
AGARSoC: Automated Test and Coverage-Model Generation for Verification of

Accelerator-Rich SoCs

Biruk Mammo Doowon Lee Harrison Davis Yijun Hou Valeria Bertacco
Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48105

e-mails: {birukw,doowon,hardavis,yijunhou,valeria}@umich.edu

Abstract— SoC design trends show increasing integration of

special-purpose, third-party hardware blocks to accelerate di-

verse types of computation. These accelerator blocks interact with

each other in unexpected ways when integrated into a complex,

accelerator-rich SoC. In this work we propose a novel solution

that guides verification engineers to the high-priority accelerator

interaction scenarios during RTL verification. We observe that in-

teraction scenarios frequently exercised by software for the SoC,

which is typically developed alongside the RTL, should be the

highest priority targets for verification. To this end we analyze

the behavior of software executed on high-level simulation models

to identify commonly occurring accelerator interaction scenarios.

We encapsulate scenarios observed from diverse software execu-

tions into an abstract representation that can then be used to ex-

tract coverage models and generate test programs. Our experi-

ments show that our solution is able to identify frequently exer-

cised scenarios, extract coverage models, and generate compact,

high-quality tests for two completely different SoC designs.

I. INTRODUCTION

Driven by stagnating performance gains and energy-

efficiency constraints, recent trends in processor design show

an increasing adoption of systems-on-chip (SoCs) that integrate

several, highly-specialized hardware blocks that accelerate cer-

tain types of computation [1, 2, 13]. While there is a significant

body of research into designing accelerator-rich SoCs [5, 14],

there are only a handful of works that attempt to address the

impending verification challenges [4, 7, 12]. Even though the

accelerators that go into these complex SoCs are independently

verified by their designers, they can still harbor bugs that only

manifest when interacting with other accelerators. These bugs

escape independent verification because they arise due to in-

compatible interpretations of specifications and assumptions

baked into the different accelerators. Each accelerator can be

configured in multiple ways, leading to several different modes

of operation, which, coupled with the large number of compo-

nents in the system, result in a copious amount of interaction

scenarios to be considered for verification.

We recognize a need for tools to manage the complex-

ity of verifying the large space of accelerator interactions in

accelerator-rich SoCs. We observe that even though the space

of possible interactions in an accelerator-rich SoC is large, the

actual interactions that are exercised by software are much

more limited. It is of paramount importance to get these likely-

exercised interactions correct as they affect customers the most.

high-level
model

RTL of SoC
tests

coverage models

analysis

abstraction

generation

input
parameters

SW
mem.

traces
AGARSoC

patterns

scenarios

RTL verification environment

3rd – party

accelerator IP

Fig. 1. AGARSoC overview. We analyze the execution of software on a

high-level model of an accelerator-rich SoC to identify high-priority

accelerator interaction scenarios for verification. We then generate

corresponding coverage models and compact test programs, which are used to

guide the verification of the RTL for the SoC. AGARSoC is mostly automated

and can be flexibly controlled by parameters supplied at runtime.

By analyzing software execution traces from high-level mod-

els, we propose to identify the accelerator interaction scenarios

that are likely to be executed by software and thus are of highest

priority for verification. We then generate coverage models that

capture these scenarios and test programs that exercise them. In

doing so, we minimize the guess-work and randomness in ver-

ification planning, coverage model development, and test gen-

eration. Our proposed solution, illustrated in Figure 1, lever-

ages HW/SW co-verification environments where software to

be shipped with the SoC is developed and tested on high-level

simulation models, concurrently to RTL development. By us-

ing our generated test programs, the integration team can sig-

nificantly cut down the amount of effort and simulation cycles

spent on RTL verification. In addition, our automated tools

simplify adjusting verification goals as new software becomes

available during the verification lifetime. Our solution is de-

signed to guide the verification of accelerator interactions and

hence is complementary to approaches that target other goals.

Contributions: In this work, we propose AGARSoC:

Automated Test and Coverage-Model Generation for Verifi-

cation of Accelerator-Rich Systems-on-Chip. AGARSoC is

a methodology and set of tools that guide the verification of

accelerator-rich SoCs towards high-priority accelerator inter-

action scenarios. These scenarios are automatically identified

by analyzing software executions on high-level models of the

SoC under verification. AGARSoC extracts and generates cov-

erage models and high-quality test programs that hit the cov-

erage goals. The generated programs are much more compact

than the original software suite they are derived from and hence

require fewer simulation cycles. In addition, AGARSoC is de-

signed to be highly-versatile for analyzing test runs, adapting

verification goals, and generating test programs throughout the

verification lifetime, with only minimal engineer input.

interconnect

C0 CN � P0 PQ�

A0 AM
�

mem
general-purpose cores peripheral IPs

accelerators

memory-mapped
configuration registers

r0

rk

�

Fig. 2. Accelerator-rich SoC architecture. Multiple cores, accelerators,

memories, and peripheral components are integrated in a chip through an

interconnect. These components interact via memory operations, which are

routed by the interconnect to the proper destinations. Memory-mapped

registers in the accelerators are used to configure accelerators for execution.

II. CAPTURING SOFTWARE BEHAVIOR

Accelerator-rich SoC architectures integrate several acceler-

ators, general-purpose cores, and peripheral components as il-

lustrated in Figure 2. Each accelerator in the system is designed

to execute a specialized task quickly and efficiently. Accel-

erators for cryptographic hashing, video encoding/decoding,

and image processing are already prevalent in current SoCs.

Software executing on the general-purpose cores launch tasks

on the accelerators by writing task parameters to the memory-

mapped accelerator configuration registers. A launched accel-

erator performs its task, possibly operating on a chunk of data

in memory. Upon completion of its task, an accelerator notifies

the software, often by writing its status to a memory location

specified during configuration.

To capture software behavior, AGARSoC analyzes memory

operation traces collected from software running on a high-

level model. These traces include regular read and write ac-

cesses to memory from processor cores and accelerators, write

operations to accelerator configuration registers, and special

atomic memory operations for synchronization. Each access

in a memory trace includes the cycle, memory address, type,

size, and data for the access. The individuality of each accel-

erator and the existence of multiple memory transactions for

configuring and executing an accelerator are features unique to

accelerator-rich SoCs. Previous works on analyzing software

behavior focus on capturing performance and target processor

cores alone [8, 9].

A. Analyzing memory traces

We scan the memory traces from the processor cores to de-

tect patterns of memory accesses to accelerator configuration

registers, which we refer to as accelerator configuration pat-

terns. We also extract accelerator access patterns from ac-

celerator memory traces and match them with their triggering

configuration patterns to get accelerator execution patterns.

We group these accelerator execution patterns into execution

classes based on their configured modes of operation.

AGARSoC’s analysis is a mostly automated procedure with

minimal engineer input. Engineers specify the memory map-

pings for the different components, which is obtained from the

SoC configuration. We expect accelerator designers to provide

descriptions of start and end conditions for accelerator config-

uration and access patterns, as well as specify which configu-

ration writes define a mode of operation for their accelerator.

Integration engineers can then encapsulate these conditions as

Python functions and easily pass them as arguments to AGAR-

SoC’s analysis tools. Below are examples of designer-specified

conditions for the multi-writers, multi-readers (MWMR) pro-

tocol in the Soclib framework [15], encapsulated in the Python

functions shown in Figure 3:

• “An accelerator signals task completion by writing a non-

zero value to a memory location written to configuration

register 0x4c”.

• “Writes to configuration registers 0x44, 0x48, 0x60, 0x50,

and 0x5c define mode of operation.”

def MWMREndDetector(configPat, accOp):

endLoc = configPat.accesses[0x4c].data

if accOp.addr != endLoc or not accOp.isWrite():

return False

return accOp.data != 0

def MWMRConfigHash(configPat):

mode = [configPat.target]

for reg,acc in configPat.accesses.iteritems():

if reg in [0x44, 0x48, 0x60, 0x50, 0x5c]:

mode.append(acc.data)

return tuple(mode)

Fig. 3. User-defined functions. MWMREndDetector returns True if a

particular accelerator memory operation is signaling the end of a task.

MWMRConfigHash returns a hashable tuple that contains the mode of

execution. The configPat (accelerator configuration pattern) and accOp

(accelerator memory operation) data structures are provided by AGARSoC.

B. Identifying interaction scenarios

We identified two types of interaction that are likely to lead

to scenarios that were not observed during independent veri-

fication. Firstly, concurrently executing accelerators interact

indirectly through shared resources. Any conflicting assump-

tions about shared resource usage manifest during concurrent

executions. Secondly, the state of the system after one accel-

erator execution affects subsequent accelerator executions. We

develop heuristics that identify concurrent and ordered acceler-

ator interaction scenarios by analyzing the observed execution

patterns. We detect and retain only execution classes in our

scenarios, instead of the actual execution instances. Thus, our

heuristics avoid capturing redundant scenarios that do not be-

long to a diverse set of interactions.

Concurrent accelerator interaction scenarios gather ac-

celerator execution classes whose execution instances have

been observed to overlap. The overlap is detected by com-

paring the start and end times of the accelerators’ execution

patterns. While start and end times observed from a high-level

model may not be exactly identical to those observed in RTL,

they represent the absence of ordering constraints and there-

fore indicate a possibility of concurrent execution on the SoC.

Concurrently executing accelerators interact indirectly through

shared resources (interconnect, memory, etc.) leading to be-

haviors that may not have been observed during the indepen-

dent verification of the accelerators.

Ordered accelerator interaction scenarios are either in-

tended by the programmer (program ordered, and synchro-

nized) or coincidentally observed in a particular execution. We

infer three types of ordered accelerator executions:

Program-ordered: non-overlapping accelerator execution

classes invoked in program order from the same thread, de-

tected by comparing start and end times of accelerator execu-

tions invoked from the same thread.

Synchronized: accelerator execution classes whose instances

are invoked from multiple threads, but are synchronized by a

synchronization mechanism. We detect these by first identify-

ing synchronization scopes (critical sections) from core traces

and grouping accelerator invocations that belong in scopes that

are protected by the same synchronization primitive. For lock-

based synchronization, for instance, we scan the memory traces

to identify accelerator invocations that lie between lock-acquire

and lock-release operations. We group the accelerator execu-

tion classes for these invocations by the lock variables used,

giving us groups of synchronized classes.

Observed pairs: pairs of accelerator execution classes whose

execution instances were observed not to overlap. Unlike

program-ordered scenarios, which can be of any length, ob-

served pairs are only between two execution classes.

C. Abstract representation

Following the analysis and scenario detection steps, AGAR-

SoC creates a representation of software execution that ab-

stracts away execution-specific information irrelevant to our

goal, such as specific memory locations and actual contents

of data manipulated by the accelerators. Our representation

contains three major categories: accelerator execution classes,

concurrent scenarios, and happens-before (ordered execution)

scenarios. Each entry in these categories contains a unique

hash for the entry and a count of how many times it was ob-

served in the analyzed execution. The entries for accelera-

tor execution classes and concurrent scenarios are directly ob-

tained from the analysis. The happens-before category contains

combined entries for all unique observed pairs and program-

ordered sequences. In addition, we generate all possible non-

deterministic interleavings of synchronized accelerator execu-

tions. The entries in the happens-before sections have counts

of how many times they were observed in the execution traces.

For any generated ordering that has not been observed, we store

a count of 0.

Figure 4 illustrates an example of how a software execution

is turned into an abstract representation. The SoC in this ex-

ample has 3 cores and 3 accelerators. The software threads

running on these cores trigger multiple accelerator executions,

labeled 1 – 6 in the figure. A circle, a diamond, and a tri-

angle are used to represent invocations of A0, A1, and A2,

respectively. The different colors indicate different modes of

operation. AGARSoC will identify 5 different classes of ac-

celerator execution corresponding to the different accelerators

and modes observed during execution. Executions 1 and 4, 3

and 5, and 3 and 6 overlap, resulting in the three concurrent

scenarios in the abstract representation. Similarly, AGARSoC

identifies two sequences of program-ordered execution classes.

Lock-acquire and lock-release operations using the same lock

variable, indicated by locked and unlocked padlocks, respec-

tively, mark one group of synchronized accelerator executions.

AGARSoC generates all 6 possible interleavings of sequence

length 2 for the accelerator execution classes in this group.

The unobserved interleavings are marked with a count of 0.

The immediate observed pairs extracted from the execution are

not shown in the Figure because they have all been included

in the program-ordered and synchronized interleavings groups

shown. Note that the observed pair resulting from executions 4

and 2 is also a possible interleaving of 2 and 5.

Abstract representations for different software executions

can be combined to create a union of their scenarios by simply

summing up the total number of occurrences for each unique

C0 C1 C2 A0 A1 A2

accelerator
invocations

accelerator
executions

tim
e

abstract representation

classes
x1

x1

x1

x1

x2

concurrent scenarios
x1

happens-before scenarios

x1 x1

lock
acquire

lock
release

legend of execution classes
A0, mode 0 A0, mode 1

A2, mode 0 A2, mode 1
A1, mode 0

1

2

4

5

6

1

2

4

5

6

program-ordered

synchronized interleavings

3
3

x1

x1 x1

x1

x0

x0

x0

x1

observed from 4 → 2

Fig. 4. Abstracting an execution. Accelerator tasks are launched from the

general-purpose cores. We group these task executions into unique execution

classes, represented by shape and color. We represent concurrently executing

execution classes and ordered execution classes. The ordering among classes

is obtained from program-order, generated interleavings of synchronized

invocations, and observed immediate ordered pairs.

scenario observed across the multiple executions. Through the

process of combining, redundant accelerator interactions that

are exhibited across multiple programs are abstracted into a

compact set of interaction scenarios. This is one of the key fea-

tures that allows AGARSoC to generate compact test programs

that exhibit the interaction scenarios observed across several

real programs.

III. COVERAGE MODEL GENERATION AND ANALYSIS

AGARSoC generates a coverage model that guides the RTL

verification effort towards high-priority accelerator interactions

as identified from software execution analysis. The coverage

model generation algorithm performs a direct translation of the

abstract representation extracted from the analysis: scenarios

are translated into coverage events and scenario categories are

translated into event groups. The coverage events in each event

group can be sorted by the count associated with each scenario

entry in the abstract representation. A higher count indicates a

more likely scenario.

In addition to coverage model generation, AGARSoC’s cov-

erage engine is capable of evaluating and reporting the func-

tional coverage data from RTL simulation. To take advantage

of this capability, the RTL verification environment should out-

put traces of memory operations. We believe this is a feature

that most real-world RTL verification environments have, since

memory traces are valuable during RTL debugging. AGAR-

SoC’s coverage engine is designed to be very flexible to adapt

to changing verification requirements. Coverage models that

AGARSoC generates can be merged without the need to an-

alyze executions again. In addition, coverage output files are

designed such that a coverage analysis output for a particular

execution can be used as a coverage model for another exe-

cution. These features give engineers the flexibility to incor-

porate new software behaviors at any stage of verification, to

compare the similarity between different test programs, and to

incrementally refine verification goals.

Figure 5 shows a snippet of a coverage report generated by

AGARSoC. This report shows the coverage analysis for an

AGARSoC generated program versus a coverage model ex-

Fig. 5. Sample coverage analysis output.

tracted from a software suite. The Goal column shows the

counts of each coverage event as observed in the original soft-

ware suite. AGARSoC currently uses these goals only as in-

dicators of how frequently scenarios are observed, which can

guide the choice of scenarios to include for test generation.

The Count column shows how many times the events were ob-

served in the generated test program. The Seen column indi-

cates the presence of an event occurrence with a green color

and its absence with red. The % of goal column indicates how

many times the synthetic events were observed compared to the

events in the original software suite. This column is ignored

when all that is required is at least one hit of a coverage event.

However, it becomes relevant when comparing the similarity

between different test programs.

IV. TEST GENERATION

In addition to coverage models, AGARSoC also generates

test programs that exhibit the accelerator interaction scenarios

captured in its abstract representation. The test generation en-

gine is highly flexible, allowing for the generation of test pro-

grams that target chosen scenarios. The number of threads in

the generated test program, the length of ordered sequences to

reproduce, and the range of scenarios to generate (from a given

scenario group, based on frequency of occurrence) are some

of the configurable parameters that control AGARSoC’s cre-

ation of a multi-threaded schedule of accelerator executions to

be executed by the generated test program.

A. Generated test program structure

AGARSoC generates multi-threaded C programs that invoke

accelerator executions through calls to library functions. Us-

ing barriers, the executions of these threads are divided into

phases where the accelerator executions invoked in each phase

can execute concurrently and accelerator executions in mul-

tiple phases are guaranteed to be ordered. For each execu-

tion, AGARSoC generates the definition of accelerator execu-

tion classes, a data layout, and queues of accelerator execution

classes for each thread to execute. At the beginning of each

phase, each thread in the phase-based execution mechanism

pops an entry from its queue and invokes an accelerator, based

on the generated data layout and execution class definitions.

B. Schedule generation algorithm

AGARSoC uses multiple heuristics to generate a compact

schedule of accelerator executions that exhibits the desired ac-

celerator scenarios. Our first step adapts the concurrent scenar-

ios to an N-threaded environment, where N is specified by the

engineer. If there are any concurrent scenarios with more than

N concurrent executions, we enumerate all possible N-long sets

of concurrent executions. The outcome of the first step is a list

of unique scenarios with N or less concurrently executing ac-

celerator execution classes. Our second step creates a list of

ordered unique, execution class groups of size M or less. M is

also specified by the engineer.

Our third step uses a heuristic that creates a multi-phase

schedule of the concurrent scenarios that also satisfies the most

number of ordered scenarios. Note that all invocations of a con-

current scenario are placed in a single phase, to be triggered by

multiple threads. All accelerator executions invoked in a phase

must complete before the threads proceed to the next phase.

Therefore all accelerator executions in the earlier phase are or-

dered before all the accelerator executions in the subsequent

phase, satisfying multiple ordered scenarios. Our heuristic cre-

ates partial schedules of length M until all concurrent scenarios

are scheduled. At each step, it searches the length M sched-

ule that satisfies the largest number of previously unsatisfied

ordered scenarios. We perform this schedule search multiple

times, starting from a different concurrent scenario each time.

We finally pick the complete schedule that satisfies the most

number of ordered scenarios.

Our last step constructs a single sequence of program-

ordered executions from the remaining ordered scenarios. Us-

ing partial pattern matching, we ensure that the sequence we

create has no repetitions and has the shortest length possible.

V. EXPERIMENTAL RESULTS

We tested AGARSoC’s capabilities on two different SoC

platforms. We used Soclib [15] to create a Soclib ARM plat-

form in SystemC that has 3 ARMv6k cores with caches dis-

abled, 3 accelerators, 3 memory modules, and 1 peripheral,

all connected via a bus. The three accelerators are a quadra-

ture phase shift keying (QPSK) modulator, a QPSK demodu-

lator, and a finite impulse response (FIR) filter. All acceler-

ators communicate with software running on the cores using

a common communication middleware. Multi-threaded syn-

chronization is implemented using locks, which are acquired

by code patterns that utilize ARM’s atomic pair of load-locked

and store-conditional instructions (LDREX and STREX). Us-

ing Xilinx Vivado R© Design Suite [3], we created a MicroBlaze

TABLE I

SOFTWARE SUITES

suite group # of progs description

Soclib 1 9 sequential accesses with locks
Soclib 2 9 sequential accesses without locks
Soclib 3 9 concurrent accesses with locks
Soclib 4 9 concurrent accesses without locks
Soclib 5 18 combinations of the four above
µBlaze 1 7 no synchronization
µBlaze 2 8 lock, single-accelerator invocation
µBlaze 3 5 lock, multiple-accelerator invocation
µBlaze 4 7 barrier, redundant computations
µBlaze 5 13 semaphore

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Soclib MicroBlaze Soclib MicroBlaze Soclib MicroBlaze
group 1 group 2 group 3 group 4 group 5 all

execution class concurrent scenario happens-before scenario

N/A N/A

c
o

m
p

a
c
ti
o

n
 r

a
te

Fig. 6. Compaction rates from abstract representation. The compaction of

accelerator executions into unique instances of accelerator execution classes,

concurrent scenarios, and happens-before scenarios for our two software

suites. The compaction rate is measured as a ratio of the number of unique

instances versus the total number of instances.

0%

20%

40%

60%

80%

100%
103% 267%

n
o
rm

a
li
z
e
d
 r

u
n
ti
m

e

Fig. 7. Normalized simulation runtime for each test group. While generated

tests are usually shorter than the original test suites, MicroBlaze suites 1 and 3

show longer runtime, because of the inability of generating minimal

schedules. However, the test program generated from all MicroBlaze suites

does not exhibit this property.

platform in RTL that comprises three MicroBlaze processors

with caches and local memories, six accelerator IP blocks, one

shared memory module, and peripheral devices connected via

AXI interconnects. The six IP blocks are a FIR filter, a cas-

caded integrator-comb (CIC) filter, a CORDIC module, a con-

volutional encoder, a fast Fourier transfer (FFT) module, and a

complex multiplier. Synchronization primitives (i.e., lock, bar-

rier, semaphore) are implemented using a mutex IP.

For each platform, we created software suites that contain

several patterns of accelerator execution, as summarized in Ta-

ble I. We designed our software suites to have a diverse set

of accelerator usage patterns. After analyzing all of the So-

clib software suites, AGARSoC identified 264 accelerator in-

vocations, 130 observed concurrent scenarios, 315 observed

happens-before scenarios. Similarly for MicroBlaze, it iden-

tified a total 358 accelerator invocations, 592 observed con-

current scenarios, and 502 observed happens-before scenarios.

Figure 6 reports average compaction rates from AGARSoC’s

abstraction process of these observed scenarios. Better com-

paction rates are achieved for test suites that exhibit redundant

interactions. We report the compaction rates for each suite

group and the three categories in the abstract representation.

Note that by automatically identifying important scenarios,

AGARSoC focuses verification to a small, albeit important,

portion of the large space of possible interactions. For instance,

for the 17 unique classes identified from the MicroBlaze suites,

there can potentially be 680 concurrent scenarios. AGAR-

SoC identified only 74 cases. The potential number of unique

classes is much larger than 17 and it is only due to AGARSoC’s

analysis that we were able to narrow it down to 17. If we con-

servatively assume that the SoC allows 100 unique classes for

instance, 161,700 concurrent scenarios are possible.

We observed that the test programs generated from the com-

pact abstract representation exercise a 100% of the scenarios

captured in the abstract representations. Figure 7 summarizes

the reduction in simulation cycles achieved by running these

tests instead of the original software suites. The AGARSoC

generated tests simulate in only 8.6% of the time taken by

the complete software suite for the Soclib platform and 38%

for the MicroBlaze platform. However, the tests generated in-

dependently from the MicroBlaze software suites 1, 3, and 4

offer no execution time reduction, mainly due to the inability

of the test generator to create minimal schedules to satisfy all

scenarios. Suite 3 contains a program that is intentionally de-

signed to exhibit accelerator patterns that push AGARSoC’s

schedule generator to the limit. Also, generated tests poten-

tially exercise more happens-before scenarios than the original

suites, due to all unobserved interleavings generated for syn-

chronized accesses. Note that we are able to generate a more

efficient schedule when the scenarios observed in all test suites

are combined with other suites because we can get more com-

paction from scenarios that repeat across multiple programs.

Compared to the MicroBlaze suites, the Soclib suites execute

more routines that are not related to accelerator execution and

hence are not reproduced in the generated tests.

AGARSoC detects synchronized accelerator executions and

generates all possible interleavings as discussed in Section II-

C. During execution, only a handful of these possible interleav-

ings are observed. We can instruct AGARSoC’s test generator

to generate tests to exercise the unobserved interleavings. We

evaluated this capability by generating separate tests for the un-

observed scenarios in the MicroBlaze suite groups 2 and 3. Our

generated tests successfully exhibited all of the interleavings

that were yet to be observed.

VI. DISCUSSION

A. Flexibility

AGARSoC provides a flexible set of tools that can support

the demands of different design efforts. Capturing design-

specific knowledge, as discussed in Section II-A, is simple and

easily portable to any verification effort. We were able to adapt

AGARSoC to two quite different SoC platforms with minimal

effort. In addition, AGARSoC can analyze and incorporate new

software into the coverage model as it is developed, and gener-

ate tests that hit different coverage goals.

B. Enhancements

Even though we have not fully implemented them yet, we

have several enhancements planned. Firstly, in addition to

capturing concurrency and ordering among accelerator execu-

tions, we can also track their data sharing patterns to identify

producer-consumer or data race scenarios. These scenarios can

be easily incorporated in the abstract representation as extra

scenario groups and can be specified as constraints for AGAR-

SoC’s test generation algorithm. These data sharing scenarios,

together with a straight-forward enhancement to detect cases

where accelerators can invoke other accelerators, can enable

AGARSoC to support several different accelerator-rich SoC

design approaches. For instance, we can support scenarios

where a task is executed by a pipeline of multiple accelera-

tors, without the involvement of general-purpose cores in be-

tween. Secondly, we can randomize some parameters of the

high-level simulation model to model non-deterministic exe-

cution of software. This allows us to generate multiple, legal

memory traces per program increasing the richness of our soft-

ware suite and further refining the accuracy of our analysis.

Thirdly, we can implement mechanisms to detect other multi-

threaded, synchronized accelerator executions, in addition to

the lock-based and mutex-IP-based mechanism we currently

support. Finally, AGARSoC’s test generator can be enhanced,

with minimal effort, to fully utilize the parallelism available in

the SoC-under-verification and also in the verification environ-

ment. The schedules we generate to target happens-before sce-

narios can be multi-threaded. In addition, we can launch multi-

ple concurrent accelerator executions from a single thread. We

can also generate multiple, execution-time balanced tests that

hit distinct coverage goals to be simulated in parallel.

C. Accuracy

AGARSoC relies on several heuristics to abstract executions

into scenarios. These heuristics rely on timing information

from a high-level simulation model, which does not necessar-

ily reflect the timing that will be observed during RTL simu-

lation. However, note that we utilize the timing information

from the high-level model only to infer accelerator executions

that are likely to run concurrently or are likely to be ordered.

As such, we believe that the accuracy of our heuristics are suffi-

cient enough to guide verification engineers to the high-priority

scenarios. In addition, AGARSoC uses scheduling heuristics

when generating test programs that may result in sub-optimal

simulation cycles. Even though the resulting schedule may re-

sult in large test programs for unfavorable cases, it is mostly

simulated significantly faster than the original software suites.

D. Bug detection

We only focus on identifying high-priority scenarios, defin-

ing coverage, and generating tests that hit these coverage goals.

We do not investigate the ability to check for and find bugs.

VII. RELATED WORKS

Hardware and software co-design and co-verification has

been investigated extensively as a means to shorten time-to-

market in designing SoCs [4, 6, 7]. Here, virtual prototyping

platforms allow software engineers to develop and verify their

software while hardware is still in development. AGARSoC

extends beyond the current usage of HW/SW co-verification

methodologies to enable early analysis of software with the

purpose of guiding hardware verification.

Simpoints [9] have been widely used to find representative

sections of single-threaded software for use in architectural

studies. Unlike AGARSoC, Simpoints are neither designed for

analyzing concurrent software in accelerator-rich SoCs nor for

guiding the verification process. Ganesan et al.[8] propose a

mechanism for generating proxy programs to represent multi-

threaded benchmarks. Unlike AGARSoC, their solution does

not address accelerator interaction scenarios.

In contrast to previous work on automatic coverage-directed

test generation [10], AGARSoC presents a solution to automat-

ically extract coverage models by analyzing software. While

a few solutions have been proposed for generating coverage

models from dynamic simulation traces [11], they focus on

low-level interactions obtained from RTL simulations. AGAR-

SoC’s coverage models focus on high-level accelerator interac-

tions and are ready much earlier in the verification process.

VIII. CONCLUSION

In this work, we developed a methodology and a set of tools

that can guide the verification of accelerator interactions in

accelerator-rich SoCs. Our proposed solution analyzes soft-

ware using a high-level model of the SoC to identify high-

priority accelerator interactions. Using this analysis, our tools

generate coverage models for these high-priority interactions

to be used during RTL verification. In addition, our tools can

also generate compact test programs that can hit these coverage

goals. We built and successfully demonstrated the capabilities

of our tools for two different SoC platforms. Future work will

improve the test generation capabilities of our tools to support

more design approaches and generate more compact tests.

Acknowledgments: This work was supported in part by C-

FAR, one of the six SRC STARnet Centers, sponsored by

MARCO and DARPA.

REFERENCES

[1] Intel Atom x3 processor series. http://www.intel.com/

content/www/us/en/processors/atom/atom-x3-c3000-

brief.html.

[2] Qualcomm Snapdragon processors. https://www.qualcomm.

com/products/snapdragon.

[3] Xilinx Vivado design suite. http : / / www . xilinx. com /

products/design-tools/vivado.html.

[4] B. Bailey and G. Martin. ESL Models and Their Application: Electronic

System Level Design and Verification in Practice. Springer Publishing

Company, Incorporated, 2009.

[5] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Rein-

man. Accelerator-rich architectures: opportunities and progresses. In

Proc. DAC, 2014.

[6] G. De Micheli, R. Ernst, and W. Wolf, editors. Readings in Hardware/-

Software Co-design. Kluwer Academic Publishers, 2002.

[7] M. Fujita, I. Ghosh, and M. Prasad. Verification Techniques for System-

Level Design. Morgan Kaufmann Publishers Inc., 2008.

[8] K. Ganesan and L. K. John. Automatic generation of miniaturized syn-

thetic proxies for target applications to efficiently design multicore pro-

cessors. IEEE Trans. on Computers, 63(4), 2014.

[9] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0: faster and

more flexible program analysis. Journal of Instruction Level Parallel,

September 2005.

[10] C. Ioannides and K. I. Eder. Coverage-directed test generation automated

by machine learning – a review. ACM TODAES, 17(1), 2012.

[11] E. E. Mandouh and A. G. Wassal. CovGen: a framework for automatic

extraction of functional coverage models. In Proc. ISQED, 2016.

[12] G. Martin, B. Bailey, and A. Piziali. ESL Design and Verification: A Pre-

scription for Electronic System Level Methodology. Morgan Kaufmann

Publishers Inc., 2007.

[13] S. Mochizuki et al. A 197mW 70ms-latency full-HD 12-channel video-

processing SoC for car information systems. In Proc. ISSCC, 2016.

[14] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin: a pre-RTL,

power-performance accelerator simulator enabling large design space ex-

ploration of customized architectures. In Proc. ISCA, 2014.

[15] E. Viaud, F. Pêcheux, and A. Greiner. An efficient TLM/T modeling

and simulation environment based on conservative parallel discrete event

principles. In Proc. DATE, 2006.

