
SystemC Simulation on GP-GPUs: CUDA vs. OpenCL ∗

Nicola Bombieri
Dip. Informatica

Università di Verona, Italy
nicola.bombieri@univr.it

Sara Vinco
Dip. Informatica

Università di Verona, Italy
sara.vinco@univr.it

Valeria Bertacco
EECS Department

University of Michigan, USA
valeria@umich.edu

Debapriya Chatterjee
EECS Department

University of Michigan, USA
dchatt@umich.edu

ABSTRACT
SystemC is a widespread language for developing SoC designs.
Unfortunately, most SystemC simulators are based on a strictly se-
quential scheduler that heavily limits their performance, impact-
ing verification schedules and time-to-market of new designs. Par-
allelizing SystemC simulation entails a complete re-design of the
simulator kernel for the specific target parallel architectures. This
paper proposes an automatic methodology to generate a parallel
SystemC simulator kernel, exploiting the massive parallelism of
GP-GPU architectures. Our solution leverages static scheduling to
reduce synchronization overheads. The generated simulator code
targets both CUDA and OpenCL libraries, to boost scalability and
provide support for multiple GP-GPU architectures. Finally, the pa-
per compares the performance of our solution on CUDA vs. OpenCL
platforms, with the goal of investigating advantages and drawbacks
that the two thread management libraries offer to concurrent Sys-
temC simulation.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

General Terms
Design, Performance

Keywords
Parallel SystemC, simulation acceleration, CUDA, OpenCL

1. INTRODUCTION
SystemC is the de-facto standard language for system-level mod-

eling, architectural exploration, performance analysis, software de-
velopment, and functional verification of embedded systems [1].
∗This work has been partially supported by EU project FP7-ICT-
2011-7-288166 (TOUCHMORE) and the Gigascale Systems Re-
search Center, one of six research centers funded under the Focus
Center Research Program (FCRP), a Semiconductor Research Cor-
poration entity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’12, October 7Ű12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1426-8/12/09 ...$15.00.

It supports modeling and simulation of designs at different ab-
straction levels, from register transfer level (RTL) to electronic sys-
tem level (ESL) through the transaction level modeling (TLM) [6].

Such a flexibility to model from the most accurate to the most
abstracted description level simplifies system design, as well as
verification, by providing a simpler, more powerful way to verify
complex systems. Moreover, by exploiting reuse-based methodolo-
gies, IP cores, complete of their verification infrastructure, can be
re-deployed across several abstraction levels, thus enabling shorter
design cycles [2, 3, 11].

Nevertheless state-of-the-art SystemC simulation kernels rely on
application-level threading (co-operative threads) forcing the exe-
cution to be intrinsically sequential, since the operating system can-
not dispatch co-operative threads to different processing elements.
Such inability of SystemC kernels to exploit parallel processing
architectures has been addressed only recently. Several works in
the literature have attempted to parallelize SystemC simulation, tar-
geting heterogeneous architectures to reduce synchronization over-
heads [5, 9, 12].

Concurrently, general purpose graphics processing units (GP-
GPUs) have been explored in the past few years as a new gen-
eral purpose computing paradigm for accelerating computation-
intensive EDA applications, such as gate-level fault simulation [6],
fault table computation [7], and logic simulation [8]. SystemC sim-
ulation on GP-GPUs has been explored very recently, and it is prov-
ing to be a promising match between the most widespread system-
level design language and these up-and-coming low cost devices
[13, 19]. Early experimental results have shown SystemC simula-
tion speed-ups from 3x to 2,000x, depending on testbench design
and GP-GPU board model. Nevertheless, all these works target
CUDA [14] GP-GPUs, thus limiting their applicability to only the
NVIDIA family of many-core devices.

To allow execution of parallel programs across various platforms,
the Khronos Group [17] has established an open standard, known
as OpenCL. OpenCL is a framework for writing programs that ex-
ecute across heterogeneous platforms consisting of CPUs, GPUs,
and other processing elements. As a result, OpenCL provides soft-
ware developers with portable and efficient access to the power of
diverse processing platforms.

An open question on this front is whether the portability in OpenCL
impacts application’s perfomance, as it is often the case for lan-
guages and middlewares that target portability across different plat-
forms [18]. If performance were to suffer significantly on OpenCL
platforms, their suitability would be limited.

To investigate the tradeoff between performance and portability
of OpenCL, we present a detailed analysis using a range of Sys-

temC designs and compare simulation performance of CUDA vs.
OpenCL running on several NVIDIA’s devices.

The remainder of this paper is organized as follows. Section 2 re-
ports the related work. Section 3 summarizes and compares CUDA
and the OpenCL programming models. Section 4 discusses the im-
plementation of a C++ SystemC kernel for CUDA and OpenCL,
by comparing different scheduling solutions. Section 5 presents
compares simulation performance on CUDA and OpenCL. Finally,
experimental results are reported in Section 6, while Section 7 con-
cludes our work.

2. RELATED WORK
SystemC uses an event-based architecture, where a centralized

scheduler controls the execution of processes based on events (syn-
chronizations, time notifications or signal value changes).

Within each simulation cycle, there is first an evaluation phase,
during which all runnable processes are executed. Signals are up-
dated at the end of the execution of each process. If a signal value
change occurs, all processes sensitive to that signal are added to
the runnable queue (this is called signal and event update phase).
Finally, during the time update phase, the time of the next simula-
tion cycle is determined by setting it to the earliest of (i) the time
at which the simulation ends, (ii) the next time at which an event
occurs, or (iii) the next time at which a process is scheduled to re-
sume. If simulation time is not increased, the next simulation cycle
will be a delta cycle.

In SystemC, the order of process execution within an evaluation
phase does not affect simulation output since the simulator presents
the same system status to all those processes. Thus, processes ac-
tivated within a same evaluation phase can be naturally executed
in parallel, either by using multiple threads or by designing a dis-
tributed scheduler.

Several works in the literature suggest taking advantage of this
inherent parallelism to speedup simulation [7, 9, 15, 20]. In [15],
SystemC processes are executed as distinct threads on multiple
CPUs. However, the overall simulation platform (ArchSim) intro-
duces heavy overhead, thus making this approach ineffective over-
all. In [7], each processing node includes a copy of the scheduler
and it simulates a subset of the application modules. All scheduler
copies must synchronize at each signal and event update phase, to
update the value of shared signals and of simulation time, thus gen-
erating many synchronization events among the separate proces-
sors. A different approach is proposed in [15]. The methodology
analyzes SystemC modules and it divides all processes into blocks
of operations that are executed consecutively. Then, blocks are
scheduled according to their data and control dependencies, par-
allelizing those blocks that can be executed during the same simu-
lator phase In summary, all these solutions rely on SystemC source
code modifications or introduce overhead.

SystemC simulation on CUDA GP-GPUs has been proposed for
the first time in [13]. In that work, independent SystemC processes
are mapped into parallel threads that synchronize at each iteration
of a delta cycle, through a barrier synchronization, to maintain the
correct producer-consumer relation among threads. The same au-
thors then proposed [16], a methodology that parallelizes the sim-
ulation of mixed-abstraction level SystemC models across multi-
core CPUs and GPUs. Given a SystemC description, the methodol-
ogy partitions the model into processes suitable for GPU and CPU
execution. Then, it converts the processes identified for GPU ex-
ecution into GPU kernels with additional wrapper processes to in-
voke those kernels. The wrappers enable seamless bi-directional
communication of events between GPUs and CPUs. The authors

reworked the OSCI SystemC simulation kernel to allow parallel
execution of processes.

A framework for simulating SystemC code on CUDA GP-GPUs
has been also proposed in [19]. The framework fully exploits the
intrinsic parallelism of RTL SystemC descriptions, by limiting syn-
chronization events with ad-hoc static scheduling and separate in-
dependent dataflows. Finally, SystemC simulation on CUDA has
been proposed in [4], where the authors propose a framework for
functional verification of RTL designs. The framework translates
the RTL code into C code targeting NVIDIA GPUs, thus allowing
fast parallel automatic test pattern generation and fault simulation.

All the previous works applied SystemC simulation to CUDA
GP-GPUs, while, to the best of our knowledge, there is no work that
has analyzed the performance of SystemC simulation by adopting
OpenCL.

3. GP-GPU PROGRAMMING
The following Sections present CUDA and OpenCL (Section

3.1 and 3.2). Then, Section 3.3 compares platform models, mem-
ory models, execution models and programming models of the two
frameworks.

3.1 CUDA
NVIDIA’s Compute Unified Device Architecture (CUDA) [14]

has been proposed to facilitate GP-GPU programming with a gen-
eral purpose interface. In the CUDA execution model, the GP-GPU
is a co-processor capable of executing many threads in parallel,
following the single instruction multiple data (SIMT) model of ex-
ecution. A data parallel computation process, known as a kernel,
can be offloaded to the GP-GPU for execution. The collection of
threads represented by a kernel is divided into a grid of thread-
blocks.

The CUDA architecture (Figure 1) consists of a number of mul-
tiprocessors within a single GP-GPU chip. Multiprocessors are re-
sponsible for the execution of the thread-blocks mapped to each of
them. Each multiprocessor comprises multiple stream processors
with common instruction fetching and support for a large number
of concurrent threads. Thus, each multiprocessor executes several
groups of threads at a time (known as a warp) in a time-multiplexed
fashion, with frequent context-switches from one warp to another.
Because of the shared fetch unit, execution path divergence be-
tween threads in a same warp is detrimental to performance as only
one branch path can be executed at a time. Thus, if threads in a
same multiprocessors must execute different code paths, the least
penalizing solution is to map them to different warps.

Each multiprocessor has access to low latency scratchpad mem-
ory, divided between local registers and shared memory. All mul-
tiprocessors also have access to a region of global memory called
device memory, which has higher access latency. Communication
with the host CPU’s main memory is achieved via lower bandwidth
direct memory access (DMA) transfers. Thus, it is important to
keep communication between the host and the GP-GPU to the bare
minimum.

3.2 OpenCL
OpenCL is a standard for general purpose programming across

heterogeneous processors developed by the Kronos group since
2008. OpenCL supports vendor-independent architectures, rang-
ing from CPUs to GP-GPUs and matching the OpenCL platform
structure.

An OpenCL program is divided into host code and device code.
The host program prepares the device execution and it transfers
data to the device. The device code is structured in kernels, pro-

Grid

Device MemoryHost

� Block (0, 0)

Shared Memory

Th(0, 0)

Registers

Th(1, 0)

Registers

Th(k-1, l) Th(k, l)

Common instruction

fetch

Block (1, 0)

Shared Memory

Th(0, 0)

Registers

Th(1, 0)

Registers

Th(k-1, l) Th(k, l)

Common instruction

fetch

Block (i, j)

Shared Memory

Th(0, 0)

Registers

Th(1, 0)

Registers

Th(k-1, l) Th(k, l)

Common instruction

fetch

Figure 1: NVIDIA CUDA architecture

grams that perform the functionality of the target application. Each
thread is associated with an instance of the kernel, called work-
item, and is identified by an ID. Work-items are grouped into work-
groups, that execute concurrently on the processing elements of a
single compute unit. As a result, threads belonging to the same
work-group execute the same instruction, in a SIMD flavor.

When offloading code to the device, the host must define a con-
text. Each context is made of a set of devices where execution
occurs and by the kernel that must be executed. Furthermore, a
context contains a reference to the program source code and to the
memory objects that are visible from both the host and the devices.
A command queue is created to coordinate execution among con-
texts on the devices.

Each compute unit has access to low latency memory, that can
be shared between the different processing elements. In addition,
there is a region of memory, called global memory, that can be ac-
cessed by all multiprocessors. Communication with the host CPU’s
main memory is achieved by means of data transfers (added to the
command queue) or shared pointers. However, data sharing with
the host introduces a heavy overhead, and thus communication be-
tween host and device must be minimized.

Contexts

OpenCL Application

OpenCL kernel

program Memory buffers

Command

queue

Buffer

Kernel

OpenCL

Device 0

Buffer

Kernel

OpenCL

Device n
…

...

Shared Memory

SP 0 SP 1 SP n

Device 0

Thread Thread Thread Thread

Thread Thread Thread Thread

Device 1

Device n

Figure 2: Typical OpenCL architecture

3.3 CUDA-OpenCL comparison
As outlined in the previous sections, OpenCL and CUDA share

their core ideas as they have similar platform models, memory
models, execution models and programming models. To the pro-

grammer, the computing system consists of a host (e.g., a typical
CPU) and one or more devices that are massively parallel proces-
sors equipped with a large number of arithmetic execution units.

However, OpenCL targets a wider range of architectures, while
CUDA is restricted to NVIDIA’s GP-GPUs. This implies that OpenCL
must be more flexible and it can not take into account specific prop-
erties of the architecture, such as the availability of read-only mem-
ory. This consideration impacts execution performance and thus a
number of aspects should be taken into account to achieve a fair
comparison:

• CUDA provides optimization pragma directives to automati-
cally improve the code. An example is the unroll pragma,
that applies unrolling to loops, thus reducing branch predic-
tion failures and the presence of dynamic instructions. Once
again, OpenCL can not exploit such optimizations. When
removing pragma support, CUDA code may become slower
than OpenCL [10];

• CUDA assumes the availability of fast-access read-only mem-
ory, such as texture memory and constant memory. Applica-
tions can exploit this architectural characteristics to reduce
memory access overhead [10]. On the other hand, OpenCL
can not make assumptions on the underlying platform and
thus memory handling is less optimized;

• CUDA compilers are more mature than OpenCL ones. As
a result, OpenCL compilers generate up to two times more
arithmetic instructions than their CUDA counterpart [10].
This difference can not be eliminated and it is implied by
the open source nature of OpenCL;

• Unlike CUDA, OpenCL requires environmental setup be-
fore launching the kernels on the GP-GPU. This process in-
cludes selecting the target device, by querying the available
resources, and compiling the kernels at runtime. As a re-
sult, OpenCL’s initialization cost includes compilation cost
and lead to kernels setup taking longer than kernels execu-
tion [8]. However, OpenCL set up costs are fixed and thus it
can be amortized on complex applications.

We took the above into consideration, and strove to create a fair
comparison between the two platforms. We do not use pragma op-
timizations, nor read-only memory accesses in our analysis. How-
ever, the OpenCL simulator is still penalized by initialization over-
head and less optimized compilers.

4. SYSTEMC TO C++ TRANSLATION TAR-
GETING GP-GPUs

Mapping of SystemC applications to GP-GPU architectures is a
non trivial task, since it requires scheduling support and the ability
to preserve correct simulation outputs, even when the processes are
executed in parallel. In the literature, two main approaches have
been proposed to address this issue. [13] applies dynamic schedul-
ing to the GP-GPU framework, by executing individual threads in
parallel only when the testbench structure allows it and by synchro-
nizing after each simulation step. On the other hand, [19] proposes
a static scheduling approach that avoids frequent synchronization
steps by partitioning the starting SystemC processes into indepen-
dent sets that execute on different multiprocessors. The proposed
techniques are outlined in Section 4.1 and Section 4.2 respectively,
while Section 4.3 compares the two.

4.1 Dynamic scheduling
The work proposed in [13] maps SystemC processes to a model

of concurrent threads that synchronizes after each simulation step.
Each SystemC process is assigned to one thread and all threads be-
long to the same thread block, to gain fast synchronization. In this
way, barriers can be exploited to synchronize threads, to update
memory and to maintain the correct producer-consumer relation
among threads. An example of this approach is shown in Figure
3. Grey-colored threads are those performing meaningful compu-
tation. White-colored threads are waiting on a barrier for the other
threads to complete their job.

START SIMULATION

P1 P2 P3 P4 P5 P6 P7 P8

P1 P2 P3 P4 P5 P6 P7 P8

P1 P2 P3 P4 P5 P6 P7 P8

STOP

END

?

END

?

END

?

END

?

END

?

END

?

END

?

END

?

P9

P9

P9

END

?

BARRIER

BARRIER

Figure 3: Scheduling example based on SCGPSim

4.2 Static scheduling
SAGA [19] proposes a different approach based on static schedul-

ing. The read-write dependencies between the starting SystemC
processes are analyzed to generate a dependency graph of the pro-
cesses (left hand side of Figure 4). The graph is then topologically
sorted and partitioned into independent dataflows, i.e., portions of
the process graph that can be executed independently (right hand
side of Figure 4). Such dataflows are then mapped to distinct mul-
tiprocessors for concurrent execution. When necessary, some por-
tions of the process graph may be replicated to attain independence
among dataflows (as happened to processes P3, P4 and P7 in Fig-
ure 4).

The dataflows built in the previous step are process dependency
trees, that must be executed level-by-level to respect the internal
dependency constraints. Thus, for each dataflow obtained in the
previous step, a total serial order of processes must be built, with
the goal of satisfying the level-to-level dependencies.

Processes in each dataflow are serialized, starting from the lower
levels up to the root processes of the dependency graph (processes
at the same level can be executed in any sequential order). Such
sequential order eliminates the need of frequent synchronization
after each level. An example timeline obtained from this example
is shown on the right hand side of Figure 5.

P5P1 P2 P3 P4

P6 P7

P8 P9

Dependency graph

P5P3 P4

P7

P9

P1 P2 P3 P4

P6 P7

P8

Dataflow partitioning

and scheduling

Figure 4: Application of the SAGA methodology to the same
example testbench of Figure 3

4.3 Dynamic vs. static scheduling comparison
The proposed approaches to SystemC simulation on GP-GPU ar-

chitectures have many differences that affect overall performance.
The dynamic scheduling approach of SCGPSim [13] implies an

overhead for both handling of events and frequent synchronization
barriers. The left hand side of Figure 5 highlights the frequency
and the overhead induced by dynamic scheduling, with respect to
the static approach (right hand side of Figure 5). Static scheduling
has been adopted in SAGA to avoid such synchronization issues,
while still preserving the dependencies between processes. The
static approach was shown to be more efficient also on complex
designs [19].

Both the scheduling approaches have also a heavy impact on
thread management, as outlined in Figure 5. Dynamic schedul-
ing requires fast synchronization primitives called barriers, avail-
able only when the synchronizing threads belong to the same thread
block. However, if this is the case (as in SCGPSim), processes are
serialized (as highlighed on the left hand side of Figure 5). Indeed,
SystemC processes tend not to share the same code, generating a
path divergence in the instructions executed by each thread. On
the other hand, static scheduling can adopt heavier synchroniza-
tion mechanisms, due to less frequent synchronization. Thus, the
executing threads can belong to different blocks and still achieve
concurrent execution (as highlighed on the right hand side of Fig-
ure 5).

As a result, static scheduling is a winning approach to speed up
simulation, both for better thread management and reduced need
for synchronization. Thus, we adopt static scheduling in our solu-
tion.

Execution with SCGPSim

P1

P2

P3
P4

P5

sync overhead

P6

P7

sync overhead

P8

P9

sync overhead

warp 1 warp 2 warp 3 warp 4

clock updates

sync overhead

clock updates

P8

P9P6

P7

P1

P2

P3

P4

P3

P4

P5

warp 0

P7

MP0 MP1

Dataflow 0 Dataflow 1

Execution with SAGA

Figure 5: Comparison of actual execution schedule when using
SCGPSim (on the left) vs. SAGA (on the right)

5. PARALLEL EXECUTION ON GP-GPUs
In this paper, we adopt SAGA to determine the static scheduling

and to generate the target code. Both OpenCL and CUDA maintain
the same code structure, with two separate kernels executed on the
GP-GPU. A simulation kernel manages dataflow execution, and it
is generated by listing all the dataflows and predicating each by a
thread-block ID condition, so that only a specific thread-block is
responsible for executing a certain dataflow. The simulation ker-
nel alternates execution with a value-update kernel, responsible for
transferring next-state values into the corresponding present-state
values and performing testbench actions. A simulation cycle is
completed by one execution of the simulation kernel followed by
one execution of the value-update kernel.

Since device memory accesses are particularly slow, only vari-
ables written by synchronous processes are allocated in global mem-
ory, while all other variables can be declared as local variables
mapped to registers.

The following sections discuss the differences in the code gener-
ated for OpenCL frameworks (Section 5.2) with respect to CUDA
frameworks (Section 5.1). The main differences deal with memory
handling and with kernel management on the device.

5.1 Execution on CUDA frameworks
A pseudo-code of the host code generated for CUDA frame-

works is outlined in Figure 6. In CUDA, kernels are invoked by
the host and they result in the activation of a high number of par-
allel threads that perform computation (line 8). Host and devices
have separate memory spaces. Thus memory must be allocated sep-
arately on the host (line 2) and the device (line 4). When memory
must be shared between the host and the device (e.g., to pass inputs
or return the result of computation to the host), all memory transfers
must be explicit (line 10). Since such transfers are time-consuming
operations, they must be reduced to the bare minimum.

1: // allocation of memory on the host
2: host_m = malloc(size);
3: // allocation of memory on the device
4: cudaMalloc((void**)&device_m, size);
5: // memory transfer to provide inputs
6: cudaMemcpy(device_m,host_m,size,cudaMemcpyHostToDevice);
7: // kernel invocation
8: kernel_f«< block_number, thread_number »>(device_m);
9: // memory transfer to get results

10: cudaMemcpy(device_m,host_m,size,cudaMemcpyDeviceToHost);

Figure 6: Example of host code for CUDA frameworks

5.2 Execution on OpenCL frameworks
OpenCL management of GP-GPU execution requires an initial-

ization phase to set up the GP-GPU and the code. Figure 7 outlines
the code and the operations that are necessary for the setup. The
host queries the system to get a reference to the device (line 2-3).
Since OpenCL supports a wide range of devices, the device type
must be provided (e.g., GP-GPU). Then, this information is used
to setup the context (line 5) and the command queue used to com-
municate with the device (e.g., to transfer data or activate kernels,
line 7). The command queue is necessary since kernel invocations
and memory transfers are not directly invoked by the host. On the
contrary, they are added to the command queue of each device.

Finally, the host must configure the program that runs on the GP-
GPU, perform runtime compilation (line 9-10) and initialize kernel
functions (line 12). All such operations are not necessary in CUDA,
since CUDA targets exclusively NVIDIA GP-GPU.

1: // get information about the platform and the GP-GPU
2: status = clGetPlatformIDs(1, &platform, NULL);
3: status = clGetDeviceIDs(platform, device_type, 1, &device, NULL);
4: // initialize the context
5: context_properties = CL_CONTEXT_PLATFORM, platform, 0 ;
6: // create the command queue
7: clCreateCommandQueue(context, device, 0, &status);
8: // setup and compile the program
9: clCreateProgramWithSource(context, 1, &source, size, &status);

10: status = clBuildProgram(program,1,&device,options,NULL,NULL);
11: // initialize the kernel
12: initialize = clCreateKernel(program, "kernel_f", &status);

Figure 7: Example of host code to initialize execution on
OpenCL frameworks

Once initialization and platform configuration have been exe-
cuted, the host code must manage memory and kernel invocations.
A simple outline of the host code generated for OpenCL frame-
works is shown in Figure 8. In OpenCL, kernels and memory trans-

fers are added to the command queue initialized during the initial-
ization phase (Figure 7). When launching a kernel, parameters are
explicitly set and then the kernel can be queued for execution (line
9-10), leading to parallel execution on the device.

Memory management in OpenCL is more flexible. The program-
mer may decide to make memory locations visible only from the
device or available to the host as well. Such configurations are set
during memory allocation, by passing the desired configuration as
a parameter (line 4). Performance of memory transfers between
the device and the host are heavily affected by the selection of such
parameters (line 6 and line 11).

1: // allocation of memory on the host
2: host_m = malloc(size);
3: // allocation of memory on the device
4: device_m = clCreateBuffer(context,OPENCL_CONFIG,size,NULL,

&status);
5: // memory transfer to provide inputs
6: clEnqueueWriteBuffer(commandQueue, device_m, CL_TRUE, 0, size,

host_m, 0, NULL, NULL);
7: // kernel setup and invocation
8: clSetKernelArg(kernel_f,n,size,parameter);
9: clEnqueueNDRangeKernel(commandQueue,kernel_f, 1, NULL,

&thread_number, &grid_number, 0, NULL, NULL);
10: // memory transfer to get results
11: clEnqueueReadBuffer(commandQueue, device_m, CL_TRUE, 0, size,

host_m, 0, NULL, NULL);

Figure 8: Example of host code for OpenCL frameworks

6. EXPERIMENTAL RESULTS
This section evaluates the performance of the generated code

for SystemC simulation on GP-GPUs. Furthermore, we provide a
detailed comparison between CUDA and OpenCL frameworks, to
highlight their strengths and drawbacks when simulating SystemC
RTL code.

6.1 Experimental setup
All the experiments have been carried out on two different GP-

GPUs: NVIDIA GeForce GTX 460 and NVIDIA GeForce GTX
570. The main characteristics of such platforms are outlined in
Table 1.

Characteristics NVIDIA NVIDIA
GTX460 GTX570

CUDA Version 4.2 4.2
OpenCL Version 1.1 1.1
Cores (#) 336 480
Core clock (MHz) 1350 1464
Memory clock (MHz) 1800 1900
Memory 115.2 152.0bandwidth (GB/s)
Compute capability 2.1 2.0

Table 1: Characteristics of the GP-GPU platforms

The designs used in the experiments are part of a complex em-
bedded platform that was developed in the context of a European
project together with silicon vendor industry partners:

• ClockGen, ResGen, Sync and RegCtrl are part of a complex
DSPI system. ClockGen is a multiple clock generator. Res-
Gen transforms and outputs the computed results in the spec-
ified format. Sync is a specialized synchronization function
among a number of components. RegCtrl is a register con-
troller for a set of registers.

• 8b10b is a module encoding and decoding byte-wide data
according to the 8b/10b protocol.

• Ecc is an error correction code device.
• System is a complex platform integrating all the designs pre-

viously discussed.

For each design, Table 2 reports the number of processes in
the original SystemC description (Processes (#)), the lines of code
(SystemC (loc)), the number of dataflows extracted (Dataflows (#))
while building the static scheduling and the number of thread blocks
launched on the GP-GPU(Thread block (#)).

Design Processes(#) SystemC Dataflows Thread
Synch. Asynch. (loc) (#) block (#)

ClockGen 6 15 741 12 12
ResGen 3 6 478 9 9
Sync 4 22 641 23 23
RegCtrl 18 32 2677 43 43
8b10b 7 30 799 7 7
ECC 4 7 582 4 4
System 42 112 5643 98 98

Table 2: Characteristics of the testbench designs

6.2 Compilation costs
Table 3 compares the cost of compilation for the generated code.

Column CUDA comp. (ms) contains the compilation time for the
CUDA version of each design, including compilation of the device
code. Column OpenCL comp. (ms) details the time spent during
the offline and runtime compilation phases by the OpenCL imple-
mentation.

Design CUDA OpenCL comp. (ms)
comp. (ms) Offline Runtime

ClockGen 5,170 270 8.42
ResGen 5,230 270 11.75
Sync 6,220 270 9.95
RegCtrl 4,920 280 11.27
8b10b 5,740 260 11.67
Ecc 4,500 290 7.09
System 16,080 290 17.37

Table 3: Comparison of compilation times for the sequential
SystemC simulator and the CUDA and OpenCL versions exe-
cuted on the NVIDIA GTX 570 GP-GPU.

OpenCL offline compilation cost is much smaller than CUDA
compilation cost (avg. 270 ms vs 6,380 ms), since it consists only
of the host code compilation and of the generation of an intermedi-
ate representation for the device code. On the other hand, OpenCL
code initialization includes runtime compilation, consisting in the
generation of the actual device code binary, starting from the in-
termediate representation (as explained in section 3.2). This last
compilation step can be performed only at runtime, since it de-
pends on the device chosen at initialization time for the execution.
As a result, the runtime compilation cost for OpenCL is bigger and
it depends on the size of the design (avg. 11.07 ms).

These GP-GPU experiments have been conducted on the NVIDIA
GTX 570 GP-GPU. However, similar times apply to the NVIDIA
GTX 460 GP-GPU.

6.3 Performance
Table 4 reports the execution time for the CUDA and OpenCL

versions of each testbench example on the NVIDIA GTX 570 and
NVIDIA GTX 460 GP-GPU, respectively. The table highlights that
execution is faster on the GTX 460 architecture, even if the HW ar-
chitecture of the NVIDIA GTX 570 GP-GPU is more optimized

and contains more computing units. This behavior is strictly due
to a more optimized version of the NVIDIA framework running
on the NVIDIA GTX 460 architecture, including support SW and
compilers. This shows that performance is heavily affected by both
the underlying architecture and the support SW framework. Sec-
tion 6.4 will show that the impact of each operation on the overall
performance is similar on both the architectures, and thus the con-
siderations made for the GTX 570 GP-GPU will apply also to the
GTX 460 GP-GPU.

Design NVIDIA GTX 570 (ms) NVIDIA GTX 460 (ms)
CUDA OpenCL CUDA OpenCL

ClockGen 1,011.0 1,317.0 210.2 420.3
ResGen 15,675.0 72,343.0 16,953.2 90,739.0
Sync 1,013.4 1,159.1 186.9 443.4
RegCtrl 1,046.8 1,450.0 235.6 637.1
8b10b 20,610.0 82,594.0 23,445.9 90,739.0
Ecc 1,055.8 1,181.1 183.3 402.1
System 61,995.7 227,142.0 71,720.4 201,379.0

Table 4: Execution time for the CUDA and OpenCL versions of
each testbench example on the NVIDIA GTX 570 and NVIDIA
GTX 460 GP-GPU

6.4 Performance analysis
Table 5 analyzes the performance of the generated code on the

NVIDIA GTX570 GP-GPU, deepening the timing results reported
in table 4. Column (Real time (ms)) reports the execution time on
CUDA and OpenCL frameworks, respectively. Then, the execution
time is divided into the different operations:

• initialization: initialization phase that includes GP-GPU and
memory setup and (for OpenCL frameworks) runtime com-
pilation;

• initialization kernel: execution of the initialization kernel;

• simulation kernel: execution of the simulation kernel, to ex-
ecute the dataflows;

• value-update kernel: execution of the value-update kernel;

• DH memory transfer: transfer of data from the device mem-
ory to the host memory;

• HD memory transfer: transfer of data from the host memory
to the device memory.

For each operation, the table shows time spent on the CPU (Col-
umn CPU (ms)) and the time spent on the GPU (Column GPU
(ms)). CPU time includes the host overhead to launch functions,
kernel setup and memory setup. GPU time includes kernel execu-
tion and memory transfer execution. Furthermore, Column Opera-
tion overhead (%) shows the overhead of each operation on overall
execution, thus allowing to analyze the performance of each oper-
ation on both the frameworks.

Figures 9 to 13 highlight the most relevant aspects of the table.
As shown in Figure 9, real time is always faster for the CUDA
version of each testbench design. This is easily explained when
considering the analysis in section 3.3. SystemC simulation on
GP-GPUs does not exploit architecture peculiarities such as read-
only memory or loop unrolling pragmas. However, CUDA is more
mature and its compilers are more optimized for the NVIDIA GP-
GPU architectures than the OpenCL counterpart. This speeds up
execution of the CUDA versions, to the detriment of the OpenCL
implementations.

Design Real time (ms) Operation Invocations CPU (ms) GPU (ms) Operation overhead (%)
CUDA OpenCL (#) CUDA OpenCL CUDA OpenCL CUDA OpenCL

ClockGen 1,011 1,317

initialization 1 1.00 8.42 0.00 0.00 2.12 10.14
initialization kernel 1 0.02 0.03 0.00 0.00 0.04 0.04
simulation kernel 3,300 5.48 8.74 5.84 4.56 24.01 16.01

value-update kernel 3,300 6.19 8.09 4.41 3.59 22.49 14.06
DH memory transf. 3,300 15.32 32.98 2.06 4.90 36.86 45.61
HD memory transf. 3,300 5.55 10.41 1.27 1.35 14.47 14.15

ResGen 15,675 72,343

initialization 1 0.80 11.75 0.00 0.00 0.00 0.04
initialization kernel 1 0.02 0.03 0.00 0.00 0.00 0.00
simulation kernel 1,000,000 3,675.34 6,625.11 2,594.11 2,296.28 23.66 31.28

value-update kernel 1,000,000 3,381.12 5,305.48 1,953.26 2,002.04 20.13 25.62
DH memory transf. 1,000,000 9,530.30 1,974.81 1,305.40 3,113.09 40.89 17.84
HD memory transf. 1,000,000 3,245.82 6,354.84 813.44 835.60 15.32 25.21

Sync 1,013 1,159

initialization 1 0.99 9.95 0.00 0.00 2.57 11.67
initialization kernel 1 0.01 0.04 0.01 0.00 0.05 0.05
simulation kernel 1,300 4.85 14.07 3.76 3.30 22.45 20.36

value-update kernel 1,300 4.47 9.00 4.58 3.85 23.57 15.07
DH memory transf. 1,300 12.67 31.31 1.63 3.96 37.29 41.34
HD memory transf. 1,300 4.38 8.77 1.01 1.05 14.07 11.51

RegCtrl 1,046 1,450

initialization 1 1.09 11.27 0.00 0.00 1.07 4.37
initialization kernel 1 0.01 0.03 0.01 0.00 0.02 0.01
simulation kernel 6,600 11.97 60.78 10.37 9.01 22.00 27.07

value-update kernel 6,600 10.90 30.60 14.55 14.58 25.05 17.52
DH memory transf. 6,600 35.00 90.66 4.25 9.96 38.64 39.03
HD memory transf. 6,600 10.88 28.30 2.56 2.62 13.23 11.99

8b10b 20,610 82,594

initialization 1 0.98 11.67 0.00 0.00 0.00 0.02
initialization kernel 1 0.01 0.03 0.00 0.00 0.00 0.00
simulation kernel 1,000,000 3,602.43 5,904.27 5,904.27 5,203.65 26.44 21.52

value-update kernel 1,000,000 3,269.76 4,356.19 4,217.16 3,579.21 20.82 16.28
DH memory transf. 1,000,000 12,881.70 21,872.60 1,230.69 2,984.38 39.25 51.00
HD memory transf. 1,000,000 3,186.54 4,646.12 1,659.49 798.13 13.48 11.17

Ecc 1,056 1,181

initialization 1 1.01 7.09 0.00 0.00 3.16 10.18
initialize kernel 1 0.01 0.03 0.00 0.00 0.06 0.04

simulation kernel 1,026 3.49 7.64 4.14 3.78 22.80 16.40
value-update kernel 1,026 3.88 11.40 3.40 2.75 22.72 20.31
DH memory transf. 1,026 10.63 25.42 1.28 3.06 37.18 40.86
HD memory transf. 1,026 3.39 7.69 0.80 0.82 13.08 12.21

System 61,996 227,142

initialization 1 1.36 17.37 0,00 0,00 0,00 0,01
initialization kernel 1 0.01 0.03 0.01 0.01 0,00 0,00
simulation kernel 2,200,002 7,190.06 15,237.60 11,255.20 9,755.01 16.53 16.76

update kernel 2,200,002 7,854.85 25,732.20 27,430.70 23,973.40 31.63 33.34
DH memory transf. 2,200,002 45,820.00 50,841.90 2974.18 7,104.37 43.73 38.86
HD memory transf. 2,200,002 7,348.70 14,517.30 1,697.00 1,917.47 8.11 11.02

Table 5: Comparison of execution times for the CUDA and OpenCL versions executed on the NVIDIA GTX570 GP-GPU and analysis
of the overhead of the single operations on overall performance

clockgen sync regctrl resgen 8b10b ecc system

1,0

10,0

100,0

1.000,0

10.000,0

100.000,0

1.000.000,0

T
im

e
 (

m
s) CUDA

OpenCL

Figure 9: Comparison of simulation performance (real time)
for the CUDA and OpenCL simulation of each design

Figure 10 shows the time devoted to initialization in the CUDA
and OpenCL code. The CUDA version has an almost constant ini-
tialization time, that results in being faster than the OpenCL ver-
sion. Indeed, OpenCL initialization includes runtime compilation
costs that strictly depend on the device code and on the kernel’s size
(as explained in section 3.2 and shown in section 6.2). As a result,
a more optimized OpenCL compiler would enhance initialization
and reduce its impact on performance.

clockgen sync regctrl resgen 8b10b ecc system

0

2

4

6

8

10

12

14

16

18

20

T
im

e
 (

m
s)

CUDA

OpenCL

Figure 10: Initialization overhead of the CUDA and OpenCL
implementations for all testbench designs

Then, it is important to evaluate the overhead of each operation
on the execution time. The analyzed operations are: initialization
(including runtime compilation for OpenCL), device kernels (ini-
tialization kernel, simulation kernel and value-update kernel) and
memory transfers (DH if the transfer is from device to host, HD
for the other direction). Figures 11, 12 and 13 highlight the im-
pact of each operation on the RegCtrl example. However, similar
considerations apply to all testbench designs.

Figure 11 shows the average CPU time necessary to perform

initialization

kernel

simulatation

kernel

value-update

kernel

DH memory

transf.

HD memory

transf.

0,00

5.000,00

10.000,00

15.000,00

20.000,00

25.000,00

30.000,00
T

im
e

 (
n

s)

CUDA

OpenCL

Figure 11: Comparison of average CPU time of each operation
for CUDA and OpenCL implementations of the RegCtrl exam-
ple

initialization

kernel

simulatation

kernel

value-update

kernel

DH memory

transf.

HD memory

transf.

0,00

1.000,00

2.000,00

3.000,00

4.000,00

5.000,00

6.000,00

7.000,00

T
im

e
 (

n
s)

CUDA

OpenCL

Figure 12: Comparison of average GPU time of each operation
for CUDA and OpenCL implementations of the RegCtrl exam-
ple

each operation. The figure highlights that CPU time is always
higher for OpenCL versions. Indeed, kernel management and mem-
ory handling imply a heavier overhead for OpenCL. On the other
hand, Figure 12 shows the average GPU time necessary to perform
each operation. Kernel execution is faster on OpenCL, while mem-
ory transfers are more optimized and, thus, faster for the CUDA
version. The difference on memory handling is explained by the
different nature of CUDA and OpenCL. CUDA targets specific
GP-GPU architectures, thus it can efficiently exploit the architec-
ture characteristics (e.g., read-only memory). On the other hand,
OpenCL must be more flexible and it can make no assumption on
the underlying architecture, leading to an heavy impact on memory
operations.

Finally, Figure 13 depicts the impact of each operation on execu-
tion performance for both the CUDA and the OpenCL versions of
the examples. CUDA and OpenCL have similar behaviors. Initial-
ization and the initialization kernels have a low impact on perfor-
mance (0.02% and 1.07% on CUDA, 0.01% and 4.37% on OpenCL,
respectively). Furthermore, the more complex funtionality execu-
tion is, the less impact initialization has.

A percentage comprised between the 40% and the 50% of the
execution time is occupied by execution of the kernels that are nec-
essary for simulation in both the CUDA and OpenCL versions. In-
deed, the simulation and value-update kernels occupy the 22% and
27.07% on CUDA, and the 25.05% and 17.52% on OpenCL, re-
spectively.

Finally, memory management has a heavy impact on the perfor-
mance. Copy of data from the device memory to the host mem-
ory is up to 3x slower than transfers in the opposite direction, for
both the CUDA and the OpenCL version. Indeed, it requires an
average of 38.83% of overall execution time (38.64% on CUDA
and 39.03% on OpenCL), while memory transfers from the host
memory to the device memory require an average of the 12.61%
(13.23% on CUDA and 11.99% on OpenCL). As a result, mem-
ory transfers dominate both CUDA and OpenCL execution perfor-
mance.

Figure 13: Overhead of the individual operations for the RegC-
trl example, applied to the CUDA (on the left) and to the
OpenCL version (on the right) on the NVIDIA GTX570 GP-
GPU.

Figure 14: Overhead of the individual operations for the RegC-
trl example, applied to the CUDA (on the left) and to the
OpenCL version (on the right) on the NVIDIA GTX460 GP-
GPU.

The above considerations justify the overall performance trends
shown in Figure 9. OpenCL versions are faster only in kernel ex-
ecution. On the contrary, all management tasks (kernel activation
and synchronization and memory transfers) are faster on CUDA.
Figure 14 highlights that the comments made for the GTX 570 ar-
chitecture apply also to the GTX 460 GP-GPU. Indeed, each op-
eration has the same impact on the execution for both the CUDA
and the OpenCL version, despite of the more optimized compute
capability support.

All the former considerations highlight how the OpenCL perfor-
mance is affected by non optimized compilers. This is highlighted
also by the comparison between the NVIDIA GTW 460 and 570
architectures, where a more optimized SW framework makes ex-
ecution faster on the less performing architecture (the GTX 460).
OpenCL is less mature that CUDA, thus affecting execution man-
agement and memory handling costs. However, former develop-
ment of OpenCL may improve performance and management, reach-
ing the performance of CUDA still preserving the higher degree of
portability.

7. CONCLUSION
This paper presented an analysis of SystemC simulation on GP-

GPU architectures, targeting both CUDA and OpenCL frameworks.
The analysis is enriched with a detailed analysis of the performance
differences between the two frameworks, highlighting strengths and
drawbacks. We found that OpenCL is slower that the corresponding
CUDA version, due to a less optimized management of the underly-
ing architecture. However, OpenCL is less mature than CUDA and
the analysis conducted in the paper showed that the SW framework
has a heavy impact on performance. Thus, future development may
lead to more optimized compilers and to overcome the limitations
of OpenCL portability.

8. REFERENCES
[1] Accellera Systems Initiative. SystemC.

http://www.accellera.org.
[2] F. Balarin and R. Passerone. Functional verification methodology

based on formal interface specification and transactor generation. In
Proc. of IEEE/ACM DATE, pages 1013–1018, 2006.

[3] N. Bombieri, A. Fedeli, F. Fummi, and G. Pravadelli. Hybrid
incremental ABV for functional validation in TLM design flows.
IEEE Design and Test of Computer, 24(2):140–152, 2007.

[4] N. Bombieri, F. Fummi, and V. Guarnieri. FAST-GP: An RTL
functional verification framework based on fault simulation on
GP-GPUs. Proc. of ACM/IEEE DATE, pages 562–565, 2012.

[5] R. Buchmann and A. Greiner. A fully static scheduling approach for
fast cycle accurate SystemC simulation of MPSoCs. In Proc. of IEEE
ICM, pages 101 –104, 2007.

[6] L. Cai and D. Gajski. Transaction level modeling: An overview. In
ACM/IEEE CODES+ISSS, pages 19–24, 2003.

[7] P. Combes, E. Caron, F. Desprez, B.Chopard, and J. Zory. Relaxing
synchronization in a parallel SystemC kernel. In Proc. Of ISPA,
pages 180–187, 2008.

[8] P. Du, R. Weber, P. Luszczek, S. Tomov, G. D. Peterson, and
J. Dongarra. From CUDA to OpenCL: Towards a
performance-portable solution for multi-platform GPU
programming. Parallel Computing, 38(8):391–407, 2012.

[9] P. Ezudheen, P. Chandran, J. Chandra, B. Simon, and D. Ravi.
Parallelizing SystemC kernel for fast hardware simulation on SMP
machines. In Proc. of ACM/IEEE PADS, pages 80–87, 2009.

[10] J. Fang, A. L. Varbanescu, and H. Sips. A Comprehensive
Performance Comparison of CUDA and OpenCL. In Proc. of ICPP,
pages 216–225, 2011.

[11] R. Jindal and K. Jain. Verification of transaction-level SystemC
models using RTL testbenches. In Proc. of ACM/IEEE
MEMOCODE, pages 199–203, 2003.

[12] A. Mello, I. Maia, A. Greiner, and F. Pecheux. Parallel simulation of
SystemC TLM 2.0 compliant MPSoC on SMP workstations. In Proc.
of ACM/IEEE DATE, pages 606–609, 2010.

[13] M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla.
SCGPSim: A fast SystemC simulator on GPUs. Proc. of ACM/IEEE
ASP-DAC, pages 149–154, 2010.

[14] NVIDIA. NVIDIA CUDA Compute Unified Device Architecture -
Programming Guide, 2008. http://developer.download.nvidia.com.

[15] N. Saviou, S. Shukla, and R. Gupta. Design for Synthesis, Transform
for Simulation: Automatic Transformation of Threading Structures in
High Level System Models. University of California at Irvine, 2008.
Technical Report TR-01-58.

[16] R. Sinha, A. Prakash, and H. D. Patel. Parallel simulation of
mixed-abstraction systemc models on GPUs and multicore CPUs. In
Proc. of ACM ASP-DAC, pages 455–460, 2012.

[17] The Khronos OpenCL Working Group. OpenCL - The open standard
for parallel programming of heterogeneous systems, 2011.
http://www.khronos.org/opencl/.

[18] R. Tsuchiyama, T. Nakamura, T. Iizuka, A. Asahara, and S. Miki.
The OpenCL Programming Book. Fixstars Corporation, 2010.

[19] S. Vinco, D. Chatterjee, V. Bertacco, and F. Fummi. SAGA: SystemC
Acceleration on GPU Architectures. In Proc. of ACM/IEEE DAC,
2012.

[20] H. Ziyu, Q. Lei, L. Hongliang, X. Xianghui, and Z. Kun. A parallel
SystemC environment: ArchSC. In Proc. of ICPADS, pages 617–623,
2009.

