
Post-silicon Debugging for Multi-core Designs

Valeria Bertacco
Dept. of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109

valeria@umich.edu

Abstract— Escaped errors in released silicon are growing in
number due to the increasing complexity of modern processor de-
signs and shrinking production schedules. Worsening the problem
are recent trends towards chip multiprocessors (CMPs) with com-
plex and sometimes non-deterministic memory subsystems prone
to subtle, devastating bugs. This deteriorating situation is causing
a growing portion of the validation effort to shift to post-silicon,
when the first few hardware prototypes become available and
where validation experiments are run directly on newly manufac-
tured prototype hardware. While post-silicon validation enables
much higher raw performance in test execution, it is a much more
challenging environment for bug diagnosis and correction. In this
work we briefly overview some of the current methodologies used
in industry. We then discuss some recent ideas developed in our
research group to leverage the performance advantage of post-
silicon validation, while sidestepping its limitations of low internal
node observability and expensive bug fixing. Finally we present
some of today’s general trends in post-silicon validation research.

I. INTRODUCTION

Post-silicon validation encompasses all that validation effort
that is poured onto a system after the first few silicon proto-
types become available, but before product release. While in
the past most of this effort was dedicated to validating electri-
cal aspects of the design, or diagnosing systematic manufac-
turing defects, today a growing portion of the effort focuses on
functional system validation. This trend is for the most part
due to the increasing complexity of digital systems, which lim-
its the verification coverage provided by traditional pre-silicon
methodologies. As a result, a number of functional bugs sur-
vive into manufactured silicon, and it is the job of post-silicon
validation to detect and diagnose them so that they do not es-
cape into the released system. The bugs in this category are
often system-level bugs and rare corner-case situations buried
deep in the design state space: since these problems encompass
many design modules, they are difficult to identify with pre-
silicon tools, characterized by limited scalability and perfor-
mance. Post-silicon validation, on the other hand, benefits from
very high raw performance, since tests are executed directly on
manufactured silicon. At the same time, it poses several chal-
lenges to traditional validation methodologies, because of the
limited internal observability and difficulty of applying modi-
fications to manufactured silicon chips. These two factors lead
in turn to critical challenges in error diagnosis and correction.

This situation is further exacerbated by modern multi-core
processor systems, where multiple processor nodes share one
or more memory blocks through an interconnect network. In
most architectures, the communication between these nodes

and the central memory is regulated by cache coherence and
consistency protocols. The implementation of these protocols
in a hardware system is much more complex then their high
level specification, because of many possible intermediate sit-
uations that may arise when several cores are communicating
at the same time. In addition, memory protocols pose a few
constraints on the ways processor cores may share data, but in
general they do not enforce a unique execution flow. As a re-
sult, deterministic behavior by the system can no longer be ex-
pected, and something that used to be as simple as determining
the correctness of a test by checking a unique correct output, is
now a challenging problem in itself, since several correct out-
comes are possible. Due to the complexity of even basic cache
coherence models and the slow simulation speed of pre-silicon
verification, large portions of the design space go unverified at
the pre-silicon stage and an increasing number of functional
errors escape to silicon, hopefully to be detected in the post-
silicon validation phase. It is not a surprise then that, within
several large microprocessor design houses, post-silicon vali-
dation has become the fastest growing cost item of the entire
development effort [1].

In this paper we provide a brief overview of current ap-
proaches for post-silicon validation and efforts to overcome its
limitations in bug detection and diagnosis. We discuss current
industry practices and cover some of the recent solutions pro-
posed by our research group in this space, specifically targeting
multi-core designs. We conclude the paper by pointing at some
of the trends in post-silicon validation research.

II. POST-SILICON VALIDATION AND ITS CHALLENGES

Functional post-silicon validation strives to establish if the
prototype adheres to its initial specification and truly embodies
the designer’s intent. It relies on a concept similar to simula-
tion: the hardware prototype executes as many randomly gen-
erated input vectors as possible. However, there are a few key
differences between this approach and pre-silicon validation.
First, the execution on a hardware prototype is several orders
of magnitude faster than any functional simulator, therefore,
more and longer test sequences can be tested, and higher cov-
erage may be obtained. To put things in perspective, consider
that during the validation of the Pentium 4 processor approx-
imately 200 billion cycles were simulated before tape-out [2].
That effort accounted for only 3 minutes of runtime in the ac-
tual processor operating at 1GHz frequency.

This high speed, however, comes at the price of limited ob-
servability: the internal state of the prototype cannot be easily
nor fully observed, forcing engineers to diagnose errors by ac-
cessing only architectural state registers.

Silicon prototype

under validation

System bus

transactor

Bus traffic

recorder

Chipset
Memory

Peripherals

testing cards

Interrupt

generator

Logic analyzer

Custom motherboard

Fig. 1. A sample post-silicon validation platform. The prototype
processor is verified on a custom-built motherboard equipped with a
number of testing and debugging modules, including tester cards, off-
chip communication traffic snoopers/recorders, etc.

Tests in the post-silicon domain consists of directed tests
checking specific features of the processor, automatically gen-
erated random tests, as well as compatibility checks, such as
operating system boot-up and tests with legacy software [2, 3].
Directed tests demand much engineering effort and are lim-
ited to short sequences or basic system activities. Random-
generated tests have a much broader scope but present chal-
lenges in establishing whether the outcome of a test is correct
or not. Due to the unpredictable outcome of these random
programs, engineers must simulate them on a known-correct
model of the design to obtain the correct final state, which is
then compared with that of the hardware prototype to identify
discrepancies. While tests can be run at-speed on the hard-
ware, test generation and simulation constitute the bottleneck
in this process, almost reducing it to the performance level of
pre-silicon simulation. Consequently, design houses are forced
to spend enormous computational resources on test simulation
server farms [3]. Nevertheless, verification with randomized
programs remains a central component of the post-silicon vali-
dation process, since it can expose many unexpected behaviors
of the system missed by directed tests. For instance, in the con-
text of microprocessors, designers often randomize the timing
of certain input events, such as interrupts, during a test and alter
delays of messages sent to and from the processor on the sys-
tem bus. Typically, this is done with custom-made hardware
engines, which reside on the same testing board as the proto-
type and can be programmed to exhibit a variety of behaviors
[4]. Fig. 1 illustrates some of the components that are usually
part of a post-silicon validation platform.

In addition to the functional validation of the prototype it-
self, in the post-silicon phase, the compatibility of the proces-
sor with a number of deployment platforms is also evaluated.
For this purpose, the device is plugged into a system test board
with commercially available peripherals, and a broad range di-
rected benchmarks and applications are executed. These in-
clude boot up of operating systems, commercial applications,
performance benchmarks, legacy software, and so on. The op-
erating conditions of the prototype in this case are not as stress-
ful as with the randomized tests.

Identifying an erroneous behavior in functional post-silicon
validation is only the beginning of a long and arduous effort
to establish the root cause and propose a fix. As with electri-
cal defects, the process begins with trying to reproduce the bug
and determine the conditions under which it occurs. Through-

out this activity, design-for-test techniques [5, 6] play a vital
role, since they enable designers to sample the internal state of
the prototype and unwind the events that caused the erroneous
output behavior all the way back to the bug . In this domain,
in addition to generic state acquisition solutions, such as scan
chains [7] and on-chip logic analyzers [8], engineers often de-
ploy domain-specific techniques, by taking advantage of built-
in performance counters and special interrupt modes. In the
latter case, for instance, an interrupt may be periodically as-
serted during the test execution, each time invoking a software
routine to dump the processor’s state to memory [4].

When traces leading to an error are obtained, the validation
team can leverage again pre-silicon tools, trying to reproduce
the bug in simulation or using formal tools. A number of re-
cent works have proposed ideas to support this diagnosis effort,
by proposing tools that can automatically minimize a trace’s
length [9, 10] (thus making it more amenable to simulation),
identify the module(s) responsible for the bug [11, 12, 13], and
also suggest logic modifications to correct the problem [12].
Finally, corrections are evaluated in pre-silicon and then in-
cluded into new versions of a prototype. Because of the high
costs of silicon manufacturing, effort is also dedicated to by-
pass the issue in test generation, so that the validation of the
prototype may continue as long as possible without a re-spin.

The following two sections outline two post-silicon solutions
developed in our research group. The first is a technique to val-
idate individual cores with post-silicon tests, but without the
need for a separate simulator to determine the correctness of
test responses: Reversi [14] is an automatic test generator that
creates self-checking tests for post-silicon validation. The sec-
ond solution focuses on the validation of the memory subsys-
tem in multi-core designs, specifically of the cache coherence
protocol. Because in this domain test correctness cannot be
uniquely specified, our solution [15] executes a software algo-
rithm in the background that checks all memory activity ob-
served during test execution against the protocol requirements.

III. VALIDATING PROCESSOR CORES WITH REVERSI

As mentioned above, one of the key challenges of post-
silicon validation with randomized tests is in determining the
correct final state of the system. Typical solutions entail simu-
lating the design’s golden model to compute the final processor
state and check it against that of the actual hardware prototype
(as illustrated in Fig. 2.a). Because of the relatively slower per-
formance of architectural simulation, the computation of this
final state becomes a bottleneck for the entire effort. Reversi
addresses this issue by generating test programs that sidestep
simulation and greatly boost the performance of the overall val-
idation flow (Fig. 2.b). This is accomplished by generating test
sequences where the initial state of the system is restored at the
end of the test, if and only if the test executes correctly. More-
over, Reversi can run on the prototype itself, after a few basic
functionality aspects of the hardware are verified.

To generate tests whose final state matches the initial one,
Reversi uses a bottom-up approach by noting that many in-
structions in a processor’s instruction set architecture (ISA)
have counterparts, i.e., operations whose functionality is the
inverse of the other instructions. For instance, it is possible to
restore the original value in a register that was the destination

a.

=

Prototype
final state

Simulated
final state

Te
st
pro
gra
m

Silicon prototype

Architectural
simulator

Initial test state

Re
ve
rsi
ble

tes
t p
rog
ramb.

=

Prototype
final state

Silicon prototype

R
e
v
e
rs
i

Random

program

generator

Fig. 2. Post-silicon validation of random tests vs. Reversi. a.
Random tests produced by a test generator are fed to both a silicon
prototype and an architectural simulator. When the outcome of the
two platforms differ, a bug is flagged. b. In a Reversi-based flow, tests
are generated using the prototype itself, and their outcome is known by
construction, thus the architectural simulator can be bypassed, greatly
boosting overall testing performance.

of an add instruction by using a subtract instruction. Simi-
lar goals can be achieved with logic operations, in setting and
clearing flags, with branch instructions by creating proper jump
sequences, etc. In general, operations and/or their inverse may
require several instructions, instead of a single one. By com-
bining pairs of operations and their reverse, one can generate
tests for which the final register values match the initial ones.

A. Block database

In Reversi, a block database specific to the ISA under study
is first prepared. This database contains pairs of functional
blocks: for each operation block, there is a corresponding in-
verse block, the former modifies the value of a register, called
the focus register, while its inverse restores its initial value.
Since the focus register is a parameter set dynamically during
test generation, a same block may appear in the test program
multiple times, each time modifying a different register. Note
that blocks operate only on a single focus register at a time to
maintain the reversibility of the program. Thus, for instructions
with multiple operands, only one of the registers is the focus
register, while other operands are randomly generated by Re-
versi according to the instruction format. The block-pair struc-
ture is sufficiently powerful to allow Reversi to exercise most
aspects of a processor’s functionality, including loops, proce-
dure calls, etc., and create elaborate tests representative of real
software. Moreover, because of this parametric setup, Reversi
is agnostic to the functionality of the underlying ISA, making
the framework readily adaptable to different architectures.

B. Reversi generator

The Reversi generator combines block pairs from the
database to create interesting test sequences. It first prepares
several block sequences, which we call stacks. A stack is a se-
quence of instruction blocks, followed by the reverse blocks in
reverse order, all using the same focus register and a handful
of support registers (these are needed to support the operation
on the focus register and are not part of the correctness check).
Each stack generated alters a different focus register. Thus, on
a properly working processor the focus register should be re-

F1
-1
(x) G1

-1
(x) H1

-1
(x)

F2
-1
(x) G2

-1
(x) H2

-1
(x)

...
F1(x) G1(x) H1(x)

F2(x) G2(x) H2(x)

Stack 1 Stack 2 Stack N

..

..

Final test program

Stacks

F
u
n
c
ti
o
n
a
l
b
lo
c
k
s

R
e
v
e
rs
i

Block pairs

database

interleaved stacks

Fig. 3. Reversi test generator. Given a functional block database,
Reversi creates a set of stacks, each consisting of several blocks and
inverse operations. Stacks are then interleaved into a program with
predictable outcome.

stored to its original value once a stack execution completes.
In generating multiple stacks, Reversi selects a different focus
register for each of them. In addition, it also allocates com-
pletely disjoint sets of support registers to each stack: while
this is not a requirement, it does simplify the subsequent phase
of stack interleaving. All stacks generated are then interleaved
into a complex reversible test program, as Fig. 3 illustrates.
This is accomplished by selecting instructions from all stacks
and chaining them together to form a single test program.

It is important to note that Reversi programs provide more
aid in debugging than traditional randomly generated pro-
grams: bugs can be isolated by checking if an exposing instruc-
tion sequence is located in an individual stack, and by “peeling”
operations and inverse blocks from the program. Therefore, a
reversible program exposing a bug can be dramatically short-
ened to alleviate debugging. In contrast, in a traditional flow a
costly re-simulation is required to obtain the new golden state
after each change in the test program.

IV. MEMORY SUBSYSTEM VALIDATION

Once individual cores are sufficiently validated, their inter-
actions must also be checked. In most chip multiprocessor
(CMP) designs, the communication between cores is controlled
by cache coherence and consistency protocols. In this section
we discuss a solution developed in our group to provide post-
silicon validation of cache coherence protocols. This solution,
called CoSMa, can be deployed on systems employing a wide
range of coherence mechanisms. It is not a test generation so-
lution, rather it observes tests executing on the CMP platform
and checks that all data sharing occurs in respect of the coher-
ence protocol in use. We found experimentally that it enables
high coverage verification while incurring a small performance
overhead (<23%) and a negligible area impact (¿ 1%). For
the sake of brevity, we only highlight the cache coherence val-
idation capabilities of CoSMa. In a later effort, we also imple-
mented a technique to validate cache consistency, in a technol-
ogy called Dacota [16].

In a CoSMa-augmented design, a multi-core processor is ex-
tended to include a special mode of operation to be activated
only during post-silicon validation. While in this mode, time
is organized into epochs: each epoch includes a phase of nor-
mal execution, when relevant memory activity information is
logged in the background, followed by a checking phase, dur-
ing which all the activity is checked against the coherence pro-

CPU

cache
controller

CPU

cache
controller

CoSMa
checker

Local cache Local cache

cache
controller

Central memory

network CoSMa
checker

CoSMa
checker

temporary
CoSMa
storage

temporary
CoSMa
storage

temporary
CoSMa
storage

Fig. 4. CoSMa architecture. Small checkers residing on each cache
controller are responsible for logging the relevant memory activity and
for coordinating data transfers during the checking phase. Storage
for the activity logging (hashed areas) is temporarily allocated only
during post-silicon validation using the existing memory resources of
the system. Note that the solution is agnostic to the network topology.

tocol in use in the system. The activity logged is stored in a
portion of the cache resources, temporarily reclaimed for this
purpose during post-silicon validation. This cache reclamation
technique keeps the the area overhead at a bare minimum (Fig.
4). The logged activity includes a footprint of the coherence
protocol activity, and possibly processor and timing informa-
tion. CoSMa offers two variants of this mechanism, one op-
timized for minimal performance overhead, the other for high
coverage. During the checking phase, coherence is checked
by a distributed software algorithm implementing a variant of
string matching.

A. Runtime operation

During each epoch, normal execution extends until the stor-
age reserved for CoSMa has been exhausted. At this point,
all pending memory operations are allowed to complete, en-
suring a consistent system-level state and emptying all queues
and buffers for data transfers. Then the checking phase begins:
the controller in the central memory (or level-2 cache) broad-
casts the activity log of each of its valid address lines. Local
caches that have the same address line marked as valid com-
pare their local activity log against the one received to expose
potential coherence violations. The process completes with the
local caches verifying that all local address lines that did not
go through this check are indeed invalid: assuming an inclu-
sive central memory, all lines in a local cache must also reside
in central memory. If an error is detected in this process an ex-
ception is raised and debug information is readily available for
the verification team in the activity log storage.

B. Checking Algorithm

The checking procedure analyzes two activity logs corre-
sponding to the same cache line: the global history from central
memory and the local history from the local cache. Two al-
gorithms are available for this task: a low-overhead algorithm
optimized for low performance overhead and minimal pertur-
bation to the system under test. This algorithm logs compact,
encoded sequences of cache coherence states. The second al-
gorithm targets high validation coverage but has higher perfor-
mance impact. In this case, additional timestamps and proces-
sor IDs are stored in the activity logs. The basis of the checking
algorithms is that, in a correctly functioning cache coherence

scheme, the state of each valid local cache line must agree with
the corresponding central memory line. The activity logs are
deemed compatible if there exists at least one valid sequence
of operations that could have generated both.

V. CURRENT TRENDS IN POST-SILICON RESEARCH

The challenges of modern system verification have led to a
demand for more effective and broad-reaching post-silicon val-
idation technologies. While until a few years ago, post-silicon
validation was a burden confined to industry effort, in the past
five years a growing number of research efforts have appeared,
striving to provide improved and automated solutions for er-
ror detection, diagnosis and even correction in post-silicon.
The number of research ideas appearing in top quality liter-
ature forums is growing quickly: researchers are leveraging
simulation-based and abstracted formal techniques to support
these tasks in the context of a structured methodology. This
effort promises to hold a radical change from traditional post-
silicon flows where bugs are difficult to identify and reproduce,
and may take several weeks to be diagnosed using ad-hoc, trial-
and-error techniques. Additional efforts are also invested in
supporting the post-silicon process, for instance through auto-
matic trace minimization to ease the diagnosis phase. All these
efforts hold great promise to narrow the gap between design
complexity and verification capability.

REFERENCES

[1] S. Yerramilli, “On the need for convergence between design validation
and test,” in Proc. ITC, Oct. 2006, pp. 14–14.

[2] B. Bentley, “Validating the Intel R© Pentium R© 4 microprocessor,” in
Proc. DAC, Jun. 2001, pp. 224–228.

[3] H. Rotithor, “Post-silicon validation methodology for microprocessors,”
IEEE Design & Test of Computers, vol. 17, no. 4, pp. 77–88, Oct. 2000.

[4] I. Silas, I. Frumkin, E. Hazan, E. Mor, and G. Zobin, “System-level vali-
dation of the Intel R© Pentium R©M processor,” Intel Technology Journal,
vol. 07, pp. 38–43, May 2003.

[5] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Test-
ing and Testable Design, revised ed. Wiley-IEEE Press, Sep. 1994.

[6] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital,
Memory and Mixed-signal VLSI Circuits. Springer, 2000.

[7] R. Kuppuswamy, P. DesRosier, D. Feltham, R. Sheikh, and
P. Thadikaran, “Full hold-scan systems in microprocessors: Cost/benefit
analysis,” Intel Technology Journal, vol. 08, pp. 63–72, Feb. 2004.

[8] W. Corti, R. Kenny, J. Marsh, S. Parker, F. Scanzano, and M. Won, U.S.
Patent no. 6834360: On-chip logic analyzer, IBM, Dec. 2004.

[9] K.-H. Chang, V. Bertacco, and I. Markov, “Simulation-based bug trace
minimization with BMC-based refinement,” vol. 26-1, 2007.

[10] S. Safarpour, A. Veneris, and H. Mangassarian, “Trace compaction using
SAT-based reachability analysis,” Jan. 2007, pp. 932–937.

[11] Y.-S. Yang, N. Nicolici, and A. Veneris, “Automated data analysis solu-
tions to silicon debug,” in Proc. DATE, Apr. 2009, pp. 982–987.

[12] K.-H. Chang, I. Markov, and V. Bertacco, “Automating post-silicon de-
bugging and repair,” in Proc. ICCAD, Nov. 2007, pp. 91–98.

[13] K.-H. Chang, I. Wagner, V. Bertacco, and I. Markov, “Automatic error
diagnosis and correction for RTL designs,” in Proc. HLDVT, Nov. 2007,
pp. 65–72.

[14] I. Wagner and V. Bertacco, “Reversi: Post-silicon validation system for
modern microprocessors,” in Proc. ICCD, Oct. 2008, pp. 307–314.

[15] A. DeOrio, A. Bauserman, and V. Bertacco, “Post-silicon verification for
cache coherence,” in Proc. ICCD, Oct. 2008, pp. 348–355.

[16] A. DeOrio, I. Wagner, and V. Bertacco, “Dacota: Post-silicon validation
of the memory subsystem in multi-core designs,” in Proc. HPCA, Feb.
2009, pp. 405–416.

