
Efficient State Representation for Symbolic Simulation

Valeria Bertacco
Computer Systems Lab

Stanford University
Stanford, CA 94305

valeria@stanford.edu

Kunle Olukotun
Computer Systems Lab

Stanford University
Stanford, CA 94305

kunle@ogun.stanford.edu

ABSTRACT
Symbolic simulation is attracting increasing interest for the
validation of digital circuits. It allows the veri�cation engi-
neer to explore all, or a major portion of the circuit's state
space without having to design speci�c and time-consuming
test stimuli. However, the complexity and unpredictable
run-time behavior of symbolic simulation have limited its
scope to small-to-medium circuits.
In this paper, we propose a novel approach to symbolic

simulation that reduces the size of the BDDs of the state
vector while maintaining an exact representation of the set
of states visited. The method exploits the decomposition
properties of Boolean functions. By restructuring the next-
state functions in their disjoint support components, we gain
a better insight in the role of each input variable. Conse-
quently, we can simplify the next-state functions without
signi�cantly sacri�cing the simulation accuracy. Our ex-
perimental results shows that this approach can be used in
e�ectively reducing the memory requirements of symbolic
simulation while surrendering only a small portion of the
design's state space.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids|Veri�cation, Simula-
tion; B.8 [Hardware]: Performance and Reliability

General Terms
Design, Veri�cation, Performance, Theory

Keywords
Formal Veri�cation, Symbolic Simulation, BDDs

1. INTRODUCTION
Validating the functionality of digital circuits and systems

is an increasingly diÆcult task. This is due to the growing
complexity of the designs that has not been accompanied by
improvements in functional veri�cation techniques.
Logic simulation is still the mainstream approach for the

validation of large synchronous systems ([1, 2]) because of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA
Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

its scalability : CPU time is proportional to the design size
and test length. Simulation is also exible: Practical cycle-
based simulators allow for circuits with multiple clocks and
the ability to mix cycle-based and event-based simulation.
Unfortunately, the fraction of the design space which can

be explored by simulation is miniscule, especially for large
designs. Only one state and one input combination of the
design under test are visited during each simulation cycle.
Moreover the test stimuli must be hand crafted by the de-
signer to cover those areas of the design that she wishes to
validate.
On the other side of the veri�cation spectrum, are sym-

bolic exploration techniques. These methods have signi�-
cantly increased the reach of formal veri�cation by making
it possible to analyze systems with many states. However
practical designs are still out of the grasp of these techniques.
Symbolic methods attempt to validate a system by explor-

ing and checking its behavior under all the possible input
stimuli. The advantage of this approach is that a property
can be veri�ed for all the possible executions of a circuit
and without the need for the designer to create the stim-
uli. However, these methods have not become mainstream
solutions so far, mainly because their computational com-
plexity is very high. As a consequence, they are only able
to validate successfully designs only up to a few hundreds
latches.
One symbolic exploration approach that has been used

is symbolic model checking. The basic idea underlying this
method is to use BDDs ([3]) to represent all the functions in-
volved in the validation and the set of states that have been
visited during the exploration. The primary limitation of
this approach is that the BDDs that need to be constructed
can grow extremely large, exhausting the memory resources
of the simulation host machine and/or causing severe per-
formance degration. In order to overcome this limitation,
various solutions have been proposed that try to contain
the size of the BDDs involved, for instance: [4, 5, 6].
An alternative approach is symbolic simulation. This me-

thod veri�es a set of scalar tests with a single symbolic vec-
tor. Symbolic functions (represented by BDD) are assigned
to the inputs and propagated through the circuit to the out-
puts. (see Figure 1. below). This method is used in [7] and
has the advantage that large input spaces can be covered in
parallel with a single symbolic sweep of the circuit. Again,
the bottleneck of the approach lies in the explosion of the
BDD representations. Various techniques have been sug-
gested to approximate the functions represented in order to
contain the BDDs within reasonable limits: [8, 9].

In this paper, we present a novel technique for symbolic
simulation that uses a new, parametric representation for
the functions at the sequential elements of the circuit. This
representation produces BDDs that are more compact (i.e.,
have fewer nodes) than the original ones, while at the same
time constitute an exact representation of the state of the
circuit. It is generated dynamically during the simulation
exploiting the properties of disjoint support decomposition
of a Boolean function.
In the remainder of the paper we review the ideas of sym-

bolic simulation and of disjoint support decomposition. We
then present our new techniques for containing the size of
the BDDs in symbolic simulation. We conclude by present-
ing experimental results and directions for future work.

2. BACKGROUND
Let B denote the set f0; 1g. A symbolic variable is a

variable de�ned over B. A logic function F is a mapping
F : Bm ! Bn. The range of a function F is the set of
n-tuples that can be asserted by F . It will be denoted by
R(F). The ith component of F will be denoted by fi : B

m !
B. We use lower case for single output functions and upper
case for multiple output functions.
The 1-cofactor of a function f w.r.t. a variable v is the

function fv=1 obtained by substituting 1 for v in f . Sim-
ilarly, the 0-cofactor is obtained by substituting 0 for v in
f .
We say that a function f : Bm ! B depends on a variable

xi i� the Boolean di�erence @f=@xi = fxi � fxi is not the
constant function 0. In the most general case when F is a
multiple output function, we say that F : Bm ! Bn depends
on a variable xi, if at least one of its components fi depends
on it.
The support of a logic function is the set of variables

f depends on and it is indicated by S(f).Two functions f ,
g are termed disjoint-support if they share no support
variables, i.e., S(f) \ S(g) = ;. The size of a support set is
indicated by jS(f)j.
We assume functions to be represented by their Binary

Decision Diagrams. We refer the reader to [3, 10] for a
tutorial introduction to BDDs.
A synchronous logic circuit is de�ned by a 6-tuple:

� an ordered set (i1, � � � , im) and (o1, : : :, op) of Boolean
input and output symbols,

� an ordered set (s1, : : :, sn) of Boolean state symbols,

� next-state function Æ : S � I : Bn+m ! S : Bn,

� output function � : S � I : Bn+m ! O : Bp,

� and an initial assignment S0 of the state symbols.

The next section reviews the symbolic simulation algo-
rithm, which applies to a synchronous logic circuit. Section
2.2 provides an overview of disjoint support decompositions
as we will use them in presenting our approach.

2.1 Symbolic Simulation
Symbolic simulation refers to the iterative symbolic ex-

ploration of the state space of a synchronous circuit. The
circuit is initialized at time step 0 with the initial assign-
ment S0 to the state symbols and with the set of variables
IN@0 = fi1@0; � � � ; im@0g for the input symbols. At each
time step k, the expression of the primary outputs and

state variables is computed, in terms of the variables in
fin@0; � � � ; in@kg. At the end of the time step, the vector
of Boolean functions for the state symbols S@k : B

mk ! Bn

represents all the states that can be visited by the circuit
at step k . Figure 1 shows the ow just described using a
time-unrolled version of the circuit.

in
@0

in
@1 in

@k
in

@0

@0
s

@1
s

@1
out @k

out
@k+1

out in
@k+1

@k
s @k+1

s

start
state

@0
out

Figure 1: Iterative model of symbolic simulation

Bugs are found by checking at every step that the function
OUT@k : fin@0; � � � ; in@kg ! Bp represents a set of legal
values for the outputs of the circuit. When an illegal output
combination is found, out@k reports all the possible input
combinations that expose it. Theoretically the iteration can
be repeated inde�nitely, although typically the BDDs for
S@k and OUT@k outgrow the memory resources available.

2.2 Disjoint Support Decompositions
The disjoint support decomposition of a scalar function

F : Bm ! B, consists of �nding other, simpler functions L
and Ai such that:

F (x1; � � � ; xm) = L(A1(x1; � � � ; xA1
); A2(xA1+1; � � � ; xA2

); ::)

with S(Ai) \ S(Aj) = ;, 8i; j.
An exact solution to this problem has been proposed by

Ashenhurst [11] and Curtis [12] using decomposition charts.
This decomposition algorithm has exponential complexity
on the number of variables in S(f). Ashenhurst also proved
in [11] that there is a unique decomposition for a function
once we pick a canonical representation for associative op-
erations.
More recently, methods based on the BDD representation

of a function have been suggested in [13, 14]. In particular,
the method in [13] has complexity quadratic in the size of
the BDD of the function to decompose, in the worst case.
The disjoint support decomposition can be applied recur-

sively to each of the Ai components leading to a block tree
representation of a Boolean function as in Figure 2, where
each block represents a Boolean function with a single out-
put and inputs that have pair wise disjoint support. The
leaves of the tree are the input variables of the function.
Based on the naming convention in [13], each block can

represent either an associative operator (AND/OR/XOR)
or a prime function , that is, a complex function that can-
not be decomposed any further with disjoint support inputs.

3. STATE FUNCTION RE-ENCODING
The method we propose in this paper is based on the

observation that at each symbolic simulation step k, it is
possible to substitute the state function S@k : Bmk ! Bn

with a new function DS@k such that R(S@k) = R(DS@k)
without a�ecting the results of the simulations; namely: 1)
The set of outputs that can be generated by the circuit and
2) the set of states the circuit can reach at each cycle. If we
can �nd a suitable function DS@k that also has a smaller

A 1
A 2

A r

xn
x1 x2

AND

f

L

OR

PRIME XOR ANDOR

Figure 2. Block tree representation of a Boolean
function

BDD representation (i.e., fewer BDD nodes), then we can
control the size of the Boolean expression and improve on
the performance of symbolic simulation.
We now present various transformations that accomplish

this objective. The �rst technique applies to the state func-
tion as a whole, the other two are speci�c to the decompo-
sition type of a block: either prime function or associative
operator. For reasons of readability, the proofs of the theo-
rems presented are reported in the Appendix.

3.1 Reduction at Free Points
By producing the disjoint support decomposition of each

component of S@k, we obtain a vector of block trees. While
each element of the vector has a tree decomposition with no
reconvergence, it is now possible that two or more elements
intersect at some intermediate node of their trees. An exam-
ple situation is produced in Figure 3. We call this structure
a decomposition graph.
From now on, we use the terms decomposition graph F

and function F interchangeably to refer to a multiple out-
put function F . We also drop the subscript @k whenever
referring to the state vector S at step k.

��������

�
�
�
�

x1x2x3

q1

f1 2f f3 f4

G

free point

p

w

q

Figure 3. The decomposition of a vector of functions

De�nition 1. A free point p in a decomposition graph of
F is a function corresponding to an output of a block in the
graph. It has the property that, if we substitute the sub-
graph rooted at the point with a new input variable w, the
new function G is disjoint support with the function rooted
at p:

F (x1; � � � ; xm) = G(p; xp+1; � � � ; xm) Æ p(x1; � � � ; xp) (1)

and S(G) \ S(p) = ;.

Figure 3 shows three free points with darkened circles. Note
that the output of p is a free point since none of the variables
in the support of p appears in the support of other parts of
the graph. On the other hand, the dashed circle at q is not
a free point since, if we split the graph at that node, the
functions G and q obtained would still share the input q1.
The following theorem shows that we can use free points to
simplify the decomposition graph.

Theorem 1. Given a decomposition graph for a multi-
ple output Boolean function F (x1; � � � ; xm) : B

m ! Bn, a
free point p(x1; � � � ; xp) : Bp ! B in it, and the function
G(p; xp+1; � � � ; xm) : B

m�p+1 ! Bn, obtained by substitut-
ing the function p() with the new input variable p in the
graph of F , R(F) = R(G).

Thus, we can substitute all the free points with new vari-
ables and generate a new state function G with a smaller
representation. A simple traversal of the graph is suÆcient
to discover all the free points with maximal support, that
is, all the free points whose support is not contained in any
other free point of the decomposition graph. The transfor-
mation of free sub-graphs with new variables produces a new
function G, with jS(G)j � jS(F)j.

Example 1. Consider the decomposition graph of Figure
4. Figure 4(a) shows all the free points of the graph. Only
the circled free points are maximal. Figure 4(b) shows the
new, reduced, function obtained. Note that we can re-use
any input variable of a free sub-graph as the new variable
at the free point. 2

����

����������

���� ����

������

����������

������

��
��
��
��
��
��
��
��

4(a) 4(b)

f1 f4f2 f3f1 f2 f4f3

Figure 4: Free points reduction

3.2 Elimination of Prime functions
As mentioned in Section 2.2, each block of a decomposi-

tion is either termed a prime function or it is an associative
operator. We found that, if a prime function satis�es certain
conditions, we can remove it from the decomposition graph,
along with all of its sub-graph and substitute it with a fresh
input variable.

Theorem 2. Given a prime function r(r1; � � � ; rr) in a
decomposition graph F , if all of its inputs, except at most
one, are free points, than the decomposition graph G ob-
tained by substituting the new variable r for function r(),
F (x1; � � � ; xm) = G(r; � � � ; xm) Æ r(r1; � � � ; rr) is such that
R(F) = R(G).

A possible structure of the graph F is represented in Fig-
ure 5(a): All the input to block r are free points, except
for r1. We can then remove the block r and substitute it
with a new input variable obtaining the graph in Figure 5(b)

without a�ecting the range of the function. Note that input
variables r2 and r3 are not needed anymore.

5(a) 5(b)

a1 a2 a3

f1 2f f3 f4

r 1

r

r 1

f1 2f

a1 a2 a3

f3 f4

r 3r 2

r

Figure 5. General case for prime function elimina-
tion: (a) before and (b) after

Example 2. The testbench s1196 from the IWLS suite
contains the blocks reported in Figure 6 in its next state
function at step 10 of symbolic simulation. The variables
names are just indices corresponding to the variables in the
support of the state function. Since the prime function has
two inputs that are free points and only one input that has
multiple fanout, we can completely eliminate this portion of
the graph and just substitute it with an input variable. 2

x35

x39

1x19

17x

x16

OR

r
0

PRIME

blocks
To other

AND

Figure 6: Prime elimination for Example 2.

3.3 Removal of non-dominant variables
Under certain conditions, an input variable can be re-

moved from the decomposition graph without a�ecting its
range.

Example 3. Consider the following 3-outputs function:
f1 = AND(b; e), f2 = AND(e;OR(a; b; d)), f3 = XOR(a; c).
The range of this function is B3 n f101; 100g. Notice that

we can remove the variable a from the function, by assuming
it has value 0, without changing the range spanned by F :
f1 = AND(b; e), f2 = AND(e;OR(b; d)), f3 = c has still
range B3 n f101; 100g.
We could do this simpli�cation because the range of the

function for a = 1 is a subset of the range for a = 0. 2

De�nition 2. An input variable of a decomposition graph
has a non-dominant value 0 i� it fans out only to blocks
that are decomposed through OR or XOR associative oper-
ators. It has a non-dominant value 1 i� it fans out only
to blocks that are AND or XOR decompositions. Otherwise
it does not have a non-dominant value.

Note in particular that a variable may have a non-dominant
value 0 and a non-dominant value 1 simultaneously if it fans
out only to XOR decompositions. The theorem below shows
that in the most general case, a variable that fans out only

to associative operators can be removed from the decompo-
sition graph if it has a unique non-dominant value for the
whole graph.

Theorem 3. If a decomposition graph F has an input
variable v with non-dominant value k 2 f0; 1g, and each
of the blocks (i.e., intermediate single-output functions) that
have v in their fanin have at least one free point in their
fanin, then: R(F) = R(Fv=k)

3.4 Approximating
Even when all of the previous techniques fail, we still want

to maintain a compact representation of the state function
S@k, so that we can keep progressing in the simulation.
When the state function exceeds a con�gurable threshold
value, we choose a variable to set to a constant value. The
variable with fanout to the maximum number of blocks is
selected to maximize our ability to discover a reduced exact
parametric representation at the next attempt. In choosing
the variable, we only consider decomposition blocks that
have input variables in their fanin, the intuition being that
these blocks are closer to become free points.
We found experimentally that often, after eliminating a

variable by setting it to constant as described, we discovered
additional free points or variables with non-dominant values.

4. EXPERIMENTAL RESULTS
We built a symbolic simulator to experiment with our so-

lution and linked it to the CUDD package [15]. At the end
of each simulation step we performed the decomposition of
the next state symbolic vector and the set of reductions de-
scribed in Section 3. We set an upper limit of 2500 nodes
for the state vector size. We run our simulation on the se-
quential circuits of the IWLS '89/'93 benchmark suite using
a PC based on a 1.7Ghz Pentium processor equipped with
2GB of memory. The results are presented in Table 1.
For each circuit we report the number of primary inputs,

primary outputs, sequential elements, combinational logic
gates and the number of cycles we run the the simulation.
The next �ve columns report how many times we were

able to apply our reductions of Section 3: FP is the number
of free point substitutions, PR is the number of prime func-
tion eliminations, VD the number of non-dominant vari-
ables removals, NL counts the cases where no exact trans-
formation could be applied, but the state vector was within
the limit size and SV counts the times when we cofactored
out a maximally shared variable as described in Section 3.4.
Note that during a single simulation step we may apply more
than one technique until we reduce the state vector within
limits or until there is no exact parametrization possible.
The values reported in Table 1 indicate that the conditions
that allow condensing the state vector are frequently met in
all the circuits.
We then estimated the number of simulation vectors that

are run in parallel, as follows: At each simulation step, we
produce a fresh set of input symbols at the primary inputs
of the circuit. At the sequential inputs, the number of stim-
uli presented in parallel is equal to the cardinality of the
R(NS). Thus the number of vectors that we simulate in
parallel is: #vectors = 2#In � R(Sk). Column Vectors re-
ports the log2 #vectors, which corresponds to the equivalent
number of input wires that are maintained symbolic at each
cycle. The number of traces which we carry forward to the

Circuit In Out FF Gates steps FP PR VD NL SV Vectors Traces plain Mem Sec
s1196 14 14 18 790 100 99 5 0 1 0 25.33 25.33 0 22.7 16.60
s1423 17 5 74 830 100 9 0 1 21 144 37.60 35.92 710 35.5 108.95
s298 3 6 14 197 100 16 0 0 20 117 10.35 9.31 45 16.7 67.95
s641 35 24 19 436 100 52 0 21 6 548 43.94 40.71 629 254.0 740.0
s713 35 23 19 480 100 40 0 14 10 531 43.98 41.06 651 154.0 470.4
s953 16 23 29 658 100 59 0 1 3 527 22.95 20.09 745 45.1 106.4
clma 382 82 33 24482 60 38 0 0 21 1 390.56 390.53 1 50.2 28.51
mm4a 7 4 12 310 100 0 0 0 82 40 16.10 15.80 88 30.7 31.11
s38417 38 304 1426 20281 2 2 0 0 0 0 inf inf 15 33.4 0.05
s38584 38 304 1426 20281 2 1 0 0 1 0 inf inf 29 42.2 0.06
s5378 35 49 163 3232 2 2 0 0 0 0 54.0 54.0 0 11.3 164.4
s9234 36 39 135 3019 7 1 0 5 1 0 63.49 63.49 0 18.7 350.5
sbc 40 56 27 1143 100 184 0 214 4 932 51.05 46.61 877 66.1 1123.5

Table 1: Experimental results

next cycle is given by: #traces = 2#In�#SV �R(Sk). Again,
we report the bit-equivalent value of the number of traces.
In order to compute these values, we needed to compute the
size of the reached set at every cycle: All the cases where
steps is less than a 100 have been limited by this computa-
tion.
It is clear from the table that we can achieve a high level

of parallelism, in the order of tens of bits per cycle, while
keeping a low memory pro�le.
We compared our results with a plain symbolic simulator

that limits the size of the state functions by simply cofactor-
ing out as many variables as needed at the end of each cycle:
column plain reports the number of variables evaluated to
constant by this simulator and should be compared to col-
umn SV. Most often our approach allows us to evaluate to
constant fewer variables than a straightforward approach.
It's worth noting that there are cases like s1196 where both
simulators do not need to perform any approximation, but
the usage of our tecnique allowed us to mantain simpler
BDDs and complete the simulation faster.
For the last two columns, we re-run the tests without cal-

culating the size of the state space reached at every cycle and
we report the memory pro�le in MBytes and the execution
time needed for running the speci�ed simulations.

5. CONCLUSIONS AND FUTURE WORK
We have presented a new approach for constructing a

parametric representation of the state vector during sym-
bolic simulation. The construction exploits the property of
disjoint support decomposition of the symbolic state vec-
tor. It applies transformations that preserve the range of
the vector function while reducing the size of its BDD rep-
resentation.
Our experiments indicate that the conditions required to

perform these transformations often exist. The results show
that these transformations are a valuable tool for improving
the performance of symbolic simulation while maintaining
the quality of its results. We are currently working on �nd-
ing additional con�gurations that lead to exact transforma-
tions and on improving the quality of the fall-back action
(measured as ratio between number of BDD nodes elimi-
nated to number of elements of the state set lost) when no
exact transformation can be found.

Acknowledgments
The authors would like to thank Maurizio Damiani and
David Dill for their valuable suggestions during the devel-
opment of this work. This research has been supported by
Georgia Tech Marco contract #B-12-D00-S5.

6. REFERENCES
[1] Z. Barzilai, J. Carter, B. Rosen, and J. Rutledge. Hss-

a high-speed simulator. IEEE Trans. on CAD/ICAS,
pages 601{617, July 1987.

[2] C. Hansen. Hardware logic simulation by compilation.
In DAC, Proceedings of the Design Automation
Conference, pages 712{715, June 1987.

[3] R. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. on Computers,
35(8):677{691, August 1986.

[4] I. Moon, J. Kukula, K. Ravi, and F. Somenzi. To split
or to conjoin: The question in image computation. In
DAC, Proceedings of the Design Automation
Conference, pages 23{28, June 2000.

[5] K. Ravi and F. Somenzi. High density reachability
analysis. In Proc. ICCAD, pages 154{158, November
1995.

[6] G. Cabodi, P. Camurati, L. Lavagno, and S.Quer.
Disjunctive partitioning and partial iterative squaring:
an e�ective approach for symbolic traversal of large
circuits. In DAC, Proceedings of the Design
Automation Conference, pages 728{733, June 1997.

[7] R. Bryant, D. Beatty, K. Brace, K. Cho, and
T. She�er. Cosmos: a compiled simulator for mos
circuits. In DAC, Proceedings of the Design
Automation Conference, pages 9{16, June 1987.

[8] J. Bergmann and M. Horowitz. Improving coverage
analysis and test generation for large designs. In Proc.
ICCAD, pages 580{583, November 1999.

[9] V. Bertacco, M. Damiani, and S. Quer. Cycle-based
symbolic simulation of gate-level synchronous circuits.
In DAC, Proceedings of the Design Automation
Conference, pages 391{396, June 1999.

[10] R. Bryant. Symbolic boolean manipulation with
ordered binary{decision diagrams. ACM Computing
Surveys, 24(3):293{318, September 1992.

[11] R. Ashenhurst. The decomposition of switching
functions. In Proceedings of the International
Symposium on the Theory of Switching, Part I 29,
pages 74{116, 1957.

[12] H. A. Curtis. A New Approach to the Design of
Switching Circuits. Van Nostrand, Princeton, N.J.,
1962.

[13] V. Bertacco and M. Damiani. The disjunctive
decomposition of logic functions. In Proc. ICCAD,
pages 78{82, November 1997.

[14] Fpga design by generalized functional decomposition.
In T. Sasao, editor, Logic Synthesis and Optimization,

chapter 11. Kluwer Academic, 1993.

[15] CUDD-2.3.1. http://vlsi.Colorado.edu/efabio.

[16] O. Coudert, C. Berthet, and J.C. Madre. Veri�cation
of synchronous sequential machines using symbolic
execution. In Workshop on Automatic Veri�cation
Methods for FSM, volume 407 of LNCS, pages
365{373, June 1989.

APPENDIX

Proof of Theorem 1. Consider the function F (x1; � � �xm) and
compute its range by splitting on the input variables [16]:

R(F) = R(Fx1=0) [R(Fx1=1)

By applying this equation recursively over all the variables
(x1; � � � xp) in the support of p, we obtain:

R(F) =
[

(i1;��� ;ip)2Bp

R(Fx1=i1;x2=i2;��� ;xp=ip) (2)

Using Equation (1): Fx1=i1;x2=i2;��� ;xp=ip = Gp=iw where iw =

p(i1; � � � ; ip) 2 f0; 1g since p evaluates to a constant. Substitut-
ing in Eq.(2) we �nally obtain: R(F) =

S
iw2f0;1g

R(Gp=iw) =

R(G) 2

Proof of Theorem 2. We distinguish two cases:
1. All the inputs of the prime block are free points. Then

the output of the free block is also a free point and the theorem
reduces to the hypothesis of Theorem 1.

2. The prime block r has one input that it is not a free-point,
say r1, without loss of generality. All the other inputs to the prime
function: (r2; � � � ; rr) are still free points and we can assume that
have been reduced to input variables by Theorem 1. In the most
general case, r1 is a single output function of other input variables
that are in the support of both G and r: S(r1) = (a1; � � � ; ap).
The function F has then the form:

F (a1 � � �ap; � � � rr; � � �xm) = G(r; a1 � � �ap; r1; � � �xm)

Æ r(r1; � � � ; rr) Æ r1(a1; � � � ; ap)
(3)

Let's proceed again by computing the R(F) by recursively split-
ting on the input variables:

R(F) =
[

(i1;��� ;ip)2Bp

R(Fa1=i1;a2=i2;��� ;ap=ip) (4)

For each di�erent assignment (i1; � � � ; ip), r1 evaluates to a con-
stant value: ir = r1(i1; � � � ; ip) 2 f0; 1g. Substituting the expan-
sion of F as in Eq.(3):

Fa1=i1;��� ;ap=ip = Ga1=i1;��� ;ap=ip;r1=ir1
Æ rr1=ir1 (5)

Note that we cannot drop the cofactors w.r.t. the ai in G because
r1 is not a free point and thus its inputs fan out to other nodes
of the graph.

Now, the function rr1=ir1 (r2; � � � ; rr) is a free point and as

such it can be substituted by a new free variable r. We show
now that it is not possible that rr1=ir1 (r2; � � � ; rr) reduces to

a constant for any value of ir1 . Infact, if that was the case r
could be expressed as r = r1
 rres(r2; � � � ; rr), where
 is either
AND or OR and S(r1) \ S(rres) = ;, and r would then have a
disjoint support decomposition through an associative operator
and would not be a prime function.

By carrying on the substitution r = rr1=ir1 (r2; � � � ; rr) , Eq.

(5) reduces to: Fa1=i1;a2=i2;��� ;ap=ip = Ga1=i1;a2=i2;��� ;ap=ip

which substituted into Eq. (4) proves the theorem. 2

Proof of Theorem 3. For a generic function F , we have:

R(F) = R(Fv=k) [R(Fv=�k) (6)

We now show that under the conditions speci�ed:

R(Fv=�k) � R(Fv=k) (7)

and Eq.(6) reduces to R(F) = R(Fv=k).
Let's consider �rst the case where k = 0 and let's label each of

the functions that have v in their fanin x(v; p; x1 � � �), y(v; q; y1 � � �),
w(v; r;w1 � � �) . . . where p, q, r . . . are the free points in each of
them and xi, yi, wi . . . are other variables the functions depend
on. The x,y,w,. . . functions can only be OR or XOR decomposi-
tions by hypothesis.

We can then express F using the composition of these func-
tions: F = G(x; y;w � � � ; x1 � � � y1 � � �)Æx(v; p; x1::)Æy(v; q; y1::) � � �

Note that, in general, xi, yi, wi . . . are also in the fanin of G.
Let's now compute the two cofactor of F w.r.t. v:

Fv=0 = G(x; y; w � � � ; x1 � � �ww � � �) Æ x(0; p; x1::) Æ � � �

Fv=1 = G(x; y; w � � � ; x1 � � �ww � � �) Æ x(1; p; x1::) Æ � � �

In order to show the inclusion of the ranges of Eq. (7), we are
going to represent each range as a union of ranges by cofactoring
the variables in the support of x, y, w, . . . one function at a time
starting with x():

R(Fv=0) =
[

(x1���xx)2Bx

R(G(x � � �x1 � � �) Æ x(0 � � �)x1=ix1 ;���)

R(Fv=1) =
[

(x1���xx)2Bx

R(G(x � � �x1 � � �) Æ x(1; � � �)x1=ix1 ;���)

We distinguish two cases for each x,y,w,. . . function:
1) x is a OR decomposition. When all the (x1; � � � ; xx) are

zero, for Fv=1, x evaluates to the constant value 1. For Fv=0,
x = p. In all the other cases x evaluates to 1. By grouping all the
component ranges so that to distinguish the special case from all
the others , we can simplify the expressions:

R(Fv=0) =R(G(p; � � � 0 � � �))[
[

(x1;��� ;xx)6=0

R(G(1; y; � � �x1 � � �)x1=ix1 ;���

R(Fv=1) =R(G(1; � � � 0 � � �))[
[

(x1;��� ;xx)6=0

R(G(1; y; � � �x1 � � �)x1=ix1 ;���

It can be easily seen that the �rst reange for Fv=1 is a subset of
the corresponding range for Fv=0, while the rest of the expression
is identical.

2) x is an XOR decomposition. In Fv=1, x = XNOR(p;
x1; � � � ; xx). For Fv=0, x = XOR(p; x1; � � � ; xx). We can again
group all the component ranges so that to distinguish the cases
where XOR(x1; � � � ; xx) = 0 from the ones where XOR(x1; � � � ; xx) =
1:

R(Fv=0) =
[

XOR(x1;��� ;xx)=0

R(G(p; y; � � �x1 � � �)x1=ix1 ;���[

[

XOR(x1;��� ;xx)=1

R(G(�p; y; � � �x1 � � �)x1=ix1 ;���

R(Fv=1) =
[

XOR(x1;��� ;xx)=0

R(G(�p; y; � � �x1 � � �)x1=ix1 ;���[

[

XOR(x1;��� ;xx)=1

R(G(p; y; � � �x1 � � �)x1=ix1 ;���

And it can be observed that the two components of each ex-
pression match. It follows: R(Fv=0) = R(Fv=1).

This procedure can be applied recursively for each of the other
functions y, . . . , by computing and grouping all the cofactors for
the sets of input variables (y1 � � � yy),

For the case where k = 1, the functions x,y,w, . . . can now only
be AND or XOR decompositions. The proof can be obtained by
substituting AND for OR and 1 for 0 in the proof just discussed.
Finally for the case where the input variable v has both a non-
dominant value 0 and 1, we can just use any of the two value-
speci�c proofs. 2

