
Circuit-Aware Architectural Simulation
Seokwoo Lee, Shidhartha Das, Valeria Bertacco, Todd Austin

David Blaauw, and Trevor Mudge
Advanced Computer Architecture Lab

The University of Michigan
1301 Beal Ave, Ann Arbor, MI 48109

razor@eecs.umich.edu

ABSTRACT
Architectural simulation has achieved a prominent role in
the system design cycle by providing designers the ability
to quickly examine a wide variety of design choices. How-
ever, the recent trend in system design toward architectures
that react to circuit-level phenomena has outstripped the
capabilities of traditional cycle-based architectural simula-
tors. In this paper, we present an architectural simulator
design that incorporates a circuit modeling capability, per-
mitting architectural-level simulations that react to circuit
characteristics (such as latency, energy, or current draw) on
a cycle-by-cycle basis. While these additional capabilities
slow simulation speed, we show that the careful application
of circuit simulation optimizations and simulation sampling
techniques permit high levels of detail with sufficient speed
to examine entire workloads.

Categories and Subject Descriptors
B.8.2 [Performance Analysis and Design Aids]: Archi-
tectural Simulation; B.5.2 [Register-Transfer-Level Im-
plementation]: Design Aids—Simulation

General Terms
Computer system simulation

Keywords
Architectural simulation, High-performance simulation, Cir-
cuit simulation

1. INTRODUCTION
To accelerate the hardware design cycle, architects often

employ architectural simulators of the hardware they are
designing. They implement these models in traditional pro-
gramming languages or hardware description languages, and
then execute programs on them to validate the performance
and correctness of a proposed hardware design. Although
software models run slower than their hardware counter-
parts, architects can construct hardware models in minutes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

or hours rather than in the months needed to manufacture
real hardware. The faster build time speeds up the hard-
ware design cycle, giving architects the ability to evaluate
more designs before committing to a single solution for fab-
rication.

In the traditional approach to architectural simulation,
a software model of the architecture is constructed by first
identifying the major components of the system and deter-
mining their operation latency as a function of the expected
clock cycle of the machine. For example, ALUs and register
files typically have a latency of one cycle, while the latency of
the caches are dependent on the size of the cache. With the
latency of components defined, an architectural model of the
complete machine is constructed by quantifying the number
of each component, their datapath connections within the
microarchitecture, and the hazards (or stalls) that can be
experienced by instructions using the various components
in the design. Once the model is defined, architectural sim-
ulation becomes the process of determining the total number
of cycle it takes to execute a program, based on instructions
executed, availability of resources, and the hazards experi-
enced during execution.

There is a recent trend in computer architecture design
toward systems that can adapt to circuit-level phenomena.
In these highly adaptable systems, it is possible for the ar-
chitecture to influence circuit operation and vice versa. Ex-
amples of these type of systems include di/dt [6] and ther-
mal throttling [14] and Razor clocking [7]. Throttling tech-
niques monitor current and temperature characteristics of
the underlying circuit implementation. If current demands
get too high (which induces noise on the supply lines) or
if temperatures rise too high, an architectural-level system
controller will be invoked to throttle down instruction fetch
bandwidth. With fewer instruction entering the microar-
chitecture, current demands and temperature are quickly
reduced. Razor clocking is a technique to reduce circuit
energy levels below the point required by worst case com-
putation paths [7]. In the event a computation fails due to
extraordinary energy requirements, an error recovery mech-
anism restores correct state. With prudent energy tuning,
the approach can greatly reduce circuit energy demands with
little impact on computational speed.

These novel circuit-aware architectural optimizations share
the requirement that the architectural simulator must accu-
rately gauge detailed circuit phenomena to correctly simu-
late the operation of the machine under study. For example,
the throttling techniques must count the total number of
devices switching during each cycle of operation, and simu-
lation of Razor clocking requires detail timing information
of pipeline stages on a per-cycle basis. The approach that

has been taken to analyze much of this work has been to
utilize extremely simplistic analytical circuit models of mi-
croarchitectural components. The primary advantage of the
analytical circuit models is flexibility and speed. They also
have minimal performance impact with typically less than a
100% slowdown. However, researchers have begun to ques-
tion the accuracy of simple analytical circuit models [8].

In this paper, we present an architectural simulation mod-
eling infrastructure that incorporates circuit simulation ca-
pabilities. The approach is quite accurate because we an-
alyze detailed circuit-level phenomena including individual
gate delay and energy characteristics. Performance, while
considerably slower than architectural simulation, is main-
tained using an effective combination of circuit and archi-
tecture level simulation optimizations. The optimization we
implement include i) early circuit simulation termination
based on architectural constraints, ii) circuit timing mem-
oization, and iii) fine-grained instruction sampling. Using
our optimized circuit-aware architectural simulator, we are
able to examine the performance of a large program in detail
in under 5 hours of simulation.

The remainder of this paper is organized as follows. Sec-
tion 2 details related work in architectural simulation, cir-
cuit simulation, and simulator performance optimization.
Section 3 details our circuit simulation methodology and
its integration into an architectural simulation model. Sec-
tion 4 describes the optimizations we implemented to further
improve the performance the simulator. Section 5 demon-
strates the use of our simulator with a case study of Razor
clocking. Finally, Section 6 summarizes the paper and sug-
gests future directions.

2. BACKGROUND AND RELATED WORK
A number of popular architectural simulation infrastruc-

tures exist that are widely used in academia and industry.
One of the most notable examples is the SimpleScalar tool
set [2], a collection of simulation models capable of running
programs compiled for the PISA, Alpha and ARM instruc-
tion sets. At the core of the simulator infrastructure is an
emulation mechanism to execute programs of interest. They
also include event management routines, resource tracking
mechanisms, and statistical analysis packages. The resulting
models are at a high enough abstraction level that they exe-
cute fairly efficiently. The most detailed SimpleScalar mod-
els execute programs at a rate of about 100,000 instruction
per second (IPS), permitting architects to examine seconds
of real-time execute (billions of instructions) in a few hours
of simulation.

The approach that has been taken to incorporate circuit
characteristics (such as power demands) into microarchitec-
tural simulators has been to utilize analytical circuit models
of components and drive them with the events in the archi-
tectural simulator. In the Wattch power analyzer [3], circuit
level power behavior was characterized with analytical mod-
els, including those developed for the CACTI on-chip cache
model [17]. The microarchitectural simulator records the
switching characteristics of the components such as caches,
register files, branch target buffers, and translation look-
aside buffers. The dynamic power consumption can then be
calculated directly.

A similar approach was adopted by SimplePower [10].
It incorporated register transfer level (RTL) power mod-
els based on look-up tables (LUT) into a microarchitectural

simulator. Finally, the Cai-Lim power-performance simula-
tor introduced empirical power density models derived from
Intel internal design data for major microarchitectural func-
tional blocks [4]. In all of these tools, microprocessor power
is estimated by multiplying the frequency of the accesses to
the microarchitectural functional blocks with their lumped
capacitance. This in turn is derived from the circuit model
of the block.

The primary advantage of these analytical circuit models
is flexibility and speed. The models are sufficiently high level
that they can be readily reconfigured to different component
configurations (e.g., cache size, branch predictor configura-
tion) and fabrication technologies. They also have minimal
simulation performance impact with less than a 100% slow-
down for all of the models discussed. Recently, however, the
accuracy of analytical models in architectural models has
come into question. In a paper by Ghiasi [8] it was noted
that even at a 90% confidence level, two analytical-based
power models (Wattch and Cai-Lim) failed to agree on the
benefits of a variety of power-based optimizations. The re-
sults of the two models were uncorrelated, suggesting that
at least one of the tools was based on incomplete or inac-
curate models. The authors concluded that the accuracy
of circuit-level models must be improved to detect anything
but the grossest power savings. In our previous Razor work
(by Ernst et al. [7]), we further refined this approach to
architectural modeling to allow direct measurement of mod-
ule latency, based on input vectors from a live architectural
simulation. Our model was built by hand, thus limiting
our experimental studies to examining the effects of Razor
clocking on a single Kogge-Stone adder circuit [7].

Ideally, for circuit-aware architectural designs, we would
like to leverage an analysis framework with the accuracy
of circuit-level simulation and the flexibility and speed of
architectural-level simulation. This is not possible with state-
of-the art circuit simulation tools alone. When running the
Razor clocking experiment (detailed in Section 5.2) on Syn-
opsys VCS, a compile-based Verilog simulator which we con-
figured to use SDF back-annotation timing information, sim-
ulations ran at rates of about 50 instructions per second on
a Sun Blade 1000 workstation. Typical architectural sim-
ulations examine up to 1 billion instructions, which would
require at least six months of simulation! In addition, the
framework was not sufficiently flexible to accomplish the
necessary analysis, e.g., the tool could not accommodate
voltage changes during simulation as all logic and wires were
characterized as voltage-derived delays bound in the simu-
lation code. Hence, this particular tool is not sufficiently
flexible to examine dynamic voltage scaling (DVS), an opti-
mization of intense interest in the architecture literature.

In the domain of circuit-level simulation, SPICE has been
the industry standard for the past 25 years. During this
time, much research [1, 11] has been devoted to improve the
simulation performance to handle the increasing complexity
of circuit designs without sacrificing simulation accuracy.
In this context, SPECS2 [15] marked a change of pace by
proposing one of the first table-based approaches to tim-
ing simulation, which is also the technique of choice for our
simulator and for many of the current tools in this arena.
Today, state-of-the-art commercial simulators can simulate
designs of millions of transistors at a speed a thousand times
faster than SPICE with an accuracy trade-off of just a few
percent. However, architectural designs require an analysis

based on the simulation of billions of instructions, which is
still far beyond the reach of these simulators. To this end,
we developed our simulator to exploit much more aggressive
approximations of circuit behavior in order to achieve the
performance required.

3. SIMULATION METHODOLOGY

3.1 Architectural Simulation
Figure 1 illustrates the software architecture of our circuit-

aware architectural simulator. The simulator model is based
on the SimpleScalar modeling infrastructure [2]. The Sim-
pleScalar tool set is capable of modeling a variety of plat-
forms ranging from simple unpipelined processors to detailed
dynamically scheduled microarchitectures with multiple-level
memory hierarchies. The toolset supports several instruc-
tion sets, including PISA, Alpha, and ARM.

Figure 1: Simulator Software Architecture

The architectural simulator takes two primary inputs: a
configuration file that defines the microarchitecture being
modeled, and a program to execute. The microarchitec-
ture configuration defines the stages of the pipeline, plus
any special units that reside in those stages, such as branch
predictors, caches, functional units, and bus interfaces. The
microarchitecture configuration used in the experiments in
this paper are detailed in Section 5.2. All programs analyzed
are compiled for the Alpha instruction set.

The architectural simulator produces two primary out-
puts. If the program executes any I/O operations (e.g., file
accesses or console writes), the I/O operations are executed
by the simulator on behalf of the simulated program. In
addition, SimpleScalar provides an extensive instrumenta-
tion capability, such that operations exercised during sim-
ulation can be monitored to produce runtime metrics, such
as instructions per cycle (IPC), average memory latency
(MLAT), or branch predictor accuracy. The metrics out-
put at the end of simulation are used to evaluate the quality
of the microarchitecture configuration, with respect to the
program that was executed on it.

3.2 Circuit Simulation
To support circuit-awareness in the architectural simula-

tor, we embedded a circuit simulator (implemented in C++)
within our SimpleScalar models. The embedded circuit sim-

ulator references a combinational logic description of each
relevant component of the architecture under evaluation,
and interfaces with the architectural simulator on a stage-
by-stage basis. At initialization, the circuit description of
the various components is loaded from a structural Verilog
netlist. Concurrently, the interconnected wire capacitance is
loaded from files provided by global routing and placement
tools. In addition, a technology model is loaded that details
the switching characteristics of the standard cell blocks used
in the physical implementation.

During each simulation cycle, each logic block is fed a
new input vector from the architectural simulator. The vec-
tors correspond to the set of values latched at each pipeline
stage input. With this information, the circuit simulator can
compute the relevant measures for the analysis under study:
delay of the computation, total energy dissipated, and addi-
tional switching characteristics such as total current draw.
Depending on the purpose of the simulation, these measures
are returned to the architectural simulator to direct the high
level progress of the simulation and/or returned as output
for evaluation. The circuit simulator has enough accuracy
to operate as a standalone circuit analysis tool, capable of
transient fault injection experiments, and of investigating
process variation.

Figure 2: Circuit Simulation Methodology

The implementation of the circuit simulator is based on
an event-driven scheme. Each activity in the logic circuit is
represented as a transition which is composed of final logic
value, arrival time and slew (slope of the voltage transi-
tion). Figure 2 provides a schematic description of the cir-
cuit model used by the simulator. At each simulation cycle,
the first set of transitions are generated by comparing the
new set of input values with those of the previous cycle.
Within each set, input transitions all have the same arrival
time and a fixed slew. When there is a transition on a cell
input line, the function of the cell is evaluated and a new
transition may or may not be generated at the cell output,
depending on the logic function of the cell. Newly generated
transitions are added to an event queue sorted by ascending
arrival time. We found experimentally that at each simu-
lation cycle only a small fraction, between 2 and 10%, of
the circuit’s cells need to be evaluated, making our simu-
lation approach comparable to state-of-the-art commercial
logic simulators. In order to achieve the performance re-
quired by the architectural simulator, we represent voltages
as a 0 or 1 logic values. The sorted event queue allows us to
easily cancel very close proximity glitches, by eliminating a

pair of opposite transitions which happen within an interval
shorter than the full transition time. The pseudo-code in
Figure 3 outlines the simulation algorithm just described.

Circuit::Simulate(vector Input) {
power = 0;

for each (changedBit in Input) {
Tr = GenInputTransition(changedBit);

EventQueue.InsertSorted(Tr);

}
while (!EventQueue.empty()) {

Tr = EventQueue.RemoveEarliest();

for each (cell, Tr.net ∈ cell.Inputs) {
power += cell.Evaluate(Tr);

}
}

}

Figure 3: Circuit simulation algorithm

At configuration time, we compute a characterization ta-
ble for each cell. These tables, illustrated in Figure 2, sup-
port the computation of the output transitions during sim-
ulation. Each characterization table is parameterized based
on the supply voltage (Vdd) of the system, input transition
slew and input transition constraints (0 to 1, or 1 to 0),
and they provide the slew and delay of the transition on
the output net and the power consumption of the cell for
the event. To generate a characterization table, we need to
first compute the output capacitance of the cell, which we
obtain by combining the two capacitive components due to
the wire lengths, provided by the place and route software
and the cell’s fanout. Fanout capacitances are obtained by
adding the capacitances due to each of the cell’s fanout el-
ements, which we find in the SPICE models of the library
cells. Once we have computed the cell’s output capacitance
we can derive the cell’s own characterization table from the
technology model file which provides delay and power data
based on capacitance, voltage and type of transition. The
table is then used during simulation to compute the relevant
measures of each transition as outlined in Figure 4. To eval-
uate the accuracy of our approach, we compared our circuit
simulator against a set of SPICE simulations with a number
of test circuit topologies at varied voltages and input slew
rates and found timing errors rates to be consistently less
than 11%, with most less than 3%.

Cell::Evaluate (transition Tr) {
newOut = logic_function(Tr);

if (newOut != output) {
Tr_out = new();

Tr_out.value = newOut;

Tr_out.slew = Slew (vdd,Tr.slew,newOut);

Tr_out.delay = Tr.delay +

CellDelay(vdd,Tr.slew,newOut);

EventQueue.InsertSorted(Tr_out);

};
return Power(vdd,Tr.slew,newOut);

}

Figure 4: Cell evaluation during simulation

4. PERFORMANCE OPTIMIZATIONS

4.1 Constraint-Based Circuit Pruning
Often architectural analyses require running simulations

that collect only one relevant measure from the circuit sim-
ulator, and such measure is only relevant if it is above a
specified threshold. Both throttling techniques and Razor
clocking fall into this category. For instance, in architec-
tures with Razor clocking, circuit simulation needs to eval-
uate if the propagation delays are above or below the clock
cycle time, while the actual value of the propagation delay
is not relevant. In general, domain-specific static analyses
can be used to compute worst-case values of the constraint
measure and the simulation can be pruned to eliminate the
portion of the circuit netlist where the constraint cannot be
violated.

In the specific case of Razor designs, all those paths in
the logic network that are guaranteed to have propagation
delays below the specified clock threshold can be removed
since these paths can not affect the architectural simulation.
Using this approach, we can achieve higher performance,
without affecting the accuracy of results.

To compute which cells can be removed from the logic
network, we compute the worst-case delay from the inputs
to each output. The propagation delay through a cell is
found on a per-voltage basis from the characterization ta-
bles. Once we know the worst-case delay at each output,
we can remove from the netlist the outputs that are guar-
anteed to have stabilized by the specified cycle time, and all
the cells in the cone of logic that only contributes to those
outputs. Every time that the voltage is changed in the cir-
cuit simulation, we recalculate the constraint-based pruning
before continuing simulation. This optimization has proven
to be very effective, particularly in those circuit blocks that
are highly control-driven.

Another optimization derived from the one above, involves
maintaining a maximum satisfying budget for the parameter
at each internal node of the netlist. Whenever the simula-
tion reach that node, if the parameter under evaluation has
a lower value than the satisfying limit allows, we are again
guaranteed that the simulation will reach the output nets
without violating the threshold. In this case we can pro-
ceed from those nodes to the outputs switching to a pure
logic simulation, without computing the other simulation
measures.

Pruning is in general quite effective, but performance does
depend on the tightness of the constraint (i.e., voltage level
for a Razor design). In our case study at 1.8V nominal
voltage at 200 MHz design, pruning eliminated 64% of the
circuit. At a more highly constrained voltage of 1.4V, 24%
of the circuit is eliminated. Even at 1.4V, simulation speed
is nearly doubled with pruning.

4.2 Circuit Timing Memoization
Locality is a key principle in the design of modern mi-

croarchitectures. The principle states that program instruc-
tions and data recently used are more likely than random
values to be used in the future. Consequently, devices such
as caches and value predictors [9] can accurately anticipate
the requirements of a program based on past activities.

We can leverage value locality to improve the performance
of circuit timing simulation. We construct a hash table that
records (a.k.a. memoizes) the following mapping for each

circuit-level module:

(vectorstate, vectorin, Vdd) → (delay, energy)

Where vectorstate represents the current state of the circuit,
vectorin is the current input vector, and Vdd is the current
operating voltage. The hash table returns the circuit evalua-
tion latency and the circuit evaluation energy. We index the
hash table with a combination of vectorstate and vectorin be-
cause vectorstate encode the current state of the circuit and
vectorin indicates the input transitions. Combined with the
current operating voltage, Vdd, the inputs to the hash table
fully encodes the factors that determine delay and energy.

Whenever the hash table does not include the requested
entry, full-scale circuit simulation is performed to compute
the delay and energy of the circuit computation. The result
is then inserted into the hash table with the expectation that
later portions of the program will generate similar vectors.
In our implementation, the size of the hash table is limited
to 256 MB. In addition, we found better performance when
we dynamically re-order the hash bucket chains, by bring-
ing the most recently referenced element to the head of the
chain. The latter optimization further exploits fine-grained
program value locality.

For our baseline hash table implementation, we achieved
a hit rate of typically less than 50%, which still rendered
a sizeable speedup. Investigation into the access stream
quickly revealed that hashing the entire input vector to
pipeline stage logic is overly restrictive. For example, load
instructions that pass through the execute (EX) stage of the
pipeline include two input register operands in their input
vectors, yet, the second operand is ignored during execution
of the load (instead the instruction offset field is used). By
including the second operand in the input vector, multiple
hash table entries are required to memoize the same load ad-
dress computation. To alleviate this problem, a per-opcode
input vector filtering mechanism was developed. Each in-
struction opcode indicates with a mask which inputs do not
influence stage logic evaluation. These inputs are masked off
before attempting to memoize the circuit simulation. The
optimization resulted in a much higher hash table hit rate
of 70-85% on average. Simulation speedups due to memo-
ization were quite noticeable, with most experiments expe-
riencing 3-5x improvements.

4.3 SimPoint Analysis
Typical architectural simulations in the literature analyze

dynamic program lengths of 1 billion or more instructions.
Even after deploying all of the previous optimizations, we
will only reach simulation speeds of the order of a 1000 in-
structions per second, which would require more than a week
of simulation time to complete a single program run.

Fortunately, we can draw on a recent result in computer
simulation sampling to relax the performance demands for
the circuit-aware architectural simulator. SimPoint analysis
was recently proposed as a technique to dramatically re-
duce the number of instructions simulated to characterize
a program’s performance on a complex microarchitecture
[13]. SimPoint uses basic block distribution analysis along
with several techniques from clustering analysis to concisely
summarize the behavior of an arbitrary section of execution
in a program. This information summarizes whole program
behavior and greatly reduces simulation time by using only
representative samples.

In our work, we use 10 million instruction length samples
(called Early Multiple SimPoints) [12]. The SimPoints indi-
cate a collection of sample starting points to simulate within
the program, the length of the samples, and the weight to use
when combining simulation statistics (e.g., IPC). With this
technique, even our slowest simulation was able to analyze
a complete program in just over 5 hours (at 554 instruc-
tions/second). Error analysis of these SimPoints indicate
an error of less than 10% (typically less than 3%) for a wide
variety of benchmarks [5].

5. EXAMPLE CASE STUDY
To evaluate the quality our circuit-aware architectural

simulator, we modeled the Razor clocking technique pro-
posed by Ernst et. al. [7]. In Razor designs, the latency of
an instruction (in cycles) may vary based on the latency of
the circuit evaluation within a pipeline stage. In this sec-
tion, we present a high level overview of the Razor clocking
technology, and demonstrate its evaluation using our circuit-
aware architectural simulator.

5.1 Razor Timing Speculation
The key observation underlying the design of Razor is

that the worst-case conditions that drive traditional design
are improbable conditions. Thus, by building error detec-
tion and correction mechanisms into the Razor design, it
becomes possible to tune voltage to typical energy require-
ments, rather than worst case. The resulting design has
significantly lower energy requirements, even in the pres-
ence of added energy processing demands due to occasional
error recoveries. The Razor design utilizes an in-situ tim-
ing error detection and correction mechanism implemented
within the Razor flip-flop. Razor flip-flops double-sample
pipeline stage values, once with an aggressive fast clock and
again with a delayed clock that guarantees a reliable second
sample. A metastability-tolerant error detection circuit is
employed to check the validity of all values latched on the
fast Razor clock. In the event of a timing error, a modified
pipeline flush mechanism restores the correct stage value
into the pipeline, flushes earlier instructions, and restarts
the next instruction after the erroneous computation. For
additional background on Razor timing verification and re-
lated dynamic verification work in general, see references [7,
16].

5.2 Experimental Framework
To model Razor clocking, we implemented an architec-

tural model of a baseline 64-bit Alpha processor model. The
processor architecture is a simple in-order pipeline consist-
ing of instruction fetch, instruction decode, execute, and
memory/writeback with 8 Kbytes of I-cache and D-cache.
In addition, the entire processor was described in Verilog
and synthesized using Synopsys Design Analyzer (version
2003.03-2). Global routing capacitances were estimated by
performing global place and route using Cadence Silicon En-
semble (version 5.4.126) and Mentor Graphics Xcalibre (ver-
sion 9.1 5.6). The processor was mapped to a 0.18um TSMC
process, and it was validated to operate at 200 MHz. Af-
ter careful performance analysis, it was found that only the
instruction decode and execute stages were critical at the
worst-case voltage and frequency settings; hence, only these
stages are incorporated into the circuit-aware architectural
simulations.

5.3 Simulation Case Study
Table 1 shows that the baseline performance of our circuit-

aware simulator is comparable to the compile-based Verilog
VCS simulator, which simulated the Razor design at about
50 instructions per second. However, after applying all opti-
mizations, it reaches a speed of 887 instructions per second,
more than 8 times faster than its barebone counterpart.

Optimization options instructions/sec
None 102
Pruning 347

Pruning and Memoization 887

Table 1: Benefits of Circuit Simulation Optimiza-
tions (when simulating GCC)

Figure 5: Case Study of a Razor Design

Figure 5 demonstrates the performance of Razor clocking
as measured by our circuit-aware architectural simulator.
The top graph shows the relative energy of the pipeline with
decreasing voltage. As voltage decreases, simulated pipeline
energy decreases, even in the presence of expensive tim-
ing error recoveries. Because our circuit-aware architectural
simulator can accurately gauge the per-cycle stage evalua-
tion latency, it is possible to assess the voltage (around 1.2V)
at which the cost of Razor timing error recovery outweighs
the benefits of further decreasing voltage. In addition, the
bottom graph demonstrates the measurement capability of
our circuit simulator. The figure illustrates the latency,
through the EX stage logic, as a probability distribution
function for all input vectors produced during a simulation
of the GNU GCC compiler. Given that the worst-case la-
tency through this stage is over 4ns, it is clear that typical
case latencies are much less, allowing Razor to lower voltage
with only small increases in circuit timing error rates.

6. CONCLUSIONS
In this paper we have shown that it is possible to combine

circuit simulation with an architectural simulator and still
achieve significant simulation throughput rates. By identi-
fying those events that repeat or are not critical we can still

capture delay information that is voltage or data dependent
in the simulation. In the past, this sort of analysis required
a clumsy coupling of architectural simulation and selective
SPICE simulation. Our framework provides not only an au-
tomated solution to the specific problem of voltage and data
dependent delays, but it can be extended in a natural way
to other run-time dependencies, such as process variation
and noise coupling.

Acknowledgements
This work is supported by grants from ARM Ltd., the Na-
tional Science Foundation, and the Gigascale Systems Re-
search Center.

7. REFERENCES
[1] E. Acuna, J. Dervenis, A. Pagones, and R. Saleh. iSPLICE3: a

new simulator for mixed analog/digital circuits. In IEEE
Custom Integrated Circuits Conference, pages 13.1/1–13.1/4,
May 1989.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling. In IEEE
Computer, Feb. 2002.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. In
Proc. 27th Int. Symp. on Computer Architecture (ISCA27),
May 2000.

[4] G. Cai and C. H. Lim. Architectural level power/performance
optimization and dynamic power estimation. In Cool Chips
Tutorial in conjunction with the 32nd Int. Symp. on
Microarchitecture (MICRO-32), Nov. 1999.

[5] B. Calder. Simpoint website. In
http://www.cse.ucsd.edu/ calder/simpoint/, 2003.

[6] W.-K. Chen. The VLSI handbook. In CRC Press publisher,
2000.

[7] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao,
C. Ziesler, D. Blaauw, T. Austin, T. Mudge, and K. Flautner.
Razor: A low-power pipeline based on circuit-level timing
speculation. In 36th Annual International Symposium on
Microarchitecture (MICRO-36), Dec. 2003.

[8] S. Ghiasi and D. Grunwald. A comparison of two architectural
power models. In Workshop on Power Aware Computing
Systems (PACS-2000), Dec. 2000.

[9] M. H. Lipasti and J. P. Shen. Exploiting value locality to
exceed the dataflow limit. In 29th International Symposium on
Microarchitecture (MICRO-29), Dec. 1996.

[10] N. Vijaykrishnan et al. Energy-driven integrated
hardware-software optimizations using SimplePower. In Proc.
27th Int. Symp. on Computer Architecture (ISCA27), May
2000.

[11] C. Ratzlaff, N. Gopal, and L. Pillage. RICE: Rapid
interconnect circuit evaluator. In DAC, Proceedings of Design
Automation Conference, pages 555–560, June 1991.

[12] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simulation
points in applications. In International Conference on Parallel
Architectures and Compilation Techniques, Sept. 2001.

[13] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior. In
International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 2002.

[14] K. Skadron, M. Stan, and T. Abdelzaher. Control-theoretic
techniques and thermal-RC modeling for accurate and localized
dynamic thermal management. In 8th International
Symposium on High-Performance Computer Architecture
(HPCA-8), Feb. 2002.

[15] C. Visweswariah and R. Rohrer. SPECS2: An integrated circuit
timing simulator. In ICCAD, Proceedings of the International
Conference on Computer Aided Design, pages 94–97, Nov.
1987.

[16] C. Weaver and T. Austin. A fault tolerant approach to
microprocessor design. In IEEE International Conference on
Dependable Systems and Networks (DSN-2001), June 2001.

[17] S. Wilton and N. Jouppi. An enhanced access and cycle time
model for on-chip caches. In Western Research Laboratory
Research Report 93/5, July 1993.

