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Abstract— A disjoint support decomposition (DSD) is a representa-
tion of a Boolean function F obtained by composing two or more simpler
component functions such that the component functions have no common
inputs. The decomposition of a function is desirable for several reasons.
First, it’s a method to obtain a multiple-level implementation of a func-
tion. It leads to a partition in simpler blocks that easily results in smaller
areas and fewer interconnects. Moreover, it exposes a parallelism in the
computation of the function that can be exploited by hardware as well as
during simulation.

In this paper we present a novel algorithm, STACCATO, that generates
a DSD decomposition starting from the BDD of a function. STACCATO is
novel because 1) it provides a complete description of each decomposition,
that is, it computes the ”kernel” function K relating the elements of each
decomposition, and 2) it has better performance than previously known
algorithms. Experimental results run on both IWLS and industrial test-
benches show that STACCATO’s performance is in most cases three times
as fast or more than previously known solutions.

I. INTRODUCTION

The disjoint support decomposition (DSD) of a Boolean function
F (x1, · · · , xn) consists in representing F by means of simpler com-
ponent functions J and K, such that the inputs of J and K do not
share any input variable, and:

F = K(x1, · · ·, xj−1, J(xj , · · · , xn)). (1)
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Fig. 1. A Disjoint Support Decomposition of F

In general, a function has several disjoint support decompositions,
which can be superimposed to obtain decompositions with finer gran-
ularity. Moreover, it is possible to recursively search for disjoint sup-
port decompositions for functions J and K to produce even smaller
components. At the limit, F can be represented as a tree of functions,
with the inputs xi being the leaves of the tree.

Techniques for solving disjoint decompositions have been studied
for the past 40 years. Traditional approaches are based on using de-
composition tables to partition the inputs into disjoint sets as in [1, 2],
while more recent techniques proceed by computing the DSD start-
ing from a BDD representation [3, 4, 5]. Decompositions have been
applied to many domains including Synthesis applications, placement
and routing applications, and verification [6, 7, 8, 9, 10, 11].

In this paper we present STACCATO, a novel algorithm that com-
putes efficiently all the disjoint support decompositions of a function.
Previous algorithms developed with this objective include [3, 12].
This previous work focused on finding all the partitions of the sup-
port of F for which Eq. 1 holds. The novelty of our approach rests
in the additional insightful description of the function’s structure that
we can provide. In generating the complete set of disjoint-support
decompositions for a function, we provide the support partition for
each decomposition, and we compute the root function K, also called

kernel, that relates together the disjoint components in F – with ref-
erence to Fig. 1, all the functions like J – through a novel technique
that generates the kernel functions in compact form and at no extra
computational cost. We achieve this by using a kernel-dependent op-
timization for calculating generalized cofactors called, symbolic gen-
eralized cofactors. The benefits of generating the kernel functions
span multiple domains: from technology mapping where the set of
functions represents an optimal gate library for minimal-cardinality
routing, to general applications in synthesis and verification, where
the knowledge of the root function enables computations to be per-
formed directly on the decomposed form of a function.

In the remainder of the paper, we first review the previous work
in this area and provide the necessary background on disjoint support
decompositions. We then present our novel contributions of symbolic
kernels and symbolic generalized cofactors. We conclude by ana-
lyzing the performance of our technique in the experimental results
section and by discussing future research directions.

II. PREVIOUS WORK

Ashenhurst was first to propose a theory and an algorithm for con-
structing disjoint support decompositions in [1]. This algorithm dis-
covers a decomposition by partitioning the support of a function in
two disjoint sets and then verifying that the chosen partition is a valid
disjoint support decomposition. The decomposition can be applied
recursively to each of the two sets to find finer granularity decompo-
sitions. This approach requires an exponential amount of time due
to the exponential number of trial partitions of the support of a func-
tion that need to be checked. As a consequence, practical uses of this
approach are confined to functions of a few variables.

Subsequent research efforts in this area developed in different di-
rections. One focused on simplified, approximated solutions of man-
ageable algorithmic complexity, such as algebraic factorization [13].
The other direction involves the use of heuristics to limit the num-
ber of trial partitions in the original approach [2, 12, 14, 15]. In re-
cent years, the widespread acceptance of BDDs to represent Boolean
functions has motivated additional research in constructing decom-
positions directly from a BDD representation. In [3], an algorithm is
presented that generates all disjoint support decompositions of a func-
tion by traversing a BDD from the bottom up in a recursive fashion.
The complexity of this algorithm is quadratic with respect to the size
of the BDD which, in most cases, represents a significant improve-
ment over the algorithm developed by Ashenhurst.

III. BACKGROUND

This section provides the necessary background on the theory of
disjoint support decompositions and a BDD-based recursive algorithm
presented in [3, 4, 5], for computing them. First, however, we provide
general definitions.

III-A. Definitions

A scalar function F is a mapping F : Bm → B, where B denotes
the set {0, 1}. Lower case letters will be used for variables and upper
case letters will be used for functions. The 1-cofactor of a functions
F w.r.t. a variable v is the function Fv=1 obtained by substituting 1
for v in F . Conversely, the 0-cofactor is obtained by substituting 0



for v in F . The generalized cofactor of a function F is an operation
that restricts the relevant portion of the co-domain of F to a care-set,
specified by the second operand [16]:

DEFINITION 1. Given two functions F and G, the generalized
cofactor of F w.r.t. G is the function FG such that for each input
combination satisfying G the outputs of F and FG are identical.

Section IV-C shows how STACCATO can reduce the operation of
generalized cofactor to a simple cofactor w.r.t. a single Boolean vari-
able when applied to a DSD.

The support of a logic function is the set of variables F depends on
and is indicated by S(F ).Two functions F and G are disjoint-support
if they share no support variables, i.e., S(F )∩S(G) = ∅. We indicate
the size of the support set of F with |S(F )|.

BDDs are the underlying structure we used to represent functions.
An introduction to BDDs can be found in [17].

III-B. Disjoint Support Decompositions (DSD)

In the most general case, the disjoint support decomposition of a
scalar function F , consists of finding other, simpler functions L and
Ai such that:

F (x1, .., xn) = L(A1(x1, .., xA1
), A2(xA1+1, .., xA2

), ..) (2)

with S(Ai) ∩ S(Aj) = ∅, ∀i, j.
The decomposition can be applied recursively to each of the Ai

components leading to a decomposition tree representation for the
Boolean function F . Figure 2.a shows an example of decomposition
tree: each block represents a function with a single output and input
functions that have pairwise disjoint support. Referring to the naming
convention and canonical form defined in [3, 4], each block is char-
acterized by its kernel function, KF , which defines the inputs/output
relation of the block. The list of functions that are inputs of KF is
called the actuals list. Finally, the leaves of the decomposition tree
are the input variables of the function F .

The kernel KF of a block can be either an associative operator
(AND, OR, XOR) or a prime function. Prime functions are simply
functions that cannot be decomposed any further with disjoint support
inputs; examples of primes are the majority and the multiplexor func-
tions. A prime function must contain at least three inputs; if a kernel
function depends on less than three variables, then it must be trivially
an associative operator.

III-C. Construction of DSDs from a BDD representation

In recent years, researchers have considered generating decompo-
sitions starting from the BDD of a Boolean function [14, 3]. In partic-
ular, the algorithm presented in [3] generates the decomposition tree
of a function in a recursive fashion by traversing its BDD bottom-up.
At each node F , a number of conditions on the cofactors F0 and F1

is checked, and, based on the results of this analysis, one of a number
of different constructions is applied. The algorithm presented main-
tains only the actuals lists of each decomposition, since they prove
that the kernel KF can be uniquely determined from the actuals list.
This approach allows them to achieve a low algorithmic complexity of
worst-case quadratic in the size of the BDD representing the function
being decomposed.

IV. DECOMPOSITIONS WITH SYMBOLIC KERNELS

We present now STACCATO, our algorithm for disjoint support
decompositions. STACCATO computes the disjoint decomposition
of a function and generates its decomposition tree from the BDD.
Moreover, it constructs at the same time a representation of the ker-
nel function for each block using BDDs. We call this representation
symbolic kernel. For simplicity of notation, from hereon, we use the
symbol KF to denote specifically the ”symbolic kernel of F ”, in con-
trast with its generic meaning of ”kernel of F ” used up to this point.
In the following, we overview the decomposition tree structure used
in STACCATO. We then discuss the properties of symbolic kernels

and explain how they can be used to simplify the computation of the
generalized cofactors that are used throughout the DSD algorithm. Fi-
nally, we present a technique to efficiently calculate symbolic kernels
that results in minimal overhead in STACCATO.

IV-A. Structure of a decomposition node
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Fig. 2. Decomposition tree and structure of a decomposition node

Figure 2 shows an example decomposition. Part a) shows the de-
composition tree for a function F where blocks representing prime
decompositions are hashed and blocks representing associative oper-
ators are grayed. The leaf nodes are connected to the function’s input
variables. Figure 2.b) shows the structure used to represent a decom-
position node. In addition to the decomposition type and actuals list,
the block contains a field referencing a BDD that represents the sym-
bolic kernel, as defined below. The last field is a pointer to the BDD
of F . This field is used as key in a hash table to determine whether a
given function has been previously decomposed.

IV-B. Symbolic Kernels

STACCATO represents the kernel of a DSD using a structure called
symbolic kernel. The use of symbolic kernels enables us to simplify
the computation of the generalized cofactors required in the DSD al-
gorithm.

A symbolic kernel is a BDD where each variable in the support
represents a distinct disjoint component of the DSD of F . In STAC-
CATO, we call these variables representative variables.

DEFINITION 2. Given a function F = KF (A1, A2, A3, ...), a
representative variable for the member function Ai is a variable x

such that x ∈ S(Ai).

The set of representative variables for the DSD of F constitutes the
support of KF . Note that each member function is always mapped to
a distinct representative variable since member functions have disjoint
supports. Moreover, there are in general multiple variables that can be
selected as the representative variable of a list member; we exploited
this freedom to optimize implementation performance by always se-
lecting the bottom variable in the BDD ordering. We provide below a
formal definition of symbolic kernels:

DEFINITION 3. The symbolic kernel of F , KF , is a kernel func-
tion whose support consists exactly of the set of representative vari-
ables determined by the bottom variable of each actuals list element
in the decomposition of F , based on the BDD variable ordering used
to represent the decomposition.

Example 1. F = MAJ(b, MUX(a, cd, fg), e) where the variable or-
der from top to bottom is a, b, c, d, e, f, g. To construct the symbolic
kernel according to Definition 3, a representative variable needs to
be chosen for each actuals list member {b, MUX(a, cd, fg), e}. By
choosing the bottom variable in each actuals list member, the follow-
ing mapping is achieved: {b, g, e}. The resulting symbolic kernel
would be MAJ(b, g, e).2



Symbolic kernels are maintained for each intermediate decomposi-
tion during the execution of STACCATO. The basic construction step
involves substituting the proper representative variable for the corre-
sponding actuals list member in F .

IV-C. Symbolic Generalized Cofactor

The symbolic generalized cofactor is a cofactoring operation per-
formed on the symbolic kernel. Since each representative variable is
mapped to a disjoint support function, taking the cofactor of KF with
respect to a representative variable corresponds to computing the gen-
eralized cofactor of F with respect to an actuals list function.

The DSD algorithm defined in [4] makes extensive use of gener-
alized cofactors to identify special cases of decomposition that oc-
cur in the bottom-up algorithm. By using symbolic generalized co-
factors, STACCATO simplifies the computation necessary to identify
these decompositions: Each generalized cofactor operation applied to
a complex F function reduces to a simple cofactor computation ap-
plied to a much smaller KF .

IV-D. Tree-Intersection and Symbolic Merging

The computation of a new decomposition for a function F = xF0+
xF1, given the decomposition of the two cofactors F0 and F1, in-
volves computing a special ”tree-intersection” between the decompo-
sition trees of F0 and F1 to generate the actuals list for F . The in-
tersection algorithm produces two lists. The first one contains blocks
whose support only occurs in one of the trees. These blocks are re-
ferred to as exclusive blocks. For instance, a block in the decomposi-
tion tree of F0, whose support variables are disjoint from the support
of F1, is an exclusive block. Additionally, exclusive blocks whose
parent block is also an exclusive block do not appear in the list. The
second list produced by the intersection algorithm consists of blocks
that are common to F0 and F1. These blocks are called common
blocks. Similarly, this second list does not contain common blocks
whose parent block is also a common block. The union of the two
lists and the top variable x constitutes the actuals list for the decom-
position of F . The example below illustrates this tree-intersection
operation:
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Example 2. Consider the function F of Figure 3.a) where the decom-
position trees of the two cofactors are as illustrated. By performing
the tree-intersection operation we find that functions B and E are ex-
clusive blocks and are placed into the first list, while functions C and
D are common blocks and are placed into the second list. Note that
none of the other blocks are either exclusive or common. The final ac-
tuals list for the new decomposition is then: {x, B, C, D, E}. Figure
3.b) shows the new actuals list along with a hashed area that denotes
the kernel of F . 2

In addition to computing the actuals list, STACCATO needs to
generate a corresponding new symbolic kernel. Symbolic merging
is the algorithm used for symbolic kernel construction on-the-fly dur-
ing the tree-intersection operation. Both symbolic kernels KF0

and
KF1

are expanded during tree-intersection until their supports in-
clude only representative variables that map to exclusive or common

blocks. The resulting symbolic functions are called SFF0
and SFF1

.
In general,SFF0

and SFF1
are functions that can be further decom-

posed, in contrast with KF0
and KF1

, which are prime functions or
represent associative operators. The two symbolic functions are then
composed with a multiplexor block to produce the new symbolic ker-
nel, KF , as indicated pictorially in Fig. 3.b). The decomposition
algorithm guarantees that KF is, in fact, a kernel function even when
SFF0

and SFF1
are not. The symbolic merging algorithm is com-

putationally much simpler than generating the kernel function com-
pletely after the tree-intersection operation, because the former in-
volves only the smaller symbolic kernels, KF0 and KF1, the latter
requires computations over F .

Example 3. With reference to Figure 3, when constructing the sym-
bolic kernel for F , the inputs of F0 are examined first. KF0 contains
representative variables for the functions A, B, and C. However, be-
cause A is neither exclusive nor common, it must be composed into
KF0. The resulting symbolic function, SFF0, has representative vari-
ables for the functions B, C, D, and E. The construction of SFF0,
is simply obtained by substituting KA for the representative variable
of A in KF0. F1 is then analyzed. F1 is neither exclusive nor com-
mon, thus its inputs must be examined. Because each input func-
tion is a common block, we have SFF1 = KF1. Since at this point
SFF0 and SFF1 have consistent variable mappings by construction,
the symbolic kernel of F can simply be computed with the following
operation: KF = MUX(x, SFF0, SFF0). 2

V. EXPERIMENTAL RESULTS

We implemented STACCATO and ran experiments on circuits de-
rived from the combinational portions of IWLS, ISCA - LogicSyn-
thesis, and VIS suites, as well as units from the publicly released pi-
coJava processor by SUN Microsystem [18]. STACCATO is a library
that links to the CUDD package [19], which we use for BDD con-
struction and manipulation. First, we build a BDD for each primary
output function using CUDD, and then call STACCATO to decom-
pose each individual output.

Table I reports relevant metrics for the circuits considered. The in
and out columns represent the number of primary inputs and outputs
respectively. Column dec.out describes the fraction of outputs in each
test that are decomposable. The number of blocks in the decomposi-
tion is given by the field blocks.

V-A. Resource Requirements: CUDD vs. STACCATO

The memory required by STACCATO is compared to the mem-
ory required by CUDD to construct the initial BDDs. The last two
columns of Table 1, %+BDD and % DEC, refer to the overhead re-
quired to maintain the symbolic kernels and the decomposition tree
of the circuits, respectively, compared to the total memory needed for
STACCATO and CUDD. For almost every circuit, the results clearly
show that the memory necessary to represent the symbolic kernels
and the decomposition trees is minimal. The BDDs that represent the
symbolic kernels often produce minimal overhead because they over-
lap with the initial BDDs that represent the circuit’s functionality. As
for the decomposition trees, in the worst case, the number of DSD
nodes is linearly related to the number of variables in the support of a
function, in contrast with BDDs, which can potentially be exponential
in the size of the support.

For the sake of brevity, we have excluded information comparing
the runtime performance of STACCATO and CUDD. In general, we
found that for most of the circuits the time required by CUDD to build
the initial BDDs is comparable to the time required by STACCATO
to construct the decomposition trees from these BDDs. More specifi-
cally, for circuits that have many decomposable outputs, STACCATO
usually constructs decomposition trees faster than it takes CUDD to
build the BDDs of circuits. For circuits that have no decomposable
outputs, STACCATO performs comparatively slower.

V-B. Symbolic Generalized Cofactor and Merging



Circuit in out dec.out. blocks %+BDD % DEC

C1355 41 32 0 32 0.0 2.7
C1908 33 25 7 94 8.7 6.0
C2670 233 140 119 453 5.1 7.2
C3540 50 22 14 56 0.4 1.8
C499 41 32 0 32 0.0 2.7
C7552 207 108 107 518 41.6 4.2
FIFO 149 285 279 1027 4.9 12.5
am2901 95 150 138 280 22.9 0.5
dcu 700 265 231 3118 32.7 22.9
freecell 486 957 879 9963 16.4 1.9
hwb30 30 1 0 1 0.0 1.0
i10 257 224 224 2241 59.3 2.1
s15850.1 611 684 651 8877 30.4 10.0
s38417 1664 1742 1484 7215 30.4 1.5
s38584.1 1464 1730 1611 6153 33.2 33.3
s4863 153 88 66 302 3.1 1.0
s6669 322 269 194 1119 5.8 6.0
smu 435 142 104 709 16.2 17.5
vcordic 73 144 142 1749 1.8 1.1

TABLE I- BENCHMARKS.

Figure 4 evaluates the performance impact of the various compo-
nents of our algorithm. The first bar from the left in the graph repre-
sents the STACCATO implementation described in this paper. This is
compared to three limited-feature variants to evaluate the individual
performance contribution of symbolic generalized cofactor and sym-
bolic merging. The execution time of these variants is normalized
to STACCATO. The first variant, corresponding to the second bar in
the graph, No Symbolic Kernel Computation, does not compute any
symbolic kernels and therefore cannot compute generalized cofactors
symbolically, which is equivalent to the algorithm in [3]. The second
variant of STACCATO, denoted by the third bar in the graph, STAC-
CATO -Symbolic GC, computes symbolic kernels, but does not exploit
them for symbolic generalized cofactor computations. This variant il-
lustrates the performance impact of symbolic generalized cofactors
alone. The third variant, corresponding to the fourth bar, STACCATO
-Symbolic Merging, uses symbolic kernels and symbolic generalized
cofactors, but it does not implement the on-the-fly symbolic merg-
ing algorithm described in Section IV-D, instead it builds the kernels
from the resulting decomposition tree as discussed in Section IV-B,
which involves substituting a representative variable for each actuals
list member.
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The results show that STACCATO outperforms the first variant
even though it does not need to compute any kernel. The savings stem
from the symbolic generalized cofactoring that requires symbolic ker-
nels. Accordingly, the second variant directly illustrates what type of
performance degradation occurs when symbolic generalized cofactor-

ing is not used. The results without symbolic merging show that the
approach to construct kernels used in this paper far exceeds the per-
formance of computing the kernel as discussed in Section IV-B.

VI. CONCLUSIONS

We presented a novel algorithm, STACCATO, that computes all the
decompositions of a Boolean function while generating the symbolic
kernels, the internal component functions of the decompositions, at
practically no additional computational cost. We showed that com-
puting symbolic kernels for all the blocks in the decomposition tree
can speed up the disjoint support decomposition algorithm while in-
volving minimal memory overhead, as we showed in our experimen-
tal results. Moreover, symbolic kernels find interesting application
in technology mapping where they constitute an optimal library for
minimal-interconnect synthesis. They could also enable Boolean ma-
nipulation directly on the decomposition tree, thus eliminating the
need for the initial BDD construction.
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