
Safe Delay Optimization for Physical Synthesis
Kai-hui Chang, Igor L. Markov, Valeria Bertacco

EECS Department, University of Michigan, Ann Arbor, MI 48109-2122
{changkh, imarkov, valeria}@umich.edu

Abstract — Physical synthesis is a relatively young field in
Electronic Design Automation. Many published optimizations for
physical synthesis end up hurting the final result, often by neglect-
ing important physical aspects of the layout, such as long wires or
routing congestion. In this work we propose SafeResynth, a safe
resynthesis technique, which provides immediately-measurable
delay improvement without altering the design’s functionality. It
can enhance circuit timing without detrimental effects on route
length and congestion. When applied to IWLS’05 benchmarks,
SafeResynth improves circuit delay by 11% on average after rout-
ing, while increasing route length and via count by less than 0.2%.
Our resynthesis can also be used in an unsafe mode, akin to
more traditional physical synthesis algorithms popular in com-
mercial tools. Applied together, our safe and unsafe transfor-
mations achieve 24% average delay improvement for seven large
benchmarks from the OpenCores suite. The relative contribution
of safe and unsafe techniques varies depending on the amount of
whitespace in the layout.

I. INTRODUCTION

Timing optimization of digital logic is gaining importance
with each technology step, as interconnect contributes a larger
fraction of critical-path delay due to its poor scaling. Since ac-
curate timing information can only be obtained after the circuit
is placed, post-placement timing optimization has been stud-
ied extensively. Most techniques either modify the logic or
change the physical aspects of the circuit [9]. Physical solu-
tions include net buffering, gate sizing [15] and gate relocation
[1]. Logical solutions include gate replication [12], rewiring
[6, 7] and restructuring [5, 16, 19, 22]. Techniques based on a
placement or routing with the goal to improve timing are often
called physical synthesis.

We observe that a number of previous works on physical
synthesis do not provide an overall improvement because when
optimizing one aspect of the design, they may damage other
aspects. For example, uncontrollable logic cloning may in-
crease area and route length, making critical nets longer than
expected during placement and routing [12]. Indiscriminate
buffering may also create many gate overlaps, leading to po-
tentially detrimental effects on circuit timing when overlaps
are resolved [17]. A number of related works try to solve this
problem. For example, Li et al. [17] proposed an incremental
placement algorithm which maintains the stability of a place-
ment for gate sizing and buffer insertion, while Luo et al. [20]
and Brenner et al. [3] addressed this problem by designing
legalizers that seek to preserve performance metrics.

Timing-driven placement also suffers similar stability prob-
lems. While published papers typically report timing estimates

before routing, critical nets often detour during routing, thus
aggravating performance compared with traditional placement.
As a result, place-and-route tools sometimes produce better re-
sults when the timing-driven mode is disabled. In practice, the
best bet to improve timing is to try as many timing-driven and
non-timing-driven tools as possible. As the empirical results in
[13, 14] suggest, no placer – commercial or academic – domi-
nates on all benchmarks.

In our work we propose SafeResynth, a safe and pow-
erful physical synthesis technique, based on simulation and
iterative equivalence checking. By broadening the set of
transformations, SafeResynth possesses more optimization
power than many existing techniques. In addition, it pro-
vides immediately-measurable delay improvement on every
step without detrimental effects on other circuit parameters.
As a result, it can improve circuit delay considerably with very
little risk of destabilizing an existing design flow or hampering
timing closure, a common problem with new ideas in physical
synthesis. Figure 1 shows two examples of our optimizations.
In Figure 1(a), the signal that drives g8 is resynthesized using
gates located closer to it, and a new gate is added to replace
the old one. In Figure 1(b), one gate (g8) originally driven by
g6 uses gate new as its new source, while the other gate (g1) is
still driven by g6. Since the new gates are placed on previously
unused sites, they do not overlap with old gates. Empirical re-
sults show that our technique can improve delay by 11% while
route length and via count increase by less than 0.2%.

(a) (b)
Fig. 1. Example transformations for row-based standard-cell layout: (a)
resynthesized gate new replaces g6 to drive g8, (b) gate cloning uses
resynthesized gate new to drive g8, while the original driver g6 continues to
drive g1.

The rest of this paper is organized as follows. In Section
II we propose a new powerful and safe timing optimization
approach. Several aspects of our technique are analyzed in
Section III. Experimental results are reported in Section IV,
and Section V concludes this paper.

II. OUR SAFERESYNTH TECHNIQUE

Our safe physical synthesis approach, SafeResynth, is dis-
cussed in detail in this section. It uses signatures produced
by simulation to identify potential resynthesis opportunities,
whose correctness is then verified by equivalence checking
[23]. Since our goal is layout optimization, we can prune some



of the opportunities based on their promise before formally
verifying them since verification is relatively slow. To this end,
we propose pruning techniques based on physical constraints
and logical compatibility among signatures. SafeResynth is
powerful in that it does not restrict resynthesis to small geo-
metric regions or small groups of adjacent wires. It is safe
because the produced placement is always legal and the delay
improvement can be evaluated immediately.
A. Terminology

We define a signature as a bit-vector of simulated values of
a wire. Given the signature st of a wire wt to be resynthesized,
and a certain gate g1, a wire w1 with signature s1 is said to be
compatible with wt if it is possible to generate st using g1 with
signature s1 as one of its inputs. In other words, it is possible
to generate wt from w1 using g1. For example, if s1 = 1, st = 1
and g1 = AND, then w1 is compatible with wt using g1 because
it is possible to generate 1 on an AND’s output if one of its
inputs is 1. However, if s1 = 0, then w1 is not compatible with
wt using g1 because it is impossible to obtain 1 on an AND’s
output if one of its inputs is 0 (see Figure 4).

A controlling value of a gate is the value that fully specifies
the gate’s output when applied to one input of the gate. For
example, 0 is the controlling value for AND because when ap-
plied to the AND gate, its output is always 0 regardless of the
value of other inputs. When two signatures are incompatible,
that can often be traced to a controlling value in some bits of
one of the signatures.
B. SafeResynth Framework

Fig. 2. A restructuring example. Input vectors to the circuit are shown on the
left. Each wire is annotated with its bit-signature computed by simulation on
those test vectors. We seek to compute signal w1 by a different gate, e.g., in
terms of signals w2 and w3. Two such restructuring options (new gates) are
shown as gn1 and gn2. Since gn1 produces the required signature, equivalence
checking is performed between wn1 and w1 to verify the correctness of this
restructuring. Another option, gn2, is abandoned because it fails our
compatibility test.

The SafeResynth framework is given in Figure 3, and an ex-
ample is given in Figure 2. Initially, library contains all the
gates to be used for resynthesis. We first generate a signature
for each wire by simulating certain input patterns, whose se-
lection will be discussed in detail in Section II-D. In order to
optimize timing, wiret in line 2 will be selected from wires on
the critical paths in the circuit. Line 3 restricts our search of
potential resynthesis opportunities according to certain phys-
ical constraints, and lines 4-5 further prune our search space
based on logical correctness. After a valid resynthesis option
is found, we try placing the gate on various overlap-free sites
close to a desired location in line 6 and check their timing im-
provements. In this process, more than one gate may be added

if there are multiple sinks for wiret , and the original driver of
wiret may be replaced. We only call equivalence checking
when we found certain changes that improve timing because
formal verification is time-consuming. In line 10 we remove
redundant gates and wires that may appear because wire′t s orig-
inal driver may no longer drive any wire, which often initiates
a chain of further simplifications.

1. Simulate patterns and generate a signature for each wire.
2. Determine wiret to be resynthesized and retrieve wiresc from

the circuit.
3. Prune wiresc according to physical constraints.
4. Foreach gate ∈ library with inputs selected from combina-

tions of compatible wires ∈ wiresc.
5. Check if wiret ’s signature can be generated using gate with

its inputs’ signatures. If not, try next combination.
6. If so, do restructuring using gate by placing it on overlap-

free sites close to the desired location.
7. If timing is improved, check equivalency. If not equivalent,

try next combination of wires.
8. If equivalent, a valid restructuring is found.
9. Use the restructuring with maximum delay improvement

for resynthesis.
10. Identify and remove gates and wires made redundant by

resynthesis.
Fig. 3. The SafeResynth framework.

C. Search-Space Pruning Techniques
In order to resynthesize a target wire (wiret ) using an n-input

gate in a circuit containing m wires, the brute force technique
needs to check

(m
n
)

combinations of possible inputs, which can
be very time-consuming for n > 2. Therefore it is important to
prune the number of wires to try.

When the objective is to optimize timing, the following
physical constraints can be used in line 3 of the framework: (1)
wires with arrival time later than that of wiret are discarded be-
cause resynthesis using them will only increase delay, and (2)
wires that are too far away from the sinks of wiret are aban-
doned because the wire delay will be too large to be benefi-
cial. We set this distance threshold to twice the HPWL (Half-
Perimeter Wirelength) of wiret .

In line 4 logical compatibility is used to prune the wires that
need to be tried. Wires not compatible with wiret using gate
are excluded from our search. Figure 4 summarizes how com-
patibilities are determined given a gate type, the signatures of
wiret and the wire to be tested (wire1).

Gate type wiret wire1 Result
NAND 0 0 Incompatible
NOR 1 1 Incompatible
AND 1 0 Incompatible
OR 0 1 Incompatible

XOR/XNOR Any Any Compatible
Fig. 4. Conditions to determine compatibility: wiret is the target wire, and
wire1 is the potential new input of the resynthesized gate.

To accelerate compatibility testing, we use the “one-count”,
i.e., the number of 1s in the signature, to filter out unpromising
candidates. For example, if gate==OR and the one-count of
wiret is smaller than that of wire1, then these two wires are



incompatible because OR will only increase one-count in the
target wire. This technique can be applied before bit-by-bit
compatibility test to detect incompatibility faster.

Our pruned search algorithm that implements lines 4-5 of
the framework is outlined in Figure 5. The algorithm is specif-
ically optimized for two-input gates but can be extended to
gates with more than two inputs. Wiret is the target wire to
be resynthesized, wiresc are wires selected according to physi-
cal constraints, and library contains gates used for resynthesis.
All wires in the fanout cone of wiret are excluded in the algo-
rithm to avoid formation of combinational loops.

Function pruned search(wiret ,wiresc, library)
1 foreach gate ∈ library
2 wiresg = compatible(wiret ,wiresc,gate);
3 foreach wire1 ∈ wiresg
4 wiresd = get potential wires(wiret ,wire1,wiresg,gate);
5 foreach wire2 ∈ wiresd
6 Restructure using gate, wire1 and wire2;

Fig. 5. The pruned search algorithm.

In Figure 5, function compatible returns wires in wiresg
that are compatible with wiret given gate. Function
get potential wires returns wires in wiresd that are capable of
generating the signature of wiret using gate and wire1, and its
algorithm is outlined in Figure 6. For XOR/XNOR, the sig-
nature of the other input can be calculated directly, and wires
with signatures identical to that signature are returned using
the signature hash table. For other gate types, signatures are
calculated iteratively for each wire (denoted as wire2) using
wire1 as the other input, and the wires that produce signatures
which match wire′t s are returned.

Function get potential wires(wiret ,wire1,wiresg,gate)
1 if gate == XOR/XNOR
2 wiresd= sig hash[wiret .signature XOR/XNOR

wire1.signature];
3 else
4 foreach wire2 ∈ wiresg
5 if wiret .signature ==

gate.evaluate(wire1.signature,wire2.signature)
6 wiresd ← wiresd ∪wire2;
7 return wiresd;

Fig. 6. Algorithm for function get potential wires. XOR/XNOR is
considered separately because the required signature can be calculated
uniquely from wiret and wire1 .

The effectiveness of our search-space pruning techniques is
supported by our empirical results. For example, in the worst
case (MEM CTRL) 7,560 equivalence checking steps are per-
formed during resynthesis. However, it is far smaller than the
number of resynthesis options in the search space (about 1 bil-
lion), indicating that our techniques are effective in pruning
unpromising resynthesis opportunities.
D. Implementation Insights

In our implementation, we select desired locations for plac-
ing the restructured gates with the following criterion: the first
200 overlap-free slots closest to the Center Of Gravity (COG)
of the new gate’s input and output wires’ COG. Although better
initial guesses may exist for desired locations than the COG,

they are not necessary because a fairly large number of valid
locations will be evaluated rigorously. As a result, having an
extremely accurate initial guess is not necessary to find the ac-
tual best location.

The performance of our algorithm is greatly influenced by
the quality of the signatures generated by simulation. Poor
signatures cannot distinguish many different wires and require
additional calls to equivalence-checking. On the other hand,
potentially resynthesizable wires can usually be distinguished
from those not resynthesizable if their signatures are differ-
ent. In light of this, we enhanced the FRAIG package in ABC
[23] to dump its patterns and use them for our initial simu-
lation. The purpose of the patterns in ABC is to distinguish
different nodes in the AIG (And-Inverter Graphs) netlist built
from the circuit, therefore they are also suitable for generating
signatures that can distinguish different wires. In particular, if
the FRAIG package is run with infinite backtrack limit, at least
one simulation vector will exist to distinguish every two nodes.
Currently, FRAIGs first simulate 2048 random patterns. Next,
they append the counterexamples returned during equivalence
checking and their variants as additional simulation patterns.

III. ANALYSIS OF OUR APPROACH

Several aspects of our approach are discussed in this section,
including its scalability, optimization power, safeness, advan-
tages and limitations.

Scalability: Suppose that there are m wires in the circuit
and g n-input gates are used for resynthesis, then the worst case
time complexity of our resynthesis algorithm is on the order of
g×mn if n ≤ m/2. However, by using physical constraints
and logical pruning techniques, as well as several other heuris-
tics, the time complexity is reduced significantly in practice.
From our experimental results, we observe that the runtime is
somewhere between linear and quadratic for n = 2. For ex-
ample, a netlist with almost 100K nets can be resynthesized in
24 minutes (the largest benchmark in Table I). We have also
developed pruning techniques for multi-input gates, but omit
them due to space limitations.

Aside from runtime, the use of signatures instead of other
logic representations, such as BDDs, makes our approach more
scalable in terms of memory usage. For example, comparable
methods to find resynthesis opportunities in [11, 18] are eval-
uated for at most 5K gates at a time, whereas our techniques
typically handle 100K-gate circuits in minutes. Commercial
tools often use BDDs but achieve scalability by means of (i)
netlist partitioning, and (ii) restricting logic optimization to
small windows. To this end, our main contribution is a rel-
atively simple framework that is fast and naturally scales to
large designs without netlist partitioning or windowing.

Optimization Power and Safeness: Our resynthesis tech-
nique tries to reproduce a signal using gates in the library with
new inputs selected from the whole circuit, therefore it is es-
sentially a form of technology mapping. Since the selection
is not limited by small windows like in previous restructuring
techniques [5], it is capable of finding optimizations that are
long-range. Furthermore, complete controllability don’t-cares



are automatically utilized in our techniques by construction,
while no explicit don’t-care computations [21] are required.
These don’t-cares also give our technique more optimization
power to find restructuring opportunities.

When we try to resynthesize a wire, we either remove a gate
and drive all the relevant sinks by a new gate or speed up the
propagation of the signal to the sinks of the wire. The for-
mer case subsumes simple gate relocation, gate relocation that
simultaneously changes gate type, and also several types of
traditional restructuring. The latter case subsumes single-gate
logic replication, including the possibility of gate relocation
and changing the gate type immediately after cloning.

All our transformations are safe in that no gates will be over-
lapped by our optimization. They also have limited effect on
congestion because gates may be removed after each transfor-
mation, making white-space almost equal or even better after
resynthesis. Furthermore, it is easy to veto transformations
that violate designer-specified constraints or worsen designer-
specified quality metrics, e.g., involve wires crossing obsta-
cles, increase gate area or aggravate routing congestion. By
making sure that every transformation improves major quality
metrics without introducing new violations, we ensure that our
resynthesis techniques are safe. On the other hand, by subsum-
ing and generalizing several existing techniques they achieve
considerable strength in practice.

Advantages and Limitations: In summary, the advantages
of the resynthesis approach proposed include:
• The number of physical violations does not increase, and

major physical parameters are not worsened.
• Long-range optimizations can be considered, and com-

plete controllability don’t-cares are exploited.
• Gate relocation and replication techniques can be sub-

sumed whenever beneficial.
• A form of technology mapping is included.
• Our experimental results show a 11% delay improvement

as measured after routing with less than 0.2% increase
in route length and via count on average, which confirms
that our technique is both powerful and safe.

Our technique does not improve standard arithmetic circuits
because they are already heavily optimized. Nonetheless, our
technique can be very helpful for large netlists automatically
synthesized from HDL descriptions.

IV. EXPERIMENTAL RESULTS

We implemented our techniques in C++ including a simple
incremental Static Timing Analysis (STA) engine for our ex-
periments. In our benchmarks, gate delays range from 0.025ns
to 0.15ns, the unit capacitance is 131.53pF/m and unit resis-
tance is 337KΩ/m. The driver resistance ranges from 2.5KΩ
to 10KΩ, and the port capacitance is 0.0149pF. These param-
eters are based on a 0.18µm technology library, and we expect
greater delay improvements as wire delays become more sig-
nificant in newer technologies. Our delay model is based on
the D2M formulas from [2], and we apply those formulas to
Rectilinear Steiner Minimal Trees (RSMTs) generated by the

FLUTE package [8]1 or to actual net routes produced by an
industry router. We perform our optimizations using the STA
engine based on RSMT, and we route the resynthesized layout
to measure the final timing based on actual net routes.

Our hardware platform is an AMD Opteron 880 worksta-
tion running Fedora 4 Linux. Our experiments use the min-
cut placer Capo 10 from the University of Michigan [4],
the QPlace 5.2 placer from Cadence Design Systems, the
NanoRoute 4.1 router also from Cadence and the FLUTE
RSMT package from GSRC Bookshelf [8]. Simulation pat-
terns are generated by the ABC package from UC Berkeley
[23], and all transformations are verified by an external equiva-
lence checker based on the MiniSat SAT solver [10]. While our
organization licenses a broad range of EDA software, we do
not currently have access to relevant physical synthesis tools.
However, we do not believe that our techniques are used by
EDA vendors, and would be willing to perform empirical com-
parisons when appropriate tools become available to us. We
expect that our tools will achieve comparable improvements,
but run considerably faster.

Our initial testcases are selected from IWLS2005 bench-
marks [24], where the design utilization is 70%, but for exper-
iments in Table II we varied the amount of whitespace. They
belong to the following suites: OpenCores (SPI, DES AREA,
TV80, SYSTEMCAES, MEM CTRL, AC97, USB, PCI, AES,
WB CONMAX, Ethernet and DES PERF), Faraday (DMA),
ITC99 (b14, b15, b17, b18 and b22) and ISCAS89 (s35932 and
s38417). The benchmarks in the OpenCores suite are produced
by a quick synthesis run of Cadence RTL Compiler, and all the
benchmarks are mapped to a 0.18µm library. Our current im-
plementation can only generate two-input NAND, NOR, AND,
OR and XOR gates, as well as their variants where one of the
inputs is inverted. In particular, if a three-input gate can be
replaced by a two-input gate, our technique will find this re-
structuring opportunity. Although the netlists used in our ex-
periments have multi-input cells, such as AOI, we do not need
to break them down into smaller cells. Multiple gate cloning
is not yet supported in the current implementation. As a result,
area utilization remains roughly the same after resynthesis.

Fig. 7. Flow chart of our resynthesis experiments.

Our experimental flow is summarized in Figure 7. Three
iterations of the resynthesis are carried out for each run, and
the maximum number of resynthesis attempts for each wire
is limited to 1,000 to further reduce runtime. Characteristics

1Minimal Steiner tress sometimes provide unnecessarily large source-to-
sink delays, and our framework can use a drop-in replacement for timing-
driven Steiner trees.



of the benchmarks and our empirical results are summarized
in Table I, where the numbers are averages over three inde-
pendent runs. Although we performed experiments using both
Capo and QPlace, we only report the results produced by Capo
due to space limitations. However, results from QPlace show
similar trends. In addition to benchmarks in the table, our tech-
nique has shown similar performance on other netlists.

From the results, we observe that our approach is effective
in reducing the delay for most of the benchmarks with minor
increase in total route length, and sometimes it even results in
route length reduction. The average delay improvement is 12%
before routing and 11% after routing, while the route length
and via counts increase by less than 0.2% on average. This is
remarkable, compared to the results for logic cloning in [12]
where route length increases by 2-28%. The results also show
that our SafeResynth approach works most effectively for the
OpenCores benchmarks (SPI to DES PERF), because they are
generated by quick synthesis without optimization. For exam-
ple, the delay improved by 86% for the Ethernet benchmark,
suggesting that our technique is effective when applied by it-
self. However, our technique still achieves up to 17% delay
improvement when applied to already optimized benchmarks
(DMA to s38417), indicating that it can augment traditional
optimization techniques for further improvement.

The impact of our techniques is illustrated in Figure 8: (a)
the detour of the critical path is reduced, which also reduces
the maximum delay; and (b) our resynthesis technique found
another source to generate the same signal. Although the new
path is longer, the delay is actually reduced.

(a)

(b)
Fig. 8. Two optimization examples, one critical path per plot. Delay
calculations are at the 0.18µm technology node. In (a) the critical path is
shortened. In (b) an alternative source to generate the same signal is found.
Although the new path is longer, the delay is actually reduced.

Traditional physical synthesis techniques are unsafe in that
they allow cell overlaps during optimization and rely on a le-
galizer to remove the overlaps. Since accurate analysis can-
not be performed immediately, the executed optimizations may
worsen other physical parameters after legalization and rout-
ing. In order to compare safe and unsafe optimizations, we
apply our resynthesis technique in an unsafe way by allow-
ing cell overlaps. In our unsafe resynthesis, the location to
place the resynthesized gate is determined by trying 400 sites
near the desired coordinate regardless whether these sites are

overlap-free or not. We used the legalizer provided by GSRC
Bookshelf [25] in our experiments, and noticed that its runtime
is typically short. In addition to performing safe and unsafe
resynthesis separately, we combined both techniques by per-
forming safe resynthesis after unsafe resynthesis in the hope of
leveraging both their advantages. While this experiment does
not cover all possible safe and unsafe techniques, we believe
that it is representative. Because benchmarks that are only
slightly modified cannot reflect the difference between safe and
unsafe resynthesis, we use seven large benchmarks from Open-
Cores in this experiment, whose netlists are more significantly
altered. In order to study the effects of available whitespace on
the optimization results, we conducted the same experiments
on the same designs with different percentages of whitespace.
The results are summarized in Table II.

The comparison of estimated delay improvement between
safe and unsafe resynthesis in Table II shows that unsafe resyn-
thesis provides more improvement before legalization because
the resynthesized gate is placed at the best location. However,
the improvement reduces after legalization and becomes close
to the improvement achieved by safe resynthesis. This shows
that performing our resynthesis technique in a safe way, instead
of the traditional unsafe way, does not result in any loss in its
optimization strength. In addition, performing safe optimiza-
tions avoids the detrimental effects that worsen other physical
parameters. As can be observed from Table II, performing safe
instead of unsafe resynthesis avoids the significant increase
in via count. Furthermore, the comparison among different
percentage of whitespace shows that the improvement is only
slightly affected by the amount of whitespace. These observa-
tions suggest that our technique is both powerful and safe. To
obtain the greatest improvement, the advantages of both safe
and unsafe techniques should be leveraged. As suggested by
the results in Table II, this goal can be achieved by applying
safe resynthesis after unsafe resynthesis.

V. CONCLUSIONS

In this paper we proposed an algorithm for resynthesis,
called SafeResynth, which provides powerful improvements
in physical synthesis, while applying safe modifications. It uti-
lizes simulation to generate a signature for each wire, and wires
on the critical path are resynthesized using new gates with
their inputs selected from compatible wires. On-line equiv-
alence checking is then carried out to verify the correctness
of logic transformations. Since we allow inserting additional
gates only when unused space is available, the effects of the
change can be evaluated immediately, and the detrimental ef-
fects on other physical parameters can be avoided. At the same
time, the global search for candidate wires gives our technique
the power to find long-range optimizations. Experimental re-
sults show that our technique can improve timing considerably
without deteriorating other circuit parameters, such as route
length and via count. As a result, our technique can be applied
to practically any design flow without hampering its timing
closure. In addition, these results also suggest that the stability
of existing physical synthesis techniques may be improved by
performing layout modifications in a safe way.



TABLE I
IMPROVEMENT ACHIEVED BY OUR TECHNIQUES: DELAYS, ROUTE LENGTHS AND VIA COUNTS FOR UNOPTIMIZED LAYOUTS ARE SHOWN, FOLLOWED

BY RELATIVE DELAY IMPROVEMENT DUE TO RESYNTHESIS. SAFERESYNTH RUNTIME IS SHOWN IN THE LAST COLUMN.
Benchmark Cell Net Original Resynthesized Runtime

count count Estimated Routed Route Via Estimated Routed Route Additional (min)
delay delay length count delay delay length vias
(ps) (ps) (µm) improv. improv. increase

SPI 3227 3277 2922 2918 238056 22661 2.89% 2.84% 0.14% 0.14% 1.07
DES AREA 4881 5122 4451 4440 285701 30269 1.24% 1.28% 0.19% 0.56% 0.66
TV80 7161 7179 5519 5507 506243 50951 12.23% 12.08% 0.25% 0.13% 1.77
SYSTEMCAES 7959 8220 4688 4687 783394 61878 2.94% 2.94% 0.04% -0.12% 1.02
MEM CTRL 11440 11560 5118 5093 1108789 90876 6.42% 6.54% 0.12% 0.24% 44.71
AC97 11855 11948 2307 2750 871881 85041 2.67% 1.56% 0.04% -0.14% 0.58
USB 12808 12968 3173 3257 1000834 87536 5.21% 3.09% 0.06% 0.15% 1.36
PCI 16816 16990 3777 4430 1390256 122375 5.99% 0.00% 0.09% 0.10% 1.68
AES 20795 21055 4417 4391 1358891 131246 2.32% 2.25% 0.09% -0.08% 2.63
WB CONMAX 29034 30165 19367 19402 2750881 257579 61.37% 61.29% 0.19% -0.19% 7.6
Ethernet 46771 46891 70789 70762 7686013 427475 85.66% 85.61% 0.04% -0.14% 21.66
DES PERF 89341 98576 11564 11542 7643762 595196 1.98% 1.93% 0.02% 0.01% 5.58
DMA 19118 19809 5016 5064 2055086 153406 3.33% 1.03% 0.01% -0.03% 1.37
b14 8679 8716 6338 6306 703240 59178 3.66% 3.66% 0.04% -0.03% 4.32
b15 12562 12605 4809 4793 1029036 94015 3.71% 3.63% 0.03% -0.15% 2.22
b17 37117 37167 5761 5757 3192066 280868 5.26% 5.22% 0.00% -0.07% 4.99
b18 92048 92214 10843 10820 7423151 686753 17.54% 17.41% -0.04% -0.07% 23.05
b22 28317 28354 7261 7240 2292342 192405 6.58% 6.46% 0.02% -0.23% 7.75
s35932 7273 7599 4081 3942 769292 59307 9.11% 0.00% 0.05% 0.14% 0.31
s38417 8278 8309 2796 3195 562242 58937 2.38% 0.00% 0.06% 0.14% 0.94
Average 12.12% 10.94% 0.07% 0.02%

TABLE II
A COMPARISON OF DELAY, ROUTE LENGTH AND VIA COUNT FOR LAYOUTS WITH DIFFERENT PERCENTAGE OF WHITESPACE USING SAFE, UNSAFE AND
UNSAFE+SAFE RESYNTHESIS. UNSAFE OPTIMIZATIONS ALLOW CELL OVERLAPS, AND LEGALIZATION IS REQUIRED TO REMOVE THE OVERLAPS. THIS

TABLE SHOWS THE AVERAGE RESULTS OF SEVEN LARGE BENCHMARKS FROM OPENCORES.
Percentage Estimated delay improvement Routed delay improvement Route length increase Via count increase

of Safe Unsafe resynthesis Unsafe Safe Unsafe Unsafe Safe Unsafe Unsafe Safe Unsafe Unsafe
whitespace resynth. Before After + safe resynth. resynth. + safe resynth. resynth. + safe resynth. resynth. + safe

legal. legal. resynth. resynth. resynth. resynth.
30% 23.60% 24.22% 23.93% 24.22% 22.25% 21.94% 24.41% 0.08% 0.05% 0.08% -0.04% 2.03% 1.80%
10% 23.59% 24.12% 23.64% 24.01% 23.52% 23.56% 23.98% 0.05% 0.09% 0.07% -0.01% 2.29% 1.87%
3% 20.33% 20.78% 20.34% 21.63% 20.22% 20.23% 21.38% 0.04% 0.05% 0.05% 0.15% 1.68% 1.62%

REFERENCES
[1] A. H. Ajami and M. Pedram, “Post-Layout Timing-Driven Cell Place-

ment Using an Accurate Net Length Model with Movable Steiner
Points”, DAC’01, pp. 595-600.

[2] C. J. Alpert, A. Devgan and C. Kashyap, “A two moment RC delay
metric for performance optimization”, ISPD’00, pp. 69-74.

[3] U. Brenner, A. Pauli and J. Vygen, “Almost Optimum Placement Legal-
ization by Minimum Cost Flow and Dynamic Programming”, ISPD’04,
pp. 2-9.

[4] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive Bisec-
tion Alone Produce Routable Placements?”, DAC’00, pp. 693-698.

[5] C. Changfan, Y. C. Hsu and F. S. Tsai, “Timing Optimization on Routed
Designs with Incremental Placement and Routing Characterization”,
IEEE Trans. on CAD, Feb. 2000, pp. 188-196.

[6] C. W. Chang et al., “Fast Postplacement Optimization Using Functional
Symmetries”, IEEE Trans. on CAD, Jan. 2004, pp. 102-118.

[7] S. C. Chang, L. Van Ginneken and M. Marek-Sadowska, “Circuit Opti-
mization by Rewiring”, IEEE Trans. on Comp., Sep. 1999, pp. 962-969.

[8] C. Chu and Y.-C. Wong, “Fast and Accurate Rectilinear Steiner Mini-
mal Tree Algorithm for VLSI Design”, ISPD’05, pp. 28-35.
http://class.ee.iastate.edu/cnchu/flute.html

[9] W. Donath et al., ‘Transformational Placement and Synthesis”,
DATE’00, pp. 194-201.

[10] N. Eén and N. Sörensson, “An Extensible SAT-solver”, Theory and Ap-
plications of Satisfiability Testing, SAT, 2003, pp. 502-518.

[11] S.-Y. Huang, K.-C. Chen and K.-T. Cheng, “AutoFix: A Hybrid Tool
for Automatic Logic Rectification”, IEEE Trans. on CAD, Sep. 1999,
pp. 1376-1384.

[12] M. Hrkic, J. Lillis and G. Beraudo, “An Approach to Placement-
Coupled Logic Replication”, DAC’04, pp. 711-716.

[13] C. Hwang and M. Pedram, “Timing-Driven Placement Based on Mono-
tone Cell Ordering Constraints”, ASPDAC’06, pp. 201-206.

[14] A. B. Kahng and Q. Wang, “Implementation and Extensibility of an
Analytic Placer”, IEEE Trans. on CAD, May 2005, pp. 734-747.

[15] L. N. Kannan, P. R. Suaris and H. G. Fang, “A Methodology and Algo-
rithms for Post-Placement Delay Optimization”, DAC’94, pp. 327-332.

[16] V. N. Kravets and P. Kudva, “Implicit Enumeration of Structural
Changes in Circuit Optimization”, DAC’04, pp. 438-441.

[17] C. Li, C-K. Koh and P. H. Madden, “Floorplan Management: Incre-
mental Placement for Gate Sizing and Buffer Insertion”, ASPDAC’05,
pp. 349-354.

[18] C.-C. Lin, K.-C. Chen and M. Marek-Sadowska, “Logic Synthesis for
Engineering Change”, IEEE Trans. on CAD, Mar. 1999, pp.282-202.

[19] A. Lu, H. Eisenmann, G. Stenz and F. M. Johannes, “Combining Tech-
nology Mapping with Post-Placement Resynthesis for Performance Op-
timization”, ICCD’98, pp. 616-621.

[20] T. Luo, H. Ren, C. J. Alpert and D. Pan, “Computational Geometry
Based Placement Migration”, ICCAD’05, pp. 41-47.

[21] A. Mischenko and R. K. Brayton, “SAT-Based Complete Don’t-Care
Computation for Network Optimization”, DATE’05, pp. 412-417.

[22] H. Vaishnav, C. K. Lee and M. Pedram, “Post-Layout Circuit Speed-up
by Event Elimination”, ICCD’97, pp. 211-216.

[23] Berkeley Logic Synthesis and Verification Group, ABC: A Sys-
tem for Sequential Synthesis and Verification, Release 51205.
http://www-cad.eecs.berkeley.edu/˜alanmi/abc/

[24] http://iwls.org/iwls2005/benchmarks.html
[25] UMICH Physical Design Tools,

http://vlsicad.eecs.umich.edu/BK/PDtools/


