

Theme 2384.005, Robust Design Theme 2384.002, Communication

Routing Restriction Placement Rules

- complexity of finding optimal deadlock-free routes is **NP-complete** [Festa99] • quickly find sub-optimal routes using deadlock-free routing restriction rules
 - minimal routing restriction
 - deadlock-free rules tailored to 2D meshes

Faulty Networks — Synthetic Traffic Patterns

Center for Future Application-aware Routing in Faulty Networks-on-Chip Architectures Research CFAR **Doowon Lee, Ritesh Parikh and Valeria Bertacco STAR**net

TASK 5.3, Ultra-low cost mechanisms for fault and variability tolerant architectures TASK 2.1, Application-adaptive interconnect

* we assume *a priori* knowledge of communication frequency before performing routing reconfiguration [Badr14, Waddington08].

Application-aware Routing Restriction Heuristic

Non-faulty Networks — Synthetic Traffic Patterns

solutions	compared
-----------	----------

DOR	-	deterministic, X-Y dimension order routing			DO
DyXY	[Li06]	fully adaptive, 1-hop congestion	escape VC necessary for deadlock	3hput	
ΝοΡ	[Ascia08]	fully adaptive, 2-hop congestion		throug 1	
RCA1D	[Gratz08]	fully adaptive, 1-dimensional congestion	recovery	ation 8.0	33%
BFS	[Aisopos11]]	0.6 <u>f</u>	+ +
DFS	[Sancho04]	partially adaptive,	escape VC	l sa	
FATE_I	ours	1-hop congestion	unnecessary	0.4 	
FATE_g	ours			<u>م</u> 0.2	

saturation throughput (various virtual channels) NoP RCA1D DyXY DFS FATE_I FATE_g

4 VCs 6 VCs 3 VCs number of virtual channels (VCs)

conclusion — non-faulty networks

- up to 23% improvement in saturation throughput over DOR
- up to 33% improvement in saturation throughput over fully-adaptive routing
- (higher benefit under fewer VCs)

