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ABSTRACT

System-level validation is the most challenging phase of de-
sign verification. A common methodology in this context
entails simulating the design under validation in lockstep
with a high-level golden model, while comparing the archi-
tectural state of the two models at regular intervals. How-
ever, if a bug is detected, the diagnosis of the problem with
this framework is extremely time and resource consuming.
To address this challenge, we propose a novel bug triaging so-
lution that collects multiple architectural-level mismatches
and employs a classifier to pinpoint buggy design units. We
also design and implement an automated synthetic bug in-
jection framework that enables us to generate large datasets
for training our classifier models. Experimental results show
that our solution is able to correctly identify the source of a
bug over 70% of the time in an out-of-order processor model.
Furthermore, our solution can identify the top 3 most likely
units with over 90% accuracy.

1. INTRODUCTION

For most of today’s industrial designs, a majority of de-
sign development time is spent on verification [8]. Software
simulation tools frequently cannot tackle the complexity of
system-level validation, forcing design teams to rely exclu-
sively on acceleration and emulation platforms. Unfortu-
nately, these platforms are plagued by limitations on the
design’s signals that can be monitored during validation [16],
often consisting only of the architectural-level state updates
[4]. Once a bug is detected in such an environment, informa-
tion to accurately pinpoint its origin is scarce. In addition,
such bugs tend to hide in extremely complex corner cases,
often detected long after their occurrence. Engineers en-
gage in a time-consuming, mostly ad-hoc, triaging process
to identify the design units responsible for a bug and then
carve a unit-level analysis to root-cause it. This challeng-
ing process of locating bugs in complex designs is one of
the factors for the rising rate of escaped functional bugs, as
evidenced by bugs reported in processor errata [10, 3].

In this work, we propose a high-accuracy, automatic
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Figure 1: BugMD overview. In co-simulation and acceleration
methodologies, the design-under-verification (DUV) executes in
lockstep with a golden instruction set simulator (ISS) (purple).
BugMD (yellow) augments this methodology with a mechanism
to update the ISS state upon a bug manifestation, so that the
two models are re-synchronized and subsequent manifestations of
the bug can be observed. The complete set of bug manifestations
logged by the symptom collector are assembled into a “bug sig-
nature”; which is then transformed into a “feature vector” by the
feature extractor, and transferred to the classifier for diagnosis.

bug triaging solution for low-observability system-
level validation environments that slashes the amount
of time spent on triaging bugs. Our solution, called BugMD
(Bug Mismatch Diagnosis), is designed to operate in accel-
eration and co-simulation validation methodologies, where
bugs are detected by comparing the state of the design-
under-verification (DUV) against a high-level instruction set
simulator (ISS). ISSs are capable of executing an assembly
program at very high performance (only 2-3 times slowdown
from the manufactured silicon processor) and are consid-
ered the golden reference model to determine correct pro-
gram output. We leverage this same framework to provide
diagnostic/localization information, in addition to the de-
tection capabilities that are already part of this approach.
BugMD, illustrated in Figure 1, is capable of identifying
the most likely unit(s) responsible for a bug, based on the
manifestations observed at the architectural state of the de-
sign, i.e., all those states that can be observed from the
firmware/software layer: memory content, memory mapped
registers for accelerators and IP components, and archi-
tected state for processors. Ater detecting a bug mani-
festation by comparing the architected state of the DUV
with that from the ISS, we update the ISS state with
the erroneous DUV state. This way, both models are
pursuing the same incorrect execution, and we can detect



subsequent impacts of that same bug. Note that in a tra-
ditional validation setting, localization is attempted based
on the first, single mismatch between the two models. For
each bug manifestation, we log a new bug symptom, which
we aggregate into a bug signature. The collected symp-
toms are compressed into feature vectors that are transferred
to a classifier model [1] for analysis and localization. Our
classifier is trained on known bugs, e.g.: bugs fixed in pre-
vious design generations and bugs fixed in earlier phases of
verification. In addition, we created a systematic and ef-
ficient infrastructure to train the BugMD classifier
with synthetic bugs when those from prior design gener-
ations or design phases are not available. Our solution can
be deployed alongside current methodologies with minimal
changes: we simply need to be able to update the ISS state
with that of the DUV after a bug manifests, so that we can
gather additional symptoms for that same bug.

Contributions: In this work, we propose BugMD — a novel
approach for localizing bugs using multiple architectural level
bug manifestations, which we refer to as bug signatures. We
introduce a state-synchronized ISS co-simulation strategy
to construct bug signatures by collecting multiple inde-
pendent bug symptoms beyond the first manifesta-
tion of a bug. We identify features and classifier algorithms
best suited for pinpointing bug sites from bug signatures.
Furthermore, we introduce an automated synthetic bug
injection framework to train our classifier model.

2. SYSTEM DESCRIPTION

2.1 Architectural bug signatures

Once a bug manifests at the architectural level, it corrupts
program state. This state corruption often cascades down to
subsequent instructions in the program, leading to a perma-
nent deviation of the DUV execution from that of the ISS. As
a result, conventional debugging techniques rely exclusively
on the first bug manifestation to diagnose a bug. However,
if cascading corruptions could be prevented and multiple
manifestations of the same bug could be observed as several
distinct symptoms, interesting patterns could emerge. Some
patterns may be identified by investigating multiple manifes-
tations of a bug over several distinct test runs: for instance,
a bug may have similar symptoms on different test cases.
More interestingly, patterns may exist among the multiple
symptoms obtained from a single test execution.

Consider the example in Figure 2. A bug in the dispatch
logic of a 4-wide, out-of-order core grabs the wrong regis-
ter value for one of the four instructions it dispatches in
a cycle. The first manifestation of the bug is a mismatch
in the value being written to a register. For the engineer
that observes this mismatch, there could be several reasons
for it: the execution logic may have performed the wrong
computation, the writeback logic may have corrupted the
result, the instruction decoding logic may have provided the
wrong operands, etc. In the worst case, the engineer would
have to analyze traces of internal design signals for as far
back as thousands of cycles (e.g., if the affected instruction
was a load operation that missed in the caches) in order to
discover what went wrong. However, if we synchronize the
ISS state with the state of the DUV and resume execution
(and comparisons), patterns emerge that would help narrow
down the likely culprits. Here, the 4-instruction periodicity

PG execution on DUV execution on ISS
I~
Soxes: ADD R1,R1,#1 0x08: ADD R1,R1,#1

le = OX02 ¢ MRI =50x01, sync R1 = 0x02
state synchronize ISS state
updates< 0x0B: ADD R2,R1,R1 0x0B: ADD R2,R1,R1 Wit

R2 = 0xe4 R2 = oxo04

ox14: ST @(R2), R1
MEM[@x@4] = 0x02,

sync MEM[6x04] = prev_value,
MEM[0x08] = 0x02

\@x14: ST 0(R2), R1
MEM[@x@8] = 0x02

0x24: LD R4, O(R3)
sync PC=6x50, re-execute
0x20: IMP R3

0x50: JMP R3

bug signature snippet
instr. | mismatch | instr. design | ISS
type

cycle| count type value | value
100 | 1 REG VALUE | ALU ox02 | eoxel
103 | 5 MEM ADDR | MEM 0x08 | oxe4
112 | 9 PC CONTROL | x50 | @x24

Figure 2: Bug signature example. The state updates from
execution on the DUV are compared with those from the ISS. We
record mismatches as symptoms and aggregate them into bug sig-
natures. We synchronize the ISS state to avoid cascading failures.

of mismatches, the diversity of affected instruction types,
and the differences between the correct and incorrect values
give hints that the bug may be located in the dispatch logic.

BugMD identifies and collects bug symptoms from each
mismatch. Mismatches are of the form: i) a write to the
wrong register or memory location, ii) a wrong value written
to a register or memory location, or iii) a mismatch in the
expected program counter. In addition, we consider high-
level failures, such as divide-by-zero errors, program hangs,
invalid traps, page faults, etc. Previous works have utilized
these high-level failures to detect the presence of transient
and permanent faults in hardware [11, 12, 17]. A symptom
includes the type of mismatch, the current simulation cycle,
the instruction count, the state update values from the de-
sign and the ISS, and the instruction type. For each test
execution, we aggregate the symptoms from multiple mis-
matches and failures into a bug signature. This aggregation
continues until we complete the execution of the test pro-
gram, the program terminates due to abnormal conditions
(e.g.: segmentation faults, division by zero, etc.), or until a
fixed number of instructions are executed after the first bug
manifestation.

The ISS modifications that BugMD requires are simple
enhancements to the ISS data structures used to maintain
architected state. Firstly, all ISS architectural state up-
dates should be made visible to BugMD’s symptom collec-
tor. Ability to read ISS state updates is a feature that is
already available as it is required for comparing DUV and
ISS states. Secondly, the ISS should be enhanced to al-
low modification of its architected state from BugMD’s syn-
chronization mechanism. This enhancement should be fairly
straightforward to implement for anybody with even mod-
erate familiarity with the inner workings of the ISS. Finally,
note that our ISS synchronization approach may trigger un-
expected behaviors in the ISS. We expect the ISS designers
to ensure that their ISS can execute correctly from any legal
architected state. However, a synchronization event may
lead the ISS to an illegal state, which may result in side-
effects from executions that are incorrect or not defined by
the architecture. Examples include the execution of unim-
plemented instructions, invalid system calls, ISS crashes, etc.
BugMD treats these side-effects as bug symptoms.



We expect the effort required to implement ISS modifica-
tions to be minimal. Moreover, a single ISS is typically used
over multiple design variants and generations; thus, the one-
time modification effort is amortized over the lifetime of the
ISS. It took one graduate student less than a week’s worth
of effort to enhance the ISS used in our experimental frame-
work with the modifications described above. It took even
less effort to modify another ISS for a subset of the Alpha in-
struction set architecture (ISA). Note that a new ISS needs
to be modified for use with BugMD. The architectural bug
signatures generated by the modified ISS, however, are ar-
chitecture independent. Hence, BugMD'’s feature extractor
and classifier do not require any modifications for use with
new ISSs or designs.

2.2 Extracting features from signatures

Each manifestation of a bug can be characterized by the
nature of the mismatches it generates. For instance, an in-
struction may write the wrong value to the wrong regis-
ter. This generates two distinct mismatches, a register in-
dex mismatch and a register value mismatch, each with its
own characteristics. The difference between the wrong and
correct value, the hamming distance between them, and the
locations of the wrong bits are some examples of character-
istics we may record as symptoms for the manifestation.

We represent the multiform, variable-length bug signa-
tures with fixed-length, real-valued vectors of features. The
quality of the classification depends heavily on the quality
of the characteristics chosen to represent the bug signatures
and the vector length (also known as input dimensionality).
After several experiments to identify good feature vectors
with low input dimensionality, we chose the feature extrac-
tion methodology, illustrated in Figure 3, which captures
the differences between the DUV and ISS values as well as
the distribution of mismatch types and instruction types
among symptoms in a given bug signature. Each feature
is a summary of symptoms observed within a user-specified
window of instructions (window of 10,000 instructions in our
experiments), starting from the first manifestation. For each
symptom, we first compute the differences and hamming dis-
tances between the DUV and ISS states. We then compute
features that are arithmetic means and standard deviations
of the differences and hamming distances for each pairwise
occurrence of mismatch and instruction type. In addition,
we include the total number of symptoms in the signature
and we compute the fraction of pairwise occurrences of mis-
match and instruction types. Using this feature extraction
approach in our experiments, we extracted 470 features that
enabled good localization accuracy, while keeping feature
vector lengths reasonable.

2.3 Classifier design

The BugMD classifier plays the most important role in
identifying likely bug sites. We investigated several machine-
learning algorithms to identify one that best suits our needs.
Note that the selection of a classifier and its accuracy are
highly dependent on the set of features selected to repre-
sent bug signatures. Thus, we investigated several different
approaches for generating features, along with classifier algo-
rithms, before selecting the feature set described in Section
2.2, which demonstrated the best overall performance for
all applicable classifier models. Below is a brief discussion
of the classifiers we investigated.

bug signature snippet

instr. |mismatch | instr. design | ISS compute
count lype lype value | val 7 diﬁerences and
(1 REG VALUE [ ALU 0x02" | oxe14 hamming
10,000 5 MEM ADDR | MEM 0x08 | oxe4 distances
instructio 9 PC CONTROL | 0x50 0x24
window coo
\ 10,000 [OVERFLOW | ALU | OxFF | OxXFF

feature vector field groups
summarized from a window of symptoms

mean stdey _mean _stdev fraction | number of
amming | hamming | difference | difference | of type samples

’\h

Yo
one summary entry per mismatch type —
instruction type combination, 469 summaries + 1 =470 in total

Figure 3: Feature vectors. Each feature vector is a summary of
symptoms within a user-specified window. For each combination
of mismatch and instruction type, the average and standard devi-
ations of the hamming distances and differences between the DUV
and ISS states are computed. The distribution of each combina-
tion and the total number of symptoms observed in the window
are also computed.

Decision Tree learns simple rules from training data.
This classifier performed well on our feature sets, despite its
simplicity. It is the fundamental building block of Random
Decision Forests, which we ultimately selected.

Random Decision Forest constructs multiple Decision
Trees, each from different random training samples, and
takes the majority vote as the final output. We chose this
model as it performed better than all other techniques we
investigated. We hypothesize that this method captures the
non-linear boundaries between bugs from different units bet-
ter. Moreover, by aggregating results from multiple decision
trees, it can better tolerate errors due to overfitting.

Linear Support Vector Machine (SVM) is one of
the most used machine-learning algorithms for classification.
For our application, however, it performed poorly and was
slow. We hypothesize that this occurred mainly because our
data points are not linearly separable.

Simple Feed-forward Neural Network is a network of
artificial neurons that can approximate any function. We in-
vestigated several options for network parameters and found
cases where our network learned better than SVM and was
comparable to Decision Trees. However, it was always infe-
rior to Random Decision Forest.

Custom Multi-layer Neural Network is a network
we designed specifically for our application, loosely based
on convolutional neural networks, which are commonly em-
ployed in image classification. Unlike the feature sets used
for the other techniques, the inputs for this network are
much closer to the raw bug signatures; the network attempts
to learn the correlations between symptoms by itself. This
classifier led to better localization accuracy than SVM, but
slightly worse than our simple feed-forward network.

In addition, we also investigated a K-Neighbors classifier,
a Naive Bayes classifier, an Ada Boost classifier, a voting
classifier that aggregates multiple types of classifiers, and a
custom hierarchical classifier. The Random Decision Forest
classifier outperformed every other classifier we investigated
and is our classifier of choice. In setting up the Random
Decision Forest, we configured the number of trees to be
anywhere between 32 and 1024, without noticing any sig-
nificant difference in the quality of results. Our experience
indicates that the actual process of training the classifier
takes only minutes.



2.4 Synthetic bug injection framework

Our classifier model is trained with a database of known
bugs and their corresponding feature vectors, derived from
multiple buggy executions. This training database can be
developed from bugs that were fixed in previous design gen-
erations or during earlier phases of the verification effort.
Engineers label each training input with the design unit
found to be responsible for it. Note that only the engineer
needs to have the design-specific knowledge to label each in-
put — BugMD’s classifier is unaware of the meaning behind
each label. Once trained, a classifier be deployed for use
with previously never seen before signatures.

Typically, a larger training database results in better train-
ing. In situations where there are not enough known bugs
for training, a set of synthetic bugs can be used in their
place. We developed a synthetic bug injection framework,
inspired by software mutation analysis techniques [18], that
randomly injects mutation bugs into gate-level netlists of
the design units. Our tools first synthesize each design unit
into a technology-independent, gate-level netlist. They then
parse the netlist to select random gates and insert a muta-
tion for each gate that takes the same inputs as the original
gate but has a different functionality. For example, a 3-input
OR gate may be the chosen mutant for a randomly selected
3-input AND gate in the design. For each original-mutation
pair, a multiplexer is inserted to select between the two out-
puts. Each multiplexer represents a synthetic bug in the
design; to activate a bug, its associated multiplexer is set to
choose the output from the mutant gate.

Our mechanism for injecting synthetic bugs and collecting
training data is extremely low-cost and low-effort. The pro-
cess of injecting synthetic bugs and collecting their symp-
toms can be completely automated, allowing it to be per-
formed without taking resources away from other verifica-
tion efforts. Moreover, the process can start before the
availability of the whole design. For instance, it is common
practice to develop partial system models to validate specific
features: we can thus use these models to gather bug signa-
tures for bugs injected in the units included in these partial
models. In addition, we can leverage simulation indepen-
dence to gather signatures for multiple bugs concurrently.
Note that, much like in training with real bugs from prior
designs, synthetic bug signatures can also be shared across
multiple generations and variations of a design. This further
amortizes the cost of generating synthetic bug signatures.

The type of functional bugs we are interested in are usu-
ally introduced at the behavioral-level. Note that our gate-
level synthetic bug model is an approximation of bugs at the
behavioral-level. In addition, synthetic bugs may interact
with real, hidden bugs in the system causing unpredictable
outcomes. Investigating other synthetic bug models and the
interaction with other real bugs is left for future work.

3. EXPERIMENTAL RESULTS

We developed our solution on 3 different designs, imple-
menting two ISAs. For lack of space, we report detailed
results for only one of our experimental frameworks. This
framework comprises a 4-wide, out-of-order processor design
described in Verilog and a C++ ISS for the system-level
validation flow. BugMD includes a symptom collection and
synchronization harness, a synthetic bug injection toolkit,
feature extraction scripts, and a machine learning script im-

unit # cells description

FETCH1 598,671 Instruction fetch logic, stage 1
FETCH2 8,852 Instruction fetch logic, stage 2
DECODE 4,654 Instruction decoding logic
INSTBUF 24,483 Buffer for decoded instructions
RENAME 10,232 Register renaming logic
DISPATCH 998 Instruction dispatch logic
ISSUEQ 39,994 Issue logic and queue
REGREAD 27,205 Physical register file
EXECUTE 24,827 Integer execution logic

LSU 26,129 Load-store-unit

RETIRE 104,069 Reorder buffer and writeback logic
MAPTABLE 3,036 Map table for register renaming

Table 1: Design units. The FabScalar design modules were
grouped into 12 hardware units. We estimated the size of each
unit by counting the number of cells in its synthesized netlist.
Units with large storage structures have the largest sizes: e.g.,
FETCHI1 contains the branch target buffer. Engineers label bug
signatures used for training with their corresponding buggy unit.

plemented using Python’s scikit-learn [14] library. We only
report results obtained using the Random Decision Forest
classifier configured to comprise 64 trees. Our processor de-
sign, which implements the SimpleScalar PISA instruction
set, was generated using the FabScalar toolset [5]. We mod-
ified the SimpleScalar-based ISS that is bundled with Fab-
Scalar for use with BugMD. For our test programs, we used
several distinct sections of the bzip benchmark that ships
with FabScalar. We opted not to include other benchmarks
since we found the diversity in the different sections of the
bzip benchmark to be sufficient for our experiments. We
grouped the design’s Verilog modules into the 12 distinct
units described in Table 1.

We grouped the subset of the PISA instructions that Fab-
Scalar implements into 6 types, namely Control, ALU, Mul-
tiply/Divide, Load, Store, and Other. Table 2 lists the
groups of mismatch types that we log in our bug signatures.
For certain mismatch types, we observed that some features
generated by our feature extraction methodology were not
useful (e.g., differences for x-prop group of mismatch types
and instruction types for termination mismatch types), and
thus were excluded from our feature set. We collected symp-
tom signatures until our tests completed /terminated or until
they executed 10,000 instructions after the first mismatch.
Our resulting feature vectors were 470 features long.

Using our synthetic bug injection framework, we injected
590 bugs in each of the units in Table 1 adding up to 7080
bugs in total. Since we did not have a database of previously
fixed bugs for our DUV, we relied exclusively on these syn-
thetic bugs, both to train BugMD and to evaluate its diag-
nosis capability. To collect bug signatures, we activated one
bug in the design at a time and executed test programs, both
on the DUV and the ISS. We ran 6 distinct test program
executions while activating a single bug per execution and
collected over 40,000 bug signatures. We then divided the
feature vectors generated from these signatures into disjoint
training and testing datasets, ensuring that each unique bug
for each unit was exclusively either in the training dataset or
the testnig dataset. We trained BugMD using the training
dataset and evaluated its localization capabilities using the
testing dataset.



group Zié/::s mismatched property
value 2 the value of a register or a memory update
address 9 the addl.ress of a memory update or the index
of a register update
valid 2 the validity of an update
size 1 the size of a memory update
control 2 the program counter and syscalls
bounds 3 out-of-bounds data and instruction accesses
X-prop 10 presence of X bits in updates
abnormal conditions such as division by zero
abnormal 8 .
and ISS anomalies
final 4 simulation termination conditions: normal
finish, hang, livelock, and crash
TOTAL 34

Table 2: Mismatch types. Bug symptoms consisted of mis-
match types within the groups shown here. In addition to state
mismatches, we included erroneous conditions such as division-
by-zero and ISS crashes. We had a total of 34 mismatch types.

3.1 Localization accuracy

We investigated different approaches to boost the accu-
racy of classification. Figure 4 reports the results of our in-
vestigations using a training dataset of 35,352 feature vectors
and a testing set of 3,756 feature vectors. We implemented a
simple, automated, single-mismatch baseline heuristic that
emulates the initial triaging efforts of an engineer who does
not have BugMD. This baseline assumes a validation envi-
ronment where a set of symptoms for only one bug mani-
festation can be collected and analyzed during testing. We
designed our baseline to closely match the initial bug triag-
ing steps that would be taken in the absence of multiple,
independent symptoms. Note, however, that in a real-world
scenario, a verification engineer would run more tests while
observing multiple internal design signals and draw from
accumulated experience to refine the estimate from the first
attempt. Our baseline heuristic, shown with the black hor-
izontal segments, correctly identified a buggy unit on the
first try about 15% of the time on average.

Our classifier correctly identified a buggy unit on the first
try about 70% of the times, as demonstrated by the red
“first-prediction” bars; 90% of the times, the buggy unit was
within the top 3 predictions, as shown by the gold “top 3”
bars in the figure. When we ran multiple tests for a bug
and took the most common prediction as the final predic-
tion, we achieved an overall accuracy of 77%, shown by the
blue “multi-test” bars. Note that a purely random guess
would only have an 8.3% chance of correctly localizing a
bug. We observed that some units, such as the LSU, had
bugs that were often correctly localized whereas others, such
as the DISPATCH unit, exhibited bugs that were difficult to
localize. The LSU bugs mostly affected just memory oper-
ations and were easy to discern. The small size of the DIS-
PATCH unit limited the number of options our bug injection
framework had when injecting bugs, resulting in low-quality
training. The relationship between unit size and localiza-
tion accuracy is to be studied in future work. For other
units, the variation is due to factors including the diversity
of bug signatures from difficult-to-localize units, which made
their feature vectors appear to be closer to those from other
units than to each other. For instance, feature vectors from
bugs in the FETCH1 unit demonstrated a lot of PC and
instruction overflow mismatches. Thus, the classifier opted

u first prediction ® multi-test m top2 = top 3 4-single-mismatch baseline
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Figure 4: Breakdown of localization accuracy for each
unit. Our classifier pointed to a single unit with an average
accuracy of 70%. This first prediction was further enhanced to
77% if the same bug was exposed by multiple distinct tests and
the most common prediction was chosen. BugMD narrowed the
search space from 12 units to 3 likely units with a 90% accuracy.
The dashed green line indicates the accuracy for a random guess.

to localize bugs with a large fraction of PC and instruction
overflow mismatches to the FETCH1 unit.

BugMD performed significantly better than our single-
mismatch heuristic mainly due to the richer information
available to it from the multiple symptoms for each bug —
our feature sets and the classifier were able to utilize this
extra information to discern bug signatures from different
units.

3.2 Distribution of localizations

We analyzed the diagnosis outputs from BugMD to un-
derstand the distribution of correct and incorrect predic-
tions. We report this distribution in Figure 5. We observed
that for all units, correct outcomes far exceeded incorrect
localization to any single other unit. For some units, the
other unit that they were most frequently misclassified to
is fairly reasonable. For example, a FETCH1 bug was of-
ten misclassified as a FETCH2 bug, a RENAME bug was
often misclassified as a MAPTABLE bug, and vice versa
for both. These misclassifications are close enough to the
actual bug site that they can be considered useful. How-
ever, bugs in DISPATCH and RETIRE were often undesir-
ably misclassified as FETCH1 bugs. This behavior indicates
that a non-trivial portion of DISPATCH and RETIRE fea-
ture vectors fell within the FETCHI1 classification boundary
learned by our classifier. We observed that a large propor-
tion of FETCH1 bugs resulted in a PC mismatch, which then
led to early termination either due to invalid instructions
fetched from the wrong address or out-of-bounds instruc-
tion addresses. A fraction of the bugs in the DISPATCH
and RETIRE units affected the targets of branch instruc-
tions, which also eventually manifested as PC mismatches
and early termination. Some bug signatures with early ter-
mination had as few as only two symptoms, which made it
difficult to identify discerning patterns, leading BugMD to
incorrect diagnoses. However, our classifier still localized to
the correct unit at least 3 times more frequently than to the
incorrect unit. Note that there is no symmetric relationship
in localization accuracies: e.g., the percentage of FETCH1
bugs that appear to be DISPATCH bugs is not the same
as the percentage of DISPATCH bugs that appear to be
FETCH1 bugs. Thus, Figure 5 is not symmetric across the
diagonal.
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Figure 5: Distribution of prediction accuracies. For the
bugs in each of our 12 design units, we kept track of the correct
outcomes and where bugs were wrongly localized to. Correct
outcomes, shown on the diagonal, far exceeded incorrect ones. For
some unit pairs, for example FETCH1 and FETCH2, incorrect
outcomes could still be considered useful.

3.3 Size of training dataset

Finally, we investigated the impact of training data size
on the accuracy of classification. To this end, we partitioned
our dataset into several disjoint training and test sets. We
trained our classifier using feature vectors generated from
the training set and asked it to classify feature vectors gen-
erated from the test set. Figure 6 summarizes the results
from this study. The mean classification accuracy across all
12 design units increased with increasing training data size.
Bugs in certain design units were easier to localize than oth-
ers. We show the individual accuracy trend for the unit with
the most correctly localized bugs — the LSU — and one with
the least —- DISPATCH. We observed that larger training set
sizes generally led to better localization accuracies but the
benefits started diminishing after a training size of about
27,000. Highly localizable units, such as the LSU, were not
very sensitive to the size of the training set; their bug signa-
tures were quite distinct. The quality of training for smaller
units, such as DISPATCH, was limited by the number of
gates to inject bugs into; our injection framework had very
little room to select and inject high-quality bugs that would
result in bug signatures representative of the unit.

4. DISCUSSION

4.1 Execution reproducibility

BugMD relies on validation methodologies that detect bug
manifestations by comparing execution on a DUV with exe-
cution on an ISS. For such a methodology to work, the bug-
free architectural updates from an execution on the DUV
should be identical to those from an execution on the ISS.
Similarly, test executions should be deterministic: one ex-
ecution on the DUV should be identical to another. For
a buggy execution, we expect the bug to manifest consis-
tently for all executions of the same test program. This is
a reasonable expectation in typical validation environments.
Adapting BugMD for non-deterministic validation environ-
ments is left for future work.
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Figure 6: Sensitivity to training dataset size. We divided
our dataset into disjoint training and test sets. In all cases, the
test set contained 1980 feature vectors. The training sets con-
tained feature vectors close to multiples of the test set (1980,
3960, 5940,etc.) as shown. Bugs in LSU were localized correctly
even with small training sets, while bugs in DISPATCH were dif-
ficult to discern.

4.2 Multiple active bugs

Our discussions so far assume that a bug signature con-
tains symptoms from the manifestations of a single bug in
the system. This assumption may not hold in a real-world
validation environment: there is never a guarantee that only
one bug will manifest during an execution. We believe that
BugMD can be easily extended to operate in such scenarios.
A bug signature that contains symptoms from multiple bugs
can be considered to be the signature for a “composite bug”
that is an aggregate of the multiple manifesting bugs. If the
manifesting bugs reside in different units, this composite bug
can be considered to reside in a “composite unit” that is the
union of the multiple units. We can then enhance BugMD
with the ability to localize to composite units in addition to
regular units by treating the composite units just like any
other unit. Engineers can then run other tests to discern
among the bugs in a given composite bug. An experimental
investigation of this approach is left for future work.

4.3 BugMD for post-silicon validation

In post-silicon validation environments, checking after each
instruction completion is impractical. While our discussion
so far presumes the ability to access and compare architec-
tural level state after every committed instruction, this is
not strictly required. With a small change in the checking
mechanism, BugMD could require much less frequent check-
ing, allowing it to be deployed in post-silicon. This change
entails the use of a binary search-and-compare method for
identifying mismatches, as detailed below, by running a test
program multiple times, either from the beginning or from
a last known clean checkpoint.

We first run a test on the DUV, either to completion or
abnormal termination (in the presence of fatal bugs), and
compare the final architectural state with the final state from
the ISS. If there is a mismatch, we re-run the test for half
the number of cycles to completion, and repeat the check.
Since the ISS is often not cycle-accurate, we can not simply
execute the test program on the ISS for half the number of
cycles to get the equivalent execution for comparison. We
first need to extract the number of instructions completed
on the DUV from on-chip performance counters and then
execute the test program on the ISS until the same number
of instructions are committed. We repeat this process un-
til we find a cycle where there is no mismatch between the



DUV and the ISS. We take a checkpoint of the DUV and ISS
states and continue the binary search forward. Upon detect-
ing a mismatch, we synchronize the ISS state with that from
the DUV and continue the search for more mismatches until
the desired number of instructions after the first mismatch
has been executed. Even though this approach requires a
test to be run multiple times, it reduces the number of com-
parisons by several orders of magnitude. A similar search
based approach has been used to successfully isolate faults
in industrial designs [2].

5. RELATED WORK

In recent years, a few solutions have been proposed to
support bug localization during post-silicon validation. BPS
[6] logs measurements of signal activity from multiple exe-
cutions using a hardware structure added to the design. A
clustering algorithm is later used to process these logs to dis-
cern among failing and passing tests and identify a candidate
set of signals responsible for an intermittent bug. Symbolic
QED [13] achieves coarse-grain localization of bugs to pro-
cessor cores, cache banks, and the crossbar in a multicore
SoC by utilizing a combination of bounded model check-
ing, partial instantiations of the design, and test transfor-
mations enabled by an extra hardware module added to the
fetch stage. Unlike BPS and Symbolic QED, BugMD relies
neither on hardware modifications added to the design nor
transformations applied to test programs. In addition, it is
not limited to post-silicon and can operate on any valida-
tion environment that supports DUV-to-ISS state compar-
isons. Unlike Symbolic QED, BugMD localizes bugs at a
much finer granularity, among a larger number of units in
out-of-order processor cores.

Several other works have also been proposed that triage
bugs by leveraging a combination microarchitectural knowl-
edge [7], microarchitectural or low-level signal traces [7, 15],
and SAT-based debugging techniques [15]. Some of these so-
lutions [7, 15] rely on machine-learning algorithms for clus-
tering and/or classification to bin failures and identify their
root-causes. BugMD only relies on architectural updates,
does not need access to the RTL source code, is entirely
simulation/execution-based and does not require any micro-
architectural knowledge for its operation.

Finally, Friedler, et al.[9] have proposed using informa-
tion derived from executing a test-case on an ISS to localize
the set of instructions responsible for a functional data flow
bug in the DUV. Unlike BugMD, this solution focuses on
identifying instructions and does not provide any indication
of the hardware units responsible for the bugs.

6. CONCLUSIONS

In this work, we presented BugMD — an automatic bug
triaging solution. BugMD compares a design’s architected
state with a golden state from an instruction set simula-
tor to collect multiple symptoms for a single bug in a sin-
gle test run. These multiple manifestations of bugs form
bug signatures that are then passed through a machine-
learning backend to obtain a prediction of likely bug sites.
To train the machine-learning classifier, we developed a syn-
thetic bug injection framework for generating large train-
ing datasets when real, previously diagnosed bug signatures
are either unavailable or insufficient. Despite leveraging
only architectural-level mismatches without any microarch-

itectural knowledge, our experiments show that BugMD can
identify the correct location over 70% of the time on first try.
When considering multiple top candidates, the buggy design
unit is among BugMD’s top three likely candidates in over
90% of our cases. Future work will investigate a coopera-
tive selection of feature extraction approaches and classifier
algorithms to further improve the accuracy of localization.
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