressTest in the sim-
ulation flow. The input sequences generated by StressTest
are relayed to a testbench, which is run both on the de-
sign under test and a golden model in lockstep. The golden
model that we use is a functional representation of the DUT.
The correctness monitor compares the events that alter the
architectural state of both the golden model and the DUT.
When a mismatch occurs, it is reported back to StressTest
and the simulation terminates.

3.2 Markov Model
The Markov model in StressTest can generate all of the

design’s valid inputs. The model is represented by a directed
graph where each vertex represents an interface transaction
or set of transactions with similar behavior. The interface
for our micro-processor DUT is the instruction bus, and each
Markov model vertex represents a specific type of instruc-
tions. For instance, one node represents instructions with

immediate operators, while another is used for branch in-
structions. Note, however, that this approach is not limited
to microprocessors and, in general, transactions through an
interface of any digital circuit can be represented similarly.

The weights of the edges of the Markov model are equal to
the probability of transitioning from the source to the sink
vertex, or in our case, from one instruction set sequence to
another. At the beginning of the simulation the Markov
model is a clique, and it is equally probable that a vertex
will transition to any other vertex. To begin the instruction
sequence generation, a starting vertex is selected at random
and the system produces inputs according to the rules asso-
ciated with this vertex. During the simulations the weights
of the edges are adjusted based on the activities observed
by the activity monitors.

3.3 Template Files
We use a special template language to describe the ini-

tial Markov model, an example of which is given in Figure
2. Our intention was to make this language as simple and
comprehensible as possible, since the templates will be cre-
ated and handled by the users of StressTest. However, in
spite of the simplistic structure the template language we
developed retains the ability to efficiently describe different
sets of instruction sets, or, more generally, interface trans-
actions, with varied interaction rules.

immVal (cacheSize=5,probCache=0.9,lambda=2,
minVal=-8192,maxVal=8191);

destIndex(cacheSize=30,probCache=0.8,lambda=4,
minVal=0,maxVal=31);

randIndex(probCache=0,lambda=0,minval=0,maxVal=31);
r-funcs (probCache=0,lambda=0,minVal=0,maxVal=63);
i-funcs (probCache=1,lambda=0) =
{ ’b001000 /ADDI/, ’b001001 /ADDIU/, ’b001010 /SLTI/

’b001011 /SLTIU/, ’b001100 /ANDI/, ’b001101 /ORI/,
’b001110 /XORI/ };

vertex(r-type-inst)
{ input = ’b000000ssssstttttddddd00000ffffff;

field(s) = $destIndex.read();
field(t) = $randIndex.read();
$destIndex.write(field(d));
field(f) = $rfuncs.read(); }

vertex(i-type-inst)
{ input = ’bffffffssssstttttiiiiiiiiiiiiiiii;

field(f) = $ifuncs.read();
field(s) = $destIndex.read();
field(t) = $randIndex.read();
$destIndex.write(field(d));
field(i) = $immVal.read(); }

Figure 2: Example of a template file

At the top of the template file are the random variable
definitions. Random variables are the source of random bit-
field values, and have special support for producing values
with specified locality and dependency characteristics. Dec-
laration of random variables and their operation are detailed
in Section 3.4.

Following the random variable definitions are the vertex
specifications for the Markov model. Each vertex contains
one or more definitions of the format of the inputs. The
definitions are in binary format, and specify the values of
each bit in the instruction value to be generated. Values may
be a constant 0 or 1, or they may be parametric bit fields
specified with a single letter repeated for each bit position.

Below the input specification, each of the fields is assigned
a value from the random variables.

Multiple vertex definition may be contained within one
template file. In addition, each instruction class may have
multiple vertex definitions for it included in the same tem-
plate file. This capability enables instructions with different
properties to be generated with different probability. For ex-
ample, arithmetic instructions could be described as highly
dependent with previous instructions in one vertex, while
nearly always independent in another vertex. This makes it
possible for the activity monitors to selectively adjust transi-
tions to and from vertices with specific individual properties.

3.4 Dependency Variables

random
variable

Use
cache?

yes

no

random
index

random
sample

sample
cache

probCache

lambda

cacheSize sample

minVal maxVal

read()

write()

destIndexdestIndex

Figure 3: Random Variable Abstraction

The dependency variables, declared at the top of the tem-
plate file in Figure 2, provide a concise mechanism to specify
the generation of random values from i) a list of constants,
ii) uniform random distributions, iii) randomly generated
locality sets, or iv) some combination of the previous three
constructs. The variables are used to pass information be-
tween the template fields and vertices and create complex
interactions, such as locality and dependency, between gen-
erated inputs. All of the variables have global scope and can
be accessed from anywhere in a template file.

The abstract construct used to represent random variables
is illustrated in Figure 3. As shown by the underlined la-
bels in the figure, variables are defined with five declaration
parameters:

probCache is the probability that a read() access to a ran-
dom variable will result in the access to the locality
cache.

cacheSize is the size of the locality cache, which contains
the most recently generated values that can be reused
to simulate locality and dependencies.

lambda is the degree of locality/dependency parameter,
implemented as the parameter to an exponential dis-
tribution that generates cache indexes, i.e., the larger
this value, the more skewed towards recent cache items
is the selection, the smaller the value, the more uni-
form the accesses to the cache elements.

minVal,maxVal are the bounds over which the uniform
random samples (accessed in lieu of the sample cache)
are produced.

When the variable is read(), the returned value is either
taken from the sample cache with probability probCache,
or produced by the random generator with probability 1-
probCache. The uniform random generator associated with
a variable can be bounded to produce only specific values
from a list of constants or from a user-specified range. The
sample cache is used to simulate storage locality and depen-
dency. When the write() method is invoked on a random
variable, the supplied value is added to the sample cache.
In the event that this cache is full, the oldest cache element
is removed.

When a value is taken from the sample cache, λ is used
as the parameter of the exponential distribution function
to generate the index of the entry in the cache to return.
Note that, high λ values correspond to a high probability of
generating low list indexes, and thus returning recent data.
When the value of λ is small, reads from the cache are almost
uniformly distributed among entries. Thus, it is possible to
control the level of locality in the sample cache accesses by
varying λ. This mechanism can be used in our context to
control the degree of register dependence between generated
instructions. The probabilistic distribution of the returned
values allows to efficiently control the strength of the depen-
dency between instructions that operate on same variable
and, therefore, the ”stress” on the control and forwarding
logic of such DUTs.

3.5 Activity Monitors
In designing StressTest, we made an assumption that many

bugs arise from complex interactions between instructions,
which also create high activity at the interface between units
and control blocks. Thus, we are more likely to find bugs
by generating patterns that cause a high level of activity in
those interface signals, rather than by simulating random
input sequences.

The activity monitors are responsible for identifying input
sequences of interest and then updating the Markov model
edges to reinforce them. Figure 4.a illustrates the approach
for one of the microprocessor cores that we targeted in our
experiments. The Markov model sends stimuli, in the form
of instructions, to the DUT. At each cycle, the activity mon-
itors assess the control signals in the DUT for specific ac-
tivities of interest. Examples of activities of interest would
be high physical register file pressure, highly dependent in-
structions in the register renamer, or high cache miss rate.
Once an activity of interest is identified, the transition in
the Markov model leading to the generation of this activity
is reinforced.

One challenging aspect of implementing the activity mon-
itors was maintaining the association between a particular
Markov model transition and the resulting activity moni-
toring event. The challenge exists because model stimuli
are generated many simulation cycles before the triggered
activity. To maintain this binding in our experiments we
tagged all stimuli instructions with the edge transition that
led to their generation. At the completion of each simulation
cycle, stimuli and activity events are matched through the
tags and the transition leading to the stimulus generation is
reinforced in the Markov model.

Figure 4 illustrates an example of activity monitor, and
its effect on the Markov model. In the experiment, shown in
Figure 4.a, the Markov model for the DEC Alpha instruction
set is used to generate stimuli for our testbed Alpha micro-

Stimuli Feedback

IF ID REN REG SCHEDULER

EX/

MEM

CT

Microarchitecture Core

Register Activity
Monitor

Memory Access
Monitor

BranchBranch

Arith
Imm

Arith
Imm

Logic
Imm

Logic
ImmLogicLogic

MultMult Mult
Imm

Mult
Imm

ShiftShift

Shift
Imm

Shift
Imm

JsrJsr

Ld/StLd/St

NopNop

ArithArith

a) b)

Branch
Branch

Arith
Imm

Arith
Imm

Logic
Imm

Logic
ImmLogic

Logic

Mult
Mult Mult

Imm

Mult
Imm

Shift
Shift

Shift
Imm

Shift
Imm

Jsr
Jsr

Ld/St
Ld/St

Nop
Nop

Arith
Arith

Figure 4: Activity Monitor Technique and Example

architecture. Two activity monitors are engaged during the
experiment: a memory access monitor that encourages fre-
quent memory accesses and a register file activity monitor
that pushes for lots of accesses to the register file with vari-
ous data values.

Figure 4.b illustrates the state of the Markov model after
8000 cycles of operation. In our implementation we kept
the Markov model always fully connected, and, for clarity,
we show here only the top ten most probable transition
edges. As shown, the Markov model quickly morphs into
a graph that generates a significant number of memory ac-
cess, due to the many edges pointing toward the memory
generation node. Moreover, the use of instructions with im-
mediate operands increases the range of values written to
the register file (because the immediate values are random),
thereby reinforcing the register file activity monitor. Shift
and multiply operations also contribute to this monitor by
generating significant variations in the output results. Fi-
nally, branches and jumps are less frequent since they cause
little excitement in the register file.

Activity monitors are highly flexible constructs, capable
of quickly identifying both performance and design bugs.
Other examples of their use include stressing the activity of
collision signals between different ports of a network switch,
thus checking the correctness of the switch at high utilization
points, or stressing a pipeline recovery mechanism with fre-
quent mispredicted branches by generating branch instruc-
tions with low locality in the target addresses.

4. EXPERIMENTAL RESULTS
In this section, we first introduce our experimental eval-

uation framework, and the test designs we used. Then, we
evaluate the performance of our proposed technique against
an open-loop random instruction generator, comparing both
coverage of bugs and number of simulated instructions re-
quired to expose those bugs.

4.1 Experimental Framework
To test the performance of StressTest we conducted a se-

ries of simulations on two Verilog processor core designs.
The first one is a 5-stage DLX pipeline running MIPS-Lite
ISA with branches resolved in the ID stage. The second de-
sign is a 5-stage pipeline running Alpha ISA with branches

resolved in the EX stage and two-cycle stores. We created
single-cycle golden models for both pipelines, which are ef-
fectively a functional description of the cores and often can
be derived from specifications of the design.

The pipeline under test and the single-cycle golden model
were connected to independent data memories, and inter-
faced to StressTest. We connect these components through
a small Verilog testbench framework. StressTest itself is im-
plemented in VERA verification language with some inserts
of C and C++ code.

It should be noted that in a classic static Markov model,
which we used in the first implementation of the system,
the transition from one state to another is conditionally in-
dependent on the history of the previous transitions. That,
however, is insufficient to represent the complexity of inter-
actions between instructions, and leads to lower coverage
and high effort as shown from the our results. The dynam-
ically adjusted weights and variables that we used to prop-
agate information from past instructions to future inputs
help us generate streams that are much more representative
of real software and are able to greatly reduce effort while
increasing coverage.

4.2 Results
The set of tests for the first experiment consisted of 29

buggy DLX core designs, where bugs varied from simple
(such as incorrect operation for a given arithmetic opcode)
to complex ones, involving forwarding logic and interactions
through memory. We ran the system 25 times for each of
the buggy designs with different random seeds to calculate
average effort and coverage. All tests were run until the cor-
rectness monitor had recognized an error or a maximum of
3000 instructions were generated. Then the system would
terminate and the generated stream would be recorded. The
set of tests for the second experiment used nine buggy Al-
pha pipelines with moderate and very complex bugs, mostly
special corner cases for the pipeline forwarding logic. The
experiment was identical to the first one otherwise.

Cumulative Effort - DLX Pipeline

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Random

Markov-Simple

Markov-Advanced

Cumulative Effort - Alpha Pipeline

100

1000

10000

100000

1 2 3 4 5 6 7 8 9

Random

Markov-Simple

Markov-Advanced

a)

b)

Figure 5: Effort versus Bugs Covered

Figure 5 graphs the results of our analyses. For per-
formance comparison, random test generation was imple-
mented in three ways. Random utilizes only a static Markov
model of the ISA and does not collect performance feed-
back from the DUT. Random also uses several random vari-
ables, but without the sample cache feature, i.e., the pa-
rameter probCache=0.0. Random constitutes a fairly capa-
ble open-loop random testing solution. Markov-Simple uti-
lizes a feedback-adjusted Markov model based on activity
feedback from the pipeline under test, however, it too lacks
the sample cache capability in its random variables (as Ran-
dom does), thus it generates all instruction fields at random.
Finally, Markov-Advanced uses both the feedback-adjusted
Markov model and random variables with sample caches.
The variables were used to transfer destination register IDs
to source register fields, and share arithmetic immediate val-
ues as well as memory and branch offsets between generated
instructions. The three random test generation techniques
monitored the DUT correctness in the same way, by running
pipeline and golden model in lockstep and checking correct-
ness of register and memory writes, as well as behavior of
the program counter.

Figure 5 shows the results of the three random test gener-
ation approaches, applied to the DLX and Alpha processor
pipelines. For each, the graph illustrates the cumulative ef-
fort (in total instructions executed) versus the total number
of bugs detected. To effectively distinguish between easy-
to-find bugs from harder ones, we have sorted the bug list
in ascending order by total number of instructions to locate
the bug. As a result, the bugs on the left of the graph were
easier to locate than the bugs on the right of the graph.
When a technique was incapable of detecting all of the bugs
(as is the case for Random for both processors), the curve
terminates short of the far right bug.

As shown in Figure 5.a, the Markov-Advanced and Markov-
Simple achieve better coverage than the Random model, by
detecting two additional bugs. In addition, the Markov-
Advanced was far more efficient than Markov-Simple at de-
tecting all the bugs, requiring 94% fewer instructions to
cover all of the bugs. It is also interesting to note that Ran-
dom performed more efficiently for the easy bugs, requiring
about 1/3 fewer instruction to locate them.

Figure 5.b shows the random testing results for the Alpha
pipeline. In this experiment, the Markov-Advanced achieves
significantly more coverage than Random and Markov-Simple
techniques, detecting four additional bugs. As in the pre-
vious experiment, Markov-Advanced is also more efficient
at locating bugs, except for the easiest-to-find bugs, which,
again, Random was best at discovering.

It should be also pointed out that during the initial phase
of the system development the authors were able to iden-
tify three major bugs in the forwarding logic of the DLX
pipeline that initially was assumed to be correct. Although
this pipeline was a subject of verification projects for sev-
eral years, these bugs were still undiscovered. The features
of StressTest that led to the discovery of these bugs were: 1)
running the DUT in lockstep with the golden model to check
correctness, 2) generating instructions using templates, and
3) passing information between instructions using variables.
Without these techniques the bugs would have been ex-
tremely hard to find and would have required significant
user effort in directing the test.

5. CONCLUSIONS
In this paper, we described a novel approach to closed-loop

random input generation. Our approach, implemented in a
tool called StressTest, is based on a Markov model that con-
tains templates for generating instruction sequences. These
templates are designed by verification engineers to resemble
directed tests. Our template language is particularly expres-
sive, in that it supports generation of a wide range of input
types with varied dependency and locality characteristics
and can be used in verification of processor cores or other
digital circuits. Moreover, the verification engineer needs to
identify key activity signals in the design, i.e., signals that
are indicators of ”stressful” operation or are suspected to
hold performance or design bugs. A closed-loop feedback
engine then adjusts the Markov model, based on the mon-
itoring of the activities, to produce effective and efficient
tests. Evaluation of StressTest found that it is capable of
finding more bugs in fewer cycles that open-loop random and
less sophisticated closed-loop test generation techniques.

Looking ahead, we are extending this work in a number
of ways. First, we are extending the language to support a
more effective specification of the data values, along with the
instructions that access them. Second, we are exploring the
application of the StressTest infrastructure to other appli-
cation domains. In particular, we are working to deploy the
same mechanisms to perform feedback-directed random test
generation on communication protocols and interfaces. In
the context of this work, protocols can be specified and ver-
ified at the hardware level, such as the MAC or IP layer for
the 802.3 protocol, or at the software level, such as HTTP.

6. REFERENCES
[1] Constrained-random test generation and functional coverage

with Vera. Technical report, Synopsys, Inc, Feb. 2003.

[2] Specman elite - testbench automation, 2004.
http://www.verisity.com/products/specman.html.

[3] A. Allan, D. Edenfeld, W. H. Joyner, Jr., A. B. Kahng,
M. Rodgers, and Y. Zorian. 2001 technology roadmap for
semiconductors. IEEE Computer, pages 42–53, Jan. 2002.

[4] M. Behm, J. Ludden, Y. Lichtenstein, M. Rimon, and
M. Vinov. Industrial experience with test generation languages
for processor verification. DAC 2004, June 2004.

[5] B. Bentley. Validating the Intel Pentium 4 microprocessor. In
DAC, Proceedings of Design Automation Conference, pages
224–228, 2001.

[6] E.A.Poe. Introduction to random test generation for processor
verification. Technical report, Obsidian Software, 2002.

[7] S. Fine and A. Ziv. Coverage directed test generation for
functional verification using bayesian networks. In DAC,
Proceedings of Design Automation Conference, pages 286–281,
June 2003.

[8] Y. Levhari. Verification of the PalmDSPCore using pseudo
random techniques. Technical report, VeriSure Consulting,
Ltd., 2002.

[9] J. M. Ludden et.al. Functional verification of the POWER4
microprocessor and POWER4 multiprocessor systems. IBM
Journal of Research and Development, 46:53–76, Jan. 2002.

[10] I. Silas, I. Frumkin, E. Hazan, E. Mor, and G. Zobin.
System-level validation of the Intel Pentium M processor. Intel
Technology Journal, 07:38–43, May 2003.

[11] S. Tasiran, F. Fallah, D. G. Chinnery, S. J. Weber, and
K. Keutzer. A functional validation technique: Biased-random
simulation guided by observability-based coverage. ICCD,
Proceedings of the International Conference on Computer
Design, pages 82–88, 2001.

[12] S. Taylor, M. Quinn, D. Brown, N. Dohm, S. Hildebrandt,
J. Huggins, and C. Ramey. Functional verification of a
multiple-issue, out-of-order, superscalar Alpha processor: The
DEC Alpha 21264 microprocessor. In DAC, Proceedings of
Design Automation Conference, pages 638–644, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

