
Adaptive Distributed Architectures
for Future Semiconductor Technologies

by

Andrea Pellegrini

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2013

Doctoral Committee:
Associate Professor Valeria M. Bertacco, Chair
Professor Todd M. Austin
Professor Scott Mahlke
Adjunct Associate Professor Silvio Savarese

c© Andrea Pellegrini

All Rights Reserved
2013

To my family and friends.

ii

Acknowledgments

I would like to thank my advisor Professor Valeria Bertacco, who supported and guided
me throughout most of my years at Michigan. I cherished the freedom she offered me to
explore and develop new ideas. Moreover, my writing and presentation skills have grown
significantly as a result of her mentoring and attention.

I am also grateful to my committee members. Professor Todd Austin has been a consis-
tent source of inspiration throughout most of my research, and much credit goes to him for
sowing the seeds of much of this dissertation. I would also like to acknowledge Professor
Scott Mahlke for his technical insights and our friendly interactions. Last, but not least, I
would like to thank Professor Silvio Savarese, who has been a dear friend for many years,
and is leaving Ann Arbor at the same time as I am departing.

This dissertation would not have been possible without a number of people, who sup-
ported and helped me during my time in graduate school. I am thankful to have met some
truly amazing people: Jason Clemons, Drew DeOrio, Joseph Greathouse, and Ilya Wagner.
You have always been there, no matter the day or the time, whenever I was in need. Thank
you so much for being such wonderful friends.

A special acknowledgement goes to all the students with whom I shared my office. I
feel lucky to have been able to share all my frustrations and successes with you: William
Arthur, Adam Bauserman, Kai-hui Chang, Debapriya Chatterjee, Kypros Constantinides,
Shamik Ganguly, Jeff Hao, Chang-Hong Hsu, Andrew Jones, Doowon Lee, Rawan Khalek,
Shashank Mahajan, Biruk Mammo, Andreas Moustakas, Ritesh Parikh, Robert Perricone,
David Ramos, Steve Plaza, Shobana Sudhakar, and Dan Zhang.

A number of people contributed to making my experience at Michigan wonderful. It is
people like you that make the CSE department one of the best places in the world for doing
research: Professor Kevin Compton, Professor John Hayes, Professor Benjamin Kuipers,
Professor Igor Markov, Professor Trevor Mudge, Professor Marios Papaefthymiou, Professor
Karem Sakallah, Professor Tom Wenisch, Denise DuPrie, Laura Fink, Dawn Freysinger,
Lauri Johnson-Rafalski, Stephen Reger, Timur Alperovich, Bashar Al-Rawi, Matt Burgess,
Michael Cieslak, Hector Garcia, Valeria Garro, Anthony Gutierrez, Jin Hu, Hadi Katebi,

iii

Anoushe Jamshidi, Daya Khudia, Dave Meisner, Steven Pelley, Joseph Pusdesris, Jarrod
Roy, Korey Sewell, Sara Vinco, Chien-Chih Yu, and Ken Zick.

Life in Ann Arbor would have been a lot less fun without Luca Cian, who never failed to
make our evenings unique – I will surely miss you, my friend. I cannot count the fabulous
memories I shared with Matt Burgess and Rick Hollander, you guys will be always in my
heart. Thank you, Scott DeOrio, for being an amazing person. Thanks to Joe DeMatio,
Mike Dushane, and Donny Nordlicht for letting me share a piece of your motoring Nirvana.
Thanks also to a number of dear friends for their support: Filippo Bozzato, Guido Bozzetto,
Sandro Colussi, Enrico Furlanetto, Flavio Griggio, Eric Hall, Alberto Lago, Paolo Leschi-
utta, German Martinez, Jessica Morton, Zamir Pomare’, Ilario Scian, Scott Stuart, Fabio
Tioni, Sever Tita, Silvia Tita, Mario Tomasini, Valeria Vavassori, and Massimiliano Zilli.

I would like to thank my family for all their love and encouragement: my mom Maria
Assunta, my dad Adriano, my granddad Mario, my uncle Mario, my aunt Silva, my siblings
Tommaso, Maria Diletta, Maria Grazia, and Giacomo. I would also like to thank three
families that took pride in me and welcomed as their own: the DeOrios, the Gileses, and the
Nashleys. I hope one day I will be able to give to others as much as you gave to me.

Finally, I would like to thank Natalia Amari for her endless support in the best and worst
of times. Her unconditional love and support helped me to overcome the most daunting
adversities and challenges.

iv

Preface

As silicon technology continues to scale down transistor size, fundamental characteristics
of this logic component are dramatically changing. Computer architects have grown ac-
customed to relying on a limited number of robust transistors; hence, they have focused
on building machines that could achieve the best performance within a given transistor
budget. Unfortunately, transistor features are shifting and future manufacturing processes
are expected to integrate a massive number of extremely fragile components. This change
imposes challenges that current computer architectures cannot overcome. Indeed, current mi-
croprocessor designs are not fit to work in these new technology scenarios and are restricted
by their incapability to handle component failures, the inability to manage specialized
hardware components and the lack of design modularity. This thesis develops a number
of solutions for reliable and a adaptable computing, culminating in an original, distributed
architecture that incorporates all these techniques to deliver better reliability and unlock
increasing efficiency from the higher transistor density expected with future technologies.

The waning reliability of future transistors is the first concern. The consequences of
this phenomenon are twofold: lower production yields due to higher rates of manufacturing
defects and failures in the field. Neglecting runtime hardware faults can have dangerous
consequences, as they could lead to service disruptions and corrupt program output.

Since core counts continue to increase, despite the stagnating energy efficiency of pro-
cessors, researchers foresee that soon only a small fraction of a chip will be able to operate at
full throttle. This leads to another issue stemming from future semiconductor technologies:
computer architectures must accommodate a large number of hardware functional units and
automatically adapt software execution to the subset of components that can be powered up
based on the performance requirements of the application.

Finally, yet another challenge is the scarce design modularity of modern microproces-
sors. Current processors are large, monolithic systems. To provide design flexibility, future
designs should be composable, meaning that their components can be organized in various
combinations to satisfy specific user requests.

Solutions enabling the development of such architectures can allow future systems to

v

keep benefiting from the technological and economic advantages forecasted by Moore’s
law. However, in order to maintain these advantages, and thus continue to improve digital
systems, we need to revolutionize how computers are designed.

This thesis first investigates the limitations of current processor designs, with particular
focus on analyzing the consequences of unreliable components. Performing accurate fault
analysis with traditional techniques is a tedious and time-consuming task. We directly
address this issue with a complete framework to efficiently evaluate hardware malfunctions.
The studies performed with this infrastructure expose the weaknesses in handling runtime
failures, not only of current designs, but of state-of-the-art research solutions as well. These
analyses also provide a deep understanding of how applications execute on hardware systems.
Programs rarely stress all hardware units uniformly and microprocessor utilization varies
greatly, even within the execution of a single application. Furthermore, long portions of a
program often rely only on a few components. These observations guided the development
of a low-cost adaptive reliability technique used to diagnose faulty components in a broad
range of architectures, including those proposed in the latter part of this thesis.

We then propose to provide adaptability to hardware designs. An adaptable hardware
system can alter itself to dynamically match software demands, environmental character-
istics, and physical defects. With the target of providing this characteristic, we develop a
distributed infrastructure that can be integrated in modern multi-processors, systems-on-chip
and distributed systems alike. Chip components dynamically exchange information about
their condition and utilization. This information is collected by a distributed software infras-
tructure, which reconfigures the design to match hardware functionalities and application
needs without relying on a central manager.

Finally, to overcome the lack of design modularity, we propose a fully modular archi-
tecture. Our design organizes its hardware into a reconfigurable fabric of small, state-less
modules. Each module can accomplish one or more services towards the execution of a
portion of a program. Such a design greatly simplifies hardware organization, since each
module is autonomous, and the number of available service providers does not affect the
operations of the rest of the system. Thanks to its modularity and flexibility, it can achieve
unprecedented reliability and adaptability. In our experiments, we found that these advan-
tages are available at a moderate performance and power cost. Hence, it has the potential to
reduce overall engineering costs of a system while also extending its lifetime.

The design methodologies and the novel execution paradigm developed in this research
push the boundaries of modern digital microprocessor organization, enabling robust and
efficient computing on even the most dense technologies and unreliable transistors. We
believe that the adaptable and distributed designs developed in this dissertation can consti-

vi

tute a foundation for future computer architectures and empower further technological and
economical growth for the semiconductor industry.

vii

Table of Contents

Dedication . ii

Acknowledgments . iii

Preface . v

List of Figures . xii

List of Tables . xiv

Abstract . xv

Chapter 1 Introduction . 1
1.1 Challenges . 5

1.1.1 Hardware Failures . 6
1.1.2 Management of Specialized Components 6
1.1.3 Lack of Design Modularity . 7

1.2 How to Address These Issues? . 8
1.2.1 Reliability . 9
1.2.2 Adaptability . 10
1.2.3 Modularity . 11

1.3 A Comprehensive Reliable and Adaptive Distributed Architecture 12
1.4 Dissertation Organization . 14

Chapter 2 Motivation . 16
2.1 Chapter Organization . 17
2.2 Hardware Failures . 17

2.2.1 Impact of Runtime Failures . 19
2.2.2 The Dangers of SDCs: Faulty RSA Authentication 21
2.2.3 Reliability . 24

2.3 Management of Specialized Functional Units 24
2.3.1 Specialized Hardware in the Dark Silicon Era 26
2.3.2 Hardware Adaptability . 27

2.4 Lack of Design Modularity . 28

viii

2.4.1 Modularity . 28
2.5 Limits of Current Approaches . 29

2.5.1 Reconfigurable Logic . 29
2.5.2 Control-flow Machines . 30
2.5.3 Data-flow Machines . 31

2.6 Summary . 31

Chapter 3 Reliability . 32
3.1 Chapter Organization . 32
3.2 Analyzing Reliability Issues Through CrashTest 33

3.2.1 Requirements for a Reliability Analysis Framework 34
3.2.2 CrashTest Overview . 35
3.2.3 Gate-Level Fault Injection Methodology 36
3.2.4 FPGA-Based Fault Emulation . 40

3.3 CrashTest’ing the OpenSPARC T1 . 41
3.3.1 Fault Injection Methodology . 42
3.3.2 Fault Injection Results . 45
3.3.3 Detection latency . 48

3.4 Adaptive Hardware Reliability . 50
3.4.1 Application-Aware Coverage . 52
3.4.2 Application-Aware Diagnosis . 54
3.4.3 Evaluation . 59

3.5 Summary . 63

Chapter 4 Hardware Adaptability . 65
4.1 Chapter Organization . 65
4.2 Better Computer Vision With Specialized Hardware 66
4.3 Hardware Adaptability through Cardio . 67

4.3.1 Design Philosophy . 68
4.4 Cardio Runtime Operation . 69

4.4.1 Core Monitoring . 71
4.4.2 Interconnect Monitoring . 75
4.4.3 Cardio Distributed Resource Manager 78

4.5 Evaluation . 79
4.5.1 Experimental Setup . 79
4.5.2 Acknowledgment Buffer Sizing 81
4.5.3 Dynamic Discovery Period . 82
4.5.4 Static Hardware Adaptation . 83
4.5.5 Dynamic Hardware Adaptation 85
4.5.6 Performance and Traffic Impact 86
4.5.7 Energy vs. Performance Trade-off 87
4.5.8 Area Overhead . 89

4.6 Summary . 90

Chapter 5 A Modular Computer Architecture 91

ix

5.1 Chapter Organization . 91
5.2 Design Modularity . 92
5.3 Viper Hardware Organization . 93
5.4 Regular Execution in Viper . 96

5.4.1 Bundle Creation . 97
5.4.2 Virtual Pipeline Generation . 99
5.4.3 Operand Tag Generation . 101
5.4.4 Bundle Execution . 103
5.4.5 Bundle Termination . 104

5.5 Handling Exceptional Events . 106
5.5.1 Mispredicted Branches . 106
5.5.2 Exception and Trap Handling . 108

5.6 Discussion . 108
5.6.1 Additional Advantages . 108
5.6.2 Possible Optimizations . 109
5.6.3 Comparison to Previous Work . 110

5.7 Evaluation . 113
5.7.1 Hardware Model . 114
5.7.2 Simulation Infrastructure . 115
5.7.3 Design Choices . 115
5.7.4 Area . 116
5.7.5 Power . 118
5.7.6 Performance . 120
5.7.7 Faulty Behavior . 120

5.8 Summary . 121

Chapter 6 Putting It All Together . 123
6.1 Chapter Organization . 123
6.2 A Reliable, Adaptive Distributed Architecture 124
6.3 Optimized Hardware Adaptation . 126

6.3.1 Creating a Localized Hardware Configuration 127
6.3.2 Hardware Configuration Lifespan 129

6.4 Scalable Performance . 132
6.4.1 Temporary Data Persistence . 132
6.4.2 Boosting Memory Access Performance 132

6.5 Reliability . 133
6.5.1 Full Redundancy . 134
6.5.2 Selective Redundancy . 135
6.5.3 Periodic Online Testing . 136

6.6 Evaluation . 137
6.6.1 Hardware Model . 138
6.6.2 Software Benchmarks . 139
6.6.3 Simulation Infrastructure . 140
6.6.4 Hardware Adaptability & Fault-Free Throughput 140
6.6.5 Reliability . 143

x

6.6.6 Reliability Analysis . 147
6.7 Summary . 153

Chapter 7 Conclusions . 155
7.1 An Adaptive, Reliable, and Distributed Architecture 155

7.1.1 Reliability . 157
7.1.2 Adaptability . 158
7.1.3 Modularity . 158

7.2 Future Research Directions . 159
7.3 Summary . 160

Bibliography . 161

xi

List of Figures

Figure

1.1 Number of transistor integrated into a singe chip and average cost per
transistor over time . 2

1.2 Design properties that are the focus of this dissertation. 9

2.1 Overview of public key authentication and our fault-based attack 22
2.2 Sensitivity of multiplications executed in OpenSSL to voltage manipulations 24

3.1 Overview of our resiliency analysis framework 35
3.2 Logic Transformations - Bridge fault model 38
3.3 Fault injection scan chain . 39
3.4 Logic transformation for the path-delay fault model 40
3.5 FPGA-Based fault injection and simulation 41
3.6 Fault injection procedure on the FPGA . 42
3.7 Breakdown of experiments for stuck-at and path-delay faults 44
3.8 Breakdown of SDCs per unit for both stuck-at and path-delay faults. 47
3.9 Breakdown of the detection latencies for stuck-at and path-delay fault ex-

periments . 49
3.10 Dynamic instructions in the Nas FT benchmark 51
3.11 Formulation of the ILP problems for test routines selection 56
3.12 Activity monitors to track the use of each processor unit 57
3.13 Logic to extend the observability of functional tests 58
3.14 Trade-off between runtime overhead and A2FC for an epoch length of 100M

cycles . 62

4.1 Example of computer vision application 66
4.2 Cardio architecture overview . 68
4.3 Core monitoring and recovery in Cardio 72
4.4 Router periodic self-assessment procedure 76
4.5 Dynamic interconnect management in Cardio 77
4.6 Packet latency vs. injection rate for different acknowledgment buffer sizes . 81
4.7 Packet latency vs. discovery period . 83
4.8 Average packet latency for faulty topologies 84

xii

4.9 Effect of a dynamic fault on a link . 85
4.10 Energy savings obtainable thanks to our adaptable design. 88

5.1 Organization of a Viper system with several redundant clusters that commu-
nicate through a mesh and are connected to the BSUs through a crossbar . . 96

5.2 Simple program considered in our example 97
5.3 Virtual pipeline creation process for a simple program 98
5.4 Distributed rename table for an ISA containing four architectural registers . 102
5.5 Exception and branch misprediction handling in Viper 107
5.6 Effects of basic block size on Viper’s performance 116
5.7 Diagram of each Viper cluster listing all additional required components . . 117
5.8 MIPS achievable by fault-free configurations of the out-of-order core and

Viper . 121
5.9 Comparison between performance of unprotected in-order cores (CMP),

Bulletproof pipelines, StageNets and our solution, Viper. 121

6.1 Limitations of an unoptimized distributed control architecture 126
6.2 Location coordinates used to setup Cobra hardware configurations 128
6.3 Hardware configuration transferring used in Cobra 131
6.4 Throughput vs. size of a Cobra design . 141
6.5 Contribution of Cobra’s performance features to overall IPC for a 4-threaded

system . 142
6.6 Cobra cache hit improvement . 142
6.7 Cobra cache hit improvement . 143
6.8 Survivability of Cobra vs. CMP . 144
6.9 Cobra’s performance degradation in presence of failures 144
6.10 Performance cost of the three fault detection mechanisms for Cobra 145
6.11 Cobra’s performance degradation in presence of failures vs. a CMP 146
6.12 Example of Cobra configuration which partitions the ISA into two services 147
6.13 Fault tree analysis of a simple Cobra configuration 149

xiii

List of Tables

Table

3.1 Fault modules developed in CrashTest . 37
3.2 Modules of the OpenSPARC injected with faults 42
3.3 Benchmarks evaluated in our experiments on the OpenSPARC T1 44
3.4 Symptom-based fault detector breakdown 46
3.5 Fault coverage achieved by integer pipeline tests 60
3.6 Comparison of online testing techniques 63

4.1 Hardware Configuration . 87

5.1 Viper Configuration . 114
5.2 BSU storage requirements . 118
5.3 Area and power estimations for all components of the modeled Viper design 119

6.1 Summary of the problems addressed by Cobra and the techniques developed
to solve them . 137

6.2 Characteristics of the distributed architectures evaluated 138
6.3 Summary of the characteristics of the three fault detection mechanisms

considered . 147

xiv

Abstract

Year after year semiconductor manufacturing has been able to integrate more components
in a single computer chip. These improvements have been possible through systematic
shrinking in the size of its basic computational element, the transistor. This trend has
allowed computers to progressively become faster, more efficient and less expensive. As
this trend continues, experts foresee that current computer designs will face new challenges,
in utilizing the minuscule devices made available by future semiconductor technologies.
Today’s microprocessor designs are not fit to overcome these challenges, since they are
constrained by their inability to handle component failures by their lack of adaptability to
a wide range of custom modules optimized for specific applications and by their limited
design modularity.

The focus of this thesis is to develop original computer architectures, that can not only
survive these new challenges, but also leverage the vast number of transistors available to
unlock better performance and efficiency. The work explores and evaluates new software
and hardware techniques to enable the development of novel adaptive and modular computer
designs. The thesis first explores an infrastructure to quantitatively assess the fallacies of
current systems and their inadequacy to operate on unreliable silicon. In light of these
findings, specific solutions are then proposed to strengthen digital system architectures,
both through hardware and software techniques. The thesis culminates with the proposal
of a radically new architecture design that can fully adapt dynamically to operate on the
hardware resources available on chip, however limited or abundant those may be.

xv

Chapter 1

Introduction

Over the last five decades, improvements in semiconductor technology have allowed for
a consistent increase in the number of devices that can be integrated in a computer chip.
Such advances have been made possible through the systematic shrinking of the basic
switching element used to build computers, the transistor. This trend has enabled designers
to build progressively more powerful computers at a lower cost. In an effort to quantitatively
demonstrate this growth, one can compare the change in cost over time of a machine that
completes one billion operations per second – one GFLOP – a common metric for computer
performance. The estimated cost for a machine of such capability decreased by 13 orders
of magnitude over the span of only 50 years, from an estimated US $ 8.3 trillion in 1961
(inflation adjusted to 2013) to US $ 0.73 in 2013 [90, 194].

This incredible technological evolution was first described by Moore’s law, which pre-
dicts that the number of transistors which can be integrated into a single chip roughly doubles
every eighteen months [159]. In other words, Moore’s law predicted that computers will be
progressively faster and less expensive at the same time, and this has led to amazing social,
technical, and economic consequences. Figure 1.1 quantitatively illustrates the dual benefits
of such a technological advancement over a span of forty years for Intel’s flagship processors.
The blue curve in Figure 1.1 plots the number of transistors integrated in a single silicon
chip, while the red curve reports the price in US dollars per single transistor built in an
integrated circuit. The graph demonstrates the exponential enhancement of semiconductor
technology in the past decades [91].

As a result of these advancements, computers have become ubiquitous in contemporary
society. In fact, while only a few years ago, such systems were relegated to offices and server
rooms, computers now have assumed central roles in virtually all aspects of our lives. For
instance, digital systems are at the heart of mobile embedded devices, automobiles, airplanes,
and even home appliances. The ubiquity of digital technology has enabled an unprecedented
level of connectivity among people world-wide. This trend is well-captured by looking at
the number of Internet users: almost 2.5 billion as of 2012 [92]. These figures are projected

1

0.000000001
0.00000001
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0.1
1

10
100

1,000
10,000

100,000
1,000,000

10,000,000
100,000,000

1,000,000,000
10,000,000,000

1970 1980 1990 2000 2010

$
p

er
 t

ra
n

si
st

o
r

N
u

m
b

er
 o

f
tr

an
si

st
o

rs

Year
Transistor count Average transistor price

Figure 1.1 Number of transistor integrated into a singe chip and average cost per transistor
over time. Moore’s law is the observation that the number of transistors in an integrated circuit
doubles approximately every two years. The plot also shows that, as more transistors are integrated
into a chip, the individual cost of a transistor decreases exponentially over time. While a number of
semiconductor manufacturers have been developing processors at the cutting edge of technology, for
the sake of consistency here we only analyze the flagship Intel processors available year after year.

to increase even further as computer systems become smaller and more affordable. As these
trends continue, technology will soon allow any physical device to be integrated into an
information network and provide active input to improve human decisions [33].

Denser and more efficient transistors do not automatically translate into more powerful
computer systems. The widespread adoption of these digital systems was only possible
thanks to the effort of engineers to address a multitude of constraints such as performance,
energy efficiency, and cost. Traditionally, computer architects have prioritized these charac-
teristics over many others because they directly affected the commercial success of their
designs. As a result, current processors feature sophisticated and complex mechanisms to
achieve the best performance within limited power and cost budgets [15, 22, 140, 166].

While scientists continue on their quest to improve CMOS technology, they are also
exploring and evaluating physical devices that go beyond classic silicon transistors, envision-
ing machines that could employ spintronics, optical communication, graphene, nanotubes,
or even quantum computations [20, 59, 76, 84, 185, 215]. Even before considering the
repercussions of adopting new exotic technologies, experts envision the next integrated
circuits as complex machines composed of several billions of minuscule and fragile physical
devices [21, 24, 185]. Beyond their intrinsic fragility, the increasing device density raises
both electric current and power density, phenomena which accelerate the wear of already
defect-prone nanoscale transistors even further [184]. As technology continues to evolve, the
characteristics of the underlying logic components are dramatically changing: from limited
and robust to plentiful and fragile. This leads to a scenario in which current architectures

2

and design methodologies are no longer adequate.
The relative abundance of components has already significantly changed the design of

shipping products. While engineers used to focus on single, monolithic central process-
ing units, the last decade has seen semiconductor companies moving to designing entire
systems-on-chip. Unfortunately, because component count is growing much faster than
transistor power consumption is reducing, the percentage of a silicon chip that can operate at
full frequency diminishes with each process generation. Therefore, in order to stay within a
reasonable power budget, the vast majority of future chips will be effectively turned off, idle,
or significantly under-clocked at any given time. With the goal of continuing to improve
user experience and performance growth, researchers already predict that future computer
chips will embed various hardware modules dedicated to specific applications. Hence, a
system must dynamically ensure that only components directly contributing to the executing
applications are active [52, 188, 190, 198].

Finally, the increasing number of transistors that enables the construction of micro-
processors with more components also leads to constant growth in design size. Current
microprocessors are monolithic systems difficult and expensive to design and customize. As
the number of components in a chip is expected to increase with future technologies, this
problem can only worsen [133].

Based on these trends, we identify three barriers that are limiting the advancement of
future computer systems: i) the increasing fragility of the silicon substrate, ii) the challenges
associated with the dynamic management of the numerous specialized components that
comprise upcoming digital systems, and iii) the limited design modularity that impairs
designer’s ability to manage the system’s development effectively. The goal of this thesis is
to develop solutions to address these concerns enabling the design of high performance and
highly efficient computer systems.

The first concern is the increasing fragility of future transistors. Current semiconductor
technology can manufacture a transistor channel with less than 100 silicon atoms. Therefore,
as transistor dimensions shrink further, even minute variations in a transistor’s molecular
structure may cause fatal breakdowns. The consequences of neglecting this phenomenon are
twofold: production yields are plummeting, due to higher rates of manufacturing defects,
and hardware’s failures in the field due to faulty transistors are going to increase [61, 184].
Lower yields cause higher manufacturing costs, while runtime hardware faults can impact
servicing costs and the overall existence of a manufacturer.

The second problem facing the computer industry lies in the dynamic management of the
increasing diversity of specialized hardware components available in modern designs [13].
In the past decade, the design focus has shifted from the development of high-performance

3

general-purpose processors to specialized devices targeting particular functions, so as to
speedup workload execution while minimizing overall power consumption. In this new
technological scenario, engineers trade silicon real-estate for higher performance and energy
efficiency. This trend is affecting the way computer systems are designed, and researchers
already envision that future processors may be able to dynamically trade among different
implementation of specialized functional units to unlock the ability to improve power and
energy. While design specialization provides significant benefits to digital systems, classic
processors have limited flexibility and do not include mechanisms to automatically enable
and deactivate specialized functional units based on application demands.

The third and last challenge is the increasing size and intricacy of modern micropro-
cessors, which has reach the point that the correct design of a modern processor is an
unattainable goal. Because of this complexity the number of new developments is decreas-
ing every year. This monolithic design approach not only increases overall engineering
costs, but has also already caused some high end development efforts to be canceled because
the engineering team could not bring them to work correctly and consistently.

To continue to leverage the technological and economic advantages predicted by Moore’s
law, future computer architectures must tackle these important concerns. This work explores
and evaluates novel solutions to target these challenges. To address the increasing fragility of
silicon components, we propose a novel methodology to detect hardware failures at runtime.
In this design, processors are periodically tested to assess the health of the hardware modules
exercised by user applications. This allows a system to diagnose failures that may affect
software state before they corrupt program output.

In order to deal more easily with highly diverse hardware designs, we propose a frame-
work to enable hardware adaptability on any multiprocessor system. In such a design,
components periodically broadcast diagnostic messages in order to report their availability
and advertise their features. Such messages enable the entire system to know the state of
all hardware elements in the chip and dynamically schedule hardware resources to match
application demands. Besides simplifying the process of adding new functional units to
a design, this mechanism can be used to keep power consumption under control, since
this information can be used to activate, tune, and disable hardware components based on
runtime software needs.

We then propose a fully modular microarchitecture: its components are connected
through a common interface, and engineers can build a new system solely by relying on
libraries of reusable task providers. Each component can then execute one or more tasks
toward the completion of a program’s instruction. Instructions executing on this machine
are not pushed through hard-wired paths defined at design time, as classic processors would

4

do. Instead, components dynamically connect to form a hardware configuration that can
perform all the tasks required by an instruction. In order to avoid reliance on complex and
pervasive centralized logic, hardware configurations are controlled through a number of
independent scheduling units. The sole purpose of these units is to establish and manage
system configurations that can perform all tasks needed by the instructions in a program.
This novel execution paradigm reduces complexity because components interact exclusively
through standard point-to-point communication media. Furthermore, since all hardware
components in the proposed architecture only work on small groups of instructions, local
state is kept separated and has a very short life-span. These traits greatly simplify the
interaction among components in our architecture and allow engineers to design, optimize,
and validate portions of the system in isolation.

Finally, we present a complete system that coheres all the solutions proposed in this
thesis to build a reliable, adaptable, and modular design. Furthermore, thanks to its mod-
ularity and flexibility, this holistic solution can reach even higher levels of reliability and
adaptability. Through experimental evaluation, we found that these advantages can be
achieved at a very modest performance and power impacts.

In summary, the design methodology and architectures developed in this research push
the boundaries of modern digital microprocessor organization, enabling robust, adaptive and
high performance computing on unreliable devices.

1.1 Challenges

As manufacturing capabilities keep evolving and transistor density keeps growing, a signif-
icant transition in the semiconductor technology scenario is quickly approaching. Future
computer systems are facing a series of new important challenges [23]. While prior research
and designs addressed issues such as single-threaded performance and power consumption,
other issues still require attention. As technology progresses further, classic techniques will
not allow for the exponential improvements in performance and efficiency historically expe-
rienced by computers in the past decades. Technology experts agree that the most significant
problems hindering the advancement of future microprocessors are: the increasing fragility
of the manufactured components [21], the challenges connected to managing specialized
hardware [198], and the lack of design modularity [25]. This section will analyze each one
of these three challenges in detail.

5

1.1.1 Hardware Failures

The reliability of future designs is threatened both by increasing transistor counts as well as
by the growing fragility of individual components. Looking ahead, upcoming semiconductor
technologies will allow silicon chips to include tens of billions of transistors. Unfortunately,
a significant fraction of these transistors may be faulty. The high device density enabled by
contemporary technologies has already led to high current and power surges, which damage
or may destroy the already fragile nanometric transistors [21, 23].

Some of the most worrisome sources of hardware failures are: variations in supply volt-
age or local temperature, energy particles hitting silicon components, transistors degradation
over time [75, 96, 131]. Any of these events may cause either transient [49] or permanent
hardware failures [184]. Transient faults are temporary upsets of a circuit and can alter
a system’s state, potentially corrupting its results [11]. These upsets do not damage the
silicon device and therefore can typically be resolved by resetting the affected system or
by re-executing the erroneous computations. Unlike transient upsets, permanent faults
are irreversible alterations of physical hardware elements. These defects may either be
introduced during manufacturing (and escape post-production tests) or may appear after a
system is deployed. Permanent failures manifesting in the field are often caused by tran-
sistor wearout due to: electromigration [70], time dependent dielectric breakdown [51], or
negative bias temperature instability [214]. Neglecting runtime hardware failures – both
transient and permanent – can have dangerous consequences since they can lead to expensive
service disruptions [107] or silently corrupt a program’s outputs [145]. In order to tackle
the increasing number and variety of hardware failures, future architectures must include
mechanisms to dynamically diagnose faulty hardware and around it to bypass it, so that
computation can continue to progress correctly.

1.1.2 Management of Specialized Components

Future microprocessors will likely comprise a diverse range of specialized components. In
contrast to historical designs, which focused on maximizing the performance of general
purpose cores [2], future designs must specialized hardware accelerators to achieve perfor-
mance and efficiency. In many respects, the advancement of state-of-the-art microprocessors
over the last decades has been steady and evolutionary. Around 2001, the switch to multi-
core designs allowed semiconductor manufacturers to enhance overall performance while
keeping design complexity manageable and power consumption under control. Today, the
most advanced multicores can, in aggregate, execute up to hundreds of programs at the same

6

time [34, 166].
Since core count continues to increase despite stagnating energy efficiency, researchers

already foresee that only a small fraction of a chip will soon be able to operate at full
throttle [190]. Furthermore, recent studies have shown that, in the near future, technology
scaling by itself can contribute at most 15% per year to the performance enhancement of
highly concurrent applications. These figures have already been confirmed by recent trends
in high performance commercial microprocessors. As of 2013, initial analyses of the newly
announced Intel Haswell microarchitecture reported that this new chip improves single
thread performance by 10 –15%, compared to previous generation’s processors [194]. Such
performance improvement is only a fraction of the generation-to-generation performance
boost achieved in the past.

With the aim of continuing to increase overall performance, researchers have proposed
designs which integrate specialized components to accelerate particular software applica-
tions [188, 198]. This new design paradigm disrupts the well-established microprocessor
design cycle. Traditionally, computer architects focused their efforts on maximizing perfor-
mance per unit of silicon area, and therefore strived to design general-purpose processors
that could be economical and execute a broad range of applications efficiently. Thanks
to the high integration density offered by current and future semiconductor technologies,
designers can now embed a large number of diverse hardware features targeting particular
functionalities, such as specialized adders, multipliers, FPUs, and SIMD units. This trend
offers the opportunity to effectively improve both performance and power efficiency at the
cost of a larger silicon device.

Future processors must harness the performance and efficiency advantage provided by
these numerous and diverse functional units in order to continue improving user experience
and computational capabilities. Hence, a computer architecture that can thrive in the scenario
imposed by future semiconductor technologies must: i) accommodate a large number of
specialized functional units, ii) allow applications to take advantage of them even for short
functions, and iii) automatically match application needs with available features. These
characteristics would enable future architectures to further improve their efficiency.

1.1.3 Lack of Design Modularity

In 1971, a handful of engineers developed the first microprocessor, the Intel 4004. Today,
the design of a state-of-the-art processor requires hundreds of people working together
for years. Computer architects exploit increasing transistor density to introduce more ad-
vanced features – such as complex pipelines and speculative execution – which can exploit

7

instruction- or memory-level parallelism to accelerate software applications [82, 86, 178].
These features significantly increase the number of components embedded in a processor
core, and, consequently, add pressure to the overall design effort. Although in the past
decades computer-aided design tools have been rapidly improving, they still cannot match
the vast sophistication of modern computer chips.

Modularity refers to the use of smaller, independent design entities to create customized
versions of products. As companies strive to manage engineering effort to produce a large
variety of products at lower cost and shorter time-to-market, modularity is becoming a
major design focus [88]. Over the past years, as integrated circuits have become increas-
ingly complex and expensive, designers have started to embrace design methodologies
focused on modularity and component reuse. For instance, systems-on-chip (SoCs) are
commonly designed using these techniques. Modular components are sufficiently general
and configurable so to be deployed in a wide range of applications [158]. While a number
of components in modern digital systems are modular, microprocessor designs are still
monolithic large units, hence they are difficult to specialize to different users’ requirements.

1.2 How to Address These Issues?

Current computer architectures, such as multicore processors, provide short-lived and par-
tial solutions for mitigating the increasing fragility of the manufactured components, for
managing large and diverse designs and for the lack of modularity. The adaptive distributed
architecture presented in this dissertation strives to tackle these challenges through the
development of novel solutions that, once combined, can form a reliable, adaptable, and
modular computer design.

We have already introduced the need for reliable computing, which is due to the rapid
degradation of transistor robustness. We start by quantifying the impact of transistor failures
on current designs and develop solutions to efficiently diagnose faulty hardware at runtime.
We then shift our effort to providing adaptability. Adaptability enables a hardware system to
dynamically adjust its operations to match workload demands and available resources. To
achieve this goal, we develop a low-cost mechanism to distribute and manage diagnostic
information about hardware components and application characteristics. We then concen-
trate on developing a novel microarchitecture that primarily promotes modularity – the third
research direction that we explore to unlock the design of future computer architectures.
Modularity allows systems to be easily reconfigurable to match different users’ requirements.

Once we develop solutions to address all three challenges, we finally aggregate them to

8

Scalable

and robust

architectures

Reliability

Problem 1: Runtime hardware failures

Fault diagnosis and recovery

Problem 2: Dynamic management of

specialized components

Adaptable design that can match

SW demands to HW availability

Problem 3: Monolithic processor design

Computer organization based on

loosely coupled hardware modules

Figure 1.2 Focus of this dissertation. The objective of this thesis is to develop novel computer
architectures that address the challenges imposed by the transition to future semiconductor technolo-
gies: hardware failures, management of specialized components and lack of design modularity. In
order to do so, this thesis explores, develops, and evaluates a number of reliable, adaptable, and
modular solutions for distributed computer architectures.

form a hardware system which embodies them in one comprehensive solution. The resulting
proposed architecture, the final goal of this dissertation, offers much more than its parts.
Indeed, each solution often complements and enhances the others, therefore boosting the
overall capabilities of the complete system. The goals driving the development of our adap-
tive distributed architecture are discussed in the remainder of this section and summarized
in Figure 1.2.

1.2.1 Reliability

To address the increasing fragility of future transistor devices, previous research focused
on developing flexible and robust computer architectures. These solutions provide both
component redundancy and fault containment. Multicore designs enable simple mechanisms
for redundant execution and to isolate faulty processors [127]. Other works focus on maxi-
mizing the lifetime of components that are naturally redundant, such as caches and other
arrays of regular structures [26, 171]. BulletProof improves reliability on processors that
contain multiple functional units, allowing for a design to gracefully degrade its performance
as the number of faulty transistors increases [172]. StageNet is a more radical approach to
reliability, which proposes a reconfigurable in-order control-flow architecture connecting
multiple identical hardware components extracted from a traditional multi-core design [73].
Hence, faulty components can be individually disabled and the system can be reconfigured

9

to run programs only on the available hardware.
Design for hardware reliability plays a pivotal role in our work, and the solutions for

reliable computing presented in this thesis not only protect applications and users from dan-
gerous hardware failures, but can also be leveraged to improve production yield. Therefore,
our techniques can extend a system’s lifetime while, at the same time, reducing overall costs.

We set off to investigate the limitations of current processor designs, with particular
focus on analyzing the effects of hardware failures in modern computers. Performing ac-
curate fault analysis with traditional techniques is a tedious and time-consuming task. Our
CrashTest solution addresses this issue, providing a complete framework for effectively eval-
uating hardware malfunctions [146]. The studies performed with this infrastructure expose
the weaknesses in handling runtime failures for both current designs and state-of-the-art
solutions [145, 148]. These analyses also provide a deep understanding of how software
applications execute on hardware systems. Based on them, we observe that programs rarely
stress all hardware uniformly, and a microprocessor’s utilization varies greatly even within
the execution of a single application. Furthermore, our experiments show that long portions
of a program rely on only a few components. These observations have guided the develop-
ment of a low-cost adaptive technique for reliability that exploits an application’s behavior to
efficiently protect users against hardware failures [142]. This solution measures the usage of
the different hardware modules to achieve high fault coverage and minimize the time spent
in online testing. The deployment of this diagnostic solution is only the first step towards a
completely reliable system. The next necessary step is the reconfiguration of the hardware
system around broken components, so as to allow programs to work around hardware
failures. This goal can be attained through our second research direction, adaptability.

1.2.2 Adaptability

To address the problems arising from the growing diversification of system components
and features, hardware could adapt its operations to optimize applications’ utilization of the
resources available. Compared to simply adapting the software applications – for instance
through just-in-time compilation – adaptive chips can use runtime information to activate and
tune hardware modules and better respond to user’s demands. Furthermore, such designs can
adapt to a wide range of environmental conditions, such as external temperature variations
or power sources ranging from a distribution network supply to a portable battery [183].

Adaptability is also fundamental to ensure that a system does not exceed its maximum
power envelope. In fact, an adaptable system can actively reduce power consumption by
adjusting hardware operations. For instance, one capability of an adaptive system could

10

be to activate specialized components only if required by application’s demands and im-
mediately turn them off when they are not utilized. Furthermore, applications can take
advantage of the ability to adjust hardware use at runtime to optimize for performance or
power or other characteristics. Indeed, state-of-the-art commercial microprocessors recently
started to include basic self-monitoring and self-controlling capabilities to manage their
resources [44, 89, 119, 121]. Finally, the physical elements of a hardware system may
be damaged by permanent defects. An adaptable system helps overcome such failures by
isolating broken components and reconfiguring the system to work around them.

With the aim of providing complete system adaptability, this thesis presents a solution
that can automatically manage computer resources. Chip components dynamically exchange
information about their condition and utilization. These diagnostic messages are collected
by a software distributed system, which reconfigures the design to match hardware function-
alities and application needs without relying on a central manager (which would constitute a
single point of failure) [143]. Our solution relies on local hardware detectors to run periodic
tests on the silicon components, while delegating system reconfiguration, when necessary,
to software routines. A distributed software resource manager collects these diagnostic
notifications and dynamically reconfigures the hardware to maximize performance and
utilization. Such partitioning of tasks provides an efficient response to hardware failures.

The techniques developed to achieve adaptability can be applied to any computer system.
Thus, we first explore and evaluate our solution on a classic chip multiprocessor system. We
then extend it to make it applicable on the distributed architecture that brings together all
the solutions discussed and that we propose at the end of this dissertation.

1.2.3 Modularity

The struggle to enhance computer performance has driven engineers to create sophisticated,
monolithic microprocessors. As a result of these design choices, the engineering effort
necessary to design a modern state-of-the-art processor is enormous. Indeed, industry
experiences report that designing and validating a modern microprocessor requires hundreds
of man-years [17]. A second disadvantage of classic monolithic processors is that these
designs are generally difficult, if not impossible, to customize to fulfill users’ requirements.

An effective and practical solution to contain design costs while enabling customizability
is to build modular systems by combining smaller, simpler components. Components in a
modular system are independent and share few direct connections with each other. Therefore,
they can be freely recombined and reorganized to match different design specifications. This
property is particularly relevant for achieving scalability and reconfigurability, since modular

11

systems can grow in size by simply adding more components. Indeed, a modular system is
easily customizable and distinct designs can be created by including various combinations
of components that satisfy different requirements.

This thesis introduces a novel architecture that provides modularity by design. This new
architecture is based on a distributed execution engine that is dynamically configured to
route instructions towards available hardware components [147]. This allows our solution
to scale performance gracefully as the number of resources increase. Instead of pushing
instructions through paths defined at design time, as classic processors do, this architecture
relies on a flexible fabric composed of independent hardware components. These compo-
nents are loosely coupled via a homogenous communication network to form a dynamic
and reconfigurable execution engine. Each component can accomplish one or more services
toward the completion of an instruction. They are fully autonomous and the number and
type of service providers do not alter the underlying functioning of the other modules in
the system. In such architectures, a program can always successfully execute, as long as
the working hardware components can, in aggregate, execute all of its instructions. This
flexibility is provided at a very modest cost, as our proposed system is only 20% slower than
a traditional multi-core and it uses only 15% more power in the worst case.

The execution model and the modular design developed here constitute the backbone
of our adaptive distributed architecture. As we discuss in the next section, the modularity
provided by our design can also further enhance both reliability and adaptability.

1.3 A Comprehensive Reliable and Adaptive Distributed
Architecture

To complete the research discussed in this dissertation, we present a comprehensive reliable
and adaptive system that can thrive in the scenarios imposed by future semiconductor tech-
nologies [144]. This solution organizes hardware components into a reconfigurable fabric
of small, state-less units. The design targets highly parallel workloads, and it promotes
reliability, adaptability, and modularity as top-priority design foci.

Our dependable architecture tolerates a large number of transistor failures and grace-
fully degrades performance as faults accumulate in its hardware. It directly leverages the
techniques developed in this research to diagnose failures in its components. Software
requiring maximum reliability can either make use of fully redundant execution or of peri-
odic hardware tests. Meanwhile, applications that wish to maintain high performance can
protect only the most vulnerable portions of their programs. Alternatively, software that

12

does not require correctness guarantees can disable all online reliability mechanisms for a
performance benefit. Each application executing on the platform can employ the reliability
feature that best suits it, independently from all others. Hardware modules detected as faulty
are disabled without affecting the operation of the rest of the system. Furthermore, the
dependability of our processor can be arbitrarily improved by adding extra copies of each
hardware module to the sea of execution units. Even if one hardware component fails, the
system can still make forward progress, as long as there are others available to accomplish
the same task – or as long as the software does not require any task to be carried out by the
damaged units.

The system proposed at the end of this dissertation deploys the solutions that we have
outlined so far and that will be discussed in details in the following chapters. Specifically,
it leverages our novel low-cost mechanism to enable adaptability and flexibility in any
microprocessor system. This mechanism is fully distributed and relies on the periodic
exchange of diagnostic messages among all components of the system. A subset of such
components collects the information carried by these messages and uses it to acquire global
knowledge about a system’s dynamic state to improve resource scheduling. Thanks to this
mechanism, our solution can be easily upgraded to include new hardware functionalities
and task-specific accelerators, providing great opportunities to improve and facilitate design
modularity. Furthermore, our architecture can dynamically adapt program execution to make
the best use of hardware components to fit an application’s needs, while also considering
other programs demands. In doing so, our system has the potential to improve hardware
utilization and overall efficiency.

Finally, the proposed architecture is modular, providing designers with the capability
of customizing a system and scaling its throughput. It enables designers to arbitrarily split
the design into independent modules which, in aggregate, can execute all the tasks required
by an instruction set. Since these components only interact through explicit messages and
their state is only influenced by their inputs, systems implementing the proposed design
avoid reliance on physically centralized control logic. The number of microarchitectural
structures in our modular design can vary in number as components are added or removed
from its fabric. For all these reasons the architecture proposed has great potential to increase
component reuse, hence reducing overall engineering costs and increasing customizability.

In summary, the solutions developed in this dissertation address the key three challenges
that undermine the adoption of future semiconductor technologies: increasing transistor
fragility, wide design diversification, and lack of modularity. These properties are achieved
at a moderate performance, area and power costs. Overall, we believe that the design
methodologies and the novel distributed execution paradigm developed in this research push

13

the boundaries of modern digital microprocessor organization, enabling robust, adaptive and
high performance computing on unreliable devices.

1.4 Dissertation Organization

The remainder of this dissertation is organized by system properties. Chapter 2 analyzes the
motivations that drive this research. It describes and justifies the need for a novel, reliable,
adaptable, and modular computer architecture. We address each of these three properties in
Chapters 3, 4, and 5.

Chapter 3 addresses system reliability. It first analyzes the issues that arise due to the
increasing fragility of integrated circuit components. Performing accurate fault analysis is
traditionally a tedious and time-consuming task. The first contribution of this thesis, CrashT-
est, addresses this issue and provides a complete framework that enables designers to easily
and accurately evaluate the effects of hardware malfunctions on live digital systems [146].
The studies performed with this infrastructure expose have weaknesses of current designs
and even of state-of-the-art research solutions in dealing with runtime failures [145, 148].
They also led to the development of software techniques for reliability that adapt to the
characteristics of both the software workloads and the available hardware components [142].
In the first part of Chapter 3, we rely on an experimental framework based on a system
including one reconfigurable hardware device, which is configured to model an industrial-
grade microprocessor, the Sun OpenSPARC T1. The gate-level description of this design
is altered to inject a number of fault locations, and our experiments report the percentage
of faults diagnosed by software symptom-based fault detection techniques. The second
part of this chapter presents a novel solution to diagnose runtime hardware failures. In
such a design, software execution is periodically interrupted to allow focalized hardware
self-checks to test the hardware modules exercised by user applications. We evaluated our
solution on the OpenSPARC T1, and used TetraMax, a commercial automatic test pattern
generator, to measure the fault coverage achieved by our novel dynamic testing technique.
Additionally, we utilized Virtutech Simics to measure the performance overhead of our latter
solution.

Hardware adaptability is addressed in Chapter 4. Runtime hardware failures might
change a system’s functionalities. To address this issue, Chapter 4 develops a distributed
and introspective mechanism that can oversee and reconfigure a hardware system. In this
solution, the various components of a chip dynamically exchange information about their
condition and utilization. Components then form a distributed system that can self-adapt to

14

hardware availability and software needs [143]. To evaluate this solution, we developed a
C++ model that allowed us to measure the time necessary for our solution to adapt to sudden
hardware changes. We also evaluated the performance overhead of our design on a complete
system modeled through the gem5 microarchitectural simulator.

Chapter 5 focuses on design modularity. It details the architecture of a system that over-
comes the limitations of current processor designs, which are based on centralized control
logic. This chapter develops a novel distributed computer architecture that breaks apart the
classic concept of a microprocessor, dissolving its components into a reconfigurable fabric of
smaller, interchangeable hardware units [147]. In such a machine, program execution does
not rely on any centralized physical structure, and thus its size and performance can be easily
changed by adding or removing more modules. The performance of this microarchitecture
has been evaluated in the gem5 microarchitectural simulator. Furthermore, we used a variant
of McPat to measure power consumption and area overhead of the design.

After addressing each of these three challenges separately, Chapter 6 brings together
the key contributions of this dissertation in a system targeting highly concurrent applica-
tions. The culmination of this research is a comprehensive robust, adaptive, and modular
system [144]. It leverages the reliability techniques explored in Chapter 3, adopts the
solutions for hardware adaptability developed in Chapter 4, and builds on the new, dis-
tributed execution paradigm introduced in Chapter 5. Furthermore, this design is completely
modular, providing architects with the capability of customizing a system. A gem5-based
evaluation platform was used to evaluate its resiliency to faults and the graceful degradation
of performance in presence of faults.

Finally, Chapter 7 summarizes the contributions of the dissertation and discusses future
research direction.

15

Chapter 2

Motivation

Future semiconductor technologies will drive transistor miniaturization even further, en-
abling the next generation of computer chips to integrate tens of billions of transistors. In
the past, Dennard scaling caused the shrinking of transistor features to directly translate
into both energy and performance benefits. Because we have reached the scaling limits for
device voltage, current and future semiconductor technologies can no longer take advantage
of this physical phenomenon [52, 85]. Since solely scaling down transistor sizes does not
automatically result in enhanced performance or energy, designers must focus on new archi-
tectural solutions to continue improving hardware systems and sustain the technological and
economic growth of the semiconductor industry.

Until the early 2000s, computer architects invested the largest fraction of transistors
to increase the performance of general-purpose CPUs. As technology allowed higher in-
tegration densities, it often made no sense to add further transistors to a single core, and
therefore designers began to include different hardware features into a single integrated chip,
effectively building entire systems on a single chip (SoC).

Since future semiconductor technologies are expected to revolutionize transistor prop-
erties, the characteristics of modern computer designs must also shift. Both academic and
industry research trends are moving towards architectures that sport an astonishing number
of heterogeneous hardware features [23]. On one hand, this technology trend allows comput-
ers to harness available silicon real estate and improve performance while decreasing overall
power consumption [79]. On the other hand, current CPU architectures cannot manage
the high number of specialized functional units necessary to improve efficiency [198], and
have limited design modularity [25]. To make things worse, smaller transistors and higher
integration levels are expected to increase device fragility [21]. This chapter details the
problems that motivate our research. With the goal of addressing these challenges, this
dissertation proposes solutions to allow future architectures to thrive in the semiconductor
landscape to come.

16

2.1 Chapter Organization

This chapter details the three technological challenges that we address in this thesis and
defines the targets we want to achieve with our proposed solutions. Sections 2.2, 2.3, and 2.4
discuss the three problems tackled in this thesis: the increasing fragility of the manufactured
components [21], the dynamic challenges related to managing specialized hardware func-
tional units [198], and the lack of design modularity [25]. Section 2.2 also details a study
performed to assess the dangers of not planning for possible runtime hardware failures in
a design. Finally, Section 2.5 presents the strengths and shortcomings of prior solutions
attempting to address these issues.

2.2 Hardware Failures

Hardware failures are physical flaws in the hardware of a computer system, such as inter-
rupted wires and defective transistors. Some of these failures may manifest in the system
as errors, for instance switching the value of a bit. Such errors may appear immediately
or remain dormant for long periods of time. Other failures may never affect a computer
behavior and effectively be masked by the different layers (circuit, architecture, OS, soft-
ware) of a modern computer system [175]. Technology experts have already warned that
future digital systems will be threatened by a rising number of hardware failures, due to both
the growing transistor count and the increasing fragility of individual devices [21]. Several
physical events may trigger hardware failures, which are typically divided in two categories:
transient and permanent.

Transient

Transient failures are temporary upsets of digital systems. They are typically associated
with three environmental events: cosmic radiation, alpha particles, and electromagnetic
interference. The Earth is constantly subjected to showers of cosmic rays, which are very
high-energy particles originating in outer space. Cosmic rays interacting with the atmosphere
convert atmospheric elements into a shower of secondary particles that irradiate the entire
planet [217]. Alpha particles, instead, are generated by the natural decay of radioactive
materials, often from materials constituting the package of the chip itself [117]. When either
these particles hit a functioning computer system, they may alter the electrical charge used
to store information in its circuitry, and hence potentially corrupt its computations. The
third source of transient failures is electromagnetic interference from internal and external

17

sources. This disturbance is introduced by the fact that any object subjected to rapidly
changing electric currents emits electromagnetic radiation that can, in turn, be captured by
the inductive components of an electronic device. It is worth noting that this interference
might be generated by artificial objects such as electronic devices, or natural events such as
lightning.

Future semiconductor technology nodes will be more susceptible to transient failures,
since tiny transistors will store only small amounts of electric charge, and thus even particles
with low energy levels may have an altering impact [14, 49]. While neglecting the effects
of transient failures can yield to the severe consequences detailed in Section 2.2.1, these
faults do not permanently alter the physical elements of a computer chip, hence they can be
corrected simply by re-executing the corrupted operations or by resetting the system to a
safe state.

Permanent

Permanent faults are irreversible modifications of the hardware components of a chip. Such
defects may be caused by imprecisions in the manufacturing process or may be triggered
by the wear of the physical components in the chip. Producing a chip requires a multitude
of steps involving complicated optical, chemical, and mechanical processes. Regrettably,
imprecisions in any step of this procedure, for instance due to temperature or chemical
variations, might result in defects in the chips produced. While most defective chips are
detected during post-production quality tests, some faulty chips might slip through these
checks and exhibit erroneous behaviors in the field [175]. Physical wearout is the second
source of permanent defects. Continuous usage, mechanical stress, and high operating tem-
peratures are some of the phenomena that contribute the most to this source of permanent
failures. Both wires and transistors can be subjected to wearout [75, 184]. Wires can be
physically consumed by electromigration, which is caused by the gradual movement of the
ions in a metal due to the kinetic energy of the electric charge moving within. The physical
parts composing a CMOS transistor may also break over time. For instance, high energy
charge carriers may stray out of the conductive channel between the source and drain and
get trapped in the insulating dielectric between them [207, 208], effectively changing the
characteristics of a transistor. Another aging factor for CMOS devices is due to charges
that accumulate within the dielectric that separates the gate from the silicon substrate, thus
short-circuiting the gate and the channel [161].

As feature size in future semiconductor technologies is expected to decrease even further,
the practical significance of these effects increases significantly, and so does the probability

18

that a digital system might be affected by a permanent failure in the field. Overcoming these
failures is a three-stage process consisting of: i) fault detection, ii) fault isolation through
hardware reconfiguration, and iii) system state restoration [175]. Fault detection and design
reconfiguration granularity determines the number of failures a system can work around.
For instance, most computer manufacturers provide the ability to disable faulty memory
lines and cache cells through the addition of spare memory elements. This technique of
isolating broken structures or supplementing a design with spares has also been extended to
logic resources, up to the point of disabling entire cores. Large portions of this dissertation
focus on innovative solutions to addressing these failures, which constitute a serious threat
to the functioning of future computer systems.

2.2.1 Impact of Runtime Failures

The impact of transistor failures on microprocessors has been thoroughly studied in the
literature [98, 180]. Current computers are very sensitive to hardware failures that affect
their memory subsystems, and recent research has shown that information computed and
stored in large data centers can be corrupted by hardware faults that escape error detection
and correction mechanisms [134, 162]. Besides errors in the memory elements, reliability
of future processors is also threatened by the growing fragility of semiconductor devices.
As transistor continue to reduce in size, combinational elements also become vulnerable to
hardware failures, further exacerbating the risk of computer errors [49]. For instance, large
scale studies have already shown that existing processors are susceptible to error rates that
are orders of magnitude higher than previously assumed [129].

Traditional solutions for high-availability and mission-critical computers address relia-
bility through dual or triple-modular component redundancy [12]. However, these solutions
are far too costly to be adopted in mainstream commercial applications. Because most
computer systems do not have active mechanisms to overcome runtime faults, they can
face critical failures when defects manifest during system operation. Two errant computer
behaviors are particularly worrisome: system unavailability and silent data corruptions.

System Unavailability

In most cases, hardware runtime faults are known to cause software disruption [107]. Such
behavior causes computer systems to become unavailable and therefore stall or even subvert
infrastructures that rely upon them. Numerous examples of service interruption due to
computer failures appear in the news every year, and costs can top millions of dollars per

19

minute of downtime.
For instance, in 2009, a hardware glitch in a single computer board at Salt Lake City

International Airport prevented communication among air traffic control computers in many
parts of the United States. This forced air traffic controllers to manually type flight plans as
they could not be automatically transferred between computers in different geographical
regions. Hundreds of flights were canceled and thousands of passengers forced to reschedule
their departures [205].

Supercomputers composed of thousands of computational nodes are already subjected to
daily interruptions due to hardware failures [77]. Experts warn that future supercomputers
containing millions of processing cores will experience hardware failures every minute or
even every few seconds [182, 212]. Large super computers currently rely on programmers to
handle hardware errors through application-level checkpoints. Unfortunately, such a solution
cannot tolerate the fault rates expected at future semiconductor technologies, as future mean
time between failures could easily be lower than the time necessary to checkpoint and restore
the system, and operating costs may soon be dominated by diagnostic, testing, and replacing
faulty components.

Hardware failures do not only concern high-end computers comprised of thousands of
computational elements: as transistor size decreases with technology evolution, expected
fault rates are projected to increase dramatically, potentially threatening any digital sys-
tem [184]. For instance, physical aging is already a threat to current designs: in 2011 an Intel
chipset model experienced a widespread transistor wearout problem in the field: premature
transistor wear out in a SATA controller caused an increasing number of communication
errors and eventually prevented the chipset from working. This problem triggered a world-
wide recall in early 2011, with estimated costs to the company of up to one billion US
dollars [170].

Silent Data Corruptions

While errors that reduce system availability may lead to severe consequences, even more
worrying are faults that corrupt computations without providing any warning signs. Hard-
ware failures causing silent alterations to program state or software output are particularly
worrisome, as they might trigger unwanted actions that could damage valuable assets or
even have safety impacts.

One of the most well-known examples of dangerous circumstances caused by silent
data corruptions occurred during the Cold War in Omaha, Nebraska in 1980. The display
of the command post of the Strategic Air Command showed that several Soviet ballistic

20

missiles were headed towards the United States. In response to this alarm, B-52 bombers
were ordered to start their engines and US warships were alerted to prepare to respond to an
impending nuclear attack. The fact that no other military agency signaled any immediate
threat provided American military authorities with evidence that no enemy attack was
under way: it was a false alarm. In later analysis, technicians tracked down the root of the
incident to a hardware failure in an electronic integrated component that was part of the
communication system logic [63].

In modern commercial computers, users and applications trust the underlying hardware
to correctly execute all instructions. Therefore, software developers rarely question hard-
ware infallibility, even for widely adopted, sensitive applications such as security routines.
However, the effects of unexpected events such as hardware faults on these applications can
be dramatic. In the remainder of this section we demonstrate with a practical case study that
silent data corruptions (SDCs) can have dramatic impacts on computer users [145].

2.2.2 The Dangers of SDCs: Faulty RSA Authentication

This section details a study we performed to highlight the dangers of not addressing runtime
computer errors. Specifically, we demonstrate how undetected hardware failures can be
used to perpetrate security attacks on a real microprocessor system executing an unmod-
ified version of the widely used OpenSSL libraries. This attack model is not uncommon
since many embedded systems, for cost reasons, are not protected against environmental
manipulations that could trigger hardware failures.

The focus of our attack is the OpenSSL implementation of the commonly adopted RSA
authentication algorithm [155]. Since it was introduced in 1977, RSA has been widely
used for establishing secure communication channels and for authenticating the identity of
service providers over insecure communication mediums. In this authentication scheme, the
server implements public key authentication with clients by signing a unique message from
the client with its private key, thus creating what is called a digital signature. The signature
is then returned to the client, which verifies its authenticity using the server’s known public
key – as shown in Figure 2.1.a. In this scenario, an attacker does not need access to the
internal components of the victim’s chip, as it can simply collect the corrupted signature
sent out by the server while subjecting it to transient faults. Once a sufficient number of
corrupted messages has been collected, the attacker can perform offline analysis to extract
the private key.

21

Hardware Fault Model

The fault-based attack developed here exploits hardware faults injected at the server side
of a public key authentication (see Figure 2.1.b). Specifically, we assume that an attacker
can occasionally inject faults that affect the result of a multiplication computed during the
execution of the fixed-window exponentiation algorithm. Consequently, we assume that the
system is subjected to a battery of infrequent short-duration transient faults, that is, faults
whose duration lasts for a single clock cycle or less, so that they may impact at most one
multiplication during the entire execution of the exponentiation algorithm. Moreover, our
attack only considers hardware faults that produce a multiplication result differing from the
correct one by a single bit. To make this attack possible, we collect several pairs of messages
m and their corrupted signatures ŝ, where ŝ has been subjected to only one transient fault
with the characteristics described.

Private key
(d)

System under
attack

a) Public-key

authentication

b) Our fault-

based attack Client

Public key
(e,n)Message (m)

Broken signature (ŝ)
Private key extraction

< m, ŝ >

hardware fault

Private key
(d)

System under
attack

Client

Public key
(e,n)Message (m)

Signature

(s=m
d

mod n)
Authentication
(m == s

e
mod n)

Figure 2.1 Overview of public key authentication and our fault-based attack. a) in public key
authentication, a client sends a unique message m to a server, which signs it with its private key d.
Upon receiving the digital signature s, the client can authenticate the identity of the server using the
public key (n,e) to verify that s will produce the original message m. b) Our fault-based attack can
extract a server’s private key by injecting faults in the server’s hardware, which produces intermittent
computational errors during the authentication of a message. We then use our extraction algorithm
to compute the private key d from several unique messages m and their corresponding erroneous
signatures ŝ.

22

Evaluation

We devised our attack on a complete computer system mapped on a field programmable
gate array (FPGA) device. The FPGA was configured with a complete, unmodified, Leon3
system-on-a-chip, representative of an off-the-shelf embedded device that could be the target
of the attack presented above. The Leon SPARC CPU mapped to our FPGA was running at
a frequency of 40 MHz and used a nominal supply voltage of 1.5 V.

The critical path on the integer pipeline of the Leon3 processor used in our tests is the
carry signal of the multiplier. Thus, by manipulating the voltage of the power source of the
FPGA device, we force the multiplier circuitry to miss timing requirements and sporadically
corrupt its results. The higher the difference between the nominal voltage and the applied
voltage, the higher the probability that the product of an input configuration will be wrongly
computed. However, if the voltage is too high, the resulting fault rate will be too low, and it
will take a long time to gather a sufficient number of faulty digital signatures. If the voltage
is too low, the fault rate is excessive, causing system instability and multiple errors for each
FWE algorithm invocation, thus yielding no private key information. Figure 2.2 shows the
injected fault rate as a function of the supply voltage.

We analyzed the behavior of the hardware system computing the functions used in the
OpenSSL library while being subjected to supply voltage manipulation. In particular, we
studied the behavior of the routines computing the multiplication using 10,000 randomly
generated operand pairs of 1,024 bits in length. As expected, the number of faults grows
exponentially with decreasing voltage. The graph in Figure 2.2 also shows the fraction of
FWE erroneous computations that fit in our fault model: those can leak portions of the
private RSA key of the server. Note that, with decreasing voltage, eventually the fraction
of single fault events begins to decrease as the FWE algorithm experiences multiple faults
more frequently. We empirically established that the ideal voltage is the one at which the
rate of single bit fault injections is maximized, for our setup it was 1.25V. The error rate
introduced at that voltage is consistent with the computational characteristics of FWE, which
requires 1,261 multiplications to compute the modular exponentiation of a 1,024-bit key.
Thus, the attacker should target a multiplication fault rate of about 1 in 1,261 multiplications
(0.079%). Using this particular voltage during the signature routine we found that 88% of
all FWE invocations led to a corrupt signature of the type we were seeking.

The offline analysis and the private key extraction algorithms were executed on an
81-machine cluster of 2.4 GHz Intel Pentium4-based systems, and such a computer cluster
was able to recover the private key of the attacked system in 104 hours.

23

0

200

400

600

800

1000

1200

1400

1600

0

10

20

30

40

50

60

1.30 1.29 1.28 1.27 1.26 1.25 1.24 1.23

S
in

g
le

 b
it

 f
au

lt
s

[%
]

Power Supply Voltage [V]

Single bit faults

Faulty multiplications

Figure 2.2 Sensitivity of multiplications executed in OpenSSL to voltage manipulations. The graph
plots the behavior of the system under attack computing a set of 10,000 multiplications with randomly
selected input operands at different supply voltages. The number of faults increases exponentially as
the voltage drops. The graph also reports the percentage of erroneous products that leads to only a
single-bit flip.

2.2.3 Reliability

In order to overcome the threats imposed by the decreasing transistor robustness, hardware
systems need to consider reliability as a principal design requirement. Traditionally, high
reliability is mandatory only for a limited number of applications, for which cost is not a
major constraint. However, since we expect future semiconductor technologies to signifi-
cantly increase failure rate for all digital systems, new architectural solutions must ensure
correct computing on unreliable physical substrates [21, 62].

2.3 Management of Specialized Functional Units

Recently, computer architectures have undergone a number of radical changes. While in
the past designers focused on improving the performance of general-purpose computing
machines, modern computer chips tend to include an increasing number of diverse and
specialized hardware components.

As the number of transistors available in a computer chip continues to increase, computer
architects first shifted their focus from single microprocessors to multicore and many-core
systems, prioritizing core count over single-threaded performance. As this trend continues,
we can predict that SoC with hundreds or thousands of processing elements will be promi-

24

nent in the market in the imminent future [22, 34]. Unfortunately, the demise of Dennard
scaling caused a stagnation in the trends of both operating frequency and supply voltage.
Nevertheless, future systems will soon be able to integrate tens of billions of transistors
and enable single chips to include an astonishing number of hardware modules. This is
particularly problematic, since it simply does not make sense to add more general-purpose
processors to a chip if they cannot be powered up. The future time when most silicon
available in a chip will have to be shut off due to power constraints is called “the dark silicon
era” [42].

Researchers have recently started to investigate new designs that could improve proces-
sor performance while also reducing power consumption. For this purpose, several solutions
propose to shift design emphasis from high-performance general-purpose processors to
specialized hardware components that target particular tasks, thus improving energy effi-
ciency and speeding up workload execution. In this computational paradigm, portions of the
code that can be accelerated in hardware are offloaded and executed by dedicated modules.
Modern SoCs include a number of specialized hardware modules, such as GPUs or FPGAs.
Microprocessors can also be augmented to include specialized functional units such as fast
multipliers, FPUs, and vector processing units. On one hand, external accelerators such
as GPUs and FPGAs can be highly optimized and made accessible to all general-purpose
processors in the system. On the other hand, the interface between these hardware acceler-
ators and general purpose processors is burdened by the overhead required to establish a
communication channel between them. As a result, programs that only sporadically need
hardware accelerators cannot rely on these external modules because communication costs
would quickly overshadow their benefits. Moreover, it has been shown that often software
applications can be sped up by orders of magnitude on general-purpose processors simply
by optimizing the execution of a limited number of operations [36, 209]. Therefore, in this
thesis we focus on developing solutions that can enable general purpose microarchitectures
to take advantage of these specialized functional units.

While general-purpose processors could deploy and leverage specialized functional units
such as fast multipliers, FPUs, and vector processing units, both design and runtime limi-
tations constrain the usage of these components in traditional CPU designs. Since current
general-purpose cores have been conceived to operate in completely different technological
environments, they can be extended to include only a few coprocessors. This characteristic
severely limits a design capability to deploy and utilize the specialized functional units
needed to overcome the dark silicon era. At runtime, the challenge lies in activating and
managing the hardware components that can contribute to an application’s execution, while
disabling the ones that are no longer needed. Correct and prompt execution of these opera-

25

tions is extremely important. Indeed, while each of these specialized functional units can
perform a subset of functions much more efficiently, it is very unlikely that a chip could
power and cool down all of them simultaneously [52].

The intersection between all these requirements and constraints creates the need for a
technology that can empower systems to include a large number of specialized functional
units and efficiently manage them at runtime. In the remainder of this section we will
briefly overview different solutions proposed to deploy specialized hardware accelerators,
and introduce the desirable traits of a processor architecture that could succeed in the dark
silicon era.

2.3.1 Specialized Hardware in the Dark Silicon Era

Hardware specialization can improve both energy and performance by orders of magnitude,
opening a new horizon for future computer architectures. A plethora of hardware solutions
based on FPGAs, SIMD, GPGPUs, and application-specific accelererators are already avail-
able to speed up software operations, routines, libraries, and even entire applications [198].
Some of these hardware accelerators, such as FPGAs and GPGPUs, are fully decoupled
from the general-purpose processors. Others, such as SIMD units and specialized functional
units, directly connect to the structure of a processor, and therefore require more attention.
This thesis focuses exactly on developing processor architectures that could accommodate a
large number of this latter type of accelerators. Beside the deployment of these hardware
accelerators, these specialized functional units must also be managed at runtime, so as to let
software applications benefit from their features.

Single Instruction Multiple Data Units

Single instruction, multiple data (SIMD) instructions allow software applications to di-
rectly exploit data level parallelism. SIMD instructions are provided to execute at high
performance on SIMD units and are particularly beneficial for multimedia applications, and
thus most modern CPU designs support them. An early example of a computer system
that adopted these instructions is the PASM, a large-scale multimicroprocessor designed at
Purdue University for image processing and pattern recognition [173]. It has been shown
that the adoption of SIMD units in commercial processors for desktop and server computing
improves performance by up to 60% at marginal area costs (10%) [152]. Processors in the
mobile market also benefit from these instructions, as, for instance, MPEG-4 and H.264
video encoding and decoding accelerate by up to 60% [154].

26

Application-Specific Accelerators

Application-specific accelerators are modules designed to suit particular functions. Due to
their high engineering costs, this type of specialized hardware is the most expensive but also
the one that can provide the highest returns. Some applications require the development of
complete computer systems for a single purpose. Anton, for instance, is a custom system
designed to perform biomolecular simulations [168]. Designing such specialized comput-
ing systems from the ground up is very costly. Therefore, engineers often opt to design
specialized functional units with the sole purpose of speeding up a subset of operations.
Examples of such systems are: CryptoManiac, which focuses on accelerating cryptographic
routines [209], and EFFEX, which is an architecture developed to speedup mobile computer
vision algorithms [35]. A more general solution that targets popular commercial applica-
tions is GreenDroid, whose specialized logic can attain 10 to 1,000 times better energy
efficiency compared to general-purpose processors [67]. Although these latter solutions
propose complete, dedicated processors, their specialized functional units can be integrated
into general-purpose CPUs. Indeed, most current commercial microprocessors already
include some accelerators, which are accessible through dedicated instructions. Finally,
beside the adoption of specialized functional units, recent research has proposed to augment
a processor with a programmable memory subsystem to improve the performance of specific
applications [36].

2.3.2 Hardware Adaptability

As mentioned above, systems solely based on general-purpose cores cannot fit the power
constraints that characterize the dark silicon era [94]. Since the use of off-the-shelf proces-
sor cores is not a viable option, future designs must be easily extendable and adaptable to
accommodate a large number of specialized functional units. Thankfully, the increasing
component density available at future semiconductor technologies will enable computer
chips to integrate these numerous specialized modules. While some of these accelerators,
such as FPGAs and GPGPUs, can be easily decoupled from a general-purpose processors,
others, such as SIMD and application-specific functional units, are tightly integrated. In
order to enable future CPUs to deploy and leverage these specialized functional units within
the short – and shrinking – time-to-market required, future designs should be adaptable.

An adaptable architecture should be able to dynamically match, activate, and assign
these specialized resources to software workloads [89]. First, it should dynamically tune
a number of hardware parameters (such as power consumption, operating frequency, and

27

active features) to best match the available resources with application demands. Second, it
should automatically respond to environmental and physical changes and self-configure to
fit the various utilization scenarios [121]. Modern general-purpose processors already incor-
porate some degree of adaptability, and several of them include ancillary microcontrollers to
monitor hardware utilization and power consumption, and even to ensure that the system is
operating correctly. [44, 119].

Finally, adaptability will also greatly benefit fault-tolerant computing, since a hardware
system could automatically isolate defective or imperfect components and utilize only the
functional ones [183].

2.4 Lack of Design Modularity

Industrial state-of-the-art microprocessors are some of the most sophisticated artifacts
known to modern engineering. In 2005, it was reported that the implementation of a new
microarchitecture for the flagship Intel processor typically requires a maximum of more
than 500 engineers across a wide range of tasks – architectural specifications, logic, circuit
and physical design, validation and verification, design automation, etc.– for a timeframe of
more than 2 years [18].

The challenges connected with correctly designing a processor are well-known and
have been extensively analyzed and discussed by researchers both in academia and industry.
Since components behaviors are affected by their local state, engineers cannot use a strict
design-and-conquer approach and concentrate their efforts on testing the operations of parts
of a design in isolation. Indeed, the combined state space of a modern processor is simply
astronomical, hence, it is impossible to exhaustively analyze the behavior of a modern digital
design [32].

Even design teams that adopt state-of-the-art techniques and CAD tools to improve their
design process cannot possibly guarantee the correct functionality of their products, and
thus machines with latent bugs are often shipped to customers [200, 202].

2.4.1 Modularity

One common trend in current design methodologies is that of integrating several hardware
modules into a single chip to form a System-on-Chip (SoC). This trend is due to the in-
creasing engineering costs and the shrinking time-to-market characterizing many modern
digital systems. Design modularity has been the key to tackling both of these issues. For

28

instance, the recent prospering of highly modular platforms, such as the ones provided by
ARM, have shown that this design approach can enable small, agile design teams to release
new products every few months. Indeed, modularity is needed to master complexity and
to enable component reusability [8]. Moreover, designers consider modular systems more
trustworthy than non-modular ones because it is easier to individually design and test their
parts [88].

Still, while design modularity has been a major contributor to the development of
SoCs [158], microprocessor designs are typically monolithic, hence they cannot benefit from
this property. Modular microprocessor designs could increase their customizability while
also reducing overall engineering costs. The adoption of a modular design methodology in
the context of microprocessors would reduce scheduling and cost uncertainty.

2.5 Limits of Current Approaches

Current computer architectures fit technological scenarios that are completely different
from the ones we foresee for the next 2 or 3 decades. Design choices that constituted
key strengths in previous environments may quickly become weaknesses in the future.
This section briefly compares three classic execution models: reconfigurable logic fabrics,
control-flow machines, and data-flow architectures. The advantages and disadvantages of
each of these execution models are discussed. Additionally, we analyze the reasons why
none of them alone can provide the three proprieties we deem necessary for surviving
the future technological challenges that we outlined in this chapter, that is, the increasing
fragility of the manufactured components, managing diverse specialized functional units,
and lack of design modularity.

2.5.1 Reconfigurable Logic

The struggle for an efficient reconfigurable hardware design has been long and arduous.
Since the first introduction of programmable gate arrays in the late sixties [99], designers
have proposed a plethora of configurable hardware solutions. Some of these systems target
programmable accelerators [39, 112, 135, 136], while others envision full computer systems
built of reconfigurable logic [38, 199]. Field Programmable Gate Arrays (FPGAs) are chips
that can be programmed to perform any logic function and are the most successful reconfig-
urable architectures currently available. Such devices are composed of small configurable
blocks, each of which includes both logic and memory elements. These chips are commonly

29

deployed for rapid prototyping, application-specific accelerators, and even for small-scale
productions [50, 139].

Even though FPGA devices are some of the most fault-tolerant, adaptive, and modular
hardware devices available in the marketplace, they suffer from some major limitations.
First, their efficiency is typically much lower than that of the other architectures, yielding
to significantly lower performance/cost ratios [196, 204]. Second, FPGAs dramatically
increase a project’s complexity since mapping a design to fit within the given reconfigurable
resources is typically a cumbersome and time-consuming process [113]. Third, area and
energy footprints of generic designs mapped on FPGAs are significantly higher than those
targeting custom silicon logic [95].

2.5.2 Control-flow Machines

The control-flow architecture, which is inspired by the work of early computer scientist
John von Neumann, is the most commercially successful and widely adopted computational
model. Instructions running on these machines are executed serially by the order established
by a program counter. While the control-flow model does not suffer from any of the perfor-
mance deficiencies of fully reconfigurable systems, monolithic central processing units are
neither very adaptable nor modular.

With the target of augmenting these systems with both adaptability and reliability
features, previous research has focused on developing flexible and robust control-flow archi-
tectures. These solutions can provide both component redundancy and fault containment.
For instance, BulletProof targets reliability on processors implementing very long instruc-
tion words (VLIW), but this solution is hardly applicable to other designs [172]. Other
works focus on maximizing the lifetime of components with natural redundancy, such as the
reorder buffer, branch history table, caches, and other arrays of regular structures [26, 171].
StageNet is a more radical approach to reliability and adaptability. It proposes a reconfig-
urable control-flow architecture connecting multiple identical pipeline stages extracted from
in-order cores [73]. Faulty pipeline stages can be individually disabled and the system can
be reconfigured to force programs to operate only on the functioning hardware. Finally,
multiprocessor designs enable naı̈ve solutions to perform redundant executions and to isolate
faulty processors. Unfortunately, all these approaches are only viable for systems affected
by just a few hardware defects. Since each core relies on extensive centralized control logic,
these solutions cannot sustain high failure rates [127].

All of these prior works build on the basic structure of typical control-flow machines
and improve fault tolerance at a relatively low area and energy cost.

30

2.5.3 Data-flow Machines

Data-flow machines [7, 197] do not obey the serial execution model adopted by control-
flow architectures. In fact, an instruction in this system executes as soon as all its inputs
become available. Data-flow machines offer significant advantages over regular control-flow
architectures. Since they are completely data-driven, their performance is only inhibited by
true data dependencies. Furthermore, components in a data-flow system are stateless, and
therefore free of side-effects. Such characteristics make this architecture very attractive for
providing both adaptability and modularity. Although data-flow machines historically had
limited commercial success, researchers have invested significant effort in developing and
analyzing these architectures. For instance, Multiscalar [174], RAW [191], TRIPS [27], and
Wavescalar [187] are all examples of recent works inspired by this execution model.

Unfortunately, the shortcomings of data-flow architectures typically overshadow their
advantages. First, they often rely on dedicated compilers to extract operand and data de-
pendencies and map them into the hardware. Such compilers are effective only on a very
narrow set of applications, and legacy code cannot take advantage of the vast amount of
logic available in data-flow machines. Second, there are several technical obstacles in the
way of designing efficient data-flow machines due to the need to dispatch, distribute, and
match tokens for both instructions and operands.

2.6 Summary

In summary, as manufacturing capabilities continue to improve, a transition in the proper-
ties of the semiconductor technology scenario is quickly approaching. Therefore, future
computer systems will face a series of new challenges [23]. This chapter analyzed in detail
the most significant problems jeopardizing the advancement of future digital systems: the
increasing fragility of transistors [21], the challenges in managing specialized functional
units [198], and the lack of design modularity [25]. Classic computer architectures such as
fully reconfigurable fabrics, control flow machines, and dataflow architectures were designed
to fit completely different technological scenarios, thus their performance will suffer greatly
when faced with these new challenges. In this context, it is necessary to explore novel
computer designs that could tackle all three of these challenges and operate successfully in
the environment we expect at future semiconductor technologies.

31

Chapter 3

Reliability

The first hurdle that computer architectures must overcome is the increasing fragility of
devices built with future semiconductor technologies. As transistor dimensions continue
to shrink, the susceptibility of transistor devices to failures is expected to increase signifi-
cantly [21, 49, 61, 184]. Emerging technologies promise to deliver massive integration of
highly unreliable nanodevices [185], thus an environment where digital systems are affected
by an extremely large number of hardware failures is plausible. Therefore, the solutions
we develop in this thesis must provide low-cost mechanisms that can effectively prevent
failure. In order to define the requirements for our design, it is imperative to study the effects
of hardware failures on current designs. The insights from these studies drive the design
choices of the reliability mechanisms developed for current and future architectures.

3.1 Chapter Organization

This chapter begins with a detailed analysis of the issues related to the increasing fragility
of computer designs. In order to guide this research towards a solution that could tolerate a
large number of failures, this work first analyzes the effects of errors on modern computer
systems. Performing accurate fault injection campaigns is a tedious and time-consuming
task. Three factors burden reliability studies of modern designs: the length of the simu-
lations, the size and the complexity of current systems, and the high detail necessary to
accurately model transistor faults. Due to the impracticality and imprecision of prior fault
analysis tools, a new framework that is able to perform fast accurate reliability analyses,
called CrashTest, is introduced in Section 3.2. CrashTest is publicly available on the Internet
at the address:
http://eecs.umich.edu/crashtest/

The methodology developed for this work inspired and enabled a large body of re-
search on effective fault analysis and several scientists have already adopted this frame-
work [60, 68, 87, 130, 148].

32

http://eecs.umich.edu/crashtest/

Section 3.3 then presents the results obtained using CrashTest on a modern, industrial-
grade microprocessor, the Sun OpenSPARC T1 [186]. This analysis also considers and
evaluates a state-of-the-art hardware fault detection solution based on monitoring software
malfunctions [53, 107, 203]. The results of this study demonstrate that modern industrial-
strength microprocessors cannot cope with runtime permanent faults. Furthermore, these
experiments show that even state-of-the-art research solutions can only partially mitigate
this problem. In fact, a small but significant number of hardware failures can escape these
mechanisms and silently corrupt a system’s outputs.

Finally, Section 3.4 uses the insights from the experiments performed with CrashTest to
develop a novel methodology to diagnosing hardware failures at runtime. A large body of
previous research proposed a reliable computing paradigm that executes periodic hardware
tests on an operating computer system. Microprocessors employing this model periodically
suspend their operation to perform diagnostic tests on their hardware in order to expose
any eventual physical defect [41, 110, 120, 172]. In the adaptable distributed architecture
developed throughout this thesis, we use a similar execution paradigm to provide system
reliability. In particular, we design a novel testing technique based on the observation that
hardware utilization varies greatly among applications and even among different phases of
one application. Our solution, called application-aware testing, proposes to adapt diagnostic
routines to the actual hardware utilization. As shown in the experimental results, this design
delivers high fault-coverage at very low performance overhead and near-zero area cost.
These features enable autonomous detection and diagnosis of faults, enabling low-cost
reliable computations on unreliable semiconductor substrates.

3.2 Analyzing Reliability Issues Through CrashTest

A detailed analysis of both transient and permanent faults can yield new insights about the
behavior of faulty computers. While transient faults have been the focus of extensive previ-
ous research, scientists found major technical limitations in the study of runtime permanent
faults. Transient faults have been a concern for a long time as they have been known to
severely affect systems deployed in spacecrafts and avionics [48, 65, 124, 153, 157]. Hence,
over the years, engineers developed a solid body of methodologies and tools to analyze the
effects of these upsets – ranging from software simulators [43, 141] to the irradiation of
physical devices with high-energy particles [11, 131].

On the contrary, there is very little research on the effects of permanent failures on
active hardware. Nevertheless, as the probability of these faults occurring on live machines

33

increases, engineers must also start considering them. Unfortunately, a fault injection
campaign targeting this kind of failures is very tedious and time-consuming. Three factors
burden such a study. First, the model of the hardware design under evaluation must be very
detailed because faults manifesting at the transistor level can propagate across all layers of
a computer system – circuitry, microarchitecture, architecture, and software. Second, the
number of possible fault locations is extremely vast since hardware failures could manifest in
any part of a design and they could taint large portions of it. Third, accurate fault injections
require the observation of a design for millions, or even billions, of clock cycles as a fault’s
effects might be delayed or masked for a long period of time [105, 146].

3.2.1 Requirements for a Reliability Analysis Framework

The process of accurately assessing the robustness of a bare unprotected design, or evaluating
the effectiveness of candidate fault-tolerant techniques, places the following requirements
on a resiliency analysis infrastructure:

• Low-level Fault Analysis – High fidelity is a very important aspect of a resiliency
analysis framework. Using high-level models of micro-architectural components with
limited knowledge of the underlying circuit is inadequate to perform high-fidelity
resiliency analysis. In order to correctly model the introduction, propagation, and
possible masking of the faults, the resiliency analysis framework must accurately
gauge circuit-level phenomena using a detailed low-level model of the design under
analysis (e.g., gate-level netlist).

• Flexible Fault Modeling – Due to the existence of multiple silicon reliability threats,
a resiliency analysis framework needs to support an extensive collection of low-level
fault models to cover silicon failure mechanisms that range from transient faults, to
manufacturing faults, process variation induced faults, and silicon wearout related
faults. Moreover, silicon fault modeling is an open area of research with continuous
advancements [28, 69]. Often, new fault models are devised targeting emerging silicon
failure modes or more accurately modeling existing failure mechanisms. Therefore, it
is crucial for an analysis framework to be easily upgradeable with new fault models.

• Fast Design Simulation – The simulator must deliver sufficient performance to en-
able the analysis of complex systems, including booting an operating system and run
applications. This will allow users to assess the impact of faults at the full-system
level, and still deliver evaluations with a fast turnaround.

34

Fault
Library

Technology
Independent

Gate-Level Netlist

S
yn
th
es
is

Fault-
Injection

Ready NetlistN
et
lis
t

Tr
an
sf
o
rm
at
io
n
s

Front-End

F
P
G
A
-B
as
ed

S
yn
th
es
is

Fault
Simulation
Parameters

M
o
n
te
 C
ar
lo

S
im
u
la
ti
o
n Resiliency

Analysis
Report

Back-End

HDL
Description

Fault Injection
Parameters

Application
Stimuli

Fault
Injection &
Simulation

Figure 3.1 Overview of the resiliency analysis framework: CrashTest is composed of (i) a front-
end stage generating the fault injection-ready gate-level netlist and (ii) a back-end stage performing
fault injection and analysis and generating the final resiliency analysis report.

• Flexible Simulation Interface – It is critical for the usability of a framework to pro-
vide an intuitive way to analyze a wide range of designs and fault-tolerant techniques.
Thus, a resiliency analysis framework demands a flexible interface and proper stubs
to accommodate the evaluation of different systems.

Given this challenging set of requirements for resiliency analysis, this thesis develops a
FPGA-based infrastructure that can perform fault injection campaigns on gate-level models.
This framework, called CrashTest, achieves both the accuracy and the performance needed
to assess the reliability of modern computer systems.

3.2.2 CrashTest Overview

CrashTest’s goal is to provide a fast, high-fidelity and comprehensive analysis of the effects
of a broad range of fault classes on the applications running on a design under analysis (this
could be either an unprotected design or a fault-tolerant design). Given the specification of
the design under analysis in a hardware description language (HDL), CrashTest automat-
ically orchestrates a fault injection/analysis campaign. This process is composed of two
stages:

1. a front-end translation that generates the fault-injection ready gate-level netlist from
the design;

2. a back-end fault simulation and analysis that performs the actual fault injection and
fault monitoring, and evaluates the effects of the injected faults.

Figure 3.1 shows a graphical schematic of CrashTest.

35

Only a FPGA solution can provide sufficient performance to run software applications on
large and complex designs. However, a major cost in adopting this solution is the overhead
necessary to map a design on the FPGA fabric. For complex designs, the time required
to generate a netlist mappable on the FPGA device can be prohibitively long. To reduce
this overhead, CrashTest inserts multiple faults in a same mapped netlist. Each fault can be
dynamically activated via software, thus amortizing the synthesis cost over several analyses.
Framework Front-End – First, the HDL model of the design under analysis is synthesized
using a standard cell library to obtain a gate-level netlist. CrashTest does not require the use
of any particular library, as long as the chosen library can be properly modified to support
the fault models.

For each standard cell in the target library (i.e., a combinational gate or a sequential
element), CrashTest provides a gate-level logic transformation that modifies the cell and
inserts extra logic to control the fault location. This extra logic can be activated at runtime
to emulate the effects of a fault injected into the cell. CrashTest comes with a wide range
of fault models and gate-level logic transformations to provide the capability of emulating
different failure mechanisms. The collection of all logic transformations is stored in the
framework’s fault library. Based on the injection parameters selected by the user (i.e., the
fault models and the injection locations), the framework automatically generates the fault
injection-ready netlist by selecting the transformed cells in the library. This netlist is then
transferred to the fault analysis simulator.
Framework Back-End – The fault injection-ready netlist is then re-synthesized to target
the FPGA device. After this step, the fault injection and analysis campaign is ready to begin.
Based on the fault simulation parameters given by the user, the fault injection/analysis
emulator injects faults at different sites in the netlist and monitors their propagation and
impact on the design and the running applications. During fault emulation, the design
under analysis is exercised with the application stimuli. To gain statistical confidence on
the provided results, the experiments are repeated in a Monte Carlo simulation model by
altering the fault sites and/or the application stimuli. After running a sufficient number
of experiments to gain statistical confidence, the results are aggregated into the resiliency
analysis report, which is the final deliverable of the CrashTest framework. The following
subsections describe each step of the CrashTest framework in more detail.

3.2.3 Gate-Level Fault Injection Methodology

Technology Independent Logic Synthesis – The first step in the front-end stage of the
CrashTest framework is to convert the user-provided high-level HDL model of the design

36

Stuck-at: The stuck-at fault model is the industry standard model for
circuit testing. It assumes that the defect behaves as a node stuck at
logical 0 or 1. The stuck-at fault model is most commonly used to
mimic permanent manufacturing or wearout-related silicon defects.
Stuck-open: The stuck-open fault model assumes that a single
physical line in the circuit is broken. The unconnected node is not tied
to either Vcc or Gnd and its behavior is rather unpredictable (logical 0
or 1 or high impedance). This model is commonly used to mimic
permanent defects that are not covered by the stuck-at fault model.
Bridge: The bridge fault model assumes that two nodes of a circuit are
shorted together. The behavior of the two shorted nodes depends on
the values and strength of their driving nodes. This model covers a
large fraction of permanent manufacturing or wearout-related defects.
Path-delay: The path-delay fault model assumes that the logic
function of the circuit is correct, but that the total delay in a path from
inputs to outputs exceeds the allocated threshold and causes incorrect
behavior. This model is used to mimic the effects of process variation
or device degradation due to age-related wearout.
Single Event Upset: The single event upset (SEU) fault model
assumes that the value of a node in the circuit if flipped for one cycle.
After this one-cycle upset, the node returns to its normal behavior. The
SEU fault model is used to mimic transient faults commonly caused by
cosmic radiation or alpha particles.

Table 3.1 Fault models. CrashTest is enhanced with an extensive collection of fault models. These
fault models cover transient faults as single event upsets and also a variety of permanent hard faults
related to manufacturing, wearout, and process variation silicon defects.

under analysis into a common format that the framework can analyze to obtain an accurate
list of candidate circuit locations for fault injection. This is achieved through logic synthesis
with Synopsys Design Compiler targeting a technology-independent standard cell library
(GTECH). The resulting gate-level netlist is composed of simple logic gates (e.g., AND, OR,
NOT, Flip-Flops, etc.,) and it is free from any fabrication technology-related characteristics.
This netlist is subsequently parsed to generate a list of all possible injection locations, that
is, a list of all logic gates and flip-flops in the design. This list can be used to specify the
injection locations; alternatively, if randomized fault injection is desired, a random selection
of fault sites can be performed by the framework.
Netlist Fault Injection Instrumentation – After fault locations selection, the gate-level
netlist is instrumented with extra fault injection logic that, when enabled, emulates the
effects of the injected faults. Each fault model supported by the framework is associated
with a specific gate-level logic transformation to achieve this goal. The collection of gate-

37

Vdd

Gnd

A

B

A B

C

Transistor-level

NAND2 gate

A 0 1 0 1

B 0 0 1 1

Fault-free 1 1 1 0

Bridge-A-B X X X 0

Bridge-A-C 1 X X X

Bridge-A-n1 1 1 1 X

Bridge-B-n1 X 1 1 X

Bridge-B-C X 1 1 X

Bridge-C-n1 1 X X 0

Fault symptom table
Instrumentation logic for

bridge-A-B

a) b) c)

Figure 3.2 Logic transformations - Bridge fault: The CMOS transistor-level design of a gate in
(a) is used to generate the gate’s fault symptom table for the fault model shown in (b). Part (c) shows
the instrumentation logic for emulating the effects of the Bridge-A-B fault.

level logic transformations comprises the framework’s fault library. This modular design
makes upgrading the framework with new fault models a straightforward task, by simply
implementing new logic transformations into the fault library. This resiliency analysis
framework is already equipped with a large collection of fault models and their correspond-
ing netlist logic transformations. This collection spans an extensive spectrum of silicon
failure mechanisms, ranging from transient faults due to cosmic rays, to permanent faults
due to silicon wearout. Table 3.1 shows a list of supported fault models along with a brief
description.
Gate-Level Logic Transformations – Some fault models require trivial gate-level logic
transformations. For instance, the instrumentation needed to emulate a stuck-at fault is just
a multiplexer that controls the output of the faulty gate and has one of its inputs connected
to logic zero/one. However, there are more complex fault models that affect the design at
the transistor level. For example, the bridge fault model assumes that two circuit nodes in
the design are shorted together. To emulate the effect of a bridge model with high fidelity,
we simulated the faulty CMOS gates at the transistor level and generated a corresponding
fault symptom table. To illustrate this process with an example, Figure 3.2(a) shows the
CMOS transistor level representation of a NAND2 logic gate, while Figure 3.2(b) shows the
corresponding fault symptom table.

The table shows that the fault’s effects are masked for some input combinations, thus the
faulty gate behaves as a fault-free gate. However, for other input combinations the fault’s
effects propagate to the gate’s output and result is an unstable output signal (Random Value

38

in Figure 3.2(c)). The framework’s fault library is populated with a fault symptom table
for each combination of standard cell library gate and supported fault model. Given a gate
type and a fault model, the instrumentation engine accesses the fault library and applies
the corresponding logic transformation to instrument the fault. Figure 3.2(c) shows the
instrumentation logic for a bridge fault between circuit nodes A and B of the NAND2 gate.
A fault-tolerant design should be capable of handling these faults and either mask the errors
introduced or reconfigure itself to exclude the faulty part of the design.

Fault-injection ready netlist

Fault injection

site 1

D Q

Clk

FI

Fault injection

site 2

D Q

Clk

FI

Fault injection

site 3

D Q

Clk

FI

Scan-outScan-in

Fault-injection scan chain

Figure 3.3 Fault injection scan chain. The netlist is instrumented with fault injection logic for
multiple faults. The scan chain controls the fault injection during emulation.

Path-Delay Fault Model – The logic transformations required by most fault models are
similar to the one presented in Figure 3.2(c) for the bridge fault. One exception is the
path-delay fault model, which has slightly different characteristics. Path-delay faults are
characterized by slower combinational logic gates causing longer delays than foreseen at
design time. Whenever these slower gates are exercised, they may cause timing violations
(i.e., flip-flops at the end of the path miss to latch the newly computed value). CrashTest
emulates the effects of the path-delay fault model through a gate-level logic transformation
such as that in Figure 3.4. To determinate the set of flip-flops affected by the slower faulty
gate, we trace forward through the combinational logic and find all those flip-flops that have
a path including the faulty gate. From that set of flip-flops we choose only those that have a
path delay with a timing slack smaller than a predefined threshold specified by the user (i.e.,
the expected delay due to the faulty gate).
Fault Injection Scan Chain – To avoid re-instrumenting the netlist each time a new fault
must be injected, the netlist can be instrumented for several faults at multiple locations.
This accelerates the emulation at the back-end of the framework, but also increases the
instrumented circuit size. Moreover, the insertion of each fault into the netlist adds an extra
control signal required for enabling and disabling it at runtime (for instance, signal Fault
Inject and Random Value in 3.2(c)). As shown in Figure 3.3, these control signals are latched

39

and connected to a scan chain, which is accessible at runtime by the Fault Injection Manager
(see Figure 3.5).

Figure 3.4 Logic transformation for the path-delay fault model. If the output of the faulty gate
changes in a given cycle, all affected flip-flops miss latching the newly computed value and hold the
previous cycle’s value.

3.2.4 FPGA-Based Fault Emulation

CrashTest employs an FPGA platform to emulate the fault injected hardware and accelerate
the fault simulation and analysis process. The first step in this process is to synthesize
and map the fault injection-ready netlist to the target FPGA. To provide a standard simu-
lation interface that is independent of the design under analysis, CrashTest automatically
generates an interface wrapper to the fault injected-ready netlist. This interface wrapper
provides a seamless connection with the fault injection manager, an automatically-generated
software program responsible for orchestrating the fault injection and analysis campaign.
The interface wrapper and the fault injection manager are connected through an on-chip
interconnect bus. Figure 3.5 shows the major components and the data-flow of the fault
injection, simulation and analysis process.

A small general purposes processor embedded in the FPGA runs the fault injection
manager. Some FPGA devices already include a fully-featured cpu. Alternatively, a general-
purpose processor can be mapped on the FPGA itself (e.g., Microblaze [211]). The fault
injection manager is responsible for several tasks:

1. Feed the instrumented injection scan-chain with all the control signals required in the
fault injection campaign. This is done through a FIFO queue updated each time a new

40

fault is activated into the design. The fault injection parameters (i.e., fault location
and time) are stored on an off-chip memory accessible by the injection manager.

2. Stimulate the design through the input registers. The applications stimulus is ei-
ther provided by the user or automatically generated, and it is stored in the off-chip
memory.

3. Monitor the output of the FPGA-mapped design for errors through the output registers.
The output is compared to a golden output that is collected with a fault-free version of
the same design and it is stored in the off-chip memory.

4. Maintain fault analysis statistics and store the results to the off-chip memory for later
processing.

5. Synchronize the FPGA-mapped design with the fault injection process through the
interrupt counter.

Instrumented

Fault-Injection

Ready Netlist

On-chip Processor Core

Fault Injection Manager

F
IF

O

Interrupt

Counter

In
pu

t

R
eg

is
te

rs

O
ut

pu
t

R
eg

is
te

rs

Interface Wrapper

Off-chip Memory

- Stimulus

- Fault injection parameters

- Golden results

- Results/Statistics

Figure 3.5 FPGA-Based fault injection and simulation. The FPGA-mapped netlist is wrapped
by a standard interface providing a seamless connection to the fault injection manager that is running
on an on-chip processor core.

3.3 CrashTest’ing the OpenSPARC T1

This section presents the results of an analysis performed through CrashTest on an industrial
microprocessor: the OpenSPARC T1 [186]. This study reports the effects of two permanent
fault models (stuck-at and path-delay) on the logic of the microprocessor, indicating whether
the fault was either masked, caused software disruptions, or silently corrupted program
output. Note that several researchers proposed to leverage software anomalies to detect
permanent hardware failures [106], and therefore this study directly evaluates the capability
of such mechanisms to be adopted as near-zero cost fault detectors.

41

3.3.1 Fault Injection Methodology

The fault injection procedure is illustrated in Figure 3.6. For these experiments, fault
locations are activated in two application execution points: the first one is immediately after
benchmark initialization, while the second is approximately halfway through its execution.
A restore operation is performed after each fault injection. After each restore, the fault
injection manager allows five seconds for the system to rewarm the caches and populate
its TLB entries. Experiments which do not trigger any fault detector must be executed to
completion to determine if the fault corrupted their outputs.

1. Configure FPGA with n fault sites enabled
2. Download OS and modified firmware
3. Boot system
4. Start benchmark
5. Run benchmark until test point
5. Checkpoint system
6. For each j of the n faults:
7. Warm up Caches and TLBs
8. Enable fault location j
9. Wait terminating condition or timeout

10. If software anomalies detects the fault
11. Report detection latency
12. If application successfully terminates
13. Analyze output files to detect SDC
14. Disable fault location j
15. Restore to checkpoint

Figure 3.6 Fault injection procedure on the FPGA. This routine activates and analyzes the ef-
fects of each fault location individually. In order to speed up the fault injection campaign, system
state is checkpointed after the benchmark is initialized and restored after the effects of each fault are
analyzed.

Table 3.2 Modules of the OpenSPARC injected with faults.

OpenSPARC T1 unit Gate count FF count Stuck-at faults Path-delay faults
Arithmetic Logic - ALU 1,968 65 19 9

Divide - DIV 3,277 486 31 65
Error Corr. and Ctl. - ECC 998 237 10 32
Execution Control - ECL 1,727 335 17 45

Float. Point FE - FFU 5,776 836 55 112
Instruction Fetch - IFU 13,980 3,775 225 511

Load Store - LSU 24,127 4,397 635 594
Multiplier - MUL 14,665 647 138 87

Reg. Management - RML 1,206 231 11 31
Reg. Bypass Logic - BYP 5,938 708 56 95

Trap Logic - TLU 18,693 3,737 334 502

42

For these experiments, stuck-at and path-delay faults were injected in various nets in the
design. The core was partitioned into multiple modules and a number of faults proportional
to their area were injected in random locations. Table 3.2 lists the units into which faults
were injected, the total number of gates in each unit and the number of different fault
locations that were introduced within each unit. The targeted number of faults injected in
each module is a function of its area (approximated by the number of gates in the module’s
gate-level netlist) and was computed for a confidence level of 95% and a confidence interval
of 4% (Table 3.2). For three hardware units– instruction fetch, load-store, and trap logic–
the ratio between the number of faults and number of gates is higher than for the other
modules. These three units, instrumented with the checkpoint mechanism and faults, could
not meet the timing requirements on the FPGA. Thus, we partitioned them into even smaller
submodules that were instrumented separately. For each of these three modules, the total
gate count for the submodules is higher than for the original unit since the synthesizer has
a narrower optimization scope. Note, however, that the increased ratio only increases the
confidence of our results for the experiments performed on the IFU, LSU and TLU. No
faults were injected in the memory array structures of the design (such as register file, caches,
and TLBs) since faults in these units can be easily modeled through microarchitectural
simulations. Faults, however, were injected in the control logic of these large memory
elements.

The timing achievable for the fault-enabled OpenSPARC core on our FPGA device was
100ns, enough to run the design at a frequency of 10MHz. Even though this frequency is
four times slower than the one reachable by the original design on the same FPGA device,
it still yields a six orders of magnitude speed-up compared to a software simulations with
equivalent fault accuracy.

The effects of stuck-at and path-delay fault models were studied on five applications
from the SPECInt 2000 benchmark suite with a combination of the test and reduced input
sets [101] shown in Table 3.3. This table reports execution times for the FPGA system
running at 10MHz. The SPECInt 2000 benchmarks were chosen to better compare these
results with previous evaluations on architectural simulators already present in the literature.
For each fault that is not detected, the application must run until completion to determine
if the fault was masked or caused a silent data corruption (SDC). Since these experiments
consisted in testing the effects of more of 50,000 faults, running the reference input set for
such benchmarks was not a practical option due to the extremely lengthy runtime (about 5
years of FPGA-time for all considered applications). Therefore benchmarks were executed
with either “test” or “medium” input sets reduced through the techniques presented in [101].

CrashTest allowed us to study the behavior of 30,800 stuck-at and 20,830 path-delay

43

faults across all modules of the OpenSPARC T1 processor core design. Figure 3.7 shows
the outcome of the stuck-at-0, stuck-at-1 and path-delay experiments.

Table 3.3 Benchmarks evaluated in our experiments on the OpenSPARC T1. benchmarks
were executed with either “test” or “medium” input sets reduced through the techniques pre-
sented in [101].

Benchmarks Input set Instructions FPGA time
175.vpr (place) medium reduced 458M 9m 9s

181.mcf test 419M 5m 27s
197.parser medium reduced 913M 6m 16s
255.vortex medium reduced 547M 11m 55s
300.twolf test 415M 5m 15s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 D 0 1 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D

alu shft div ecc ecl mul byp rml ffu ifu lsu tlu total

P
er
ce
n
ta
g
e
o
f
in
je
ct
io
n
s

OpenSPARC Unit

SDC

Other

Timeout

Detect

Masked

Figure 3.7 Breakdown of experiments for stuck-at and path-delay faults. The X-axis indicates
the OpenSPARC modules studied, while the Y-axis reports the percentage of experimental outcomes.
For each module, we report fault injections outcomes for stuck-at-0 (0), stuck-at-1 (1), and path-delay
(D).

44

3.3.2 Fault Injection Results

For each fault injection, we monitored the behavior of the system, and categorized any pos-
sible experiment outcome in five mutually exclusive categories, that will later be discussed
in detail later.

• Detection: 29.83% of the experiments triggered at least one of the software anoma-
lies detectors considered: 1) Fatal Traps 2) Kernel Panics 3) Hypervisor Crashes 4)
Firmware Checks 5) Hardware Stalls 6) Application Abnormal Exits.

• Masked: overall, 61.93% of the faults were masked, meaning that the applications
finished without a detection and their output matched the correct outputs.

• Silent Data Corruption (SDC): only 0.76% of the experiments were not detected
by the symptom-based detectors and silently corrupted application’s output. Our
definition of SDC is somehow conservative as many of the outcomes differ in ways
that are not important to the user. Additionally, some of the fault outputs in this
category clearly showed erroneous behavior (i.e., the fault is detectable by the user but
may not be recoverable). Future work will focus on further analysis of these instances.

• Timeout: to limit the experiment time, we declared timeout if the benchmark ran for
longer than 150% of the time than it does on a fault-free system (path-delay experi-
ments had this time period extended to 200%). A total of 6.40% of fault injections
caused the benchmarks to execute above these time thresholds. We expect many of
these cases to be detectable by a hang detector.

• Other: these cases constituted only about 1.10% of the fault injections. Given the
large number of experiments and system complexity we were pleasantly surprised to
have such a low fraction of uncategorized system behaviors. Due to their rarity, these
experiments do not significantly alter the overall results.

Masking

A high masking rate of 59.7% for stuck-at and 65.3% for path-delay was observed. These
results are higher than previously observed in microarchitecture-level permanent fault injec-
tions [107] (16%) and the gate-level results for the three modules simulated with previous
techniques (30% to 40%). Several factors can contribute to this discrepancy.

First, the OpenSPARC core was originally designed to support four hardware thread
contexts. However, limited FPGA resources constrained us to only test the one threaded

45

version of the core. Unfortunately it is difficult (if not impossible) to prune out all the logic
relating to the other threads at the RTL level. This causes unused hardware logic to be
left in the synthesized design and such hardware may be chosen as a fault injection site,
thus increasing the overall masking rate. Second, some modules, such as the multiplier,
the floating point frontend, and the trap logic unit, contain circuitry that is not exercised
frequently, if at all, by the applications used. For example, the benchmarks do not contain
streaming, MAC, or floating point instructions that rely on the advanced features provided
by such hardware units. Similarly, the trap logic unit performs very little exception han-
dling, since the SPEC benchmarks evaluated require very little I/O and OS interaction.
Furthermore, CrashTest models design aspects not previously considered (such as gate-level
characteristics of the design), thus adding extra layers of masking that could prevent injected
faults from affecting application outputs. The last difference is that fault injection campaigns
performed by previous works only focused on a portion of the design, not testing three large
units – instruction fetch, load-store unit, and trap handling logic – which all have a masking
rate above 55% for both stuck-at and path-delay experiments.

The ALU is a particularly interesting case, since it reports a much lower masking rate
than the one observed for stuck-at and path-delay faults in previous fault analysis campaigns
- up to 40% in the result reported with by Li, et al. [105]. This difference can be explained by
the fact that OpenSPARC uses the ALU for both address generation and normal arithmetic
integer operations, whereas that previous work modeled an out-of-order core with separate
address generation and arithmetic/logic units.

The overall detection rate is 30.1% and 29.4% for stuck-at and path-delay fault mod-
els, respectively. In Table 3.4, we show the percentage of detections that each detector is
responsible for.

We found that a large portion of hardware stalls, roughly 54%, were due to hardware
faults injected in control logic in the load-store unit. Also, 38.7% of detections are Ker-
nel Panics due to faults in the data path submodules of the load-store unit. Overall, the
types of detections occurring in the OpenSPARC platform are of a larger variety than the
ones reported in previous evaluations of software anomalies detectors, due to unexpected
application or OpenSolaris services failure.

Table 3.4 Symptom-based fault detector breakdown.

Fault Kernel Fatal Firmware Hypervisor Abnormal Hardware
type panics traps checks crashes exits stalls

Stuck-at 31.5% 25.7% 10.8% 9.9% 5.8% 16.2%
Path-delay 44.7% 20.4% 4.7% 3.6% 9.0% 17.6%

46

0%

2%

4%

6%

8%

10%

12%

0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D

alu shft div ecc ecl mul byp rml ffu ifu lsu tlu

P
er
ce
n
ta
g
e
o
f
in
je
ct
io
n
s
ca
u
si
n
g
 S
D
C
s

OpenSPARC Unit

SDC %

Figure 3.8 Breakdown of SDCs per unit for both stuck-at and path-delay faults. The X-axis
shows the OpenSPARC unit under study, and the Y-axis shows the percentage of fault injections
which resulted in SDCs. For each module, we report fault injections outcomes for stuck-at-0 (0),
stuck-at-1 (1), and path-delay (D).

Timeouts

About 6.4% of the fault injections experiments hit an established simulation time limit (7.8%
and 4.2% of the experiments for stuck-at and path-delay, respectively).

Other Anomalous Outcomes

About 1.1% of the fault injection experiments were placed in the “other” category (1.6% of
stuck-at experiments and 0.4% of path-delay experiments). A small fraction of these cases
were due to erroneous software behavior that caused the file system to become unusable or
full. In a real system, the file system free space will typically be much larger than on our
experimental FPGA platform, so it is unclear how these situations would translate in a real
system. Additionally, there are a number of cases where the framework could not interact
with the standard output of the application for more than three minutes.

47

Silent Data Corruptions

These experiments yielded an overall silent data corruption (SDC) rate of 0.76% for stuck-at
faults, and a rate of 0.75% for path-delay faults. Figure 3.8 show the number SDCs for each
application, broken down by the units generating the SDC.

Interestingly, all but four units produced none to very few SDCs (0 SDCs for ALU, ECL,
and RML; under 0.4% SDC rate for BYP, ECC, IFU, LSU, and TLU). SHFT, DIV, and
MUL had higher SDC rates, but under 5%. The FFU had the highest SDC rate at 7.45% for
stuck-at faults and 10.47% for path-delay faults. Thus, the vast majority of the SDCs are
concentrated in units that are used in computing data values for the program (as opposed to
addresses or control related operations) – improving reliability in these units is the focus of
the next chapters.

Overall, the SDCs from these experiments resulted in corruptions that ranged from subtle
to drastic and obviously wrong. Subtle SDCs had the effect of adding or subtracting a line
of text or changing the value of a field by a small amount. Other more drastic corruptions
would cause non-ASCII characters to be output, or integer fields in the output to be changed
to very large values. With a proper metric for application-level fault tolerance, as described
in [109], it is possible that some of these corrupted outputs might be acceptable for the
target application.

3.3.3 Detection latency

Figure 3.9 shows the detection latencies for the stuck-at and path-delay experiments. These
results report the number of instructions committed between when a fault occurs and when
it is detected. Any detections with unknown latency (e.g., application-level abnormal exit)
were included in the >100M category for completeness.

Our measurements show that functional units like DIV, MUL, and FFU generally have
long detection latencies, which might simply indicate that a fault activation depends on the
execution of specific and relatively infrequent instructions. For instance, we observed the
OpenSolaris service manager daemon fail due to a violation of the legal value range of a
floating point variable. Other units such as the TLU may have longer detection latencies,
since fault activation could be related to rare events, such as interrupt or exception handling.
Overall, these results prove that software symptoms can indeed be effective in detecting
hardware faults. The large fraction of detections occurring with latencies below 100K in-
structions also shows that low-overhead hardware recovery solutions are practical to recover
from hardware faults [150, 176]. Nevertheless, further studies are required to understand

48

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 D 0 1 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D 0 1 D

alu shft div ecc ecl mul byp rml ffu ifu lsu tlu total

P
er
ce
n
ta
g
e
o
f
in
je
ct
io
n
s

OpenSPARC Unit

 >100M

 <100M

 <10M

 <100k

Figure 3.9 Breakdown of the detection latencies for stuck-at and path-delay fault experi-
ments. The X-axis reports the OpenSPARC module under study, and the Y-axis shows the percentage
of experiments with that detection latency measured in the number of retired instructions after a fault
was enabled. For each module, we report fault injections outcomes for stuck-at-0 (0), stuck-at-1 (1),
and path-delay (D).

how the fault injections that manifest with much higher latencies impact the checkpointing
and recovery overheads.

49

3.4 Adaptive Hardware Reliability

As discussed in Chapter 2, the capability to handle failures and hardware alterations at
runtime is a major requirement for future computer architectures. The dense device integra-
tion responsible for increasing fault rates can also enable architectural solutions to improve
system reliability. Indeed, faulty cores in modern multiprocessors can be simply disabled
without compromising the availability of the other components [167]. Furthermore, current
mission-critical systems often adopt expensive fault-tolerant techniques, such as triple mod-
ular redundancy, to detect and correct hardware errors [12]. Unfortunately, these solutions
are only viable on systems subjected to a limited number of faults, since each fault may
significantly impact the throughput of a system. The results presented in the previous section
empirically demonstrate that modern industrial-strength microprocessors alone cannot cope
with runtime permanent faults. Such experiments also show that low-cost fault detectors
based on software malfunctions can detect a significant portion of non-masked hardware
failures.

Unfortunately, a small but significant number of hardware failures can escape these pro-
tection mechanisms and silently corrupt a system’s outputs (about 1% of our fault injections,
on average). Such faults are particularly dangerous, as undetected hardware malfunctions
can damage valuable assets [5] or even endanger human beings [63]. While a plethora of
near-zero cost solutions have been proposed to detect and correct hardware errors that cause
patent erroneous behaviors [53, 81, 107, 203], none of them can handle the more subtle
faults that result in silent data corruptions (SDC). Interestingly, the results presented in
Section 3.3 report that failures causing this dangerous behavior are concentrated in a handful
of hardware components. In fact, the vast majority of SDCs appear in components used only
for computing data values for a program. The data we collected show that fault injections
performed on the shifter, the multiplier or the divider of the OpenSPARC T1 report higher
SDC rates than all the other units combined (between 2 and 8%). Finally, fault injections in
the hardware that executes the floating point instructions report an amount of SDCs above
10%.

Several solutions have been proposed to detect and overcome these insidious hardware
faults. A large body of previous research proposed a reliable computing paradigm that parti-
tions a program execution into short computational intervals, called “epochs” [41, 110, 120,
172, 177, 210]. Microprocessors employing this model periodically suspend their operations
to perform diagnostic tests on their hardware in order to expose any eventual physical defect.
These machines do not trust their own results until the integrity of their underlying hardware
is confirmed. Once all of the periodic hardware tests terminate successfully, the operations

50

executed in the previous epoch are allowed to commit to memory or to update the state of
I/O peripherals.

Periodic testing techniques are known to achieve high fault coverage – up to 100% – at a
reasonable performance cost. These online tests can be accomplished through the addition
of ad-hoc hardware testing components [120, 172] and/or through the execution of high-
quality software test sequences [41, 110]. These periodic tests are effective at diagnosing
hardware failures, however the approach is time-consuming, resulting in sensible system
slowdowns of up to 30% [41]. Independently from their implementation, all previously
proposed techniques focused on maximizing the fault coverage of the entire silicon system.

However, the results obtained in our analysis provide interesting insights into how soft-
ware utilizes a processor’s hardware components. These experiments report that a very high
number of faults are masked, especially when they are injected in hardware modules that
applications do not exercise frequently. Examples of these hardware modules include the
multiply-accumulate unit, the floating point unit, and the circuitry that handles traps and
exceptions. Indeed, the SPEC CPU2000 benchmarks do not execute any of the specialized
instructions that rely on the advanced features provided by these hardware units. Similarly,
the trap logic unit is rarely triggered by these benchmarks since they require very little I/O
and OS interaction.

40%

50%

60%

70%

80%

90%

100%

FPU

Load/Store Branch/Call

Branch/Call

Load/Store

0%

10%

20%

30%

40%

Millions of Instructions

ALU/Shifter

Branch/Call

Figure 3.10 Dynamic instructions in the Nas FT benchmark. This application solves differen-
tial equations using Fourier transforms. The figure shows the type of dynamic instructions executed
over a window of 2 billion instructions and their distribution by type.

51

The research performed in this thesis revealed that hardware usage of different functional
units by a software application varies greatly during execution. Consequently, the fault
locations that might corrupt the state or the outputs of an application tend to vary over time.
For example, Figure 3.10 shows the type of dynamic instructions executed over a window
of 2 billion instructions by a scientific benchmark application, Fourier Transform from the
Nas suite [54]. Note that the execution of this workload is characterized by long phases
executing instructions which only require few processor units. These patterns of hardware
utilization are not unique to this benchmark, but are common to most applications.

Accounting for this important characteristic of a hardware/software system can lead to a
more efficient and accurate solution to online testing of processors, which can emphasize
application sensitivity to runtime hardware faults. The remainder of this chapter introduces
a new metric which measures the quality of runtime hardware tests and a novel methodology
to performing periodic sanity checks on microprocessors. The new application-aware tech-
nique proposed here delivers high coverage at very low performance overhead and near-zero
area cost. These characteristics make our online testing solution extremely valuable to
providing reliability to the adaptive distributed architecture we target in this research.

3.4.1 Application-Aware Coverage

Traditionally, the quality of online tests has been measured by the fraction of transistors in
the entire system for which a defect would be detected by a given test. Therefore a new
metric, called Application-Aware Fault Coverage - A2FC, is necessary to evaluate fault
coverage in the context of an application’s dynamic behavior. A2FC measures the quality of
a test with respect to its ability to detect a fault in hardware units that the application has
exercised. For instance, if an application only uses the integer pipeline of a processor, a test
that detects faults occurring exclusively in the floating point unit (FPU) would provide an
A2FC of 0%. If an application were to use the FPU during half of its execution cycles, a test
that exclusively provides 80% coverage over the FPU unit’s transistors would have an A2FC

of 40%. In other words, instead of measuring the fraction of transistors that a test covers,
A2FC measures the likelihood of detecting a hardware fault that might have corrupted some
computations.

Below we first analyze the relevance of a failure manifesting at the transistor level, the
hardware unit level and the chip level. We then consider the area fault coverage provided by
a given test to define our A2FC metric. Let Pf represent the probability of a single transistor
permanently failing when it switches. Then the probability of that transistor not failing is
1−Pf . If the number of switching events between two testing intervals is s, the probability

52

of a transistor not failing after s switching events is (1−Pf)
s, and the probability that the

same transistor fails within s switching events is 1− (1−Pf)
s. Consider a hardware unit

comprising n transistors, all subject to the same switching activity. Assuming that transistor
failures are independent events, then the probability of at least one error occurring in a unit
after s toggles is 1− (1−Pf)

sn. Using Taylor binomial expansion, this expression becomes:

snPf +

(
sn
2

)
P2

f −·· ·

If Pf is negligible when compared to s and n, the expression above can be approximated
with snPf . This is the case in all practical situations because the probability of a transistor
failure due to a single switching event is extremely low. For example, if a 5GHz processor
composed of 10 billion transistors had a Mean Time Between Failures of one day, and a
hardware test is triggered every second, the value 1/Pf is 5 orders of magnitude greater than
the product sn. As a conservative assumption, we consider that all transistors switch as often
as the one that switches the most.

At the chip level, a processor is composed of i units. Assuming a negligible probability
of having two faults manifesting in the processor within the time frame delimited by two
subsequent tests, the probability of a chip incurring a fault is given by the sum of the
individual probabilities that any of its modules incurred a fault: P(chip f ails)≈ ∑i siniPf

Finally, one must take into account the ability of a test to detect these faults. Assuming
that a test covers a fraction ci of the transistors in each module i, the probability that it can
detect a fault is: ∑i(siniciPf). Therefore Application-Aware Fault Coverage is defined to
be the ratio between faults that can be detected by the test and all possible occurring faults.
Since Pf is common to all terms, it can be removed from the expression, yielding:

A2FC =
∑i (sinici)

∑i (sini)

Note that A2FC takes into account usage of hardware modules due to a particular workload.
For example, we can assume that a simple processor consists of only two modules that
occupy the same area on the chip: an integer pipeline and a floating point unit. Then, we can
consider two tests: one achieves 90% fault coverage over the entire processor area, while
the other provides 95% coverage for the integer pipeline and 65% for the floating point
unit. When we compare these two tests in terms of area fault coverage, the latter provides
significantly lower coverage (80%) than the former. However, if an application does not
utilize the floating point unit, an user attains much better protection from the second test.
Taking dynamic behavior into account, our A2FC metric would report a 90% coverage for

53

the first test, against a 95% for the second. The remainder of this section uses A2FC as a
metric to evaluate how effective a test is in protecting a system against failures that can
affect the correctness of software application.

3.4.2 Application-Aware Diagnosis

The diagnosis framework here proposed takes advantage of the dynamic program behavior
observed to reduce the overhead required for periodic testing without affecting A2FC. Clas-
sic online testing technologies invest significant effort to thoroughly test all components
of a processor. In contrast, we propose to constantly monitor the activity of all functional
units of the CPU and test only those contributing to the outcome of the user’s application.
With reference to Figure 3.10, note how the FPU is used steadily in the first part of the
benchmark’s execution, while the last portion only exercises the integer pipeline. Similarly,
a test that optimizes performance without affecting A2FC would invest time to check the
FPU unit during the first part of the benchmark’s execution, but would only focus on the
integer pipeline in the last portion.

Application utilization of the underlying hardware is assessed through hardware counters,
called activity monitors. An activity monitor is associated with each functional unit in the
processor. Every time an instruction exercises a particular functional unit, the corresponding
counter is incremented. To characterize the dynamic behavior of an application, the activity
monitors are reset at the beginning of each epoch. At the end of the epoch, this framework
evaluates the monitor’s counters to determine which hardware units should be tested. This
detection mechanism adapts to the applications executed on the processor, so that unit-
focused tests are triggered on demand. Specifically, during each testing phase, it executes
test routines only on the functional units that were utilized by the software application
during the last execution interval. Units which did not experience utilization, based on the
information from the activity monitors, are not tested since they would not improve overall
A2FC. This approach is beneficial for two reasons. First, units that have been exercised by
the application, and might have corrupted it if faulty, are closely monitored. Second, test
length is reduced by skipping tests of unused components, thus improving user’s experience.

To further boost fault coverage in hard-to-test units we increase design observability by
adding dedicated observation points. Enhancing the system with observation points does
not impact performance and requires very limited hardware additions. Since data from the
observation points is collected only during the testing phase, they are transparent to software
applications. In addition, the same hardware counters used as activity monitors, can be used
during testing to collect data from the observation points and their final value is used to

54

verify test success. Our experiments show that this integrated approach can expose the vast
majority of microprocessor’s faults and, in particular, those to which applications are most
sensitive, without incurring the high cost of traditional testing mechanisms such as BIST
and scan-chains.

As a case study, we analyzed the behavior of the application Nas FT using an epoch
of 20 million cycles. During normal computation, every time an instruction exercised a
functional unit, the corresponding activity monitor was incremented. At the end of the
epoch, the activity monitor associated with the floating point unit and the divider reported an
utilization of 5.9 million and 1 million instructions, respectively. We set a 10% utilization
threshold for this case study and, consequently, our A2Test triggered hardware tests for the
integer pipeline and for the floating point unit, but not for the divider.

Software Tests

In the hardware testing community, it is recognized that software-based fault testing can be
very effective to expose the majority of faults in a processor [151]. Several techniques have
been proposed in the literature to build software test routines to this end [16, 31, 210]. This
framework uses a similar approach, and relies on the software regression suite developed
for the functional verification of the processor under study. This set of software tests was
selected because they strive to check all hardware components and system’s behaviors.
From this suite, we want to select several test subsets, one for each hardware unit. Each
subset should comprise those tests most effective in detecting faults for a given unit. We
accomplish this goal by formulating an integer linear programming (ILP) problem, such
that its solution provides the set of tests we are seeking. To start this process, we partition
the processor into several functional units and create an ILP problem for each of them. For
instance, for the processor considered in our experimental evaluation, we partitioned the
design in five separate units: integer pipeline, divider, multiplier, floating point front end,
and stream processing unit. Solutions for the ILP problems generated are computed only
once at design time and used to select the routines that should test each module at runtime.

A fault coverage matrix is built from the outcome of the software tests. Coefficients in
the matrix specify which fault locations are exposed by each test (Figure 3.11.a). From the
fault coverage matrix, the constraints for the ILP problem are generated (Figure 3.11.b): a
binary variable is associated with every test (ti) and fault location (f j). One inequality is
also added for each possible fault location. The binary variable that represents a test i, ti, is
set to 1 if and only if the associated test is selected for execution. A variable associated with
a fault location j, f j, is greater than 0 only if the fault is exposed by at least one of the tests

55

Constraint inequalities:

t1 + t2 ≥ f0
t0 + t1 ≥ f1
t0 + t2 ≥ f2
t2 + t4 ≥ f3
t0 + t3 + t4 ≥ f4
t1 + t4 ≥ f5

F0 F1 F2 F3 F4 F5 Cost

T
0

0 1 1 0 1 0 c
0

T
1

1 1 0 0 0 1 c
1

T
2

1 0 1 1 0 0 c
2

T
3

0 0 0 0 1 0 c
3

T
4

0 0 0 1 1 1 c
4

Fault locations

T
es

ts
ti =

1, if Ti (0≤ i ≤4) is selected

0, otherwise

fj =

1, if one of more tests

exposes Fj (0≤ j ≤5)

0, otherwise

Additional constraint Goal

Integer Pipeline ∑itici ≤ test time budget Max(∑jfj)

a)

b)

Module Directed ∑jfj ≥ target fault coverage Min(∑itici)

c)

Figure 3.11 Formulation of the ILP problems for test routines selection. a. Example of a fault
coverage matrix: a non-zero coefficient at location (i, j) indicates that the i-th test exposes the j-th
fault. The last column reports cost in execution cycles. b. Constraints derived from the fault coverage
matrix. c. Additional constraints and goals for the two types of ILP problems.

that will be executed. Since the integer pipeline is active all the time while the system is
operational, the corresponding test is selected in each testing session. As a result, this test
has the most impact on test execution and, consequently, we set a hard constraint on its time
budget. In contrast, the test time for all other units is less critical, since they are triggered
only occasionally. For those, high coverage becomes the most relevant parameter. Below
we present the specific aspects of both problem setups.
Integer pipeline test. For this test we add a hard constraint to the ILP problem instance so
that the total execution time of the tests selected is below a preset threshold. This choice is
driven by the frequent use of this test and its consequent high impact on overall performance.
In addition, the objective function of this ILP instance is to maximize the number of distinct
faults covered by the execution of the tests (Figure 3.11.c).
Module-directed tests. For the other functional units, the primary goal is to achieve high
coverage. A specific modular test is developed for each complex module in the micropro-
cessor not already covered by the integer pipeline test. The ILP problem setup is similar;
however, we do not set a hard constraint on the test execution time. Instead, we add a
constraint requiring that overall coverage is above a user-specified threshold (Figure 3.11.c).

56

The ILP problem for the integer pipeline in a complex processor such as the OpenSPARC
T1 consists of more than 300,000 fault locations, over 850 tests, and occupies more than
2GB of memory when stored in a file system. A commercial ILP solver spends between 2
and 40 hours to find a solution to the problem and peaks at 30GB of memory usage. Note
that the solution to each ILP problem must only be computed once, when the microprocessor
is designed; thus, although these problems are resource-consuming, their complexity is well
manageable, even for an advanced processor, such as the T1.

Floating

Point Unit
DividerMultiplier

Instruction

Fetch
ExecutionDecoder Write BackMemory

activity

controller

Stream

Processing

activity

monitor

activity

monitor

activity

monitor

activity

monitor

to
 a

ct
iv

ity
m

on
ito

rs

activity controller

opcode

decoder

counterreset

(= test_end)

0 1testing

activity monitor

from_ctrl

activity

monitor

unit
Exe
Exe
Exe Mul
Exe Div

instr
ALU
branch
MUL
DIV

Figure 3.12 Activity monitors to track the use of each processor unit so that tests can be
adapted to target those activated during the last execution interval. Monitors’ counters are
incremented by a controller based on the instruction flow and reset at the beginning of each execution
interval.

Hardware Activity Monitors

We utilize activity monitors to track switching activity in the various units. These consist
of counters associated with each complex unit in the microprocessor’s architecture. Each
activity monitor oversees a processor’s functional module, and its counter is incremented
every time the corresponding module is subject to switching activity. The counters are
reset after each hardware integrity check (testing phase). In practice, module utilization
can be approximated by analyzing the instruction flow: in this solution, we use a dedi-
cated controller, which observes each instruction entering the processor’s decoder stage
and increments appropriate counters based on which units a given instruction exercises.
The activity monitors are embedded in the processor’s hardware, as shown in Figure 3.12.
We envision that software routines evaluating the need of triggering a unit test can access
counters’ values. Functional unit testing can be triggered when a functional unit’s utilization

57

parity

checkers

processor unit

observability

points

from
activity ctrl

counter
reset

testing0 1

counter
reset

testing0 1

carry out

Figure 3.13 Observability extensions. Each processor’s unit is augmented by a set of observabil-
ity points, compressed through a parity checker and fed to local counters. Counters’ values are then
evaluated determine test correctness.

rises above a preset threshold. In our framework, we assume that users could configure the
desired trigger thresholds dynamically, so to trade-off performance overhead with A2FC.

Microprocessor Observability Extensions

To boost the coverage provided by the test routines we augment the processor’s logic with
observability points. Indeed, faults not detected during a test can be classified as either
non-controllable or non-observable. Non-controllable faults lay in logic paths that are not
exercised by testing. Usually they correspond to nodes that are stimulated only by rare
events not controllable through deterministic software programs, such as external interrupts
and error conditions. Non-observable faults correspond, instead, to internal nodes that toggle
during the test, but whose eventual failure does not manifest in the test’s outcome.

The tests selected can control the vast majority of fault locations in the design. By ana-
lyzing the non-observable nodes in the gate-level netlist of the processor, we found that these
are often grouped in cones of logic. From the processor netlist, we built a graph connecting
all non-observable locations in the design. We then identified the cones of logic rooted at
each of these locations through a breadth-search-first algorithm. The non-observable nodes
corresponding to cones containing at least four other non-observable locations were selected
to be instrumented with an observation point. Through this selection, system’s observability
is extended for a very low hardware cost.

To reduce the amount of signals to monitor, we developed a simple compression circuit
consisting of a parity detector. Several observation points are fed to the parity detector and
its output is connected to a counter, so that each time the parity signal is asserted, the value

58

of the counter is incremented. The value stored in the counter is reset at the beginning of
the testing sequence. After the test completes, the counter is compared against a reference
value and it is considered successful only if the difference between these two values is
within an acceptable range (set at 10%). Counter value variations below the threshold are
considered within the normal range for a complex processor executing a same test multiple
times. Indeed our experiments show that the occurrence of a fault causes a significant
difference in the counters values (greater than 10%). Figure 3.13 represents the schematic of
our compression circuit. Note that the same counters can be used for both our compression
circuitry and for the activity monitors.

3.4.3 Evaluation

We evaluated the quality of our solution on a Sun’s OpenSPARC T1 processor [186] and
compared against traditional non-adaptive testing solutions in terms of performance over-
head, fault coverage, A2FC and area impact. Table 3.6 provides a direct comparison of our
evaluation with a number of previously published solutions. The processor implements
the SPARC V9 ISA and supports 4-way fine grain multi-threading. The pipeline logic of
the T1 was synthesized with Synposys Design Compiler targeting the Artisan IBM 130nm
library. Fault coverage was obtained through fault simulation of functional vectors with
Synposys TetraMAX. The Nas parallel benchmark suite was used to estimate the perfor-
mance overhead on CPU-intensive programs [54]. In addition, we evaluated our solution
on I/O intensive benchmark suites such as Bonnie [193] and Stream [118]. To estimate per-
formance on a benchmark that relies on both CPU and I/O, SPECWeb was also considered
[181]. Statistics on functional unit utilization were collected through Simics simulations.
Performance was measured in number of committed instructions and impact of our design
was evaluated against three epoch lengths: 20, 50, and 100 million cycles. Our experiments
focus on stuck-at faults and do not account for faults either marked as undetectable by an
automatic test pattern generator or within the design-for-test structures. Because all memory
structures are protected with either parity bits or error-correcting codes, single permanent
faults in memory are detected by mechanisms already present in the design [186]. Finally,
the hardware additions necessary for our diagnosis system were developed in Verilog RTL
and synthesized with the IBM Artisan 130nm library with Synopsys Design Compiler.

59

Table 3.5 Fault coverage achieved by integer pipeline tests. For each module in the Open-
SPARC T1, the table reports the area occupied and fault coverage attained for test groups targeting
the integer pipeline. The last two rows indicate total area coverage attainable and A2FC for an
application relying exclusively on the integer pipeline.

OpenSPARC T1 unit Area (%) Test coverage (%)
No 5.0M 2.5M 1.25M 0.5M 1.25M
limit cycles cycles cycles cycles w/ obs

Instruction Fetch 7 94.4 93.8 93.2 88.9 82.8
Execution 10 97.1 96.4 95.9 95.2 94.0
Load Store 6 89.7 88.1 87.6 86.2 82.8 89.1
Trap Logic 10 88.7 86.0 85.5 84.3 78.7 87.1
Error Detection 1 33.6 33.5 29.6 27.7 26.5
Multiplier 4 99.2 96.6 96.5 91.0 80.1
Divider 4 98.7 98.7 95.5 95.5 91.3
Stream Processor 3 93.7 89.1 84.8 79.9 60.5
FP Front End 4 91.5 90.0 85.3 77.9 67.7
Memory 51 100.0 100.0 100.0 100.0 100.0
Total (w/ Memory) 100 96.3 95.5 94.9 93.6 91.0 94.1
A2FC 96.6 95.9 95.7 94.8 93.2 95.5

Fault Coverage

We first determined the maximum fault coverage achievable when using Sun Microsystems’
functional verification software routines. Because the overhead introduced by running all
these programs sequentially is very high, we partitioned the processor into several functional
units and grouped the test routines based on the functional units for which they provide high
coverage. The functional units are listed in Table 1. We first focused on the processor’s
integer pipeline since its correctness is vital to nearly every instruction. The integer pipeline
consists of four modules: instruction fetch, execution, load-store, and trap logic. As detailed
in Section 3.4.2, an ILP solver was used to select offline the group of tests that yields the
highest fault coverage within a given time budget. Table 3.5 shows the coverage attained
for each module when running our integer pipeline test battery, over a range of execution
budgets. The last two rows in the table report the total fault coverage attainable for the
system, and the Application-Aware Fault Coverage for an application workload that relies
exclusively on the integer pipeline.

The area-based fault coverage attainable by executing all tests in the integer pipeline
group is extremely high, 96.3%. However, this comes at a very high cost: the test sequence
requires nearly 26 million cycles. Thus we deemed necessary to select a subset of tests
that would still lead to high fault coverage but within a limited time budget. As shown in
Table 3.5, when the time budget is reduced, fault coverage for the integer pipeline modules

60

is not effected as significantly as for other functional units. Among the T1, the load-store
unit and the trap logic unit suffer of limited testability and, in an effort to increase their fault
coverage, we enhanced them with 869 and 738 observation points, respectively. This led to
a 3% improvement in the area-based fault coverage of these units, as indicated in the last
column of Table 3.5.

Note that the coverage for the other functional units plummets as the time budget de-
creases, since the test group is focused only on the integer pipeline. For the other functional
units, distinct test groups were selected by solving dedicated ILP problems: target fault
coverage for the multiplier and the divider was set to 98%, and the cycles necessary to
complete the corresponding test group are 27,383 and 290,715, respectively. For the floating
point front end and for the stream processing unit, the target fault coverage was set to 96%,
requiring a runtime of the 230,033 cycles for the first test group and 1,572,807 cycles for the
second. These test groups target a very high fault coverage but are very time consuming. For
instance, performing a thorough integrity check on the stream processing unit is extremely
expensive, accounting for more than 1.5 million cycles. However, the unit is utilized infre-
quently, indeed none of the benchmarks made use of it. This observation further supports
the hypothesis that, in order to maintain low performance overhead, tests should only be
triggered for the hardware units that could have impacted computation results.

We then compared the degradation in fault coverage observed when running an
application-oblivious test vs. an Application-Aware test, over a range of application pro-
grams. In this experiment the epoch considered was 100M instructions long and we used
a threshold of 1 instruction to trigger unit tests. From our experiments, we report that the
area-based fault coverage is reduced by 1.7% on average when going from an oblivious test
to an adaptive one; correspondingly the A2FC metric is only reduced by less than 0.1% on
average.

Performance Overhead

To evaluate the performance overhead of our solution, we set a bound of 1.25 million
cycles for the integer pipeline, since it provides a good compromise between area-based
fault coverage and test runtime. For all the considered epoch lengths, the average of the
performance overhead of our Application-Aware solution was more than 50% lower when
compared against an online testing solution that is oblivious to application behavior.

The runtime overhead of our adaptive test system was also measured for several indi-
vidual benchmarks against different test trigger thresholds. Figure 3.14, plots the runtime
overhead of our proposed technique against an oblivious testing solution for some represen-

61

tative applications and for the average among all the considered applications. In particular,
we compare the variation of A2FC in our system against the A2FC obtained by an oblivious
solution. The epoch length for this experiment is set at 100 million instructions. Again,
several test trigger thresholds to activate the module tests are considered (from 1 instruction
to 20% of the instructions executed in the epoch). Note that for the benchmark Nas IS, the
A2FC achievable by our adaptive system saturates when the test trigger reaches 1% of the
committed instructions. This behavior is common among several applications that only
rely on few CPU functional units at a time. In addition, the runtime required to perform
the proposed A2Test on the OpenSPARC T1 is extremely small compared to the results
obtained by techniques such as those in [41] and [110]. As expected, by using test adap-
tation, the performance overhead of online testing decreases when the threshold increases.
Moreover, Application-Aware testing reduces the performance overhead by a factor of two
over oblivious solutions.

95.4

95.6

95.8

96

96.2

A
2 F

C
 %

Specweb Stream Nas IS Average
Specweb Stream Nas IS Average

▲

▲

▲

▲

♦
♦

▲

▲

▲

▲

×

SpecWeb

■

■ Oblivious Test

Application-Aware Trigger:

▲1 instruction

♦ 1% of committed instr.

×

95

95.2

1 1.5 2 2.5 3 3.5

Runtime Overhead %

♦

♦
♦

×

♦

×
●●

+

× 5% of committed instr.

● 10% of committed instr.

+ 20% of committed instr.

Figure 3.14 Trade-off between runtime overhead and A2FC for an epoch length of 100M cy-
cles. This figure shows the impact on performance and A2FC of our Application-Aware adaptive
mechanism for some significant benchmarks. The markers in the graph report different instructions
thresholds triggering the functional test, from 0 (oblivious solution), to 20% of the committed
instructions.

Area Overhead

Our diagnosis mechanism requires additional hardware for counters, which are used at
different times as activity monitors and as fault detectors for the observation points. In the
design considered, only five 64-bit hardware counters were required, yielding a total area
overhead of 0.4%. We assume that the five hardware counters can be split in eight 8-bit

62

Table 3.6 Comparison of online testing techniques. For each technique we report the fault cov-
erage achieved for stuck-at faults, the number of cycles required for testing and the area impact. Note
that A2Test, ACE, and CASP provide results for the OpenSPARC T1, while the other results are
based on different architectures.

Solution Test technique Test coverage Core downtime Area overhead
(%) (cycles) (%)

A2Test Hybrid 95 - 96 1.3 M - 3.4 M 0.8
ACE [41] Structural 100 5.4 M 5.8
Bulletproof [172] BIST 88.6 1.5 K 6
Bulletproof2 [120] BIST 95.2 600 - 3.3 K 14
CASP [110] Structural 99.5 240 M 6
Health Adapt. [71] Functional 0 - 97 0 - 690 K 2.6
SW-Based [151] Functional 90 44 K 0

counters. If these 8-bit counters are time-multiplexed three times during the test, no further
area additions are needed for our framework. Moreover, our framework can take advantage
of counters already present in silicon for other purposes, such as post-silicon validation or
design for testability (DFT), in which case our solution will not have any hardware impact.
We estimated that the addition of the parity compressors for the extra observation points
requires an additional area overhead of 0.4%.

To put our results into context, Table 3.6 compares all three aspects of the evaluation for
a range of previously published solutions: note how our solution achieves the best coverage
for the smallest area overhead within a reasonable performance impact.

3.5 Summary

In order to define the reliability requirements for our new architecture, we first analyzed the
effects of hardware failures on current processors and on state-of-the-art reliability solutions.
Unfortunately, no previous technique can deliver at the same time the accuracy and the per-
formance needed to evaluate the effect of transistor faults on modern computers. Therefore,
we first developed a novel FGPA-based framework for resiliency analysis called CrashTest.
Our framework is capable of automatically orchestrating a fault injection campaign of a
gate-level netlist. With the objective of accelerating the reliability analysis, multiple fault
locations are simultaneously inserted in the design through logic transformations. CrashTest
supports an extensive and expandable collection of fault models, ranging from transient
upsets to permanent defects. When compared to equivalently accurate software simulations,
CrashTest speeds up fault injection campaigns up to six orders of magnitude, hence enabling
accurate and detailed reliability analyses.

63

We used this infrastructure to test the reliability of a modern, industrial-grade micro-
processor, the OpenSPARC T1, and evaluated the effectiveness of low-cost fault detectors
based on monitoring software anomalies. We injected a total of 30,620 stuck-at and 20,830
path-delay faults throughout the logic of the OpenSPARC core. Our results report that
software anomalies could detect more than 80% of the unmasked faults. Overall, a very
small fraction (less than 1% on average) of our experiments led to silent data corruptions,
even though in some hardware modules, such as the floating-point front-end and the shifter,
the rate of SDCs reaches 10%.

These studies not only exposed the limitations of prior architectures, but, and more
importantly, provided interesting insights on how conventional processors behave when sub-
jected to hardware failures. We observed that software programs rarely stress all hardware
uniformly, and long portions of a program often rely only on a few components. These
observations inspired two design choices for our work: i) the application-aware testing
technique presented in this chapter, and ii) the modular hardware organization introduced in
Chapter 5.

Here we introduced a novel low-cost adaptive technique to diagnose hardware defects
in the architecture developed in this thesis. Such a technique relies on both hardware and
software mechanisms to adapt periodic tests to the dynamic use of a processor’s structures.
In our design, components that are exercised more often are tested with higher frequency
and accuracy. This allows a significant reduction in performance overhead while improving
software protection, since our tests focus on detecting hardware faults that are more likely
to corrupt computations. The experiments presented in this chapter demonstrate that tuning
online tests to hardware utilization allows a computer system to maintain elevated fault
coverage (up to 95.5%) while limiting performance overhead (1.3%).

In conclusion, this chapter analyzed the reliability limitations of current microproces-
sors, and proposed techniques to detect hardware failures in our architecture. Hence, these
solutions directly address the first issue affecting future semiconductor technologies: the
fragility of transistor components. The following chapter will focus on addressing the second
concern, the challenges related to managing specialized hardware units, and will present the
hardware adaptability mechanisms developed in our architecture. As detailed in Chapter 4,
hardware adaptability provides two advantages. First, it empowers our design to match
hardware resource to application demands. Second, it enables our system to work around
the defective components diagnosed through the techniques illustrated in this chapter.

64

Chapter 4

Hardware Adaptability

In the previous chapter we discussed how the problem of increasing transistor fragility can
be addressed to extend the lifespan of future silicon chips. In this chapter we discuss another
critical issue for upcoming systems: peak power consumption becomes a larger concern for
all modern digital systems, computer architects are starting to deploy an increasing number
of specialized hardware features that can boost both performance and energy efficiency.

We begin by first outlining a family of applications that would benefit from the ability to
leverage specialized hardware components. Adaptability, as this growing characteristic of
modern designs is called, empowers hardware designs to deploy and leverage specialized
functional units, enabling improved computational efficiency.

With the goal of providing hardware adaptability, this chapter presents a low-cost
software-based solution that enables a chip to adjust its operations to both user needs and
hardware constraints. The mechanism developed here, called Cardio, empowers components
to exchange runtime information concerning their condition and utilization. This information
is handled by a software distributed system, which reconfigures and optimizes hardware
features to match application demands, without relying on a central manager to coordinate
this activity [143]. In summary, the solution presented in this chapter enables a design to
dynamically adapt its operation to match user demands and system requirements, while also
allowing it to reconfigure around hardware failures by using the techniques introduced in
Chapter 3.

4.1 Chapter Organization

Section 4.2 introduces an example of a family of applications that benefit from specialized
hardware. Section 4.3 then analyzes the requirements that drive our adaptable hardware solu-
tion and the three principles that guide our design: i) flexibility, ii) low area and performance
impact, and iii) quick responsiveness to hardware changes.

65

Figure 4.1 Example of computer vision application. A computer vision application might be
designed to recognize features in this image such as a face.

Then, Section 4.4 details Cardio’s protocols to manage system resources at runtime.
Briefly, each hardware component periodically broadcasts local information about its con-
dition and functionalities. These diagnostic messages are then collected and aggregated
by a distributed resource manager, which relies on software routines to trigger a hardware
reconfiguration when needed. Section 4.5 presents the experimental evaluation of the adap-
tive technique developed in this dissertation. Despite Cardio’s extremely low silicon area
profile, our results demonstrate that it is highly effective and responsive in reconfiguring a
computer system to hardware alterations. Finally, we show that our solution has very little
performance and energy impact on systems deploying specialized functional units.

4.2 Better Computer Vision With Specialized Hardware

Computer vision is concerned with the theory and the mechanisms that allow artificial
systems to comprehend the physical world around them. Reaching this target often requires
interaction among image processing, artificial intelligence, and machine learning. Typi-
cally, the final goal of computer vision algorithms is to analyze, process, and discriminate
among found in images and videos. Figure 4.1 shows an example where a computer vision
application utilizes a feature detection algorithm to locate a person’s face. Beyond this
simple example, there is a wide variety of applications, such as defense, surveillance, and
autonomous vehicles, which already successfully employ computer vision algorithms.

The growth and the commercial success of computer vision is a remarkable achieve-
ment for modern technology. Continually increasing computing performance has enabled
computer vision algorithms to be executable in most modern computer systems. As more ap-

66

plications make use of computer vision algorithms, there is a growing demand for processors
that are optimized to accomplish such computationally intensive tasks [1, 137].

It has been recently shown that hardware specialized to accelerate computer vision algo-
rithms can improve performance and reduce energy demands by orders of magnitude [35, 36].
Empirical studies of such designs demonstrated that the deployment of optimized data paths
and memory subsystems can greatly reduce execution time.

A hardware system that could dynamically activate/deactivate and tune its components
to the application would maximize resource utilization and optimize performance for a given
power budget. This opportunity is not unique to the family of applications presented above,
as it is available in most computer chips deploying specialized hardware modules [29, 198].
Hence, designs that could monitor and manage their available resources at runtime can
provide a variety of possible tradeoffs and match the available hardware resources with
application demands. The remainder of this chapter will introduce Cardio, the solution de-
veloped in this thesis to manage hardware components, enable system-level reconfiguration
and harness the potentials of hardware diversification.

4.3 Hardware Adaptability through Cardio

Adaptable hardware can optimize the utilization of available resources, thus maximizing
computational efficiency. In order to understand how adaptability can help, we may analyze
the studies performed on the Sun OpenSPARC T1 in Chapter 3. This core includes a
significant number of specialized functional units, such as cryptographic accelerators and
support for single instruction multiple data (SIMD). Our results indicate that programs
relying on one specialized functional unit do not typically utilize the others. Such behavior
is also observed among the different execution phases of one application. As mentioned
previously, adaptable systems can tune resource assignments based on dynamic application
needs, enabling a system to achieve different performance and power goals.

Lastly, adaptability can help overcome permanent hardware failures. In modern systems-
on-chip, faulty processing elements can be disabled without compromising the rest of the
system [127]. At the time of writing, commercial designs leverage this aspect only to boost
manufacturing yield [167]. However, as suggested by the empirically evidence in Chapter 3,
a large portion of permanent failures in modern processors (about 60%) results in neither
service disruption nor silent data corruptions. This surprising outcome is due to the fact that
a partially faulty processor can still correctly execute a large number of instructions, as also
observed also in prior research [6, 149]. In this context, hardware adaptability also offers

67

the possibility to salvage a partially faulty processor. This goal can be achieved, for instance,
if a program only composed of integer instructions is scheduled to execute on a processor
with a non-functional floating-point unit.

Cardio allows for hardware adaptability at a very low cost. It enables architectures to
deploy and leverage specialized functional units to improve computational efficiency. The
remainder of this chapter focuses on a general technique applicable to any multiprocessor
system, while Chapter 6 will adopt the principles and the protocols presented here to pro-
vide hardware adaptability to the novel distributed architecture developed throughout this
dissertation. For the sake of simplicity, and without losing generality, the following sections
will consider a CMP design composed of homogenous processing elements.

4.3.1 Design Philosophy

An adaptable hardware system must resolve two challenges:

1. hardware components and functionalities in the system must be diagnosed as either
available or unavailable;

2. the connectivity and possible communication paths among available components must
be known and maintained up-to-date.

Current solutions for runtime on-chip adaptability typically rely solely on expensive
hardware mechanisms to resolve both challenges. Furthermore, no previous research pro-
vides a complete solution for distributing and managing components’ diagnostic information

Hardware

Router

Software

Applications

Operating

system
Link

monitor

BIST

Data +

Cardio diagnostic messages

Cardio Distributed

Resource Manager

Functions and

handlers

Live

interconnect graph

Available HW

resources

HW/SW interface
Core B

IS
TLocal cache

Routing table

Configurable

RT logic

Network interface

Counters

Ack

buffers

BIST

Figure 4.2 Cardio architecture overview. Cardio hardware and software additions are high-
lighted in the figure. Communication endpoints are augmented with acknowledgment buffers and
counters to handle transmission issues; routers are enhanced with logic to diagnose link-connectivity
and to reconfigure routing tables. Each general purpose core in the system executes an instance of
the distributed manager.

68

in CMPs. We equip each Cardio unit with the capability of periodically broadcasting diag-
nostic information about its state to the entire system. In our proposed design, a distributed
software resource manager executes on each of the general-purpose cores. This resource
manager dynamically maintains and organizes information about the CMP’s hardware fea-
tures. Figure 4.2 shows a high level schematic of the hardware and software additions
necessary to equip a baseline CMP system with Cardio. With the goal of handling hardware
failures, hardware units can also feature diagnostic mechanisms such as the ones detailed in
Chapter 3.

To maintain a low area cost, hardware modifications are limited to the intra-chip com-
munication subsystem and consist of enhancements to both network interfaces and routers.
Network interfaces are augmented with: i) a buffer containing packets injected into the
network and waiting for acknowledgment and ii) a set of counters to trigger automatic
retransmission in case of time-out. Routers are enhanced with: i) a link monitor to collect
information about the components directly connected to the router and ii) a configurable
routing table to redirect NoC traffic around faulty components. Cardio software additions
are more significant, and consist of:

1. a data structure to contain information about the CMP’s state (list of cores and
functions available);

2. a graph of the connectivity among the functional on-chip components;

3. the software routines necessary to update the system and handle diagnostic messages.

4.4 Cardio Runtime Operation

Consistent with the execution model detailed in the previous chapter, Cardio also partitions
workload execution time into epochs. Because resource manager instances execute indepen-
dently on the CMP’s cores, they must synchronize so that they all have an identical image
of the system’s resources and, if needed, can enforce a sound system reconfiguration. The
problem of reaching a common decision among several components is a simpler instance of
the “Byzantine Generals’ problem” [103], called the “consensus problem” [58]. Solving this
problem in our case consists of providing common knowledge of the available resources to
all functional cores in the CMP – also known as “consensus vector” in the literature. Cardio
relies on diagnostic message broadcasts to provide an efficient solution to this problem: the
remainder of this section details the mechanisms leveraged to achieve this goal.

69

While applications execute on the system, processors and NoC routers periodically
and independently suspend their tasks to assess runtime characteristics of the underlying
hardware. These local tests are not globally synchronized, and the only constraint imposed
by Cardio is that all hardware units must complete their self-tests by the end of an epoch.

After each self-assessment completes, its outcome is broadcasted to the rest of the
system. Since Cardio targets a low performance impact, each unit shares only the necessary
diagnostic information. For instance, the interconnect is tested every few thousands cycles:
if each router were to broadcast test outcomes so frequently, these messages would severely
burden the communication infrastructure; therefore routers broadcast system-wide updates
only upon discovery of a new fault in a unit. More frequent diagnostic tests lead to more
prompt reactions to failures, but also entail higher performance impacts and diagnostic
message proliferation. Indeed, diagnostic frequency is a design trade-off analyzed in Section
4.5. Since one of Cardio’s objectives is to promptly report dynamic hardware changes, we
rely on techniques similar to the one presented in Chapter 3 to diagnose faults in hardware
components [142].

Diagnostic messages are collected by the various instances of the distributed software
manager, which, in turn, updates two internal data structures: the list of available hardware
resources and the graph of the functional interconnect links (shown in the right side of
Figure 1). The first structure lists all hardware resources available in the CMP. The second
structure is used to compute the routes to be followed by packets in the NoC. When a
resource manager instance detects a change in hardware functionality, the operating system
is notified and the chip is reconfigured to address the new state of the hardware. If critical
hardware changes are detected, for instance due to newly discovered failures, all application
results produced since the beginning of the last completed epoch are discarded. Otherwise,
if no critical event is identified, the resource managers commit the results produced in
the previous epoch. Note that, once a critical event is discovered, the state of each active
component in the CMP must be recovered in order to restart software execution. For this
purpose, Cardio can rely on either software or hardware checkpoint techniques [150, 176].

The mechanisms developed in Cardio can also be deployed to improve a system’s adap-
tivity to network traffic, components usage, and temperature, by simply adding more detailed
data to the diagnostic messages. For instance, each router could provide information about
link usage. Routers experiencing high utilization can then broadcast this information to the
entire system, so as to trigger an eventual hardware reconfiguration. As we demonstrate in
this work, a hardware system can rely on diagnostic message broadcasts to promptly react to
hardware alterations without hindering its performance. The design principles developed in
Cardio are therefore extendable to a variety of digital systems, as long as enough hardware

70

resources are available to execute one instance of the resource manager.
Since our hardware availability assessment and reconfiguration procedures differ for

processor cores and chip interconnect, we discuss them separately in the following two
sections.

4.4.1 Core Monitoring

Handling hardware changes and online failures on processors requires several steps. As
soon as the diagnostic tests detect a significant change in the hardware fabric, the system sus-
pends its execution and reconfigures to optimize software execution. In order to gather and
distribute system-level knowledge about the functionalities of a CMP’s cores, all processors
in a Cardio-enabled CMP follow the sequence of operations illustrated in Figure 4.3.

Cores in modern CMPs rely on independent clock signals, which cannot be easily
synchronized to provide a global signal to all components in the system. Therefore, each
core in Cardio asynchronously and periodically suspends its normal execution to perform
a self-assessment of its functionalities (step 2 in Figure 4.3). These intervals are typically
several tens of million cycles long - computational epoch lengths adopted in previous works
are 10M, 20M, 100M and 1,000M cycles. Partitioning regular execution into epochs slows
down performance by 2% to 30%, depending on workload, testing technique, and epoch
length [41, 110, 142]. It is worth noting that even briefly suspending cores might cause
jitters in the execution of an application. However, this effect can be significantly mitigated
through modifications to the operating system’s scheduler [111].

Several techniques have been proposed to perform online checks of digital designs,
ranging from structural to functional tests [41, 142]. If the self-tests are successful, the
processor’s architectural state and its memory state are checkpointed (step 3 in Figure 4.3).
Test results are wrapped in a diagnostic message marked with the unique identifier of the
tested core and broadcasted to the entire system (step 4 in Figure 4.3). For instance, it may
be possible to report a processor with a missing or non-functional floating point unit as
available, but only capable of executing integer programs [142].

Since all resource managers must agree on the available hardware resources, Cardio
imposes a barrier to allow all cores to synchronize their information about the state of the
system. While waiting to receive all diagnostic messages from the other computational ele-
ments, cores may start executing the subsequent epoch. For instance, in step 5 of Figure 4.3,
core 0 begins computation in the new epoch even if it is still missing a diagnostic message
from core 3. Since system synchronization is also used to ensure the health of the system,
a local checkpoint can be safely committed only when all diagnostic messages from the

71

functional cores are received (step 6 of Figure 4.3). If n is the number of cores in the CMP, a
core may receive at most n−1 unique diagnostic messages from other cores for each epoch.

A disabled or faulty core is not required to advertise its status to the rest of the system:
the other resource manager instances will detect a missing diagnostic message at the end
of their speculative epoch by mean of a local timeout. Once a fault is detected, a special
message is sent to all cores in the system to rollback to the previously synchronized check-

3. Checkpoint program state2. Core health test1. Normal execution

Core 1

BIST

NI

Router

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Normal

execution

Core 1

BIST

NI

Router

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Core 1

BIST

NI

Router

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Running

self-test
Take

checkpoint

4. Health state broadcasting 5. Speculative execution while

waiting for other cores’ state
6. Once all health states are received,

commit previous checkpoint

Core 1

BIST

NI

Router

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Core 1

BIST

NI

Router

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Core 1

BIST

NI

Router

Core 0

BIST

NI

Router

Core 3

BIST

NI

Core 2

BIST

NI

RouterRouter

Core 0: OK

Core 1: Wait

Core 3: Wait

Core 0: OK

Core 2: OK

Core 3: Wait

Core 0: OK

Core 1: Wait

Core 2: OK

C
ore 0

healthy

Speculative

execution

C
o
re
 3

h
e
a
lt
h
y

Core 1: OK

Core 2: OK

Core 3: Wait

Commit check

point

Core 1: OK

Core 2: OK

Core 3: OK

Figure 4.3 Core monitoring and recovery in Cardio. To maintain an up-to-date state of the
available cores in the system, Cardio relies on a five-step sequence. 1) The cores perform their nor-
mal functions. 2) Core 0, independently from the other Cores, executes a self-assessment procedure
to report its state and number of functionalities to the system. 3) If the test completes successfully, a
local checkpoint of the current core state is taken. 4) A diagnostic message is broadcasted to all other
cores to signal that core 0 is functional. 5) Before core 0 can commit its computation, it must receive
successful fault-free acknowledgments from all cores that were functional in the epoch that was just
completed. This step is accomplished to ensure that no hardware failures affected the system. In
the meantime, it can speculatively continue its execution. 6) Finally core 0 receives the last positive
fault-free acknowledgment from core 3 and commits its results up to the last checkpoint.

72

point, so as to prevent them from committing potentially incomplete or corrupt speculative
results. Cardio provides a synchronization mechanism that eases the deployment of a global
checkpoint system. The checkpoint solution used in Cardio is very similar to ReVive [150],
where each node logs the content of the cache lines that are written during a speculative
epoch. After a next checkpoint is established, the logs from the previous checkpoint are
committed to memory. If the self-tests are successful, both the processor’s architectural state
and its memory state are checkpointed. In such event, all computations performed since
the previous checkpoint cannot be trusted to be correct, since faulty hardware might have
been exercised during the current epoch. This mechanism is deployed to prevent critical
hardware events (such as failures) from silently corrupting program output. Silent hardware
corruptions are extremely dangerous and current unprotected microprocessors cannot cope
with them, as we previously reported in Chapter 3. Therefore, all speculative results are
discarded and the faulty hardware is identified and isolated. Once a core’s functionalities
change, for instance its operating frequency is reduced due to high local temperature, the
OS can migrate active applications to optimize their execution of the available resources.

In order to prevent potential livelocks and guarantee that all cores in a same connected
region have a consistent view of the hardware, resource managers exchange checksums
of the available chip resources. In case of checksum mismatch, Cardio forces all cores to
suspend their activity to drain all in-flight messages from the system. All cores then restart
their diagnostic protocol and exchange a second set of checksums about the state of the
system. This second time both the diagnostic messages and the checksums are guaranteed
to arrive in time, as the system is not burdened with other traffic.

Our diagnostic protocol is inspired by the one reported in [58], which has proven to be
deadlock and livelock free if all the following conditions are met:

1. the communication system is reliable and only cores can be subjected to changes –
note that communication problems that disconnect one or more cores are equivalent
to cores disappearing;

2. each core can unequivocally determine the sender of any received message;

3. any core’s failure to send messages is detectable;

4. any non-disabled core can broadcast information to all non-disabled cores.

Our system meets condition 1 since: 1) temporary communication glitches are tackled
through our end-to-end network-level retransmission protocol, and 2) permanent commu-
nication errors cause the affected cores to be detected as faulty. Condition 2 is fulfilled as

73

each core marks all generated messages with its unique ID. Timeout counters at the network
level meet condition 3. Finally, condition 4 holds true because Cardio can only be applied to
interconnects that support message broadcasting. Thus, at the beginning of a computational
epoch:

1. each j of the r available cores is tested, and its diagnostic v j message is broadcasted
to the system (for instance, 1 if available and 0 if the core is not present).

2. Each instance of the resource manager:

(a) if it receives a value v j from all cores, 1..r, then it takes v as its system’s avail-
ability image; broadcasts v (or its checksum) to the system; waits until the end
of the computational epoch;

(b) otherwise, if it does not receive a message from at least one of the cores expected
to be available (a timeout occurs), then it broadcasts such information to the
system.

At the end of the epoch:

1. If each resource manager received a matching value v from all other cores during
the epoch just completed, then it takes v as its consensus value and commits results
generated in the previous epoch.

2. Otherwise, a hardware change has been detected and the system is rolled back to the
previous checkpoint and is reconfigured to handle the alteration.

Since message payload is typically protected through error correcting codes, we do not
consider faults that may silently corrupt the data carried by a packet [126]. Cores advertise
their status and functionalities to the rest of the system when self-assesment succeeds. How-
ever, it is possible that a fault in the self-test logic causes a processor to incorrectly advertise
its status as available. The probability of such events can be arbitrarily reduced based on
the quality of the periodic self-tests: for instance, runtime test solutions that achieve fault
coverage very close to 100% have been proposed [41, 110]. In addition, the self-test logic
can be protected with traditional reliability mechanisms such as triple-modular redundancy.

In order to maintain knowledge about the functional hardware, each resource manager
builds a list of available cores from the diagnostic messages received. Diagnostic messages
must synchronize, so all cores can receive them before the end of the next epoch. Since
each core handles diagnostic message generation independently, Cardio relies on real-time
counters to trigger diagnostic message broadcast. The introspective operations performed by

74

Cardio rely heavily on such timers, and their hardware should be replicated to ensure their
functionality. We send at least two copies of these messages within one epoch to guarantee
their timely arrival: in fact, even if transmission glitches cause the loss of one message,
the second is likely to arrive on time. Note that it is still possible, although unlikely, that
both messages get lost due to transient failures. This would cause the system to flush all the
in-flight operations and initiate a new system-wide test procedure.

4.4.2 Interconnect Monitoring

Interconnect correctness and performance are fundamental for any CMP. On-chip routers
deliver messages between cores, and a single router can connect multiple processors. Car-
dio can be successfully adopted in any NoC topology, as interconnect state and routing
information are handled in software by the distributed resource manager. Previous work
characterized NoC malfunctions as either: 1) corruptions in the payload/data or 2) errors in
the delivery system [3]. The first kind of errors can be easily addressed with error-correcting
codes and retransmission. The latter can cause packet loss or network deadlock, and both
behaviors can be directly mapped to malfunctions in a router’s links. Here, we introduce
a routing algorithm that dynamically discovers link failures in an arbitrary network and
updates communication routes accordingly. In general, two families of routing algorithms
are available for this purpose: link-state and distance-vector [102]. On one hand, self-
configuring NoCs typically adopt some flavor of the distance-vector protocol, because
its limited complexity is well-suited to hardware implementations. On the other hand,
algorithms based on the link-state protocol introduce lower communication overhead, and
therefore converge faster and scale better than those based on distance vector.

In typical link-state protocols, for instance those developed for computer networks,
every node constructs a graph of its local network connections and broadcasts it to the
others. Then, each node independently computes the best path from itself to every possible
destination in the network. Hence, network nodes only exchange information about their
local connectivity, but must perform complex computations to generate network routes.
Cardio overcomes this drawback by delegating route generations to the software resource
manager.

Figure 4.4 shows the steps performed by each router when the online testing procedure
is activated. First, each router independently suspends its activity to perform a self-check
on its own hardware structures, for instance testing its input and output buffers and its
crossbar (step 2 in Figure 4.5). Any of the several techniques proposed in the literature can
be adopted for this purpose [40, 55]. The outcome of this test determines whether the router

75

1: Drain output links
2: Test Router logic
3: For each output link:
4: Send discovery request
5: For each output link until timeout
6: If discovery response received
7: Update link table
8: If link table changed
9: Broadcast updated link table

10: Resume operations

Figure 4.4 Router periodic self-assessment procedure. First, the online testing algorithm on
the router tests the router’s hardware. Then the state of the direct links between the router and
its neighbors is checked. Directly connected neighbors that do not respond within a certain time
threshold are considered unavailable. Note that only changes to the local link table are broadcasted
to the system.

is operational. Once this first check phase is completed, the router being tested probes its
links to discover all directly connected neighbors. Each node in the NoC independently
performs local link discovery. To maintain an accurate state of the local connections, each
router periodically generates a discovery “heart beat” that is sent to all adjacent nodes, as
illustrated in step 3 of Figure 4.5. A router receiving a “heart beat” discovery responds
including its node ID (step 4 in the Figure). Each link monitor then populates a table where
every functional local link is associated with the ID of the node connected to it (step 5 in the
Figure). Routers also store the unique identifiers of all directly connected cores.

Routers may trigger the detailed hardware tests performed in the first step rather infre-
quently, since accurately testing NoC hardware components often requires a considerable
amount of time. Indeed, other directly connected routers can discover critical failures that
jeopardize a router functionality, and failures causing packet corruption can be detected by
error-checking codes.

After these two phases, each router is able to detect failures that prevent communication
with its directly connected nodes, perhaps because a failure interrupts a communication path.
Once a router discovers a new link malfunction, it discards all packets directed towards
the broken link. The updated local link table is then broadcasted to the system to notify
the resource managers about the change in network topology (step 6 in Figure 4.5). Due
to storage and performance constraints, the period between two subsequent link tests is
limited to a few thousand cycles, as discussed in Section 5.3. All links, even those pre-
viously considered faulty, are periodically tested. This allows routers to recover parts of
the network that are only temporarily unavailable, for example due to intermittent faults or
high traffic congestion. When a failure is detected, the system starts the following hardware

76

reconfiguration routine:

1. the router that discovered the failure broadcasts this event to the entire system;

2. resource managers receive this notification, suspend the current execution, and discard

4. Collect link responses 5. Update local link table

1. Normal operation 2. Check router logic

6. Advertise change

3. Request link check

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Core 1

NI

Core 0

NI

Router 0

Link

monitor

BIST

Router 1

Link

monitor

BIST

Core 3

NI

Core 2

NI

Router 2

Link

monitor

BIST

Router 3

Link

monitor

BIST

Running

self-test

R
e
q
u
e
s
t

R
e
s
p
o
n
s
e

ID

Core: OK

West: OK

South: OK

East: Timeout

Reconfigure

network

Reconfigure

network

R
outer 0

update

Reconfigure

network

Request

Figure 4.5 Dynamic interconnect management in Cardio. Self-discovery and reconfiguration
in the interconnect are organized in five steps. To reduce the amount of extra traffic in the CMP, only
topology changes are advertised. In the figure: 1) The NoC performs its normal functions. 2) Router
0 suspends its execution to perform a self-test routine. 3) Since its hardware is found to be functional,
discovery messages are sent to all output links. 4) Router 2 replies to the request with its Router ID.
5) No response is received from Router 1 within the deadline imposed by the timeout, thus a failed
link is detected. 6) Because of the new fault, Router 0 broadcasts a diagnostic update requesting to
reconfigure the network.

77

all speculative computations;

3. software routines are triggered to compute new routes and the hardware is reconfigured
accordingly;

4. the system rolls back to a previous checkpoint to restore software state and restart
execution.

Since our dynamic network testing routine might discard in-flight packets, we deploy a
retransmission mechanism to avoid communication loss. Cardio addresses sporadic trans-
mission glitches through an end-to-end acknowledgment protocol: every time a message
successfully reaches its destination, the receiver notifies the sender. All interconnect end-
points therefore are enhanced to maintain hardware counters and store pending messages
waiting for acknowledgment. These counters are incremented every cycle, and any message
that does not receive an acknowledgment within a certain time threshold triggers a timeout.
In case of timeout, the network interface retransmits the timed out message; if the second
attempt is also unsuccessful, the network interface affected by this problems notifies its
directly connected cores of a potentially more severe reliability threat by raising a hardware
exception. Acknowledgments may be sent through specialized packets or may be piggy-
backed to regular data packets. Acknowledgment buffer size is a storage and performance
trade-off, which is evaluated in Section 4.5.

4.4.3 Cardio Distributed Resource Manager

Cardio’s distributed resource manager is responsible for monitoring and managing the
system’s reconfigurable hardware. This light-weight software layer leverages the informa-
tion collected from the local tests to assess hardware availability and connectivity. When
necessary, Cardio suspends user applications running on a core to execute resource man-
ager maintenance routines. User applications are also interrupted every time a hardware
component raises an exception or when a diagnostic message is received.

Resource managers use the information about local connections broadcasted by the
routers to generate a connectivity map of the on-chip network. All cores in a connected
region reconstruct the same topology. If the interconnect is partitioned into multiple discon-
nected regions, each core running an instance of Cardio’s resource manager only reconstructs
the region to which it belongs. Once the interconnect graph is built, one local resource
manager (for instance the one running on the core with the lowest identifier number) com-
putes and distributes all routing tables, thus configuring the system to permit communication

78

among all available components. From the diagnostic messages that are broadcasted to the
system each resource manager also populates the list of the available hardware components
and the interconnect graph. As previously discussed, a checksum of these two data structures
is transmitted to all cores in the CMP to verify that all resource manager instances agree
on the current state of the system. If a checksum mismatch is detected, resource managers
initiate a re-negotiation among themselves, eventually pruning routes not accessible by one
or more cores.

4.5 Evaluation

Cardio is a distributed mechanism to manage and organize on-chip resources at runtime and
therefore it adds extra on-chip traffic due to the diagnostic messages exchanged by the self-
checking hardware components. Thus, our experiments focus on measuring Cardio’s impact
on the system’s interconnect by considering a variety of topologies and workloads. We first
focus on finding the optimal size of the acknowledgment buffers at the NoC endpoints and
measure packet latency sensitivity to interconnect discovery.

We then evaluate how Cardio handles dynamic hardware alterations. In order to estimate
our solution’s reactivity to system-level changes, we measure Cardio’s dynamic response
to hardware alterations due to permanent failures. We first analyze the effects of hardware
failures on the static performance of a system, where a number of changes to the system’s
connectivity are made at design time (before starting our simulations). We then studied the
behavior of Cardio in the presence of dynamic failures, therefore evaluating the reactivity of
our design to hardware changes. We also report the impact of our solution on the intercon-
nect performance and energy. In order to assess Cardio’s energy footprint we measure the
extra traffic introduced by our solution.

4.5.1 Experimental Setup

We divide our experimental setup in two different phases. In the first phase we use a
dedicated simulator to explore the tradeoffs of our solution, measure the responsiveness
of our design to sudden hardware changes, and evaluate its cost. In the second part we
concentrate on measuring Cardio’s impact at the system-level, and for this purpose we adopt
an open-source architectural simulator, gem5.

79

Cardio’s Interconnect Overhead and Responsiveness

We perform an initial set of experiments using a system-level C++-based simulator. In our
model, communication details are separated from the implementation details of functional
units. We used this infrastructure in order to focus our evaluation on the performance effects
of the extra communication due to Cardio and to measure its response time to dynamic
hardware changes. In order to evaluate Cardio’s adaptability, we focus on sudden hardware
alterations due to runtime failures, as the response time to such events can be easily measured
by comparing fault injection time against a complete system reconfiguration. Since our
target is to explore the effectiveness of hybrid HW/SW solutions and protocols in relatively
large CMP systems, we developed an infrastructure that would allow quick turn-around for
a range of architectures and HW/SW co-designs. To this end, we developed a simulation
framework that includes models at different levels of abstraction: a more accurate model
for the interconnect and a simpler one for the processing elements in the system. Core
functionalities are implemented at the transaction-level through clock counters, while the
interconnect model is cycle-accurate at the packet granularity (we do not consider flit-level
structures or virtual channels).

Two fault models have been deployed for the interconnect links: in the first all packets
attempting to traverse a link are dropped (drop-packets), and in the second a communication
path is blocked at a selected link (hold-packets). These two fault models are based on faulty
behaviors observed in RTL simulations with detailed fault models [55].

The CMP simulated in this first set of experiments is composed of 16 cores, each
connected to a dedicated network interface. We considered four different interconnect
topologies: ring, mesh, torus and crossbar. The system frequency is set at 2.4GHz, with
five-stage routers transferring packets of up to 32 bytes in size. Packets are buffered at every
router; routers can store up to two packets at the time. In our experimental evaluation we
adopted source routing, embedding routing information in the packet itself. Routing tables
are stored in the network interfaces and communication paths are computed by the resource
manager using the up*/down* routing algorithm [163]. Cardio does not impose limitations
on the routing algorithm we have adopted: these design choices were driven by the goal of
simplifying simulation troubleshooting.

In our work we considered uniform random traffic as well as traces from the SPECMPI
benchmark suite [125]. On one hand, random traffic ensures uniform link utilization so
packet latency and fault impacts are not biased by traffic patterns imposed by a benchmark’s
characteristics. On the other hand, traffic patterns from the SPECMPI benchmarks offer a
more realistic model to evaluate Cardio’s performance and traffic overhead. For uniform
random traffic injections we report packet injection rates as the probability that a core injects

80

a new packet in the network (in %). For the SPECMPI applications we collected communi-
cation traces through the Tuning and Analysis Utilities [169]. To contain simulation time,
we reduced the number of cycles between MPI transactions, thus the performance overhead
we report for these benchmarks is worse than that of their original traffic pattern. Finally,
we also evaluate the quality of our Cardio infrastructure on a system-on-chip design by
evaluating it with the MEVBENCH benchmark suite [37].

4.5.2 Acknowledgment Buffer Sizing

In order to handle glitches in the communication system, Cardio considers any point-to-point
data transmission incomplete until the sender is acknowledged by the receiver. Thus, every
non-broadcasted packet is temporarily maintained in an acknowledgment buffer at the source
until a confirmation message is received. The goal of our first experiment is to study the
trade-off between storage and average traffic latency on network interfaces augmented by

0

1,000

2,000

3,000

4,000

0 1 2 3 4 5 6 7 8 9 10 11 12

L
at
en
cy

Injection rate

0

1,000

2,000

3,000

4,000

5,000

6,000

0 1 2 3 4 5 6 7 8 9 10 11 12

L
at
en
cy

Injection rate

0

1,000

2,000

3,000

4,000

5,000

6,000

0 1 2 3 4 5 6 7 8 9 10 11 12

L
at
en
cy

Injection rate

1.00 2.00 5.00 10.00 20.00 100.00Acknowledgment buffer size:

0

1,000

2,000

3,000

4,000

5,000

0 1 2 3 4 5 6 7 8 9 10 11 12

L
at
en
cy

Injection rate

Crossbar Mesh

TorusRing

Figure 4.6 Packet latency vs. injection rate for different acknowledgment buffer sizes. Each
curve represents a different acknowledgment buffer size as indicated in the legend. The X-axis
represents the probability that each node (in %) injects a new packet in the network. Buffers of size
10 provide the best trade-off between storage requirements and packet latency.

81

packet acknowledgment buffers. We evaluated several buffer sizes, ranging from 1 data
packet (that is, the network interface must receive the acknowledgment for a previous packet
before transmitting the following one), up to 100 outstanding packets. No faults are injected
for these experiments. Figure 5 shows the relation between the number of outstanding
messages and the average packet latency. Traffic injection rate is measured as the probability
of each network interface to input a new message in the interconnect at any given clock
cycle, while packet latency is measured as the number of cycles between when a data packet
is generated to when it is received by its destination. For the considered topologies we found
that an acknowledgment buffer of 10 packets is a reasonable compromise between storage
requirements and packet latency. Indeed, acknowledgment buffers containing less than 10
data packets lead to significantly worse average packet latency, while even doubling their
size provides minimal benefits. In order to evaluate the area tradeoffs introduced by these
retransmission buffers, we used CACTI to estimate the size of these additional memory
elements [189]. The total overhead of including 10 extra buffers adds 0.027mm2 to the
area of a core developed in 90nm technology, less than 0.2% of the area of a processor
from the OpenSPARC T1 [186]. As a reference, allowing network interfaces to store 100
32-byte messages would increase the area by 0.146mm2. Thus, network interfaces in all
subsequent experiments include acknowledgment buffers capable of containing up to 10
outstanding packets. It is worth noting that the latency curves we observed level off as
the traffic injection rate increases. This behavior is due to self-throttling limitations in the
injected traffic imposed by the acknowledgment buffers. Indeed, when the acknowledged
buffers fill up, the cores are forced to suspend execution, creating de facto a self-throttling
effect – since the acknowledgment buffers are full, the cores attempt but fail to inject packets
in the network.

4.5.3 Dynamic Discovery Period

We then analyzed the effects on interconnect latency due to the extra traffic caused by the
discovery packets. With this goal, we studied the sensitivity of average packet latency to the
interconnect discovery period. This experiment was run with a traffic injection rate of 5%
and no faults in the interconnect. From the data gathered in our analyses we observed that
resource contention in the network starts to impact packet latency at injection rates higher
than 5%. As the period between interconnect discoveries increases, average packet latency
decreases due to bandwidth limitations. As shown in Figure 4.7, this trend is steeper for
topologies such as mesh and ring, for which links are subjected to a higher contention.

Given the results obtained in this experiment, the network discovery frequency for our

82

0

10

20

30

40

0 5,000 10,000 15,000 20,000

L
at

en
cy

Interconnect discovery period

Ring

Mesh

Torus

Crossbar

Figure 4.7 Packet latency vs. discovery period. The impact of varying the discovery period
differs for different topologies: mesh and ring are more sensitive to variations due to a smaller
network bisection.

subsequent analyses is based on three different discovery periods, from a very frequent
periodic test of 5,000 cycles to a much slower discovery period of 20,000 cycles.

4.5.4 Static Hardware Adaptation

Our third set of experiments evaluates how a Cardio-enabled CMP can adapt its behavior
in the presence of hardware alterations. For this experiments we rely on random traffic
patterns. Network links are disabled (set as faulty) before starting the simulation, so as to
model a number of similar systems in which connectivity is modified at design time due
to arbitrary design choices. We perform these studies to show that Cardio can be adopted
to ease design diversification and that various versions of a SoC can be deployed with no
effort. These results also show that our solution can be used to improve manufacturing yield
and to demonstrate Cardio’s operation in various defective topologies.

In Figure 4.8 we first report the packet average latency as a function of the number of
faulty links in the system (X-axis) and the traffic injection rate (Z-axis). As with the previous
experiments, traffic injection rate is measured in probability (%) of packet injection per
core. Interestingly, packet latency for the crossbar, ring, and mesh reduces as the number
of faulty links increases. For the crossbar, this phenomenon is caused by the fact that a
single disabled link is sufficient to disconnect a processor from the system. Therefore, as
the number of faults increase, the number of active cores connected to the crossbar – and
thus the traffic injected into the system – decrease. In the ring, hardware failures partition
the topology in smaller, partially connected sub-networks. As shown in the graph, just
12 disabled nodes suffice to disconnect most cores from the system, therefore causing the
average packet latency to plummet to zero. Figure 4.8 also shows that both the mesh and

83

the torus can tolerate a high number of disconnected links, maintaining performance up
to and beyond 20 faulty links. Nevertheless, an increase in the number of faults in the
mesh leads to a lower average packet latency. We found that disabling a large number of
links partitions the system into smaller sub-networks, which experience less average traffic
congestion and thus lower packet latency. This phenomenon has also been reported by other
researchers [55]. In contrast, the torus does not manifest this behavior. In fact, the higher
number of links available in this topology allows it to maintain connectivity among most
nodes in the system, even when affected by more than 10 faults. Nevertheless, disabled links
do affect the possible routes of packets, thus increasing the average communication latency.

1,500

2,000

2,500

L
at

en
cy

Crossbar

2018161412108642
0

500

1,000

0

2.5

5

7.5
10

Faulty links

L
at

en
cy

In
je

ct
io

n
 r

at
e 4,000

5,000

6,000

7,000

8,000

L
at

en
cy

Mesh

2018161412108642
0

1,000

2,000

3,000

4,000

0

2.5

5

7.5
10

Faulty links

L
at

en
cy

In
je

ct
io

n
 r

at
e

8,000

10,000

12,000

14,000

L
at

en
cy

Ring

2018161412108642
0

2,000

4,000

6,000

0

2.5

5

7.5
10

Faulty links

L
at

en
cy

In
je

ct
io

n
 r

at
e 2,000

2,500

3,000

3,500

4,000

L
at

en
cy

Torus

2018161412108642
0

500

1,000

1,500

2,000

0

2.5

5

7.5
10

Faulty links

L
at

en
cy

In
je

ct
io

n
 r

at
e

Figure 4.8 Average packet latency for faulty topologies. In these graphs we report the average
packet latency (Y-axis) as a function of the number of disabled (faulty) links in the system (X-axis)
and the traffic injection rate in % (Z-axis). When subject to faulty links, topologies give different
responses. Topologies with higher connectivity can maintain low latency even with a significant
number of faults.

84

4.5.5 Dynamic Hardware Adaptation

In this section we studied the short-term dynamic behavior of Cardio on a mesh at the time
of occurrence of a permanent fault, evaluating its reactivity in detecting and overcoming
runtime hardware alterations. For this experiment, we simulated the system with no faults
for 150,000 cycles to reach a steady state, and then a randomly selected link is modeled as
faulty. Two fault models were considered for this study: the first - drop-packets - causes
the loss of all packets directed towards a faulty link; the second - hold-packets - forces a
faulty link to stop all packets trying to traverse it. In order to provide insights into Cardio
dynamic behavior, we analyzed the system at windows of 500 cycles and report, on the
Y-axis, the average latency incurred by all packets generated during each analyzed window.
In this experiment we considered discovery periods of 5,000, 10,000, and 20,000 cycles.
To stress the interconnect with a moderate amount of traffic, we set the packet injection
rate at 5%. Through native execution profiling, we measured that the time required for the
distributed resource manager to recompute the routing tables is approximately constant
at 10,000 cycles. We also estimated that each routing table requires 450 cycles to update,
representing a serial write process for 15 routes of 15 hops each, writing 2 bits per hop
[114]. In these experiments the network discovery period starts when the fault is injected to
demonstrate the worst-case performance of our solution. In our evaluation, we disregarded
the extra traffic introduced by core diagnostic messages, since their transmission frequency
is three orders of magnitude lower than for the interconnect components [40].

0

500

1,000

1,500

2,000

2,500

3,000

140,000 150,000 160,000 170,000 180,000 190,000

L
at

en
cy

Cycles

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

140,000 150,000 160,000 170,000 180,000 190,000

L
at

en
cy

Cycles

a) b)

20,0005,000 10,000Discovery period [cycles]:

Figure 4.9 Effect of a dynamic fault on a link. This graph plots the average time necessary for a
packet to reach its destination; packet latency is averaged between all packets generated in a window
of cycles. In this scenarios the link is broken at cycle 150,000 and two fault models are considered:
a) drop-packet; b) hold-packet.

Results from the drop-packet fault model are reported in Figure 4.9.a), where we distin-
guish a minimum of two and a maximum of three latency peaks, depending on the discovery

85

period. The first peak is caused by the occurrence of the fault, and affects all packets that
need to be re-transmitted due to the faulty link. After a certain amount of time, and directly
related to the network discovery period, a first router detects the problem locally and conse-
quently broadcasts the updated system state. The first interconnect reconfiguration process
causes the network to temporarily stall, resulting in the second peak that is observable in the
graph. The third peak shown in the graph is due to a second system reconfiguration and is
triggered by a later detection of the fault by a second router.

The impact of the hold-packets fault model is more dramatic: a fault’s effect is not
limited to packets in transit between two nodes, but rapidly propagates to a vast portion of
the CMP, as demonstrated by the much higher average packet latency reported. Indeed, this
second fault model congests multiple links: input and output buffers at the routers that are
connected through the broken link fill up and cause a domino effect to their neighbors and
then to the rest of the network. As reported in Figure 4.9.b), the longer the period between
hardware tests is the more dramatic the fault’s effects on the overall system are.

4.5.6 Performance and Traffic Impact

In this section we study the impact of our solution on interconnect performance and its
communication overhead. For this last study we report the extra execution time experienced
when running SPECMPI benchmarks and the percentage of extra packets that must be
transmitted for diagnostic purposes. During this experiment all topologies are fault-free.
For most benchmarks, the performance impact is lower than 3% and almost uniform over
all topologies. An interesting exception is the 104.milc benchmark evaluated in the mesh
topology, which suffers from significant performance loss. This is because each core in that
benchmark relies on very frequent and very long data transfers to one process mapped to
the core on the top left corner of the mesh. This core, therefore, has a much more limited
bandwidth, and thus the performance impact measured in this scenario is particularly pes-
simistic. Furthermore, for most benchmarks and topologies, the extra packets due to Cardio’s
diagnostic messages are less than 10%, and this overhead varies greatly with the benchmark
considered: the impact is higher for applications with little inter-core communication (e.g.

128.GAPgeofem).
As the number of nodes in CMPs is expected to increase, it is important to evaluate

the scalability of our solution. Assuming a CMP with n cores, the maximum number of
messages periodically that must be periodically exchanged in Cardio is 2n3 and 2n2(n−1)
for a torus and a mesh respectively. In order to overcome a network failure, the number
of messages exchanged in a torus is 8+ 4n3 and is 8+ 4n2(n− 1) for the mesh. Finally,

86

reconfiguration time in Cardio is constant. This is because Cardio detects failures locally
and handles hardware reconfigurations in software.

4.5.7 Energy vs. Performance Trade-off

We previously measured the responsiveness of our technique to hardware changes. Here, we
focus on measuring the impact of our adaptive technique on the performance and the power
consumption of a complex, specialized hardware system. With this goal, we considered a
SoC that embeds specialized hardware targeting computer vision algorithms and evaluate
the performance of MEVBench benchmarks. In this set of experiments we used the gem5
full-system simulator to measure system performance and McPat to estimate the power
consumption of this design. We evaluated a range of SoCs, between 2 and 32 cores. The
characteristics of the SoCs under evaluation are listed in Table 4.1. Cores were organized
in a mesh connected through a network-on-chip. Cardio allows the system to dynamically
activate each processor, while also providing the capability of tuning each core’s voltage and
frequency. Hence, users can dynamically adopt the configuration that best fits their needs.

In this evaluation, we considered computational epochs 10 million cycle long. In order
to deploy Cardio’s adaptable solution, each core independently suspends its execution at the
completion of an epoch to perform basic routine checks. In these experiments we disabled
all online reliability features to eliminate their impact in our results.

In this system, each core periodically reassesses its available features, collects data about
its current utilization and state (frequency, performance, and temperature), and broadcasts
this information to the rest of the chip. The arrival of these messages triggers each core to
execute a simple procedure of the distributed resource manager, which collects all messages

Table 4.1 Hardware Configuration

Feature Configuration
Pipeline 1GHz-400MHz , 32 bit out-of-order, 4-way superscalar

Functional units 4 integer units, floating point units,
1 SIMD unit, 1 set of hardware accelerators

Vector registers 64 32bit single precision registers
L1 cache 32k 2-way assoc. instr. and data (1ns)
L2 cache 1MB unified non-inclusive (12ns)
Cache coherency protocol MOESI
System interconnect 128-bit NoC@ 1GHz
System memory 2GB LPDDR2
Instruction set ARM-v7
Technology node 45nm

87

received during the execution of one epoch. The end of an epoch is determined individ-
ually by each core through an instruction counter, which interrupts all current operations
to execute the service routines of the distributed resource manager. These routines use the
information collected to construct an updated graph of the features available in the system,
and, if needed, can trigger system reconfiguration and notify the OS to optimize application
execution to match the new hardware setup. If no reconfiguration is necessary, the execution
of such procedures only requires approximately 10,000 cycles.

We evaluated the impact of Cardio on the energy consumed by this system. In our
experiments we target systems that fit within a constrained power budget, thus the additional
energy needed by our adaptive solution increases almost linearly with the decreased per-
formance. For the considered configurations, our experiments report that Cardio increases
power consumption between 70 and 210 mW on average. These costs are minimal when we
consider the benefits provided by our design.

Figure 4.10 reports our findings. For this experiment, we consider a test sequence
executing all eight MEVBench benchmarks. The SoC under evaluation can activate up to 32
cores in order to reach the targeted performance improvement indicated on the X-axis – per-
formance is measured as relative speedup compared against a baseline 2-core configuration.
On the Y-axis we report the percentage of energy saved by an adaptable system deploying

-10

0

10

20

30

40

50

60

70

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

E
n

er
g

y
sa

vi
n

g
s

[%
]

Targeted performance improvement

Figure 4.10 Energy savings obtainable thanks to our adaptable design. The plot reports on
the Y-axis the reduction in energy consumed by an adaptable system deploying Cardio against a
non-adaptable one. The graph shows in the X-axis the targeted performance improvements, measured
as speedup compared against a baseline design with only 2 cores.

88

Cardio against a non-adaptable one. On one hand, we assume that the design augmented
with Cardio can dynamically adapt to software demands, and, for each benchmark, activate
the minimum number of cores necessary to achieve the targeted performance. On the other
hand, the non-adaptable system must keep all cores active that are needed to achieve the
targeted performance by the most demanding benchmark.

For a targeted performance improvement of 1.4×, we found that the system augmented
with Cardio consumes slightly more energy. This is because all eight benchmarks require 4
cores to achieve this performance target. Therefore, our adaptable design cannot benefit the
benchmark execution, while still requiring extra energy. However, as the targeted perfor-
mance improvement increases, the benefits of our adaptable design become more evident.
As shown in this plot, the energy savings made possible by our dynamic hardware resource
assignment technique are vey significant, and peak at 63%. As the targeted performance
improvement increases, energy savings achievable by our design decrease. This is because
system performance saturates, and more and more benchmarks require the activations of
all 32 cores in order to achieve the targeted performance, making less and less use of the
adaptability features made available by Cardio.

4.5.8 Area Overhead

Compared to a typical CMP system with precomputed routing tables, Cardio requires
the addition of a few hardware components throughout the interconnect. Considering the
baseline design used in our evaluation, each network interface is enhanced with 10 buffers
(Section 4.5.2) of 32 bytes each (size of 1 packet). In addition, we require 10 counters
associated with the buffers to track timeouts, and each counter should be 20 bits wide to
allow for a extended range of timeout values. Thus, the total storage overhead for each
network interface is 345 bytes. Note that this last overhead is common to all solutions
that require the ability to recover in-flight. Each router must store the IDs of nodes con-
nected to each link: 4∗ log(16)bits = 4bytes. Cardio’s reconfigurable routing tables require
16 ∗ log(4)bits = 2bytes. As already analyzed in the previous chapter, the area overhead
introduced by the core self-test logic is approximately 1% [142]. Hardware additions for the
routers, instead, increase their total area by roughly 12% (considering both reconfigurable
routing tables and the BIST) [45].

89

4.6 Summary

This chapter introduced a solution that enables adaptability on hardware designs called
Cardio, which consists of a low-cost technique that enables hardware adaptability. This
technique can be leveraged to allow a chip to unlock significant improvements in computa-
tional efficiency, and promptly respond to environmental variations, changing application
demands and hardware failures. This system-level solution is based on periodic exchanges
of diagnostic messages among system components, which are handled by a distributed
resource manager. Cardio can adapt to both design time and runtime hardware alterations,
reconfiguring a hardware system in as little as 20,000 cycles.

While the previous chapter focused on solutions to provide our new architecture with
reliability features, the technology presented here enables a design to be adaptable to hard-
ware changes. Furthermore, this chapter also shows that the adaptability offered by this
design can complement the reliability solution presented in Chapter 3, empowering a system
to dynamically reconfigure around runtime hardware failures. So far, this dissertation has
addressed two of the problems that we identified for future semiconductor technologies: the
increasing number of hardware failures and the challenges connected with managing special-
ized functional units. In order to overcome the third challenge, lack of design modularity,
the following chapter introduces a modular and distributed computer design. Lastly, the
concepts and techniques developed throughout this chapter constitute an integral component
of the holistic solution presented in Chapter 6.

90

Chapter 5

A Modular Computer Architecture

As detailed in the previous chapters, future semiconductor technologies are expected to
allow further transistor miniaturization. This will enable computer chips to integrate tens
of billions of transistors, thus empowering designers to include more and more features
into a single silicon substrate. On one hand, this trend allows digital systems to improve
performance while decreasing overall power consumption [23]. On the other hand, the
lack of design modularity exacerbates the already high engineering costs [17, 18, 46, 97].
While the previous two chapters explored and evaluated solutions to make hardware designs
reliable and adaptable, they do not mitigate the lack of design modularity that causes these
high design costs.

In an effort to address this last challenge, the solution presented in this chapter prioritizes
simplicity through the means of design modularity. Differently from prior designs, this
architectural solution is characterized by a novel fully distributed control logic that makes
it highly modular. Besides providing modularity, a property that can significantly reduce
engineering costs, this novel execution paradigm can also boost reliability and adaptability,
as we will discuss in Chapter 6.

5.1 Chapter Organization

Section 5.2 discusses the two main causes of lack of modularity in current processor designs:
the presence of centralized control logic and the tight interconnection between hardware
components. Moving forward, Section 5.3 describes the hardware organization of our new
microarchitecture – Viper. This design uses a reconfigurable execution engine built from
small, independent components guided by fully distributed control logic.

In Section 5.4 we utilize an example to demonstrate how our design dynamically re-
configures its computational fabric to execute programs. To complete the presentation of
the execution model developed in this chapter, Section 5.5 explains how Viper handles

91

exceptions and changes in the program flow. Further advantages of our execution model,
possible optimizations, and a comparison of Viper against previously proposed architectures
(reconfigurable CMPs, counterflow and dataflow machines) are discussed in Section 5.6. Fi-
nally, Section 5.7 presents the experimental evaluation of our microarchitecture and analyzes
its performance, area, power consumption, and reliability.

5.2 Design Modularity

The lack of design modularity in current microprocessors is due to two reasons. First,
complex and pervasive control logic is in charge of orchestrating the proper functioning
of the entire processor [201]. This circuitry must manage all interactions among processor
components, as well as handle external events. This logic is extremely complex, since
design decisions must account for rare corner cases and infrequent interactions between
asynchronous events, which can be difficult to foresee. Second, hardware components in
modern microprocessors are tightly interdependent due to performance reasons. Such a
design choice jeopardizes our ability to develop and test the functionality and behavior
of individual components in isolation [46]. We must therefore address both the pervasive
centralized control logic and the tight interconnection if we wish to develop a computer
architecture that can be designed in a time- and cost- effective manner.

A modular system consists of distinct components that can connect, interact, or exchange
information with each other through well-defined interfaces. An effective way to achieve
modularity is to organize all components as self-contained entities that serve any request as
an independent transaction. Non-modular designs, on the contrary, may not have clearly
defined component interfaces, making it difficult to develop, test, and modify a component
of the design independently from other components [132]. Furthermore, modular systems
can be partitioned into a number of components that may be mixed and matched in var-
ious configurations [160]. Finally, these designs help reduce engineering costs because
development of the different modules could evolve independently, incrementally, and in
parallel [10, 128].

To this end, this thesis presents a new microarchitecture that decouples the function-
ality of a processor’s parts from its control logic [147]. By removing the tight coupling
between the different components of a processor, it becomes possible to build a modular
and extendible microarchitecture. Our solution goes beyond organizing its hardware in
separate modules with well-defined uniform interfaces. Indeed, a new execution paradigm
is proposed for efficient execution on our modular architecture. A program is split into

92

instruction bundles, each with a list of independent underlying tasks to be completed. Then,
singular hardware components independently team up to complete these tasks. Our novel
hardware organization and execution paradigm provides Viper with unprecedented design
modularity.

5.3 Viper Hardware Organization

The design introduced in this chapter is based on a distributed execution engine that is
dynamically configured to route instructions towards functioning hardware components.
Viper is a service-oriented microarchitecture, where instructions are presented as clients
that use hardware components to complete an ordered sequence of services. For instance,
a sequence of such services for a simple add instruction - add %al, [%ebx] - could
be: “fetch/decode instruction”, “retrieve value from registers”, “load memory value”, “add
two operands”, “write the result back to a register” and, “compute the address of the next
instruction”. From Viper’s perspective, an ISA consists of the set of services required by its
instructions.

Instead of pushing instructions through paths defined at design time, as classic architec-
tures do, Viper relies on a flexible fabric composed of hardware clusters. These clusters are
loosely coupled via a reliable communication network to form a dynamic execution engine.
Each cluster can accomplish one or more services and the number of clusters available
in this system can change without affecting the rest of the system. Additionally, a cluster
providing multiple services can be partially disabled and used solely for instructions that
need its functioning services. Such a design is modular by construction, and each cluster
is fully independent. In Viper, a program is always able to successfully execute as long as
the working hardware clusters can, in aggregate, perform all the services required by its
instructions.

Once an instruction is decoded, it is possible to know which remaining services it needs,
and the instruction can be directed towards clusters available to provide those services. The
set of clusters that contribute to the completion of an instruction form a virtual pipeline.
Because clusters can be distributed across the chip, it may take many more clock cycles to
transfer instruction information through these virtual pipelines than through a traditional
hardwired pipeline. To mitigate this potential performance loss, Viper operates on larger
collections of instructions called bundles, which, like basic blocks, typically end in control
flow instructions. Bundles can successfully execute as long as at least one cluster can
complete all their required services. Functional units within a cluster can service a bundle’s

93

instructions out of order, and thus the maximum throughput achievable by a single cluster
matches that of an out-of-order processor with an execution instruction window equal to the
maximum number of instructions in a bundle.

In order to achieve design modularity, we partition an application execution flow into
smaller bundles, which can be executed by the hardware modules as independent transac-
tions. The advantage of this approach is that it enables hardware modules to be completely
decoupled from one another. While bundles composed of single instructions would suf-
fice for this purpose, the high reconfiguration overhead associated with assigning a virtual
pipeline to each of these short bundles makes this choice prohibitive. Therefore, we must
determine a feasible bundle size for our architecture.

Long bundles offer the opportunity to share virtual pipeline reconfiguration costs among
numerous instructions. Unfortunately, including too many instructions on a single bundle
is inefficient and wasteful. In the experiments presented in Chapter 3, we discovered that
applications exercise hardware components in a bursty manner. Therefore, assigning all
services needed to execute a long instruction sequence at once often results in very ineffi-
cient hardware utilization. Furthermore, since bundles commit atomically, the bundle size
directly affects the responsiveness of the machine, as well as the amount of storage neces-
sary to buffer speculative results. Lastly, an architecture deploying long execution bundles
must include the rather complex logic for handling and correcting multiple misspeculated
branches.

Given the above tradeoffs and constraints, four reasons guide our decision to partition
dynamic execution in bundles that terminate with a control instruction (basic blocks). First,
our preliminary studies performed with the Pin Dynamic Binary Instrumentation Tool [116]
showed that the number of services required to execute all instructions within a single basic
block is bound and can be used to efficiently assign subsets of functional units, as also
shown in [216]. A second reason to organize execution at the basic block level is the fact
that more than 95% of the dynamic basic blocks in typical applications are smaller than 16
instructions [147]. Therefore, a machine committing instructions at the basic-block level
would be very reactive and only require moderate amount of memory to store speculative
values. It is worth noting that applications may sporadically execute very long basic blocks.
Since speculative storage is finite, our architecture will then split these long basic blocks into
multiple bundles, each of which can fit into available speculative storage. Third, partitioning
program execution into basic blocks allows our machine to take advantage of compiler opti-
mizations and dataflow locality – previous research measured that when an instruction reads
a value from the register file, there is a 92% chance that such value came from one of the last
two producers of that value [187]. Fourth, an architecture working with instruction bundles

94

that can only have a single entry- and exit-point can recover from branch missprediction
simply by squashing all misspredicted bundles and restarting execution from the correct
program counter.

In order to execute an application, Viper must be able to dynamically determine which
hardware clusters will participate in each virtual pipeline. To avoid reliance on centralized
control logic, Viper utilizes a collection of distributed and independent structures called
Bundle Scheduling Units (BSUs). Each BSU has some amount of storage that maintains
information, such as the services that its bundle needs to complete, its virtual pipeline
configuration, and the status of all operations performed on the bundle up to this point. This
data is used to control the execution of a single bundle of instructions as it works its way
to completion through its virtual pipeline. Every BSU also contains logic that is used to
determine which hardware clusters will be used in its bundle’s virtual pipeline. Clusters
independently signal their ability to complete particular services to each BSU. Then, without
consulting any centralized logic, the BSU then chooses which clusters will form the virtual
pipeline that will service its bundle. This process is detailed in Section 5.4.

Viper’s hardware can be logically partitioned into two parts:

1. A sea of redundant hardware clusters: hardware functional units connected through a
homogenous communication medium. Each cluster can perform one or more of the
services required to execute instructions in the ISA.

2. Bundle Scheduling Units: memory elements that contain the state of in-flight in-
struction bundles and store the data necessary to schedule and organize the hardware
clusters that form a virtual pipeline. A live BSU entry does not contain instructions or

operands, but only the information required to control the bundle’s execution.

Figure 5.1 presents a simple Viper design organized in a mesh, where each colored
service is replicated in multiple identical clusters. BSUs are connected to the sea of clusters
through a crossbar, which allows each BSU to interact with all clusters in the execution en-
gine. Clusters that need access to external modules are connected to them through dedicated
links. For instance, clusters capable of “fetching instructions” are directly connected to the
instruction cache, and the register file and load/store queues are placed near clusters that
need fast access to these units. Finally, clusters that support the “write memory operations”
service are connected to the load/store queue to allow stored values to be written to memory
once the related bundles are committed. Depending on the layout of the hardware, note that
such special links might not have uniform communication latency.

Viper is composable because the clusters are fully independent and only work on single
instruction bundles, and thus individual clusters can be activated and deactivated without

95

I$

Register File

thread 0
thread 1

thread 2

thread 3

D
$L

S
Q

Crossbar

BSUBSU

BSUBSU

Figure 5.1 Organization of a Viper system with several redundant clusters that communicate
through a mesh and that are connected to the BSUs through a crossbar. Some of the clusters,
such as the ones capable of fetching instructions, have special connections to external hardware
elements.

jeopardizing the design’s ability to run software applications. Also, as long as all clusters
and memory structures are redundant, Viper does not present any structural bottlenecks. In
the following two sections we will illustrate how Viper executes a program using a running
example. We first explain the steps necessary to execute a bundle of instructions and then
detail how Viper handles special events such as branch mispredictions and exceptions.

5.4 Regular Execution in Viper

For the sake of simplicity, the Viper design used in our example provides only six services:
“fetch”, “decode”, “rename”, “execute”, “commit”, and “write-back and memory operations”.
Even though the services used in this example might resemble stages in a classic pipeline, it
is important to stress that our architecture does not impose any constraint on how to partition
services. This partition is an arbitrary design choice and should be guided by considering:

1. functionalities exposed by the ISA;

2. tasks accomplished by the underlying hardware;

3. degree of reconfigurability needed by the system.

The program stream is dynamically partitioned into bundles of instructions, which typi-
cally have basic block granularity. In Viper, each in-flight instruction bundle is associated
with a live BSU entry. Figure 5.2 shows the three basic blocks that compose the simple
program used throughout our example. As bundles are created in order, they are assigned a

96

4013c3: or $0x50000,%eax

4013c8: testb $0x0,(%rax,%rax,1)

4013cc: adc %al,(%rax)

4013ce: add %al,(%rax)

4013d0: je 4013eb

4013d2: imul $0x30000,(%rcx),%ecx

4013d8: add %al,1048576(%rip)

4013de: add %al,(%rax)

4013e0: jne 4013fc

4013fc: imul $0x20000,(%rcx),%ecx

401404: fadds (%rax,%rax,1)

401406: jmp 4025f0

E
x
e

c
u

ti
o

n
Figure 5.2 Simple program considered in our example.

sequential Bundle ID (BID). Each BID is paired with the thread ID of its process to form a
unique bundle identifier throughout the entire machine.

In Figure 5.3.a we show the Viper design used in this example: it contains four redundant
copies of the six different cluster types, each providing one of the services. In this section
we illustrate how Viper can maintain correct program flow for the three bundles shown in
Figure 5.2 (with BIDs 5, 6 and 7) and detail the generation of the virtual pipeline for the
second instruction bundle - which starts and terminates with the instructions at addresses
0x4013d2 and 0x4013e0, respectively. The color coding of the instruction bundles in
Figure 5.3.a matches the hardware resources assigned to their execution and is maintained
throughout all steps shown in Figure 5.3. New events and BSU updates are marked in red.

5.4.1 Bundle Creation

In this example, we assume that an instruction bundle (with BID 5) has already successfully
determined the starting address of the next bundle. Therefore, program execution proceeds
to the next basic block, which starts at address 0x4013d2. Since a not-taken conditional
branch concludes bundle 5, the “NPC” (Next Program Counter) field of its BSU stores the
(correctly) predicted location, as shown in Figure 5.3.b. Because the PC of the next bundle
is available, but no BSU has been assigned to it (the field “Next BSU” is empty), bundle 5’s
BSU assigns an available BSU entry to the following bundle, as shown in Figure 5.3.c. The
mechanism for choosing the next BSU is described in Section 5.4.5.

When a bundle is first assigned to a BSU entry, the only two pieces of information
available are: 1) the BSU entry number of the previous bundle and 2) the PC of the first
instruction of the bundle. The former is needed because live BSU entries form a chain of
in-flight bundles. This allows the system to track correct control flow and to commit bundles

97

F0 F1 F2 F3

R0 R1 R2 R3
E0 E1 E2 E3
C0 C1 C2 C3

D0 D1 D2 D3

F
etch

D
eco

d
e

R
en

am
e

E
xecu

te

C
o
m
m
it

F3 D2 R1 E2 C2

PC NPC

4013c3 4013d2

T
S
U
 ID

T
ran

s ID

N
ext T

S
U

1 5 2

P
rev T

S
U

-

W
B
 M
em

W3

- - - - -4013d2 -2 6 - 1 -

W0 W1 W2 W3

- - - - -- -3 - - - -

F0 F1 F2 F3

R0 R1 R2 R3
E0 E1 E2 E3
C0 C1 C2 C3

D0 D1 D2 D3
F
etch

D
eco

d
e

R
en

am
e

E
xecu

te

C
o
m
m
it

F3 D2 R1 E2 C2

PC NPC

4013c3 4013d2

T
S
U
 ID

T
ran

s ID

N
ext T

S
U

1 5 2

P
rev T

S
U

-

W
B
 M
em

W3

- - - - -4013d2 -2 6 - 1 -

W0 W1 W2 W3

- - - - -- -3 - - - -

F0 F1 F2 F3

R0 R1 R2 R3
E0 E1 E2 E3
C0 C1 C2 C3

D0 D1 D2 D3

F
etch

D
eco

d
e

R
en

am
e

E
xecu

te

C
o
m
m
it

F3 D2 R1 E2 C2

PC NPC

4013c3 4013d2
T
S
U
 ID

T
ran

s ID

N
ext T

S
U

1 5 2

P
rev T

S
U

-

W
B
 M
em

W3

W0 W1 W2 W3

- - - - -- -3 - - - -

a. b.

c.

F0 - - - -4013d2 -2 6 - 1 -

F0 F1 F2 F3

R0 R1 R2 R3
E0 E1 E2 E3
C0 C1 C2 C3

D0 D1 D2 D3

F
etch

D
eco

d
e

R
en

am
e

E
xecu

te

C
o
m
m
it

F3 D2 R1 E2 C2

PC NPC

4013c3 4013d2

T
S
U
 ID

T
ran

s ID

N
ext T

S
U

1 5 2

P
rev T

S
U

-

W
B
 M
em

W3

W0 W1 W2 W3

- - - - -- -3 - - - -

d.

F0 D1 - - -4013d2 -2 6 - 1 -

e.

F
etch

D
eco

d
e

R
en

am
e

E
xecu

te

C
o
m
m
it

F3 D2 R1 E2 C2

PC NPC

4013c3 4013d2

T
S
U
 ID

T
ran

s ID

N
ext T

S
U

1 5 2

P
rev T

S
U

-

W
B
 M
em

W3

g. h.

Request

data from F0

F0 D1 R2 E1 C14013d2 4013fc2 6 - 1 W1

F
etch

D
eco

d
e

R
en

am
e

E
xecu

te

C
o
m
m
it

F3 D2 R1 E2 C2

PC NPC

4013c3 4013d2

T
S
U
 ID

T
ran

s ID

N
ext T

S
U

1 5 2

P
rev T

S
U

-

W
B
 M
em

W3

f.

F0 F1 F2 F3

R0 R1 R2 R3

E0 E1 E2 E3
C0 C1 C2 C3

D0 D1 D2 D3

F0 D1 R2 E1 C14013d2 -2 6 - 1 W1

W0 W1 W2 W3

- - - - -- -3 - - - -
- - - - -4013fc -3 7 - 2 -

F0 F1 F2 F3

R0 R1 R2 R3
E0 E1 E2 E3

C0 C1 C2 C3

D0 D1 D2 D3

F
etch

D
eco

d
e

R
en

am
e

E
xecu

te

C
o
m
m
it

F3 D2 R1 E2 C2

PC NPC

4013c3 4013d2

T
S
U
 ID

T
ran

s ID

N
ext T

S
U

1 5 2

P
rev T

S
U

-

W
B
 M
em

W3

W0 W1 W2 W3

- - - - -- -3 - - - -

F0 D1 - - -4013d2 -2 6 - 1 -

Establish

connection

F0 F1 F2 F3

R0 R1 R2 R3
E0 E1 E2 E3
C0 C1 C2 C3

D0 D1 D2 D3

F
etch

D
eco

d
e

R
en

am
e

E
xecu

te

C
o
m
m
it

F3 D2 R1 E2 C2

PC NPC

4013c3 4013d2

T
S
U
 ID

T
ran

s ID

N
ext T

S
U

1 5 2

P
rev T

S
U

-

W
B
 M
em

W3

- - - - -4013d2 -2 6 - 1 -

W0 W1 W2 W3

- - - - -- -3 - - - -

F0 F1 F2 F3

R0 R1 R2 R3

E0 E1 E2 E3
C0 C1 C2 C3

D0 D1 D2 D3

W0 W1 W2 W3

Figure 5.3 Virtual pipeline creation process for the second bundle in Figure 5.2. a) The BSU for
bundle 5 creates the next bundle when the address of the following basic block becomes available in the next
PC field. b) The new bundle is created in an available BSU. c) Functioning and available hardware clusters
in the system propose their services to the new bundle. d) Cluster F0 is selected to become part of the new
virtual pipeline. e) A subsequent proposal from D1 is accepted. Clusters are also notified by the BSU about
the other clusters composing the virtual pipeline. f) The clusters are configured to establish communication
paths. g) After the configuration, a virtual pipeline is formed. h) Finally, as F0 detects the last instruction in
the bundle, it updates the BSU’s NPC field, which allows the next bundle to begin.98

in order. The latter information is needed by the fetch component, as we discuss shortly.
Since a new set of clusters is needed to form the virtual pipeline for the new bundle, the
newly assigned BSU marks all required services as unassigned. Figure 5.3.c shows that
BSU 2 is assigned to keep track of a new bundle (with BID 6), and therefore the list of
clusters assigned to its virtual pipeline is reset.

A similar process is also used to bootstrap Viper: when starting the system, a bundle
with BID 0 is assigned to a BSU and its initial address is set to the reset address.

5.4.2 Virtual Pipeline Generation

A BSU entry assigned to control the execution of a new bundle is in charge of constructing
a virtual pipeline capable of providing at minimum all services required by its instructions.
Virtual pipeline generation consists of selecting which hardware clusters will collaborate in
executing a bundle. Since using a centralized unit to perform this procedure would limit
the modularity and thus the composability of our the system, Viper adopts a distributed
mechanism to generate virtual pipelines. This mechanism is based on service proposals:
clusters independently volunteer to execute services for a bundle in a live BSU.

Service Proposal

Several distributed mechanisms can be used to allow service proposals to reach the BSUs
– solutions based on exchange of credits, token broadcasts, or service queues could all fit
this purpose. For the sake of simplicity, and without losing generality, this example adopts
a technique based on service queues. In such an implementation, a live BSU enrolls all
needed services in queues accessible through a crossbar by both the hardware clusters and
BSUs. BSUs requesting clusters are arranged in ascending order based on their BIDs, and
service proposals from clusters are first forwarded to the oldest BID.

In our example, as the bundle with BID 6 has just been created, all six required services
need to be assigned. Available clusters independently propose to service the BSUs that are
enrolled in the service queue. Each cluster maintains a list of the virtual pipelines that have
accepted its proposals, though a cluster can simultaneously be part of only a limited number
of virtual pipelines.

We assume here that a cluster cannot propose its service to multiple BSUs: clusters F3,
D2, R1, E0, C2, and W3 are already assigned to the previous bundle and therefore refrain
from proposing their services to BSU 2. Nevertheless, any other available cluster (shown
with a white background) can propose its services to the service queues, which redirect such

99

proposals to needy BSUs. For instance, in Figure 5.3.d we show two clusters, F0 and W2,
proposing their services to the bundle with BID 6. This may occur because clusters initiate
the proposal negotiation independently, and therefore a BSU might receive multiple service
proposals at the same time.

After submitting a service proposal, a hardware cluster changes its local status from
“idle” to “pending” and waits for an award message from the BSU. A service proposal is
not binding until a BSU notifies the proposing party; if no service award is received within
a timeout period, the cluster considers its proposal rejected, and the service negotiation
sequence is re-initiated.

Service Assignment

BSUs notify clusters accepted into the new virtual pipeline with an award message. In order
to correctly build a new virtual pipeline, BSUs award clusters in the exact sequence as their
services will be performed on the bundle. For instance, proposals for the “decode” service
will not be accepted until the “fetch” service has been assigned to a cluster. In our example,
the BSU cannot accept W2’s proposal (shown in Figure 5.3.d) and cluster W2 therefore
automatically returns to the “idle” state.

When BSU 2 chooses F0 to be included in its virtual pipeline, it records that this cluster
will accomplish the “fetch” service for its bundle. Besides the notification that a proposal has
been accepted, confirmation messages carry information needed by the clusters to perform
their services. Such information consists of either data fields directly stored in the BSU or
routing information needed to retrieve data from other clusters. The former case is shown in
Figure 5.3.e: as the BSU sends a notification to F0 that its proposal has been accepted, it
also forwards it the first memory address of the bundle with BID 6.

The other services are assigned to clusters in a similar fashion. Figure 5.3.e shows a
service proposal sent by D1. Some of the services - such as “fetch” - are common to all
bundles, while others can only be assigned once instructions in a bundle have been fetched
and decoded. As the list of services is populated, functional hardware clusters are chosen in
order to construct a complete virtual pipeline.

Configuring the Sea of Clusters

Clusters are dynamically selected to service bundles, and communication channels must be
established between them to transfer information through the virtual pipeline. To perform
this task, each cluster needs to know which clusters precede it in the virtual pipeline. In

100

Figure 5.3.f we show the BSU awarding its “decode” service to D1. This cluster is told
which cluster will “fetch” the instruction bundle, in this case F0. D1 then establishes a
connection with F0 through the reliable network, as shown in Figure 5.3.g.

All services are similarly assigned in an ordered fashion and, as the BSU service list
is filled, the sea of clusters is configured to generate a complete virtual pipeline through
the network, as shown in Figure 5.3.h. Viper can concurrently configure several indepen-
dent active virtual pipelines, since the BSUs and execution clusters operate autonomously.
Multiple virtual pipelines can work on a single program (as shown in our example), or can
simultaneously execute multiple threads.

As faults accumulate in a device, a bundle might require a set of services that none of the
execution clusters can provide alone. For instance, bundles 6 and 7 in our example can only
execute on clusters that can service both the add and mul instructions. However, Viper can
overcome this problem as long as at least one cluster can execute each one of the needed
services. This case is addressed by canceling the execution of the unserviceable bundle
and splitting it into multiple bundles, each consisting of a single instruction. While this
technique reduces performance, as virtual pipeline creation overhead is not amortized across
multiple instructions, it maximizes system availability by minimizing the set of services
necessary to complete each bundle.

5.4.3 Operand Tag Generation

Viper does not enforce execution ordering on the different bundles, as long as 1) bundles
belonging to the same thread commit sequentially and 2) cluster allocation avoids resource
starvation. Thus, there is the opportunity for clusters to concurrently work on multiple
bundles from the same program. For instance, in our example we show Viper concurrently
executing BIDs 5 and 6.

Viper can improve performance by exploiting a program’s ILP and capitalizing on the
available hardware resources. However, this also creates inter-cluster data dependencies,
as operands produced by clusters in one virtual pipeline might be needed by others. Viper
utilizes operand tags to distribute values within the sea of clusters.

Adopting a centralized rename unit is not feasible, as this would undermine the com-
posability of the system. Thus, we developed a BSU-based mechanism for generating and
distributing tags to values produced by bundles. Because each bundle consists of an ordered
sequence of instructions, only values live at a bundle’s exit point can be used by following
instructions. Thus, only live registers will have an associated tag: if multiple instructions in
one bundle write to the same architectural register, only the last value that is produced is

101

7 4013fc 4025f0 -- 23 11 5 9 3 - - - - - - - -

4013c3: or $0x50000,%eax

4013c8: testb $0x0,(%rax,%rax,1)

4013cc: adc %al,(%rax)

4013ce: add %al,(%rax)

4013d0: je 4013eb

4013d2: imul $0x30000,(%rcx),%ecx

4013d8: add %al,1048576(%rip)

4013de: add %al,(%rax)

4013e0: jne 4013fc

BID 5

BID 6

4013fc: imul $0x20000,(%rcx),%ecx

401404: fadds (%rax,%rax,1)

401406: jmp 4025f0 BID 7

E
xe
cu

ti
o
n

Bunde ID PC NPC

5 4013c3 4013d2

Next BSU

2

Prev. BSU

--

BSU ID

1

RA RB

1 5

RC RD

10 3

RA RB

4 -

RC RD

- -

RA RB

4 5

RC RD

10 3

6 4013d2 4013fc3 12 4 5 10 3 11 - 9 - 11 5 9 3

Input Tags Generated Tags Output Tags

RA RB RC RD RA RB RC RD RA RB RC RD

RA RB RC RD RA RB RC RD RA RB RC RD

Bunde ID PC NPCNext BSU Prev. BSUBSU ID

Bunde ID PC NPCNext BSU Prev. BSUBSU ID

Figure 5.4 Distributed rename table for an ISA containing four architectural registers - RA,
RB, RC, RD. Tags assigned to the registers in previous bundles are used by the following to retrieve
operands and solve data dependencies.

associated with a tag.
Each live BSU entry stores three tag versions for all the architectural registers in the

ISA: “input”, “generated” and “output”. Compared to classical renaming schemes based on
mapping architectural to physical registers, the “input” and “output” tags can be seen as two
snapshots of a classic rename table: the first before and the second after the execution of the
entire bundle.

In Figure 5.4, we illustrate how the tag generation and distribution process works for
the three bundles used in our example for an ISA containing four architectural registers:
RA, RB, RC, and RD. The first tags, “input tags,” are used to allow a bundle to retrieve its
input operands: in our example in Figure 5.4, the cluster fetching register values for the
instructions in the bundle with BID 5 will use tag “1” to retrieve the value of register RA
from the physical register file, tag “5” to retrieve RB, and so forth.

The second set of tags, called “generated tags,” is used only if instructions in a
bundle write to architected registers. In our example, two instructions update RA:
adc %al,(%rax) first and add %al,(%rax) later. Because both of these instruc-

102

tions update the same register, only the operand computed by the last operation - add
%al,(%rax) - needs to generate a new tag, 4. Tag generation could either be accom-
plished by the BSU or it can be serviced by the clusters. Tag generation for two sequential
bundles must be serialized to guarantee program semantics. Solutions to allow our machine
to univocally distinguish tags associated to operands are:

1. maintaining the set of free tags in a memory array protected by ECC;

2. piggybacking a list of available tags in the live BSUs;

3. generating a large number of tags with limited lifetime.

Finally, “output tags” associated with a bundle are used as “input tags” by the subsequent
bundle. Output tags are produced by overwriting the input tags with any newly generated
ones. Output tags of one bundle are provided as input tags of the next, as shown in Figure
5.4. Tags are generated wherever renaming is required – for all instructions, to enable
out-of-order execution of the instructions within a bundle. However, the tag generator only
reports to the BSU the tags for the operands that are live-out at the end of the bundle.

5.4.4 Bundle Execution

After an instruction is associated with an output tag, it can move to the functional units
that will execute it. Instructions requiring only inputs produced by instructions within the
same bundle will execute in the local modules, which are guaranteed by construction to
contain all functional units required by the entire bundle. While the tag generation logic is
very similar to the renaming logic of a processor such as the R10000 [213], the out-of-order
execution window in Viper differs from a regular out-of-order machine. When a single
bundle is running on Viper, the execution units are effectively working with a maximum
execution window equal to the number of instructions in the bundle. However, things change
significantly when multiple bundles from the same application execute at the same time on
different functional units. Each cluster executing a bundle is effectively working with a max-
imum execution window equal to the number of instructions in its bundle. When multiple
clusters are executing bundles from the same application, the effective execution window is
equal to the sum of all instructions in flight for all bundles. The amount of ILP that can be
extracted is limited by the total number and type of functional units within the executing
clusters. Note that, since instructions from multiple bundles can have data-dependencies, an
execution cluster may be required to forward an operand it has produced to an instruction
executing in a different cluster.

103

Several solutions have been proposed to correctly deliver operands in a distributed exe-
cution engine. Some dataflow architectures solved this issue by broadcasting all produced
operands to the entire machine. Other solutions, such as RAW [192], rely on compiler
support to distribute operands to the different hardware modules. In Viper, we can use
the BSUs to overcome this issue without relying on software support. In fact, the set of
input tags in a BSU is annotated with the hardware cluster that produces the operand, thus
avoiding the need to broadcast operand requests to the entire sea of clusters. A functional
unit working on a bundle can retrieve this information and request the needed input operands
by tag from both the register file and the clusters that executed the previous bundles. Finally,
functional units assigned to execute a bundle request all output operands produced by the
previous bundle in advance, since output tags of a previous bundle are known before the
next one begins executing.

5.4.5 Bundle Termination

A bundle can terminate only if two conditions are met:

1. all clusters assigned to its virtual pipeline finish servicing its instructions;

2. all preceding bundles belonging to the same thread have already terminated.

If both these conditions are met, a bundle’s instructions are then checked for exceptions.
If no exceptions are detected, the bundle is terminated atomically, its instructions update
the architectural register file and its “store” operations are committed to memory. In the
example in Figure 5.3.h we show two bundles in-flight (with BID 5 and 6). As instructions
need to commit in program order, bundle 6 is not allowed to terminate before its predecessor,
bundle 5. Bundle 5, on the other hand, is the oldest bundle in flight (the “Prev BSU” field
is empty) and can terminate as soon as all the clusters in its virtual pipeline complete their
services.

It is worth noting that Viper does not need a reorder buffer, as program order is enforced
by committing bundles in sequential order maintained by the linked-list formed by the
BSUs.

Memory Operations

Our design includes one load and store queue for each supported thread. This structure
is useful to enforce the correct order of memory accesses and to detect conflicts between

104

load and store operations. Each entry in the load queue keeps track of the cluster that
generated the memory requests, so as to deliver the data retrieved from memory to the
correct destination. Each entry in the store buffer also maintains information about the
bundle that originated the store instruction, as memory updates are committed or canceled at
the bundle granularity. Before terminating, a bundle with pending store instructions signals
that its memory operations can be committed to the store buffer associated with its thread.
This signal will cause all store instructions in the bundle to update the memory state in
program order.

Since multiple bundles from the same program can execute in parallel, the load and
store queues might receive misordered memory requests. This could prove problematic, as
the forwarding logic in the load and store buffer might mistakenly: 1) forward values to
load instructions that are produced by younger stores or 2) receive a sequence of stores that
does not reflect the program order. Because the memory queue cannot dynamically address
these issues, they are resolved by clearing all entries in the thread’s load and store queue and
canceling the execution of the conflicting bundles. To ensure forward progress, the oldest
canceled bundle is split into multiple bundles, each containing a single instruction. This
replay mechanism is also used to handle exceptional events, such as page faults, and it is
presented in Section 5.5.

Another solution to address this issue is proposed in [74]. This design includes a local
store in the issue stage and a speculative store buffer in the execute/memory stage allowing
delayed release of memory store operations. This store buffer also serves the purpose of
keeping speculative stores from corrupting memory state. The store queue in the issue stage
tabulates the outstanding store instructions, and their present states. These two structures
are kept synchronized through a number of signals, and together they ensure that only stores
on the correct path of execution update the memory [74].

Finally, a more radical solution to solving ambiguous memory dependencies on dis-
tributed systems is speculative versioning caches (SVC) [66]. This solution uses distributed
caches to reduce latency and increase bandwidth. SVC conceptually unifies cache coherence
and speculative versioning by using an organization similar to snooping bus-based coherent
caches. SVC provides hardware support to break ambiguous memory dependences, thus
solving the issue connected with aggressive parallel execution of sequential programs.

Managing Bundle Sequence

Each live BSU maintains starting addresses for both its bundle and the one immediately
following. This latter value is provided by the clusters performing the “fetch” service, as

105

they can recognize the end of a bundle when fetching a control flow instruction such as
“jump”. Such clusters communicate the starting address of the next bundle back to their
BSU, as shown in Figure 5.3.g: even before bundle 6 terminates, F0 can predict the starting
address of the following basic block - 0x4013fc in our example - updating the “NPC”
field of the BSU with this address. With this, the BSU can generate a new bundle (in our
example with BID 7), and continue program execution.

BSU assignment is performed using the same mechanism that we deployed for cluster
service negotiation. An active BSU needing to initiate a new bundle requests a new “initiate
a new bundle” service, to the service negotiation system. Idle BSUs will then propose to
accomplish this task, as previously detailed in Section 5.4.2.

5.5 Handling Exceptional Events

Due to the fact that hardware clusters are fully decoupled, our architecture cannot rely on
classic techniques - such as broadcasts of clear signals - to flush stale instructions from the
system and correct an erroneous program flow. In this section, we specify how Viper can
resolve such events through its BSUs.

5.5.1 Mispredicted Branches

Most processors require several cycles to resolve the target of an instruction that modifies
the control flow. This delay might cause the system to start processing instructions from
an incorrect execution path: these instructions need to be flushed as soon as a control flow
misprediction is detected.

Similarly, Viper needs to cancel the execution of bundles generated by misspeculated
program paths. We use the example shown in Figure 5.5 to illustrate how our architecture
can tackle such events. We assume that bundle 6 is mistakenly predicted to follow bundle 5,
and that all services required by both virtual pipelines are already assigned to clusters in the
execution engine - Figure 5.5.a. Once a cluster in a virtual pipeline resolves a branch target,
it reports the computed address to its BSU. This case is shown in Figure 5.5.a, where cluster
E0 reports to bundle 5 that the correct initial address of the next basic block is 0x4013eb.
If this target address does not match the one stored in the NPC field of the BSU, a bundle
misprediction is detected - Figure 5.5.b. All bundles generated from a mispredicted address -
in our example bundle 6 starting from address 0x4013d2 - are canceled. The BSU notifies
the clusters composing virtual pipelines of canceled bundles, so they can stop their work

106

4013c3: or $0x50000,%eax

4013c8: testb $0x0,(%rax,%rax,1)

4013cc: adc %al,(%rax)

4013ce: add %al,(%rax)

4013d0: je 4013eb

4013d2: imul $0x30000,(%rcx),%ecx

4013d8: add %al,1048576(%rip)

4013de: add %al,(%rax)

4013e0: jne 4013fc

BID 5

BID 6

Branch

misprediction

F
e

tch

D
ec

o
d

e

R
e

n
am

e

E
xec

u
te

C
o

m
m

it

F3 D2 R1 E2 C2

PC NPC

4013c3 4013d2

B
S

U
 ID

B
u

n
d

le ID

N
ex

t B
S

U

1 5 2

P
rev

 B
S

U

-

W
B

 M
e

m

W3

F0 D1 R2 E1 C14013d2 4013fc2 6 - 1 W1

- - - - -- -3 - - - -

F0 F1 F2 F3

R0 R1 R2 R3

E0 E1 E2 E3

C0 C1 C2 C3

D0 D1 D2 D3

F3 D2 R1 E2 C24013c3 4013eb1 5 - - W3

F0 D1 R2 E1 C14013d2 4013fc2 6 - 1 W1

W0 W1 W2 W3

- - - - -- -3 - - - -

F0 F1 F2 F3

R0 R1 R2 R3

E0 E1 E2 E3

C0 C1 C2 C3

D0 D1 D2 D3

F3 D2 R1 E2 C24013c3 4013eb1 5 2 - W3

F0 D1 R2 E1 C14013d2 4013fc2 6 - 1 W1

W0 W1 W2 W3

- - - - -- -3 - - - -

F0 F1 F2 F3

R0 R1 R2 R3

E0 E1 E2 E3

C0 C1 C2 C3

D0 D1 D2 D3

F3 D2 R1 E2 C24013c3 4013eb1 5 3 - W3

- - - - -- -2 - - - -

W0 W1 W2 W3

- - - - -4013eb -3 7 - 1 -

a. b.

c. d.

F
e

tch

D
ec

o
d

e

R
e

n
am

e

E
xec

u
te

C
o

m
m

it

PC NPC

B
S

U
 ID

B
u

n
d

le ID

N
ex

t B
S

U

P
rev

 B
S

U

W
B

 M
e

m

F
etch

D
e

co
d

e

R
en

a
m

e

E
x

ecu
te

C
o

m
m

it

PC NPC

B
S

U
 ID

B
u

n
d

le ID

N
e

xt B
S

U

P
re

v B
S

U

W
B

 M
em

F
etch

D
e

co
d

e

R
en

a
m

e

E
x

ecu
te

C
o

m
m

it

PC NPC

B
S

U
 ID

B
u

n
d

le ID

N
e

xt B
S

U

P
re

v B
S

U

W
B

 M
em

F0 F1 F2 F3

R0 R1 R2 R3

E0 E1 E2 E3

C0 C1 C2 C3

D0 D1 D2 D3

W0 W1 W2 W3

Misprediction!

je 4013eb

Figure 5.5 Exception and branch misprediction handling in Viper. The cluster that detects a
branch misprediction updates the program counter of its virtual pipeline (a), which consequently
clears the state of the following bundles (b) and resets the virtual pipelines for the misspeculated
bundle (c). Finally, program flow is steered towards the correct execution path (d).

107

and clear their states - Figure 5.5.c. Finally, the most recent non-speculative bundle recovers
program execution, creating a new instruction bundle starting at the correct basic block
address - Figure 5.5.d.

5.5.2 Exception and Trap Handling

Interrupts, exceptions, traps, and page faults must be handled with particular attention.
Without modifying the bundle termination procedure, these events can cause the system
to deadlock. For instance, an instruction triggering a page fault might prevent its entire
bundle from terminating. To overcome this issue, a bundle affected by one or more of these
special events is canceled and split into multiple bundles, each including a single instruction
from the original basic block. The bundle containing the faulty instruction will then guide
program execution to the correct software handler. Other cases where bundles must contain
only a single instruction are system calls and uncacheable memory accesses.

5.6 Discussion

The modular and composable execution model proposed in this chapter offers several ad-
vantages compared to classic micro-architectures and can be enhanced through numerous
features. This section briefly presents other benefits of our distributed-control architecture,
lists possible enhancements to our design, and compares Viper with other exotic designs.

5.6.1 Additional Advantages

Viper’s distributed and decoupled execution engine enables several technologies can de-
crease costs, improve reliability, limit power consumption, and enable massive parallelism.
First, production yield could be boosted thanks to the fact that chips that have enough
functional clusters to support, in aggregate, all instructions in the ISA are still marketable.
Second, as each hardware cluster is fully independent, fault isolation and online testing is
greatly simplified: clusters can be singularly disabled without pausing program execution.
Third, as fine-grained clock scaling for small portions of a digital system becomes feasible,
clusters can be clocked at different frequencies depending on their physical characteristics.
This would allow fine voltage and frequency tuning to mitigate the effects of process vul-
nerability [47]. Finally, our architecture provides the advantage of supporting an arbitrary
number of simultaneous threads, dependent only on the number of BSU entries available

108

in the machine. As all the information needed to control program execution is already
bundle-based (PC, renamed registers, thread-id, etc.), no further effort is needed to manage
multiple threads.

5.6.2 Possible Optimizations

Compared with execution on classic microarchitectures, programs running on Viper incur the
cost of dynamically generating virtual pipelines. A series of optimizations can be adopted
to reduce such overhead:

• Avoid virtual pipeline generation for complete seas of clusters: if no clusters are
disabled in a sea of clusters, BSUs could automatically assign a default set of clusters
to bundles avoiding service proposal overheads.

• Early virtual pipeline generation: service proposal negotiation can be performed ahead
of time, for instance while clusters are already working on previous bundles, thus
reducing their idle time.

• Non-blocking instruction migration: instructions can be transferred from a cluster to
the next in the virtual pipeline as soon as they complete, instead of waiting for the
whole bundle to be serviced.

• Trace caches and multiple bundle prediction: as Viper works at the basic block
granularity, our architecture can improve ILP through trace caches and sophisticated
look-ahead predictions [156, 165].

• Loop detectors: so far we have assumed that all bundles need to accomplish some
services such as “fetch instructions” and “decode”. Loop detectors could recognize
tight program loops and replicate bundles reducing reliance on some services [195].

• Fast exception handling: to handle program exceptions, the model introduced in this
chapter clears all bundles in-flight and restarts execution in a safe but slow serial
fashion. The ability to dynamically split in flight bundles would allow our system
to clear only the instructions that need to be re-executed, without forcing an entire
bundle to re-execute.

109

5.6.3 Comparison to Previous Work

In this section we compare Viper against three other design approaches: configurable CMPs,
counterflow architectures, and dataflow machines.

Configurable Chip-Multiprocessors

Several previous works focused on developing configurable chip-multiprocessors that could
reconfigure their hardware in order to maintain performance. In this section we will discuss
three types of configurable CMPs: the first strives to maintain ISA compliance at the chip
level, the second relies on reconfiguring fully instruction-set-architecture (ISA) compli-
ant modules in order to improve performance, and StageNet, which uses small hardware
modules to achieve chip-level ISA compliance and improve performance.

Chip-level instruction-set compliance – The authors of core salvaging observed that
even if some individual cores in a CMP cannot execute certain operations, the natural cross-
core redundancy may still make the whole chip ISA compliant. In this design, applications
executing on a core that cannot execute certain operations will then migrate to a different
one that can execute them [149]. Necromancer extends this idea by exploiting partially
functioning cores to improve system throughput by supplying hints regarding high-level
program behavior. CMP cores in this design are grouped into sets, each of which shares
a lightweight core that can be substantially accelerated using these execution hints from
crippled cores [6]. Similar to these works, Viper enables seamless dynamic thread migra-
tion to maintain performance within the constraints of available resources. Although both
designs share with Viper the concept of chip-level ISA compliance, our design allows for
finer reconfiguration granularity and enables automatic dynamic resource allocation.

Core composition – Two works, Composable Lightweight Processors (CLPs) and Core
Fusion, proposed flexible chip-multiprocessor architectures composed of composable cores.
These designs share the same goal: effectively adapting parallel resources to varying number
of threads. CLPs allow simple, low-power cores to be aggregated together dynamically,
forming larger, more powerful single-threaded processors [100]. Like CLPs, Core Fusion
allows multiple dynamically allocated processors to share a single contiguous instruction
window [93]. This is achieved through a reconfigurable chip multiprocessor architecture
where groups of fundamentally independent cores can dynamically morph into a larger CPU,
or they can be used as distinct processing elements, as needed at run time by applications.
The advantage of Core Fusion over CLPs is that it exploits conventional RISC or CISC
ISAs. In order to provide this advantage, some structures (e.g. register renaming) must be
physically shared, limiting its scalability to 8-wide issue. Instead, CLPs share no physical

110

resources, so they can form cores that can issue up to 64 instructions in one cycle. Unfortu-
nately, CLPs rely on a non-standard EDGE ISA to achieve this modularity. These solutions
and Viper share the characteristic that more hardware components can be aggregated in order
to improve single-thread performance. However, since both these solutions are designed to
improve performance, it is not clear how they can improve the reliability of a system.

Fine-grained reconfiguration – StageNet is one of the first distributed architectures
targeting reliability as a key design criterion. The authors propose the use of a reconfig-
urable fabric to connect multiple hardware modules, each of which can perform the tasks
associated with one stage of a typical in-order pipelined processor [72, 73, 74]. Hardware
stages are partitioned into islands to allow the solution to scale, but this constrains the
system’s connectivity and reconfigurability. This design relies on interconnection flexibility,
micro architectural innovations, and compiler directed instruction steering to merge pipeline
resources for high single-thread performance. The same flexibility enables it to route around
broken components, achieving sub-core level defect isolation. Together, the resulting fabric
consists of a pool of pipeline stage-level resources that can be allocated for accelerating
single-thread performance, computing throughput, or tolerating failures. Unlike StageNet,
Viper allows out-of-order execution and empowers engineers to decide the granularity of
the reconfigurable modules at design time; StageNet reconfiguration granularity is always
bounded to pipeline stages of an in-order processor core.

Counterflow Architectures

This design was first introduced by Sproull et al. in 1994 to demonstrate the opportunities
of asynchronous execution and modular design [115, 179]. Here, we briefly examine the
functioning of an optimized non-stalling counterflow machine [9, 123]. This design builds
upon the basis of the original counterflow architecture [179] to develop a substantially faster
and more scalable machine. Both the original and the optimized design rely on the same
modular control algorithm and on local, asynchronous clocks.

Counterflow processors present a competitive alternative to the approach adopted by
out-of-order superscalar designs. Classic high performance pipelines schedule instructions
and operands through complex control logic. Instead, the execution engine of a counterflow
machine is composed of two parallel and opposing pipelines, one pushing operands in one
direction and a second pushing incomplete instructions in the opposite direction. The basic
intuition is that, as incomplete instructions flow in one direction, they can match and copy
the value of the operands passing in the opposite direction. This technique simplifies a
processor design, as it allows out-of-order execution without requiring a common data bus.

111

Unlike classic out-of-order superscalar pipelines, counterflow stages do not perform any
operations. Instead, these pipeline stages are responsible solely for scheduling instructions
to the functional units and resolving data dependencies. As a result of these design choices,
components in a counterflow architectures only need local controls and do not require com-
plex centralized control logic. Furthermore, the structure of this machine is very regular and
modular, therefore easing design verification. Hence Viper and the Counterflow architecture
share some of the same objectives.

However, the differences between this type of machines and Viper are significant.
First, counterflow designs only focus on restructuring the execution engine of a processor,
maintaining an unaltered front-end, reorder-buffer, and register file. Second, while this
architecture is modular, communication patterns between its modules must be defined at
design time. Finally, hardware components in this system are arranged in one dimension, and
therefore scaling up the number hardware components increases the length of its pipelines
and consequently worsens average instruction execution latency.

Dataflow Machines

Dataflow machines do not obey the serial execution model adopted by classic control-flow
architectures [7, 197]. In fact, an instruction in this system executes as soon as all of
its inputs become available. Dataflow machines offer significant advantages over regular
control flow architectures. Since they are completely data-driven, their performance is only
inhibited by true data dependencies. Furthermore, components in a dataflow system are
stateless, and therefore side-effect free. These characteristics make this architecture highly
modular. Although these machines had historically limited commercial success, many re-
searchers have developed and analyzed these architectures. For instance, Multiscalar [174],
RAW [191], TRIPS [27], and Wavescalar [187] are all examples of recent projects inspired
by this execution model. Since Viper’s hardware clusters are loosely coupled to form a
dynamically reconfigurable fabric of hardware clusters, our hardware organization might
appear similar to that of dataflow machines.

Unfortunately, dataflow architectures are characterized by a series of shortcomings that
tend to overshadow their advantages. First, they typically rely on dedicated compilers to
extract operand and data dependencies and map them into the hardware. Such compilers are
effective only on a very narrow set of applications and legacy code cannot take advantage
of the vast amount of logic available in these machines. Programs running in any of these
designs require binaries annotated with architectural-specific information and thus cannot
execute legacy binaries. Among these designs, Wavescalar [187] is the only one that could

112

dynamically avoid assigning instructions to faulty processing elements. However, it still
relies upon a centralized hash table to manage instruction scheduling. Second, there are
several technical obstacles in the way of designing efficient data-flow machines due to the
need to dispatch, distribute, and match tokens for both instructions and operands. Another
problem with this execution model is its inefficiency in handling data structures. Since
operands exchanged in this machine are scalar values expressed through tokens, efficiently
representing large data structures represents a serious challenge.

TRIPS is an interesting example of dataflow machine that supports one main characteris-
tic: direct instruction communication [27], where the functional units deliver the result of an
instruction directly as an input to the consumer instructions, rather than writing it back to a
shared namespace, such as a register file. Using this direct communication from producers
to consumers, instructions execute in dataflow order, with each instruction executing as soon
as its inputs become available. In comparison, Viper uses its BSUs to keep track of the tags
assigned to instruction bundles. The advantages of TRIPS include higher exposed concur-
rency and more efficient execution. Unfortunately, TRIPS uses a very peculiar instruction
set, and applications must be recompiled in order to execute on this architecture. Viper, on
the other hand, does not modify the interface between hardware and software, and therefore
can execute any legacy application.

5.7 Evaluation

We simulated a Viper implementation that uses the x86-64 ISA to evaluate Viper’s perfor-
mance. We compared Viper against a similarly sized CMP design comprised of 2-wide
out-of-order cores. We choose to compare against out-of-order cores because they are the
natural successors to in-order CMP cores currently used in many-core machines [22, 166],
which currently adopt in-order processors [15, 164].

We first studied the effects of bundle size on Viper’s performance and follow this with
an evaluation of Viper’s area overhead. Next, we compared the power consumption of
Viper against traditional CMPs comprised of out-of-order cores. After, we evaluated single-
threaded performance of workloads from the SPEC CPU2006 benchmark suite [83]. Finally,
we briefly discussed the reliability of our design.

113

Processor characteristics
x86-64ISA 1GHz 64-bit 2-way superscalar,

32nm technology node

Pi
pe

lin
e

Fetch 3 cycles
Decode 3 cycles
Tag Generation 3 cycles
Execute 2 integer ALUs, 2 FPUs, variable latency (min 1 cycles)
Commit and load/store logic 2 cycles

L1 caches 32k 8-way assoc. instr. and data, 1ns latency
Inter-cluster switches 128×128 crossbar
Communication buffers 16 instructions
Cache coherency protocol MOESI
System interconnect 128-bit Bus@ 1GHz with fast snoop unit
System memory 512MB, 30ns latency

Table 5.1 Viper Configuration

5.7.1 Hardware Model

The Viper architecture we evaluated in this work offers only six services: “fetch”, “decode”,
“tag generation”, “execute”, “commit” and “write to memory”. Our modeled Viper design
includes five types of clusters. The first four services are each executed by four different
kinds of clusters, each capable of performing a single service. The fifth type of cluster can
accomplish both the “commit” and the “write to memory” services.

The sea of hardware clusters is organized in a mesh connected through 128-bit wide
links. Routes in the interconnect can be warmed up before transmitting the data packets,
so we modeled the cluster-to-cluster latency as one extra cycle of delay per hop, with data
transmission between clusters fully pipelined [122]. Communication between the BSUs and
the clusters requires very little bandwidth, since it is limited to a few control bits. For these
connections, we used a crossbar with a latency of 4 cycles [206].

The Viper design we modeled adopts a number optimizations to improve efficiency and
utilization. Among the most significant are:

1. Early virtual pipeline generation: service proposal negotiation can be performed ahead
of time; for instance, while clusters are working on previous bundles, thus reducing
their idle time.

2. Non-blocking instruction migration: instructions can be transferred from a cluster to
the next in the virtual pipeline as soon as they complete, instead of waiting for the
whole bundle to be serviced.

114

Both Viper and the out-of-order core are modeled to fetch, decode, execute and commit
up to two instructions per cycle and are clocked at 1 GHz. Each core contains 2 inte-
ger pipelines, 2 FP units, 1 load/store unit and 32KB of L1D and L1I. In order to fairly
compare Viper’s performance against classic processors, each of the “execute” clusters
in our design has functional units identical to those in the out-of-order core. Finally, in
our performance evaluation, we compare Viper against a baseline OoO processor with a
comparable instruction window - 32 ROB entries and 5 RS entries per functional unit. Both
the out-of-order machine and Viper’s “execute” clusters can issue up to 5 instructions per
cycle to the functional units. The most important hardware characteristics of the modeled
system are listed in Table 5.1.

5.7.2 Simulation Infrastructure

We developed a microarchitectural model of our design in the gem5 simulator [19], relying
on full timing simulations in system-call emulation mode. The Viper system that is modeled
is based on the C++ implementation of the out-of-order core provided by the original gem5
distribution. Building on this model, we organized the system in fully decoupled clusters
and augmented it with the required communication infrastructures (inter-cluster mesh and
crossbar) and the BSUs. Timing models for all hardware components have been modified
to better match the deeper pipelines typical of modern CISC processors [78]. The number
of cycles for each logical stage are listed in Table 5.1, and sum to a minimum of 12 cycles.
The amount of storage needed for each BSU entry is reported in Table 5.2, and adds up
to 123 bytes. In order to measure both the area and power of our design we used a cus-
tomized version of McPAT 0.8, a tool which provides integrated power, area, and timing
models and enables comprehensive architectural exploration for multicore and manycore
processors [108].

5.7.3 Design Choices

We first analyzed the benchmarks’ performance as a function of the number of available
BSU entries. Because these entries hold the dynamic state of bundles that are running in
parallel, their number directly affects the maximum ILP achievable by the execution engine.
We found that single-threaded performance reaches a plateau for a system composed of 4
BSU entries for every full set of hardware clusters. The minimum number of operational
entries needed by our proposed microarchitecture is 2. However, we estimated that a Viper
system with only 2 entries operates 24.4% slower on average than one with 4. Since the

115

system analyzed in this section supports up to four concurrent threads, a model with 16
BSUs is used for all further experiments.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

IP
C

 r
el

at
iv

e
to

 b
es

t

Maximum transaction basic block size

0

20

40

60

80

100

0 5 10 15 20 25 30

C
u

m
u

la
ti

ve
 %

 o
f

d
yn

am
ic

 b
as

ic
 b

lo
ck

s

Instructions per basic blocka. b.

Figure 5.6 Effects of basic block size on Viper’s performance. a) Cumulative distribution of
the basic block size in our benchmarks. b) Sensitivity study on the maximum number of instructions
allowed in Viper’s bundles.

Another parameter to select is the maximum number of instructions allowed in a single
bundle. On one hand, bundles with a large number of instructions have the potential to
depend less on operands produced by clusters in other virtual pipelines. This can provide a
significant advantage, as it reduces instruction reliance on long latency inter-cluster operand
requests. On the other hand, partitioning program execution in smaller bundles allows more
clusters to execute instructions concurrently. This leads to a performance tradeoff, which
we analyzed through Pin [116] by gathering statistics on the distribution of basic block sizes
in our benchmarks. Our finding are reported in Figure 5.6.a. More than 95% of the dynamic
basic blocks in our applications are smaller than 16 instructions. We performed a sensitivity
study on how this parameter affects Viper’s performance, and report our results in Figure
5.6.b. A slight performance slowdown is shown for bundles larger than 16 instructions,
mostly due to the higher probability of conflicts between instructions in the load/store queue
and to the higher costs of recovering from canceled bundles.

5.7.4 Area

In this section we estimate the area of the hardware overhead due to our novel architecture,
and detailed results about our estimations are reported in Table 5.3. All area estimates
are reported in mm2 and are computed assuming a system built in 32nm technology. Be-
yond their functional logic, each type of Viper cluster includes buffers for inter-cluster
communication (input and output buffers) and the circuitry necessary to manage the virtual
pipeline configurations. All these components and their connections are shown in Figure 5.7.
Clusters exchange information about instructions and operands through a homogenous data
network composed of routers, and all clusters and BSUs communicate via a single control
network router. If we consider a Viper architecture comprising four copies of all clusters,

116

four register files, and four load store units, the total area occupied by such a system sums
to 66.552 mm2. Through McPat we measured that a similarly sized classic CMP design
composed of four out-of-order cores occupies an area of 61.998 mm2. Therefore, our design
occupies only 7.34% more area than a similarly sized traditional CMP. While these figures
consider a number of factors that were previously neglected, they confirm previous area
overhead estimations (7.2%) [147].

It is worth briefly discussing our results and comparing our design against a similar
solution based on dynamic reconfiguration, StageNet [73]. A StageNet design composed of
five in-order cores enhanced with reconfigurable logic and instruction buffers is measured to
occupy an extra 16.3% of silicon area. Several factors contribute to the relatively lower area
overhead of our design. First, while we add a number of new components to a classic design,
we also remove a significant number of large, centralized, and multi-ported modules, such
as the ROB and the RAT. For instance, McPat reports that the ROB of our baseline system
measures 0.98535 mm2, or about 6.3% of the area of one out-of-order core (15.4995 mm2).
Furthermore, area cost for the StageNet architecture is relative to a simple 5-stage in-order
core, which logic typically employes less than 0.5 million gates. Differently, our baseline
is a modern, superscalar, out-of-order core, which typically employs several million logic
gates.

In Table 5.2 we list and report the estimated area of the additional hardware components

Cluster

Crossbar interface

Service providers

Input

buffer
N

et
w

o
rk

 c
o

n
tr

o
lle

r

Output

buffer

Cluster

manager

FSM

Virtual pipeline queue

Cluster Cluster

Cluster Cluster

Figure 5.7 Diagram of each Viper cluster listing all additional required components. The logic
used by the cluster to execute instructions, reported as “Functional logic” in the figure, is surrounded
by a series of additional components that allow it to communicate and exchange data with the rest of
the system.

117

Content Size [bits]
Bundle ID 16
Basic block program count. 64
Next basic block program count. 64
Branch prediction data 4
Previous bundle 4
Next bundle 4
Virtual pipeline 7*6
Input tags 16*24
Output tags 16*24

Table 5.2 BSU storage requirements. Since there are only 16 BSU in our implementation, only 4
bits are needed to index other BSUs. Six services are present in our design, each requiring 2 control
bits (assigned, proposal pending) and 5 bits to index the assigned hardware cluster. Finally, 16-bit
tags are maintained for the 24 registers of the x86 architecture (9 “general purpose”, 6 “segment
pointers”, 8 “MMX” and 1 for execution flags).

needed by our design. More detailed results are presented in Table 5.3.
Functional units - Every cluster includes input and output buffers for moving bundle data
during execution, which adds an area footprint of 0.011028mm2. Additionally, as the data
for inter-cluster communication is already buffered, every cluster in Viper’s execution engine
is enhanced with a 5×5 128-bit wide router, each of which occupies 0.11849 mm2.
BSU - We modeled a BSU with 16 entries in these experiments. The storage required for
each entry is reported in Table 5.2, and each entry is enhanced with 58 bits of ECC, for a
total storage of 1,536 bytes. The silicon area for this structure is estimated to occupy 0.4173
mm2.
Crossbar - Our design requires a router connecting 20 clusters with the BSU unit containing
all 16 BSU entries. Our estimation for a 21× 21 32-bit wide crossbar report that this
component should occupy 0.33179 mm2. We believe that scalability of our design is not
jeopardized by this communication element since a much larger crossbar, such as 128×128,
still yields a reasonable area footprint of 6.5 mm2 in 32 nm technology [138].

5.7.5 Power

We used our customized version of McPat to estimate the extra power consumed by our
design. Our results are reported in Table 5.3 in detail. Assuming an operating frequency of 1
GHz, we measured that the logic of four complete sets of Viper clusters consumes 20.98169
W of dynamic power, an increase of 4.11% compared against four baseline out-of-order
cores, where dynamic power envelope sums to a total of 20.15396 W. Accounting for the
communication logic increases the peak dynamic power of Viper to 20.98169 W, a 10.70%

118

Cluster Cluster component Area Dynamic power Static power
[mm2] [W] [W]

Fetch

Output buffer 0.009369 0.004667 0.000160
VP configuration logic 0.001567 0.000847 0.000055
Instruction cache 2.893400 0.189884 0.022981
Instruction TLB 0.023182 0.007446 0.001359
Branch target buffer 0.264722 0.014437 0.014830
Branch predictor 0.076094 0.009695 0.005755
Total 3.268334 0.226976 0.045140

Decode

Input buffer 0.009461 0.004079 0.000192
Output buffer 0.009369 0.004667 0.000160
VP configuration logic 0.001567 0.000847 0.000055
Instruction decoder 0.939544 0.159214 0.276804
Total 0.959941 0.168807 0.277211

Tag generation

Input buffer 0.009461 0.004079 0.000192
Output buffer 0.009369 0.004667 0.000160
VP configuration logic 0.001567 0.000847 0.000055
Integer dependency checker 0.001135 0.079607 0.000122
FP dependency checker 0.001135 0.079607 0.000122
Integer RAT 0.101413 0.065165 0.005143
Floating point RAT 0.300066 0.183625 0.012208
Total 0.424146 0.417597 0.018002

Execute

Input buffer 0.009461 0.004079 0.000192
Output buffer 0.009369 0.004667 0.000160
VP configuration logic 0.001567 0.000847 0.000055
Instruction scheduler 0.111932 0.049163 0.001773
Integer ALUs 0.274674 0.327811 0.109861
Floating point units 4.71141 0.820121 0.471102
Complex ALUs (Mul/Div) 0.329609 0.098700 0.131833
Results broadcast bus 0.016268 0.543961 0.024771
Total 5.464290 1.849349 0.739747

Commit
Input buffer 0.009461 0.004079 0.000192
VP configuration logic 0.001567 0.000847 0.000055
Trap logic unit 0.232391 0.095265 0.046474
Total 0.243419 0.100191 0.046721

Register file
Integer RF 0.661799 0.212449 0.004525
Floating point RF 0.661799 0.159337 0.004525
Total 1.3236 0.371786 0.009050

Load store queue

Data cache 0.189884 0.189884 0.022981
Load queue 0.116727 0.017306 0.001122
Store queue 0.116727 0.017306 0.001122
Data TLB 0.072523 0.018560 0.002209
Total 3.199377 0.243056 0.027434

Bundle
scheduling units

Memory elements 0.417337 0.014785 0.000024
Total 0.417337 0.014785 0.000024

Data
network router

Crossbar 5×5 (128-bits) 0.0700973 0.111741 0.1358324
Arbiter 0.000001 0.001064 0.000001
Links 0.048389 0.076361 0.012354
Total 0.118487 0.189166 0.148187

Control
network router

Crossbar 21×21(32−bits) 0.331788 0.099887 0.705380
Arbiter 0.000020 0.015924 0.000020
Links 0.182456 0.127197 0.102889
Total 0.514264 0.243008 0.808289

Table 5.3 Area and power estimations for all components of the modeled Viper design

119

increase compared against the baseline processor (20.15396 W). The difference of the
estimated static power is higher, since McPat estimates it to reach 9.16886 W, an increase
of 53.10% compared against the 5.98876 W reported for the out-of-order processor. The
total peak power of Viper then reaches a total of 30.15055 W, increasing the total power
consumption estimated for our baseline machine by 15.33% (26.14272 W). We attribute
this significant increase in high static power consumption to the extra memory elements
and the routers added in the Viper design. McPat’s attributes a significant static power con-
sumption for the routers, a total of 3.77203 W – an estimation that we also verified through
another publicly available tool, Orion version 2.0 [30]. In summary, these results show
that Viper moderately increases overall power consumption, mostly due to the additional
communication components.

5.7.6 Performance

We measured the performance and reliability of small CMPs with comparable transistor
counts. According to our estimations, an area slightly larger than 60 mm2 can approxi-
mately fit 4 complete sets of Viper clusters or 4 out-of-order processors. Figure 5.8 reports
performance figures for single-threaded benchmarks. These performance figures report
the MIPS of the SPEC2006 benchmarks that could correctly execute on our simulator. In
order to reduce simulation time, we used a faster and less accurate model to fast-forward
our simulations for 500 million instructions. We then disabled this faster core, reset all
statistics, and activated the detailed cycle-accurate models for 100 million cycles. Viper
loses an average of only 22.36% performance compared to the out-of-order core, as reported
in Figure 5.8. This is primarily due to the overhead of generating virtual pipelines. We
believe that with further analysis and engineering effort it would be possible to recover most
of the performance loss.

5.7.7 Faulty Behavior

To better compare the reliability and performance of Viper against previous works, we
measured the expected throughput of four different designs for a chip of 2 billion transistors.
In Figure 5.9 we compare Viper against the following designs: in-order CMP, Bulletproof,
and StageNet. As the graphs show, performance of the unprotected solution, though initially
higher, quickly degrades as the number of faults increase. Performance degradation for both
Bulletproof and StageNet is more graceful, but their reliance on centralized control logic
affects performance as the number of hardware errors grow. On the other hand, thanks to

120

0

100

200

300

400

500

600

700

800

900

1,000

M
IP

S

Benchmarks

Viper

out-of-order

Figure 5.8 MIPS achievable by fault-free configurations of the out-of-order core and Viper.

0
20
40
60
80
100
120
140

10 110 210 310 410 510 610 710 810 910

M
ax
im
u
m
 IP
C

Faults

StageNet CMP Bulletproof Viper

0 100 200 300 400 500 600 700 800 900 1000

Figure 5.9 Comparison between performance of unprotected in-order cores (CMP), Bulletproof
pipelines, StageNets and our solution, Viper.

its distributed control logic, Viper is capable of maintaining higher performance even on
silicon substrates tainted by hundreds of permanent faults.

5.8 Summary

In this chapter we developed and evaluated Viper, a new distributed microarchitecture. The
design we propose targets modularity as the major driver to limit engineering costs. The
studies presented in Chapter 3 inspired the design choices that drove our novel hardware
organization. We observed that an application rarely uses all processor’s components at the
same time. Instead, the majority of applications present a phasic behavior, where programs
rely on small subsets of hardware modules for relatively long periods of time. Additionally,
we analyzed the organization of current microprocessors and identified the two main charac-

121

teristics that limit design modularity: their extensive and complex control logic and the tight
interconnection of hardware modules.

These insights pushed us to seek an innovative solution that could provide design modu-
larity while maintaining performance and without altering the hardware/software interface.
To achieve our goals, Viper uses a reconfigurable execution engine built from independent
components guided by a fully distributed control logic. Instructions in this system are
viewed as clients that require a number of services. These clients are served by the available
hardware components. A program can successfully terminate as long as its required services
can be executed by the available components. We showed that Viper is a completely dis-
tributed design and is modular by construction and explained how this microarchitecture
executes programs and manages exceptions. We also evaluated the performance impact
of our solution, and showed that its modular hardware fabric affects performance only by
22.36% on average compared to an out-of-order core. While a baseline system must include
several new components, a number of large centralized structures can be removed from
the design (for instance the ROB and the RAT). Hence, we estimated the overall additional
components of our solution to increase a chip’s size by roughly 7.34%. We also measured
that our architecture would increase total power consumption by 15.33%.

This chapter concludes the presentation of the three techniques developed in this research
to make future architectures reliable, adaptable, and modular – A2Test, Cardio, and Viper.
The next chapter will put together these three solutions to build a comprehensive, adaptable,
and distributed architecture: Cobra. This design can overcome transistor failures through
Application-Aware self-testing techniques, and adapt to hardware and software changes
through the protocols developed in Cardio. Finally, its hardware is based on the modular
microarchitecture developed in Viper and presented in this chapter.

122

Chapter 6

Putting It All Together

The previous chapters described how the three solutions developed so far contributed to
enable designs that are adaptive, reliable and distributed. They address what we recognize
as being the three major issues posed by future semiconductor technologies: hardware
failures, the challenges connected to managing specialized functional units, and the lack of
design modularity. This chapter presents Cobra, a holistic solution for future semiconductor
technologies that coheres and embodies all the reliable, adaptive and modular features we
have proposed throughout this thesis [144].

The complete design presented in this chapter targets highly parallel workloads and
represents the pinnacle of this research. First, Cobra’s reliability is entrusted to the fault
detection mechanisms presented and evaluated in Chapter 3. Second, this design utilizes the
distributed protocol introduced in Chapter 4 to allow application execution to dynamically
adapt to the available hardware resources. Third, Cobra builds on the novel modular mi-
croarchitecture illustrated in Chapter 5. Similarly to the execution model adopted by Viper,
Cobra organizes hardware components into a reconfigurable fabric of small, stateless units,
operating on bundles of instructions instead of single ones. This chapter also discusses how
the traits of the distributed microarchitecture previously introduced can also significantly
enhance a system’s reliability and adaptability.

6.1 Chapter Organization

Section 6.2 overviews the distributed microarchitecture that constitutes Cobra’s backbone.
This section also presents the challenges that must be addressed in order to build a com-
prehensive architecture that can succeed in the scenario imposed by future semiconductor
technologies. Following this short introduction, Section 6.3 describes how the commu-
nication protocol and techniques for adaptability developed in Cardio in Section 4.3 are
deployed in our complete solution. Following, Section 6.4 illustrates further benefits ob-

123

tained through these techniques that are not available in the baseline distributed design
presented in Chapter 5.

With the goal of protecting software applications from hardware failures, Cobra deploys
a variety of fault detection techniques, presented in Section 6.5. Applications that strive
to maintain fast fault detection latency at a low performance impact can opt for solutions
that monitor software symptoms and actively protect only the most vulnerable portions of a
program, as presented in Section 3.3. Instead, software requiring maximum reliability can
either make use of fully redundant execution or of the application-aware online hardware
tests introduced in Section 3.4. Finally, software that does not require any correctness
guarantee can disable all online reliability mechanisms for a performance benefit. In Cobra,
each application can employ any reliability feature independently from other workloads.

Finally, Section 6.6 presents the experimental evaluation of our complete architecture,
analyzing its adaptability to various hardware configurations. This section also measures
the ability of our design to handle hardware failures and provides a more formal reliability
analysis of our architecture.

6.2 A Reliable, Adaptive Distributed Architecture

Cobra’s microarchitecture builds on Viper’s execution model, which was detailed in the
previous chapter. Several traits make this design modular. First, it organizes its hardware
in a sea of loosely connected and independent components, where each component can
perform one or more of the services offered by the ISA. Second, these components are
fully decoupled from the ones that control program flow and allocate resources. Finally,
component interaction occurs solely through packetized point-to-point interconnects and
our design treats each instruction bundle as an independent transaction.

While modularity is a static design property of this architecture, adaptability is the ability
to change system behavior to match dynamic requirements. In order to provide this second
property, resource allocation is managed at runtime through a distributed protocol. While
running a program, the sea of units is dynamically configured to provide all the services
required by its instructions, a task accomplished by allowing hardware units to independently
negotiate their available services with the bundles awaiting execution.

Besides providing modularity and adaptability, our distributed architecture can achieve
an unprecedented degree of reliability. In fact, its hardware fabric allows seamless fault
isolation and can automatically work around defective components. Each component is
decoupled from all others and communicates through a well-defined request/response mes-

124

sage protocol. This prevents faults in one component from corrupting the behavior of other
hardware modules. When diagnosed, a defective module is disabled and inhibited from
executing any instruction bundle without affecting the rest of the system.

Cobra adopts an execution model very similar to the one introduced in Chapter 5. A
program is dynamically partitioned into bundles of instructions. Each bundle executing on
this system is uniquely identified through a sequential ID generated by increasing the ID of
the bundle immediately preceding it. Every bundle in-flight is associated with a scheduling
unit, which is responsible for managing and tracking the hardware resources operating on its
instructions. Scheduling units do not store operations or values, but only information related
to the execution progress: allocated hardware units, pointers to operand locations, data to
manage program flow, and instruction sequence. Scheduling units are connected to form a
linked list that maintains program order. Once the address of the next instruction bundle
is computed, a new scheduling unit is allocated to coordinate its execution. Even though
bundles – and even instructions within a bundle – can execute out-of-order, bundles commit
their results sequentially, following the order enforced by their IDs [147].

In this architecture, instructions can be scheduled to utilize any available hardware unit
that suits them – in contrast to classic pipelines, which push instructions through paths
established at design time. On one hand, the baseline modular architecture presented in
Chapter 5 offers unparalleled opportunities to isolate defective hardware components and
to automatically adapt to hardware changes. On the other hand, this distributed execution
model suffers from serious bottlenecks that limit its performance, scalability, and robustness.

The modular distributed architecture proposed by Viper avoids reliance upon central-
ized microarchitectural structures and tight component connections by construction. These
characteristics enable such design to easily work around hardware failures and maintain
performance even when affected by a high number of hardware defects. Regrettably, the
same properties that make this design more dependable also limit the system’s ability to
efficiently diagnose hardware malfunctions and restore software state upon fault detection.
In fact, bundles from the same application could potentially execute on any of the hardware
modules in the system. Since a large number of components might be used to execute
a portion of a program, or computational epoch, the periodic fault diagnostic techniques
proposed in Chapter 3 cannot pinpoint which process might have been corrupted by a newly
discovered hardware failure. Hence, Viper should periodically suspend the entire system
to test all components. Furthermore, in case of fault detection, all software applications
running on the system will need to be restored from a safe checkpoint.

In terms of adaptability, the original Viper design offers very fine temporal reconfigura-
tion granularity (up to a single basic block). Unfortunately, for highly parallel machines,

125

mem
D-cache

I-cache
fetch

sched. unit
sched. unit
sched. unit
sched. unit

I-cache

mem
D-cache

fetch

sched. unit

I-cache
fetch

sched. unit
sched. unit

sched. unit

I-cache
fetch

sched. unit

mem
D-cache

mem
D-cache

exe

exe

exe

exe

exe exe

exe exe

FPU

FPU

BIST BIST

BISTBIST

BIST BIST

BISTBIST

BIST

BIST BIST

BIST BIST

BIST BIST

BIST

4. Shared data block

3. Replicated instruction block 2. Traffic

sched. unit

1. Dispersed configuration

5. Inefficient online tests

BISTBIST

Figure 6.1 Limitations of an unoptimized distributed control architecture: 1) dispersed re-
source assignments lead to high communication latencies between units (in green) leading to
dispersed hardware configurations; 2) hardware configuration setups entail a large communication
overhead (in blue); 3) scattered workload executions penalize the performance of stateful resources,
such as caches (red); 4) unordered accesses to memories affect memory operations’ performance and
correctness (in yellow); 5) inefficient hardware tests affect system’s performance (in orange).

the limitations of this approach overshadow its benefits. Since the hardware reconfiguration
algorithm does not account for the physical distance of the components in a configuration,
runtime may suffer from long data transfers from one end of the chip to the other. Further-
more, because Viper triggers hardware reconfigurations every basic block, its negotiation
protocol causes a proliferation of proposal requests and responses. Lastly, Viper’s frequent
hardware reconfiguration may also hurt overall system performance. In fact, different
hardware clusters may service instruction bundles from the same program, possibly causing
unordered and scattered memory accesses affecting both a program’s correctness as well as
performance. In order to tackle all these challenges, Cobra develops a novel reconfiguration
algorithm that uses the insights and techniques developed in Cardio to find an optimal
tradeoff between adaptability, performance, and communication overhead.

Figure 6.1 briefly illustrates all the issues listed above on a sample distributed architec-
ture.

6.3 Optimized Hardware Adaptation

This section first addresses the latency-agnostic component reconfiguration adopted by Viper
in Chapter 5. Solving this first issue allows us to build a system that can use its hardware
resources more effectively and succeed in executing highly parallel workloads. Secondly,
we propose a technique to extend the lifespan of Cobra’s hardware configuration to optimize

126

its performance without jeopardizing its adaptability.

6.3.1 Creating a Localized Hardware Configuration

The first issue that Cobra strives to overcome is the physical dispersion of hardware con-
figurations. The resource assignment algorithm proposed in Section 5.4.2 focuses solely
on fulfilling instructions demands. This may negatively affect a system’s performance, as
such naı̈ve assignment policy does not account for the time spent to transfer instructions and
operands across the system. As the number of components in a system grows – and therefore
the average distance among them increases – this issue is greatly exacerbated, undermining
the scalability of a distributed architecture. Cobra overcomes this issue by leveraging a
simple but cost-effective algorithm, which preserves locality without compromising either
modularity or adaptability. Note that a straightforward solution would consist in limiting the
reach of a service’s advertisement broadcasts to a small region of the chip; however, this
approach would reduce Cobra’s reliability, adaptability and modularity.

When a scheduling unit assembles a hardware configuration, Cobra evaluates the physi-
cal location of the units that advertise their availability. In order to do so, components are
logically organized in a mesh, so that the distance between any pair of hardware units can
be easily computed as their Manhattan distance. While Viper greedily allocates resources as
soon as they become available, Cobra’s scheduling units store service providers’ (hardware
units’) proposals for a certain number of cycles so as to choose the best among several alter-
native configurations. Each scheduling unit then generates a hardware configuration based
on the services required, taking into account the distances between units in its candidate pool.
The target is to minimize communication latency by reducing the overall distance among
all the hardware elements forming a configuration. Various algorithms providing different
performance/complexity tradeoffs can be employed to this end. An optimal solution to this
problem would require the prohibitive (in hardware) application of Dijkstra’s algorithm.
Instead, in Cobra we opted for a simpler approach that fits our purpose while imposing very
small overhead.

Once a new bundle is initiated, its associated scheduling unit accepts proposals from the
available hardware units. In order to avoid starvation and deadlocks, the service assignment
policy prioritizes the oldest bundle in flight and then assigns resources in the same order as
they are utilized by the instructions in a bundle. Differently from the design presented in
the previous chapter, Cobra’s scheduling units do not include components in their configu-
rations as soon as their services become available. Instead, our algorithm starts from the
location of the scheduling unit and adds each required service provider, one at a time (in

127

the sequence they are used by instructions), selecting the available unit that is closest to the
previously allocated one. To accomplish this, for a preset number of cycles a scheduling unit
stores every service proposal that i) provides forward progress towards the generation of a
complete hardware configuration and ii) is physically closer than other proposals received
within the preset time window. If resources are assigned in a strictly sequential order (as
in this case), this technique quickly converges to generate a configuration that minimizes
communication latency. Our solution requires minimal additional hardware – location and
type of the next-best candidate and a cycle counter for the search time-window.

Figure 6.2 provides an example of this process. The location of each hardware unit
is represented by a pair < X ,Y > of coordinates (there can be multiple units at the same
location). Components’ physical locations are encoded so that distances can be calculated by
computing the Hamming distance between coordinates in each dimension and adding them
together. Specifically, we use as many bits as the size in the corresponding dimension (6 for
X coordinate, 5 for Y, in Figure 6.2), and encode the position by setting a corresponding
number of bits to 1. Note that this approach can be extended to three-dimensional layouts
such as in 3D stacking [56].

Our buffering of proposals may cause overhead in the hardware configuration setup
process. Therefore, we need to find a suitable trade-off between costs and benefits of this
approach: we study this aspect in Section 6.6.4.

(1,0,0,0,0)

(1,1,0,0,0)

(1,1,1,0,0)

(1,1,1,1,0)

Y
-c

o
o

rd
in

at
es

X-coordinates

mem
D-cache

I-cache
fetch

sched. unit
sched. unit
sched. unit
sched. unit

I-cache

mem
D-cache

fetch

sched. unit

I-cache
fetch

sched. unit
sched. unit
sched. unit
sched. unit

I-cache
fetch

sched. unit

mem
D-cache

mem
D-cache

exe

exe

exe

exe

exe exe

exe exe

FPU

FPU

BIST BIST

BISTBIST

BIST BIST

BISTBIST

BIST

BIST BIST

BIST

BIST BIST

BIST BIST

(1,1,1,1,1)

(1,0,0,0,0,0)
(1,1,0,0,0,0)

(1,1,1,0,0,0)
(1,1,1,1,0,0)

(1,1,1,1,1,0)
(1,1,1,1,1,1)

∆X=(0,0,0,0,0,0)

∆Y=(0,0,0,0,1,0)

Distance=0+1

∆X=(0,1,1,0,0,0)

∆Y=(0,0,0,0,0,1)

Distance=2+1

∆X=(0,0,0,1,1,0)

∆Y=(0,0,0,0,0,0)

Distance=2+0

Figure 6.2 Location coordinates used to setup Cobra hardware configurations. Each coordi-
nate is always encoded as a sequence of bits, whose length corresponds to the maximum number
of segments it spans. Each segment is identified by the number of “1s” in the leading bits of its
coordinate. The distance between two components in a hardware configuration (in yellow) is then
determined by summing each direction’s hamming distances.

128

6.3.2 Hardware Configuration Lifespan

The service-based architecture presented in Chapter 5 offers an incredible degree of recon-
figurability and adaptability. Viper allows hardware components to independently advertise
their availability to any scheduling unit that is attempting to execute an instruction bun-
dle [147]. Components whose services are included in a hardware configuration are then
notified by the relative scheduling unit. This process dynamically allocates the hardware
resources that fit a program’s requirements without relying upon centralized control struc-
tures. However, this mechanism leads to message proliferation due to the large number of
advertisements and notifications exchanged among the hardware components, causing a
significant communication overhead.

To understand the magnitude of this problem, consider for instance a distributed ar-
chitecture composed of 5 services, 4 providers for each service and 2 active bundles
(groups of instructions). Assume also that each bundle is already mapped to a scheduling
unit. The maximum number of messages exchanged between the hardware units and the
scheduling units is: 5(services)× 4(providers)× 2(bundles) = 40 service proposals and
5(services)×2(bundles) = 10 acceptance notifications. Considering that bundles consist
of a single basic block, and more than 90% of them are up to 16 instructions long, the
number of messages exchanged to execute a rather short portion of the program is significant.
Such overhead grows linearly with the number of service providers and in-flight instruction
bundles, severely hindering a system’s scalability. This problem is further exacerbated for
workloads requiring redundant execution for reliability purposes.

This overhead occurs because of the short life-span of a hardware configuration: one
for each instruction bundle. In practice, however, a system rarely needs to be reconfigured
because of either a newly discovered fault or for changes to a workload’s hardware-resource
needs. For instance, we have empirically shown in Chapter 3 that application execution
presents a phasic pattern, and long portions of a program often rely on a small subset of the
available hardware features [142]. Furthermore, in Chapter 4 we demonstrated how we can
achieve effective hardware adaptability simply by allowing processes to notify each other
about hardware state and utilization at the end of every computational epoch.

For these reasons it thus makes sense to use the same hardware configuration over longer
execution periods, so as to amortize configuration costs among many groups of instructions.
The remainder of this section introduces the mechanisms that we developed in Cobra to
extend the lifespan of a configuration to an entire computational epoch.

129

Hardware Configuration Transferring

Cobra allows an instruction bundle to pass on its hardware configuration to the following
bundle (through the linked list of scheduling units). Compared with the design in Chapter 5,
which generates a hardware configuration for each new instruction bundle, this enhance-
ment does not need any major modifications, as it only requires transferring the already
established configuration to the scheduling unit assigned to manage the next bundle. This
simple operation greatly reduces the cost of the service negotiation procedure, as – in the
common case – it only consists of notifying the hardware components servicing the current
bundle that they will also be employed by the following bundle. If the instructions in this
latter bundle require additional services, the associated scheduling unit will initiate a service
negotiation procedure to acquire new providers only for the newly needed services. It is
worth noting that Cobra can extract less ILP from a single application than Viper. This is
because extending hardware configuration lifespan forces all bundles in a thread to execute
on the same set of modules, basically serializing bundle execution. Therefore, in Cobra,
functional units are always working with an instruction window equal to the number of
instructions in the bundle in-flight. As we show in Section 6.6.4, the benefits of this solution
outweigh the costs for multi-threaded workloads.

Figure 6.3 illustrates this approach with an example. The units in the yellow area belong
to a hardware configuration that has completed the execution of a bundle. When the next
bundle begins execution, its corresponding scheduling unit (marked in blue) receives the
set of hardware units from the previous one. This setup information can be piggybacked
on the notification that allocates a new bundle to a scheduling unit. Moreover, the bundle
associated with the blue scheduling unit requires the services of an FPU, which is then
added to the set of hardware units servicing the bundle.

Hardware Configuration Tearing Down

While our configuration transferring approach greatly reduces communication overhead, at
times it is beneficial to tear down a hardware configuration and create a new one from scratch.
This is the case, for instance, when a configuration becomes under-utilized because some of
its previously assigned resources are not needed by the more recent bundles. This situation
becomes critical when bundles from other threads require some of those resources that are
no longer used. Moreover, a fault could manifest in one of the units participating in an
active hardware configuration. When any of the above situations occurs, the corresponding
scheduling unit simply prevents the transfer of the hardware configuration to the following
bundle.

130

mem
D-cache

sched. unit
sched. unit
sched. unit

I-cache

mem
D-cache

fetch

sched. unit

I-cache
fetch

sched. unit
sched. unit
sched. unit
sched. unit

I-cache
fetch

sched. unit

mem
D-cache

exe

exe

exe

exe exe

exe exe

FPU

FPU

BIST BIST

BIST

BIST BIST

BIST

BIST BIST

BIST

BIST BIST

BIST BIST

BIST

BIST
Next bundle

D-cache

I-cache
fetch

sched. unit

BIST
mem

exe

BIST

BIST

Figure 6.3 Hardware configuration transferring used in Cobra. When a scheduling unit and
its associated hardware configuration (yellow area) complete the execution of a bundle, the hardware
configuration is transferred to the scheduling unit servicing the following bundle (blue area), adding
more units if needed (an FPU in the Figure).

Our design uses the same approach developed in Chapter 4 to track the relevant events
related to resource utilization. However, while Cardio relies on data structures stored
in memory to keep track of hardware state and utilization, Cobra’s scheduling units are
augmented to store the list of service components acquired and used – via a single-bit
flag per service. Such a list is transferred from one scheduling unit to another in order to
preserve memory of the hardware components used during a computational epoch. Flags
are propagated from a bundle to the next, updated every time a new group of instructions
is fetched from memory, and reset periodically to keep information relevant. It is worth
noting that updating service utilization flags does not increase the communication traffic
over previous distributed architectures, since information about the services needed must be
available even in a baseline system.

Maintaining information about hardware utilization is also beneficial for the management
of scarce resources. Scheduling units that cannot obtain availability from one or more ser-
vice providers can request the scheduling units that reserved these resources not to forward
their hardware configuration – thereby forcing a new service negotiation procedure. This
mechanism guarantees forward progress while allowing sharing of scarce resources. Note
that this procedure relies on the same protocol used by the instances of Cardio’s distributed
resource manager.

As in Cardio, the end of a computational epoch can trigger a series of introspective tests
meant to assess whether the underlying hardware is healthy and utilized effectively. How-
ever, while software applications handle resource availability in the CMP system considered
in Chapter 4, resources in Cobra’s reconfigurable computational fabric are managed through
scheduling units. At the end of each epoch, Cobra’s hardware configurations are torn down

131

and tested. Scheduling units that do not benefit from a hardware configuration transfer will
proceed to setup a new hardware configuration. It is worth noting that faulty units or units
under test will simply not advertise their services, and thus they will not be included in any
new configuration.

6.4 Scalable Performance

The benefits of maintaining longer hardware configurations are not limited to a more efficient
hardware utilization but also allow significant advantages in on-chip memory utilization.
This section will briefly discuss how Cobra can improve on-chip memory utilization.

6.4.1 Temporary Data Persistence

Workloads running on a dynamically configured architecture may experience scattered
execution due to the fact that consecutive bundles belonging to the same process can be
executed by different hardware units. This severely affects the effectiveness of units that
leverage temporary information storage to enhance performance. For instance, caches,
which could exploit both temporal and spatial locality, are not able to do so if groups of
instructions from the same thread are constantly swapping caches. This also holds true for
other performance-enhancing features, such as branch predictors and TLBs.

In Cobra, this problem is solved as a by-product of our hardware configuration trans-
ferring approach. Indeed, when the same hardware configuration is used to service a large
number of subsequent bundles, temporary data is naturally and effectively maintained
in these memory structures. Our experimental evaluation quantifies this benefit over the
unoptimized modular distributed-control architecture presented in the previous chapter.

6.4.2 Boosting Memory Access Performance

Managing data memory operations is particularly challenging in a distributed architecture
because program semantics expect memory operations to be issued and completed in order.
This expectation may not be easy to meet when instructions from distinct bundles execute
on different hardware configurations. Moreover, distinct bundles (possibly one logically
following the other) might need to update the same memory location, leading to multiple
“store”-service hardware units requesting exclusive access to the same cache line – a rather
expensive procedure, as it requires all caches to invalidate their local copy. This problem is

132

exacerbated in distributed architectures supporting memory-to-memory instructions, such as
x86, where memory accesses are even more frequent.

In the previous chapter we proposed a single memory access point for the entire system.
While this is effective in boosting the single cache hit rate, it comes at a high impact to
memory access time and leads to poor system scalability. In contrast, our aim is to keep a
multitude of caches in the system, which are geographically distributed and relatively small,
in order to boost performance. To this end, Cobra maps caches in the system to a set of
threads: each thread in the set shares the cache assigned to it exclusively with the other
threads in the same set. This is achieved by mapping each Load-Store Queue (LSQ) to only
one data cache. Since each hardware configuration (and thus, each thread) can only include
one LSQ, this guarantees that memory ordering and data locality benefits can be attained
within the set. At the same time, this solution provides system scalability, since overall, a
system can still leverage multiple memory access units and memory structures.

An available LSQ unit is assigned to the first bundle generated by a new thread – this is
performed through the same negotiation mechanisms used to allocate any other service in the
system. Machines that want to maximize throughput and availability can share a LSQ among
multiple threads. The mapping between a thread and a LSQ unit is recorded in the relevant
scheduling units, and is propagated from one bundle to the next, releasing the LSQ only
when a thread terminates or is de-scheduled by the OS. Note that a bundle can be associated
to a hardware configuration with multiple execution units; however, the configuration would
still have only one LSQ unit. In addition, memory operations ordering is enforced by using
the bundle sequence ID. This can also be used to detect mis-speculations of memory values.

6.5 Reliability

One of Cobra’s key objectives is to maximize system availability in the face of hardware
failures. In this section we detail how distributed architectures can detect and manage
runtime faults. As already mentioned in Chapter 3, overcoming these events is a three-stage
process consisting of:

1. fault detection;

2. hardware reconfiguration;

3. system state restoration.

First, a comprehensive reliable system must be able to dynamically detect errors and
diagnose faulty components. Several techniques are available for this purpose (redundant

133

execution, symptom-based detection, online testing), each of which can trade fault coverage
or detection latency for performance overhead. Unfortunately, none of them have been
tailored to distributed architectures, so here we focus on enabling these fault detection
mechanisms for this novel design paradigm, particularly for Cobra.

Second, the distributed processor architecture developed in Cobra empowers a system to
automatically reconfigure itself around hardware errors. Hardware units deemed faulty can
be selectively turned off, thus preventing them from advertising their services to the rest of
the system.

Third, independent from the fault detection mechanism deployed, upon fault detection,
all bundles in flight are flushed through a system-wide broadcast signal to all scheduling
units. The hardware failure is then diagnosed, and the newly discovered faulty component
disabled. Both architectural state and memory system is restored to a previous safe check-
point through techniques such as ReVive or SafetyNet [150, 176], and each checkpointed
program is restored and mapped to an available scheduling unit. In Cobra program state is
distributed, because the information necessary to manage program execution is stored in
the scheduling units while the architectural register values are located in the reconfigurable
fabric: these two pieces of information are synchronized to form a unique checkpoint state
when instruction bundles commit.

It is worth noting that handling faults in the scheduling units does not require advanced
mechanisms. The vast majority of the area in these units consists of storage elements,
which can be protected through ECC, while their relatively small logic can be made re-
silient through hardware duplication [147]. Finally, in this work we do not account for
failures on caches and interconnect, as these subsystems can be effectively protected by
other techniques [4, 55].

The remainder of this section considers three classes of fault detection solutions previ-
ously proposed for classic pipelined processors: full redundancy, selective redundancy and
periodic online testing. While the first solution is already commonly adopted in mission
critical systems, this thesis already evaluated the effectiveness of the two latter techniques in
Chapter 3.

6.5.1 Full Redundancy

The first technique, full redundancy, is both the simplest and fastest mechanism for detecting
any type of hardware errors – due to permanent, intermittent and transient failures. Each
instruction executes multiple times on different hardware components, and the results are
then compared to detect and possibly correct errors that may have occurred. Although highly

134

effective, this mechanism is very performance- and resource-intensive, and only applica-
tions that value reliability as a key requirement adopt it. Corrupted results are recognized
immediately, and a faulty hardware component is diagnosed by comparing the outcomes of
multiple executions.

To deploy this fault detection mechanism in Cobra, we must enhance the scheduling units
to accommodate multiple hardware configurations, one for each redundant execution – these
configurations must contain non-overlapping sets of service providers. In addition, they must
include a voting unit to compare results produced by the redundant configurations. This
check can be done at a fine granularity, comparing each result produced by every instruction,
or at the bundle level, comparing only the results that are transferred to subsequent bundles.
In addition, the scheduling unit must allow results to be committed to memory only after
they have been successfully checked.

Bundles to be executed redundantly are tagged by a special flag, so that all units servicing
such bundles are aware that the instructions within require special handling: they are not
allowed to alter process state or program flow until after they have been deemed fault-free –
in our system we maintain a single software process for all redundant executions. Further-
more, they cannot update the register renaming table of a process (or the tags associated
with an operand), and redundant store instructions sent to the LSQ are not committed to
memory but are instead discarded once the bundle completes. Finally, redundant memory
loads are not allowed to receive values forwarded by store operations in the other executions
of a same bundle.

6.5.2 Selective Redundancy

Most programs do not require the degree of protection guaranteed by a fully redundant exe-
cution. In fact, we have already shown through our experiments with CrashTest in Chapter 3
that the majority of hardware malfunctions (up to 90% of permanent faults and 60% of
transient faults) can be detected at zero-cost by simply monitoring software anomalies such
as kernel panics, fatal traps and illegal memory accesses [53, 107, 203]. We do not address
these diagnostic technique in this dissertation since several works provide low-cost solutions
to diagnose faulty components by analyzing these software malfunctions, and any of them
could be used for this purpose [81, 107].

Unfortunately, even though this approach provides a significant fault coverage for most
hardware failures, it is not very effective in detecting faults that silently corrupt an applica-
tion’s outputs. Cobra provides an ad-hoc solution for checking the portions of a workload
that are particularly susceptible to silent data corruptions (SDC). Our experiments in Sec-

135

tion 3.3 show that particular types of instructions – floating point operations, divisions,
multiplications and SIMD instructions – are particularly prone to SDCs [107, 148]. How-
ever, the service-based microarchitecture we develop can help to address these insidious
hardware failures. In fact, the scheduling units of our distributed system maintain detailed
information about the services required by the executing bundles, they can dynamically
flag the portions of a program that are vulnerable to SDCs. Therefore, we allow processes
to request “selective redundancy”: Cobra will then activate redundant executions only for
the bundles that include operations vulnerable to SDCs. This technique represents a good
compromise for processes that need high fault coverage but cannot afford the cost of a fully
redundant execution, and it has been shown to be very effective in exposing permanent
failures [130].

6.5.3 Periodic Online Testing

We already advocated in Chapter 3 that periodic online testing can effectively protect soft-
ware from permanent hardware failures. This approach assumes that the results generated
by a processor cannot be trusted until its underlying hardware components have been tested
by periodic self-tests (for instance, with a built-in-self-test unit, BIST). Only after all tests
succeed, a process is allowed to commit its results to memory and to I/O devices. With this
approach, execution time is partitioned in epochs, which are typically a few million instruc-
tions long, and hardware tests are executed at the end of each epoch [41]. We previously
showed that periodic hardware testing is both very economical (as low as 1% hardware
overhead [142]) and effective (up to 100% fault coverage [41, 110]). Handling faults in the
test logic is a problem common to all solutions that adopt this fault detection technique, and
in this work we assume that a faulty self-test logic causes its related hardware component to
be marked as non-functional.

In Viper, the bundles of a process could potentially execute on any service provider
(hardware unit) in the system. Therefore, a large number of units (possibly all) could be
exercised during an epoch’s execution, requiring many tests to be completed before the
epoch’s results can be deemed fault-free – causing performance hiccups. In addition, a
single faulty unit could impact many processes within one epoch, requiring many or even all
processes to be rolled back to their previous checkpoint. In contrast, in a traditional CMP,
only a single process would be affected.

Cobra addresses both of these issues. As long as a process does not tear down a hardware
configuration for the duration of an epoch, applications running in Cobra maintain exact
knowledge of which components were exercised. Therefore, the health of a process during

136

an epoch can be assessed by testing only a small subset of hardware units. Compared against
previous solutions, our design provides an additional advantage to online testing, as it does
not require interrupting program execution. Two solutions are possible in case of tear-downs
occurring during an epoch:

1. if infrequent, the system might force tests on all hardware in the torn down configura-
tion;

2. if frequent, the scheduling units can store the list of all units used in an epoch and, at
the end, run tests on all the exercised hardware.

Finally, upon detecting a fault, only the processes that exercised the defective hardware
unit need to be restored from their checkpoints. Before presenting our experimental results,
we summarize in Table 6.1 below the problems that Cobra strives to address and the solutions
developed to tackle each of them.

Problem Solution
1. Physical dispersion of HW configuration Localized HW configuration
2. Large communication overhead HW configuration transferring
3. Scattered execution of a workload HW configuration localized & transferring
4. Unordered accesses to memory New cache design, HW configuration transferring
5. Efficiency in self-testing HW configuration transferring

Table 6.1 Summary of the problems addressed by Cobra and the techniques developed to solve
them.

6.6 Evaluation

We modeled a Cobra system that implemented the x86-64 ISA and evaluated both its per-
formance scalability and its ability to endure hardware failures. To this end, we compared
Cobra against two similarly sized designs: a classic CMP comprising 2-wide out-of-order
cores and the baseline modular, distributed architecture presented in the previous chap-
ter, Viper [147]. We chose the former because it matches the characteristics of modern
CMPs [22, 64], and the latter because it represents a state-of-the-art distributed architecture.
In order to measure Cobra’s scalability, we considered systems which can execute 1, 2, 4,
8 and 16 threads, and whose processor logic (caches excluded) occupies 20M, 40M, 80M,
160M and 320M transistors, respectively.

We first analyzed Cobra’s performance and capability to adapt to hardware changes
compared to the CMP and the unoptimized Viper design. Therefore, we measured the impact
of the solutions developed in Cobra on the throughput of systems of different sizes, running

137

multiple instances of the SPEC2006 benchmarks. No faults were injected in these first simu-
lations. We then evaluated Cobra’s robustness to an increasing number of permanent failures
and compared it against a classic CMP solution. Finally, we investigated the performance
impact of deploying the online fault detection mechanisms presented in Chapter 3 on Cobra.

6.6.1 Hardware Model

All three architectures evaluated in this work are clocked at a frequency of 2.0GHz. Cores
in the classic CMP configuration have an execution windows of 32 instructions, can commit
up to 2 instructions per cycle, and can have up to 5 in flight: 2 in integer pipelines, 2 in
FP units, 1 in the load/store unit. Each OoO core uses dedicated 32KB L1 data cache and
L1 instruction cache, while all service providers in Cobra and in the baseline distributed
architecture can make use of similarly-sized data and instruction caches – one for each
thread executed on the machine. In order to ensure program correctness, both distributed
architectures tie a process to only one data cache before starting execution, as discussed in
Section 6.4.2.

Service Hardware unit Number of units Test cycles Transistors
Fetch bundle Fetch 4 1.25M 4MGenerate next PC
Decode bundle Decode 4 1.25M 2.5M
Tag generation Tag 4 1.25M 3M
Integer ALU

Execute

8 1.25M 1.6M
Load & Store 4 951K
Integer mult. & div. 8 327K 1.27M
FP ALU 8 230K 635K
FP mult. & div. 8 230K 635K
SIMD 4 1.57M 635K
Update register file Commit 4 1.25M 1MCommit stores
Create new bundle Scheduling unit 32 – 15K

Table 6.2 Characteristics of the distributed architectures evaluated: Cobra and Viper [147]. Both
architectures provide 13 services using 6 different hardware units. For each unit type, we report the
number of instances available in the configuration executing four threads, the length of a complete
test and the area in transistors of each unit [142].

To setup both of the distributed architectures under analysis, Cobra and Viper, we
partitioned the x86-64 ISA into 13 different services, which are provided by six different
hardware units, as listed in Table 6.2. In our fault model, a failure hitting a multi-service
unit disables only one service in that unit. For instance, an “Execution” unit, which is hit by
a fault in its “FPU ALU” service provider will no longer be able to execute any bundle that
requires that service, but can still provide its other services. Periodic self-test are scheduled

138

independently on each unit after it has executed a certain number of instructions, 20M in
our case [142]. In order to utilize the A2Test technique introduced in Chapter 3, we embed
an instruction counter in each hardware unit in order to trigger self tests: once the limit is
reached, the hardware tests are serially performed on all the services still available. With
reference to our example, the “Execution” unit would skip testing the hardware of its already
faulty “FPU ALU” service. Table 6.2 reports several characteristics of the distributed archi-
tectures considered. Configurations supporting a different number of programs are scaled
proportionally (the 16-thread configuration will have 16 fetch units). The last two columns
of the table report the number of cycles needed to test each service and an area estimate
for the unit. Connectivity between scheduling units and service providers is established
through a crossbar, which has a point-to-point latency of 4 cycles [206]. Both distributed
architectures arrange the “Fetch”, “Decode”, “Tag”, “Execute” and “Commit” units in a
mesh, each unit connecting to its neighbors with 256-bit wide links. The communication
latency between two adjacent nodes is 1 cycle [147].

In our analysis, we focus on evaluating the relative throughput measured in instructions
per cycle (IPC). Although we have not thoroughly investigated the impact of our novel design
on the critical paths of the system, our changes primarily affect the length of the pipeline, as
for similar solutions [73]. Hence, we do not expect a negative influence on the cycle time
in Cobra compared to the baseline. Moreover, while classic pipelined processors rely on
long wires to connect distant pipeline stages, interactions among Cobra’s components occur
through packetized point-to-point interconnects, which allow aggressive pipelining and
high operating frequencies. In summary, our assumption that Cobra’s operating frequency
matches the one of the baseline processor considered is rather conservative.

6.6.2 Software Benchmarks

We used the SPEC CPU2006 benchmark suite [83] to evaluate Cobra’s performance. Due to
the detail and complexity of our simulations, we could not run all benchmarks to completion.
Instead, we evaluated their performance when they reached a steady execution state. The
benchmarks in this suite were run with the “test” input set. We evaluated performance for
both single– and multi– programmed workloads, executing independent copies of the same
benchmark. In order to measure Cobra’s scalability we evaluated a system executing 1,
2, 4, 8 and 16 programs, and scaled the resources available accordingly. As for the other
experiments, for reasons of space, we focused our attention on a medium-sized system
executing four programs, and analyzed its performance and reliability in more detail. We
decided to run multiple copies of the same benchmark at the same time – instead of a mix of

139

benchmarks – because we wanted to stress the system by creating high contention on the
hardware components exercised by their instructions. These results are therefore somewhat
conservative, as mixes of workloads might decrease resource contention. Finally, since
we focus on systems capable of executing multiple programs at the same time, reliability
estimations are reported as throughput on the multiprogrammed workloads running four
copies of the same program.

6.6.3 Simulation Infrastructure

The microarchitectural simulation platform adopted for this work is based on the gem5
simulator [19], employing full timing simulations in system-call emulation mode. The model
of the OoO core provided with gem5 was modified to match the deeper pipelines typical of
modern high-performance processors. The minimal execution latency of an instruction in
such design is 12 cycles: 3 to fetch, 3 to decode it, 3 to rename the architectural registers, at
least 1 for execution and 2 cycles for committing the instruction [78].
Fault Model – gem5 does not natively include a fault injection model. Thus we augmented
the baseline simulator with: 1) a parameter representing transistor count for each hardware
component – so that we could create a uniform distribution over the chip’s area when inject-
ing faults; 2) a fault injector capable of randomly triggering a fault in one of the hardware
components. Faults are injected with a uniform distribution in all service providers listed in
Table 6.2, proportionally to the area occupied by each of them. In order to gain statistical
confidence in our results, each fault injection experiment was repeated 20 times, each one
with a different random selection of fault locations. Once a service is affected by at least one
fault, it is considered no longer operational. Note that we did not consider defects in memory
arrays since those can be easily avoided through ECC and redundant entries. Finally, we did
not inject faults into the intra-chip interconnect, as several techniques are already available
to protect the communication subsystem from hardware failures [55].

6.6.4 Hardware Adaptability & Fault-Free Throughput

In the first set of experiments, we compared the throughput of a CMP design and distributed
architecture against Cobra, and evaluated the impact of each of the techniques discussed in
Sections 6.3 (localized hardware configurations) and 6.3.2 (hardware configuration transfer-
ring). We compared 1, 2, 4, 8, and 16 concurrent processes to gauge Cobra’s adaptability
to hardware modifications. Our findings are reported in Figure 6.4, where we compare the
throughput of Cobra (3 solid lines), against that of a similarly sized CMP design and Viper.

140

0

2

4

6

8

10

12

14

16

1 2 4 8 16

N
o
rm
al
iz
ed
 IP
C

Number of processes

Cobra (Sections III+IV)

Localized HW configurations (Section III)

HW configuration transferring (Section IV)

Baseline (Viper)

CMP

Figure 6.4 Throughput vs. system size. The plot compares Cobra (solid lines) against a CMP
and a baseline distributed architecture.

It can be noted that our two performance-boosting techniques, “localized HW configurations”
and “HW configuration transferring” enable a distributed-control solution to approach the
performance and the scalability of a classic CMP system. We analyze this result in more
detail below.
Localized Hardware Configuration – To avoid starvation, scheduling units must assign
hardware units to services in an ordered fashion, thus we proceed top-down through the
services listed in Table 6.2. The unoptimized Viper design in our experiments allocates
each required service to the first hardware unit available in a greedy fashion. In contrast,
Cobra uses our localized configuration approach, buffering service proposals for a number
of cycles (in our experiments we used 10, slightly more than twice the crossbar transmission
latency). Figure 6.5 plots the contribution of this technique over a baseline distributed
architecture (Viper) in a 4-threaded configuration for each SPEC2006 benchmarks, showing
that by itself it introduces an average performance improvement of 23%.
Hardware Configuration Transferring – We then evaluated the impact of allowing a bun-
dle to directly transfer its hardware configuration to its successor. Hardware configurations
are torn down every 20 million instructions (a reasonable length for a computational epoch,
as shown in [41]). This technique brings an average performance improvement of 42% on a
4-threaded system, as indicated in Figure 6.5. Correspondingly, we observed a significant
reduction in the number of messages through the crossbar – 61% and 52% for single process
and multi-programmed benchmarks, respectively.
Cobra – The two techniques combined contribute an overall performance boost of 79% over
a baseline distributed design (see Figures 6.4 and 6.5). When compared to a CMP system,
the performance of Cobra falls short by only 21% – a small incidence when considering the
benefits in reliability and flexibility.

141

0.00

0.25

0.50

0.75

1.00

as
ta
r

bw
av
es

bz
ip
2

ca
ct
us
A
D
M

de
al
II

G
em

sF
D
T
D

h2
64

re
f

hm
m
er

lb
m

le
sl
ie
3d

lib
qu
an

tu
m

m
cf

m
ilc

na
m
d

om
ne
tp
p

po
vr
ay

sp
ec
ra
nd

_f

sp
ec
ra
nd

_i

A
ve
ra
ge

Multiprogrammed

N
o
rm

al
iz
ed
 IP

C

Baseline (Viper) Localized HW configurations (Section III)

HW configuration transferring (Section IV) Cobra (Sections III+IV)

Figure 6.5 Contribution of Cobra’s performance features to overall IPC for a 4-threaded
system. IPC is normalized to that of a similarly-sized CMP.

60

80

100

120

140

160

as
ta
r

bw
av
es

bz
ip
2

ca
ct
us
A
D
M

ca
lc
ul
ix

de
al
II

ga
m
es
s

gc
c

gr
om

ac
s

h2
64

re
f

hm
m
er

lb
m

le
sl
ie
3d

lib
qu
an

tu
m

m
cf

m
ilc

na
m
d

om
ne
tp
p

po
vr
ay

so
pl
ex

sp
ec
ra
nd

_f
sp
ec
ra
nd

_i
sp
hi
nx
3

w
rf

xa
la
nc
bm

k

A
ve
ra
ge

N
o

rm
al

iz
ed

 H
K

I[
%

] Icache Dcache

Figure 6.6 Cache hit improvement – normalized hits per thousand instructions (HKI) – due
to Cobra’s solution for memory accesses. Results for both data and instruction caches over the
multiprogrammed workloads.

We also evaluated the ability of Cobra to boost memory access performance: Figure 6.6
plots the improvement in cache hits per thousands instructions (HKI), relatively to the
unoptimized distributed system. Note that data caches are affected by only a minimal
performance difference, since both Cobra and Viper map one cache per process to maintain
correct execution. In contrast, the instruction caches greatly benefit from Cobra’s approach,
since they can attain much better utilization: the multiprogrammed workloads experience an
average of 16% more cache hits.

Next, we performed a sensitivity study that correlates the number of the BSUs with the
performance of the machine. This experiment has been performed on a single, very CPU-
intense synthetic benchmark (overall branch predictor accuracy is 83%). The maximum
bundle size is set to 16 instructions, and the large majority of the bundles (43%) contain
14 instructions. Only one process is executed on this machine. We swept the number of

142

BSUs available in the system from 2 entries (the minimum required for a process to make
forward progress) to 128. Since performance improves only marginally for configurations
containing more than 16 BSU entries, Figure 6.7 does not report them.

0

0.5

1

1.5

2 4 6 8 10 12 14 16

R
e
la

ti
v
e
 r

u
n

ti
m

e

Number of BSUs

Cobra

Viper

Figure 6.7 Cache hit improvement – normalized hits per thousand instructions (HKI) – due
to Cobra’s solution for memory accesses. Results for both data and instruction caches over the
multiprogrammed workloads.

We report performance as the ratio between the runtime of each configuration and the
baseline – the best Viper configuration, containing 128 BSUs, is used as the baseline. The
closer the ratio is to 1, the better that configuration performs. As shown in Figure 6.7, what
is important for the system is to have enough BSUs to keep as many hardware modules
occupied as possible (this design contains 4 copies of 5 different types of hardware mod-
ules). Once the process maximizes its hardware utilization, there is very little advantage
in increasing the number of BSUs. This threshold is 8 BSUs for Cobra and 10 for Viper.
This difference is due to the fact that Viper can use multiple virtual pipelines to execute
the same program (so it needs more BSUs to maintain runtime information about the bun-
dles in flight), while Cobra cannot (execution is serialized by the hardware configuration
transferring mechanism). This is also the reason Viper performs better than Cobra on
single-threaded benchmarks – in our experiments we measured an improvement of 15.8%.
Finally, note that Viper performs slightly worse than Cobra for smaller numbers of BSUs (2,
4, and 6). This is mainly because this system cannot parallelize benchmark execution, and
cannot take advantage of localized virtual pipelines (this problem significantly worsens on
multi-programmed workloads).

6.6.5 Reliability

The next set of results evaluate Cobra’s reliability and measures the effects of hardware
failures on its performance. For these experiments we only considered the multiprogrammed
SPEC2006 benchmarks and injected faults at the beginning of each simulation. Since our
reliability-boosting techniques are unaffected by the scale of the system, we only provide

143

results for 4-threaded systems and workloads.
Survivability – We first report our survivability, in terms of probability that a system can
still execute all the instructions in its ISA, over a range of permanent hardware failures.
In Figure 6.8, we plot our findings for both Cobra and the CMP design. After 7 faults,
the probability of not being able to execute all instructions for the CMP design is 0.5 –
correspondingly Cobra reaches this same level of exposure at 20 faults – one permanent
fault per 5 million transistors.

0

0.25

0.5

0.75

1

0 5 10 15 20 25 30 35 40 45 50P
ro

b
ab

ili
ty

 o
f

fu
ll

IS
A

co

m
p

at
ib

ili
ty

Number of faults

Cobra

CMP

Figure 6.8 Survivability of Cobra vs. CMP. Probability that the system can execute all ISA
instructions in the face of increasing faults.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
o
rm

al
iz
ed

 IP
C

Number of faults

Max

Average

Min

Figure 6.9 Cobra’s performance degradation in presence of failures, averaged over 24
SPEC2006 benchmarks. Results are normalized to a fault-free Cobra solution. The throughput
increase reported in the Max curve shows that small perturbations to a distributed architecture may
occasionally enhance our resource assignment algorithm.

Performance in presence of faults – We also measured the performance degradation of
our system when subjected to permanent failures as reported in Figure 6.9. For this study we
only considered faulty systems that can still execute all ISA instructions, and we averaged
our results over all SPEC2006 benchmarks, running 20 distinct simulations per benchmark
to gain statistical confidence.

It can be noted that Cobra’s average throughput degrades gracefully with increasing
faults, roughly halving at 15 faults. Figure 6.9 reports max and min relative IPC, in addition
to the average overall all 20 runs for the 24 benchmarks. We observed that injecting a
moderate number of faults (between 1 and 5) can occasionally lead to a performance boost

144

0
0.2
0.4
0.6
0.8

1

as
ta

r

bw
av

es

bz
ip

2

ca
ct

us
A

D
M

de
al

II

gc
c

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er

le
sl

ie
3d

lib
qu

an
tu

m

m
cf

m
ilc

na
m

d

om
ne

tp
p

po
vr

ay

sj
en

g

so
pl

ex

sp
ec

ra
nd

_f

sp
ec

ra
nd

_i

sp
hi

nx
3

w
rf

xa
la

nc
bm

k

M
ul

tip
ro

gr
am

m
ed

S
in

gl
e

pr
oc

es
s

Multiprogrammed benchmarks Average

N
o

rm
al

iz
ed

 IP
C

Cobra - full redundancy Cobra - selective redundancy Cobra - periodic test

no active fault detection mechanism

Figure 6.10 Performance cost of the three fault detection mechanisms for Cobra. IPC is nor-
malized to a Cobra system with no active fault-detection mechanism. Note that the periodic test
technique cannot actively protect against transient faults.

(as it can be noted from the max line in Figure 6.9). This is due to the fact that our resource
assignment algorithm is based on algorithms that search for a local optimum. Thus, small
variations in the available resources may lead to a better-performing solution.

Finally, Figure 6.11 compares Cobra’s performance against that of a CMP design in
presence of faults. Values are reported relative to the performance of a single fault-free
OoO core, and the graph compares performance for area-neutral designs. The CMP design
considered in these experiments is not affected by the interactions between the different
cores; thus, in its fault-free state, its performance is 4 times that of the reference OoO core.
The curves reporting Cobra’s performance are obtained by disabling faulty components at
the hardware unit or service granularity (see Table 6.2 for a list of units and services). Note
that under fault-free conditions, Cobra is outperformed by the CMP by more than a factor
of 2, due to the overhead of setting up and managing the dynamic hardware configurations.
However, as faults increase, the margin of benefit is reduced quickly with Cobra provid-
ing better performance after only 4 faults – corresponding roughly to 1 fault every 20M
transistors.

Note that our performance evaluation of Cobra is fairly conservative, as we omitted a
number of optimizations for single-threaded workloads as discussed in Section 5.6.2.

Online Fault Detection

Lastly, we evaluate the performance impact of deploying online fault detection mechanisms
in Cobra. Table 6.3 compares fault coverage and performance impact of the techniques
discussed in Section 6.5. Figure 6.10 compares the performance cost of each of the fault
detection mechanisms relatively to a Cobra solution with no active fault detection. Note

145

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
o
rm

al
iz

ed
 IP

C

Number of Faults

Cobra - HW unit disabling-granularity

Cobra - service disabling-granularity

CMP

Figure 6.11 Cobra’s performance degradation in presence of failures vs. a CMP. When mea-
suring area-neutral throughput, Cobra outperforms the CMP beyond 4 faults.

how the full redundancy approach experiences the highest performance costs of 26% for
single-process benchmarks and 61% for multiprogrammed ones. The reason for the smaller
impact on single-process programs lies in the multiplicity of hardware units available that
can be used to hide the additional computation required. Note that on multi-process bench-
marks the cost is even above 50% – what one would expect when Cobra uses twice as many
resources per bundle to implement dual redundancy: this is due to overhead in checking
redundant results and resource overbooking.

The performance cost of selective redundancy is less steep: 19% and 26% for single-
and multi- process benchmarks, respectively. For this solution we protected with dual
redundancy only bundles including FPU and SIMD operations and mult/div instructions.
The three outliers presenting a performance improvement are explained in a similar way
to Figure 6.11: occasionally a small perturbation on available resources may lead to better
local optima configurations.

Finally, the performance impact of periodic testing is only 3%. We implemented this
solution by performing a periodic self-test of all hardware units (not yet known to be faulty)
every 20M instructions – a typical interval for processor self-tests [41, 142]. The perfor-
mance we measured is much better than that of similar approaches in pipelined architectures
(we reported 16% in our experiments in Chapter 3). Such limited impact is due to the fact
that in Cobra it is straightforward to take a unit off-line temporarily for testing purposes,
without affecting execution on the rest of the system.

146

Mechanism Detection Latency Fault Coverage Overhead
Permanent Transient CMP Cobra

Full redundancy ≤ 100 cycles 100% 100% 50% 61%
Selective redundancy ≤ 10M cycles 100%[130] 98%[80] 10% 26%
Online testing ≤ 20M cycles 95.5%[142] N/A 8% 3%

Table 6.3 Summary of the characteristics of the three fault detection mechanisms considered. We
compare Cobra against an ideal CMP on fault detection latency, fault coverage and performance
overhead.

Cluster

Service 1A

(S1A)

Crossbar

(C)

BIST

Cluster

Service 2A

(S2A)

BIST

Cluster

Service 1B

(S1B) BIST

Cluster

Service 1A

(S2B)

BIST

Sched.

Unit A

(SUA)

Sched.

Unit B

(SUB)

NI1 NI2

NI3 NI4

Figure 6.12 Example of Cobra configuration which partitions the ISA in two services. This
model contains two copies of each service provider and two scheduling units. The control intercon-
nect, which is needed to establish the hardware configurations, is shown in green, while the data
interconnect, used to transmit instructions and operands, is shown in blue.

6.6.6 Reliability Analysis

In this section we study the reliability bottlenecks of Cobra, and evaluate which of its compo-
nents must be strengthened in order to obtain a single-point-of-failure free system. With this
goal, we rely upon a deductive failure analysis in which component failures are combined
using Boolean logic. This methodology, called fault-tree analysis (FTA), is commonly
adopted by reliability engineers to determine how single component failures propagate to
trigger critical problems at the system level [104].

In order to study our design from a general point of view, we analyze a model of a
simple, yet complete, Cobra architecture that provides two type of services to the instructions
executing on the system. For the sake of simplicity, we call these services “1” and “2”,
respectively. We show the system used in our case study in Figure 6.12. In this example,
two hardware components can execute each service, and two scheduling units are available
to synchronize and control program execution. Components exchange information through

147

two communication subsystems: the control interconnect, shown in green in Figure 6.12,
and the data interconnect, shown in blue.

We start by analyzing the events that would prevent our system from executing a pro-
gram that relies on both services. We recognize that four distinct events could, separately,
cause this critical failure: the disconnection of the control interconnect, the unavailability
of at least one type of service provider, the unavailability of both scheduling units, and the
disconnection of the data interconnect. To assess the low-level causes of these events, the
remainder of this section analyzes each of them in more detail. We also report a graphic
representation of our analysis in Figure 6.13. In this study we first assume that every fault is
known a priori, and that a hardware component deemed faulty is disabled and will no longer
provide any information about its state and availability to the rest of the system. Although
we initially do not consider cases where an undetected byzantine fault silently corrupts
system state and/or produces incorrect output, we discuss this scenario for the components
that may be affected by these subtle failures.

148

Control

interconnect

disconnected

Service not

available

Scheduling units

not available

Data

interconnect

disconnected

System cannot

execute a

program

Crossbar failsLinks fail

C

No link to reach

Service 1
No link to reach

Service 2

No link to reach a

scheduling unit

S1A – C S1B – C S2A – C S2B – C SUA – C SUB – C

Service 1 not

available
Service 2 not

available

S1A fails S1B fails S2A fails S2B fails

SUA fails SUB fails

NI1

NI1 fails

NI2

NI2 fails

NI3

NI3 fails

NI4

NI4 fails

SUA SUB

S1A S1B S2A S2B

Service 1

disconnected

Service 2

disconnected

Figure 6.13 Fault tree analysis of the simple Cobra configuration adopted in our reliability study. We used a top-down methodology to assess
how individual component failures affect the behavior of the entire architecture.

149

Disconnection of the Control Interconnect

All service providers and scheduling units are connected through a crossbar. In a fault-free
system, each component can interact freely with any other one. The disconnection of the
control interconnect prevents components from interacting with each other to establish a
hardware configurations that can execute an instruction bundle. Two distinct cases could
trigger this scenario:

1. all links connecting a type of service provider or the scheduling units fail;

2. the crossbar fails.

Since service providers and scheduling units are redundant, the first case can occur only
when multiple failures affect all the links connecting the redundant copies of a hardware
module (service 1, service 2, or the scheduling units). The second case requires more
attention, since a single failure in the crossbar could endanger the functionality of the entire
control interconnect, hence hindering Cobra’s ability to execute any instruction bundle. With
the goal of acquiring a better understanding of the reliability limitations of this compo-
nent, we studied Vicis, a recent solution for reliable network-on-chips that can maintain
performance even in the face of numerous hardware failures [55]. We are interested in
the two techniques developed by Vicis to protect the crossbar from failing when subjected
to permanent failures: i) the crossbar bypass bus and ii) error correcting codes. The first
technique consists of an ancillary bus, parallel to the crossbar, which allows network packets
to bypass a faulty crossbar and reach their destination. This solution provides a second,
slower medium for the control interconnect, effectively trading off performance to maintain
correct operation in case of hardware failures in the crossbar. The latter solution, reliance
upon error correcting codes, allows crossbar datapath components to sustain a number of
hardware faults without corrupting in-flight packets. Empirical evidence demonstrated that
the combination of these two solutions protects a crossbar from single failures and enables a
router to maintain performance even when it is subjected to a significant number of hardware
defects [55]. Finally, users that can afford larger area budgets could replicate the entire
crossbar, thus avoiding performance penalties in case of hardware failures.

Unavailability of Hardware Services

From Cobra’s perspective, an ISA consists of the union of the services required by all its
instructions. In our design, a program is always able to successfully execute as long as
the working hardware clusters can, in aggregate, perform all the services required by the

150

program’s instructions. Therefore, a scenario that could prevent our design from executing
a program is the unavailability of all providers of a determined type of service. In our
case-study, this is possible when two or more failures affect both S1A and S1B or both S2A
and S2B, and neither case would be possible due to a single hardware failure.

Nevertheless, service providers are very complex hardware components, and we have
already shown in Chapter 3 that undetected hardware failures may silently corrupt the
output of a hardware module. In our previous experiments we assumed that 100% of the
faults manifesting at runtime can be detected through testing techniques orthogonal to our
architecture [41, 110]. Still, it is possible that faults may also occur in the self-test logic
embedded in every hardware module – this is an issue that all fault-tolerant designs must
face. Since the self-testing units are local to each component in Cobra, in our experiments
we assumed that a fault in this logic would cause the corresponding component to be marked
as non-testable and therefore diagnosed as faulty. However, it is important to consider the
scenario when hardware defects might also affect the self-test logic. Four cases are possible
in this circumstance:

1. the service provider is not faulty but its broken self-test circuitry diagnoses it as so;

2. the service provider is not faulty and its broken self-test circuitry diagnoses it as
non-faulty;

3. the service provider is faulty and its broken self-test diagnoses it as so;

4. the service provider is faulty but its broken self-test diagnoses it as non-faulty.

In the first case, the fault in the self-test circuitry is effectively reported as a fault in
the service provider, therefore causing the entire unit to shut down. While, practically, the
hardware unit is still functional, it is conservatively disabled due to its faulty self-test logic
– our previous experiments modeled this scenario. Cases two and three do not alter the
normal behavior of the system, since the diagnostic results provided by the self-test logic
are accurate. The fourth case is the most interesting: even though the service provider is
faulty, its fault is masked by the crippled self-test circuitry. This case can only occur when
we consider that multiple failures may be present in the system, and the only way to avoid
this occurrence is to strengthen the self-test circuitry. Because our solution relies heavily
on these self-test mechanisms, it is important to discuss how to ensure the integrity of the
self-test logic. All manufacturing defects present in self-test units can be diagnosed after
fabrication. Built-in-self-test units are power-gated during normal operations to protect them
from wear out. Therefore, since the self-test logic is used much more infrequently than

151

other hardware modules, the occurrence of runtime failures is unlikely [55]. Nevertheless,
users concerned about these failures can protect the relatively small self-test logic through
traditional reliability mechanisms such as dual-modular redundancy [143].

Unavailability of Scheduling Units

Scheduling units allow Cobra components to generate hardware configurations that can exe-
cute instruction bundles. Each scheduling unit is composed of two components: i) an array
of memory elements and ii) sequential logic to assign and schedule hardware components to
in-flight instruction bundles.

The memory elements consist of an array of entries, each of which can store data
necessary to manage the execution of an instruction bundle: the list of services required,
hardware configurations, operand tags, program counters, and other relevant information.
These entries are redundant and their memory elements are protected from hardware failures
through ECC.

Scheduling units also contain a modest amount of logic to match component proposals
with program demands, and initiate or respond to these communications. The hardware
required to accomplish these tasks is rather simple, since it consists of decoding logic, bit
masks, and counters that trigger an ordered sequence of events. Therefore, this circuitry can
be effectively protected through dual or triple module-redundancy [147].

Disconnection of the Data Interconnect

Lastly, there is also the possibility that service providers may not communicate with each
other due to failures in the data interconnect. This could be fatal when none of the providers
of a needed service can receive or transmit instructions or operands to the others. In our
case study, this happens when two distinct failures partition the system horizontally, either
breaking both NI1 and NI2, thus disconnecting both service 1 providers, or because both
NI3 and NI4 fail, disconnecting all service 2 providers.

It is worth noting that the interface connecting a service provider might experience
failures that do not completely hinder its functionality, but only sporadically corrupt its
correct operation. Previous works analyzed this type of failures, and proposed to overcome
these scenario through: i) the exploitation of the natural redundant storage available; ii)
replication of the few most sensitive parts of the interface [57]. Beyond avoiding such
byzantine failures, these techniques would also enable a network interface to survive a
number of permanent faults, therefore extending its lifetime.

152

It is worth noting that larger Cobra configurations may require higher connectivity to
increase the total bandwidth available to the service providers. In this case, multiple network
interfaces would be connected through routers to form a full-fledged network-on-chip. In
such design, each provider would be paired with a network interface and a switch, and both
these components could be enhanced with the reliability features detailed above [55, 57].

Reliability Analysis Summary

In summary, this section presented a reliability analysis of our architecture and studied which
component failures may prevent the system from executing a program. We recognize that
the only critical component in the system is the crossbar connecting all components to form
the control interconnect, since a single fault in its logic could jeopardize the functioning
of the entire machine. Hence, we proposed two solutions that can strengthen its logic and
protect it from hardware failures. While all other components can be made redundant and
therefore expendable, we also analyzed all possible events triggered by defective self-test
circuitry and proposed mechanisms to overcome them.

6.7 Summary

In this Chapter we presented Cobra, a holistic, reliable, adaptable distributed-control archi-
tecture that brings together all the solutions discussed in this dissertation. Furthermore, we
also demonstrated that this comprehensive design can greatly enhance a system’s reliability
and adaptability, without jeopardizing fault-free performance. We also studied the reliability
of our new architecture, and discussed solutions that can protect its critical components from
hardware failures.

Our design enables the distributed architecture developed in this dissertation to take
advantage of the low-cost fault detection mechanisms presented in Chapter 3. In addition,
Cobra proposes a novel memory organization and relies on the algorithm developed in Car-
dio in Chapter 4 to maintain adaptability without hindering instruction execution runtime. As
a result, Cobra not only provides high system dependability and adaptability, but also greatly
boosts the performance of distributed-control architectures when running multiprogrammed
workloads. By analyzing Cobra’s reliability, we found that it outperforms a traditional
CMP design beyond the occurrence of 4 faults – corresponding roughly to 1 fault per 20M
transistors in our setup, and that the performance cost of online fault detection is only 3%.
We also systematically analyzed the reliability bottlenecks of our design, and proposed

153

solutions to strengthen the components that, if faulty, may endanger system functionality.

154

Chapter 7

Conclusions

This dissertation presented a number of solutions to build adaptive and distributed archi-
tectures that can address the challenges facing future generations of computer systems.
Transistor features are rapidly shifting. Future silicon manufacturing processes are expected
to integrate a massive number of tiny and, unfortunately, fragile switching devices. While
these new technologies could enable higher performance and lower energy consumption,
current microprocessor designs cannot take advantage of them. Indeed, current technological
trends have already indicated three new barriers that will limit advancements of current
computer architectures: i) increasing fragility of their switching elements, ii) challenges
associated with managing the heterogeneous components necessary for efficient computing,
and iii) lack of design modularity.

Due to the scenario imposed by these three constraints, current architectures and design
methodologies are no longer adequate. This creates the compelling demand for novel
computer architectures capable of tackling these challenges. With these goals, this research
has proposed various solutions that address these impending issues by promoting reliability,
adaptability, and modularity as principal design foci. The previous chapters presented and
analyzed a number of solutions that overcome these challenges, enabling future computers
to provide more reliable performance and unlocking opportunities to increase computational
efficiency.

7.1 An Adaptive, Reliable, and Distributed Architecture

The objective of this thesis is to develop novel architectures designed to overcome all three
challenges imposed by future semiconductor technologies. Chapter 3 addresses the increas-
ing need for fault-tolerant computing with an original adaptive mechanism to diagnose
hardware failures in processor components. Our solution, called A2Testing, was driven by
the insights obtained through analysis of the fault injections performed with CrashTest. We

155

injected thousands of hardware failures into an industrial-grade microprocessor running
unmodified software applications. Such experiments revealed that a large portion of hard-
ware faults do not alter software execution, especially when applications do not directly
exercise crippled hardware components. In light of this observation, we developed an
adaptive framework that optimizes testing routines and improves hardware testing efficiency
by monitoring hardware utilization and focusing testing efforts on the components that, if
faulty, are more likely to have corrupted a software application.

Chapter 4 focuses on providing mechanisms to achieve adaptability and to solve the
challenges related to managing the heterogeneous components necessary for efficient com-
puting. We first study the advantages provided by specialized hardware through a practical
case-study that targets hardware specialized to execute computer vision algorithms. Our
experiments show that hardware specialization can improve processor efficiency up to 27
times compared to a baseline embedded processor. While specialized hardware can greatly
improve hardware performance and reduce power consumption, a system must only dy-
namically activate specialized components when needed. With the goal of providing this
capability, we developed Cardio. This software-based self-introspective mechanism relies
on message broadcasting to quickly reconfigure a chip to match software demands and
system requirements. While Cardio’s response time is very limited, only a few thousand
cycles per event, we also demonstrate that it scales well and affects performance for as little
as 3.5%.

The third and last pillar of this dissertation is the modular architecture presented in
Chapter 5: Viper. Modularity is a system property that allows a design to scale in size and
performance while maintaining flexibility and reconfigurability. Viper is a fully distributed
microarchitecture that breaks apart the classic concept of a hard-wired pipeline, dissolving
instead the processors components into a sea of redundant hardware clusters. These units,
which are connected via an on-chip network, are dynamically grouped into virtual pipelines
capable of executing instructions. Virtual pipelines are generated to match the execution
needs of the upcoming instructions through a distributed control mechanism that requires no
software changes.

Finally, Chapter 6 completes this research with the presentation of Cobra, the holistic
design that coheres all the contributions presented in this thesis. Similarly to Viper, Cobra
organizes hardware components into a reconfigurable fabric of small, state-less units. This
design targets highly parallel workloads and promotes reliability, adaptability, and modu-
larity as top-priority design foci. Cobra relies on A2Testing to tolerate a large number of
defects and its performance gracefully degrades as faults accumulate in its hardware. Finally,
we rely on Cardio to manage dynamic hardware reconfiguration. While Chapter 4 presented

156

a software-based technique for adaptive computing, Cobra deploys this protocol in hardware.
In our experiments we show that this system provides reliable and flexible computing with
very low overhead. Before exploring possible future extensions of our work, we briefly
detail the individual contributions of this thesis.

7.1.1 Reliability

Unmanaged hardware failures are extremely dangerous for computer users. On current
systems, these events sporadically cause system crashes or corrupt program output. While
reliability is only a secondary requirement for most computers, technology experts warn
that it will soon become a primary concern due to the degradation in transistor robustness
foreseen in future technology nodes. This thesis proposes a novel low-cost mechanism to
diagnose hardware failures that is based on the periodic assessment of the health of each
component.

In order to understand the limitations of current microprocessors, this dissertation first
investigates the repercussions of hardware failures on modern industrial-grade designs. Prior
methodologies for fault analysis could not be employed for this investigation since they are
either detailed but slow or fast but inaccurate. In order to obtain an infrastructure that could
perform accurate fault analysis without compromising performance, we developed a com-
plete, customizable FPGA-based framework: CrashTest. In our evaluation we measured
that such infrastructure can perform reliability analysis six orders of magnitude faster than
software-based fault injectors. Combining the accuracy and the performance offered by this
system enabled us to analyze the behavior of a complex microprocessor design, such as the
Sun OpenSPARC T1, when it is subjected to hardware failures.

These analyses have shed light on the effects of software applications executing on
faulty hardware. First, we observed that programs rarely stress all hardware uniformly, and
microprocessor’s utilization varies even within the execution of one application. Second, we
noticed that program execution is often divided in phases, each of which typically relies on
only a few hardware components. These observations led to the development of a low-cost
adaptive reliability technique, called A2Testing, which leverages application behavior to
tune runtime self-tests and achieve higher efficiency and better protection against hardware
failures. Periodic hardware tests are organized per functional module, and the activity of
each module is monitored through counters. These counters are then used to selectively
activate self-tests only on the hardware features that the software exercised.

157

7.1.2 Adaptability

We propose hardware adaptability as the solution to allocate resources and reconfigure the
system to work around hardware failures. Dynamic resource allocation is a fundamental
challenge imposed by the new design methodology intended to tackle the dark silicon era.
Since general purpose processors are inherently inefficient, a number of researchers have
advocated the deployment of hardware accelerators specialized in speeding up particular
software functions. The main challenge in the adoption of this execution paradigm is the
dynamic management of these various hardware components. In order to save power, only
those needed to complete the current applications should be activated. Adaptability can also
improve reliability, since faulty hardware modules can be turned off so the rest of the system
can work around them. In this thesis we envision future computer architectures as dynamic
machines that can conform their operations to changing program demands, environmental
characteristics, and hardware availability.

In order to provide this characteristic, this thesis presented Cardio, a software-based so-
lution that automatically manages computer resources. All components in a Cardio-enabled
chip dynamically exchange information about their condition and utilization. These diagnos-
tic messages are collected by a distributed resource manager, which reconfigures the design
to match hardware functionalities and application needs without relying on a centralized
controller. In this dissertation we show that the reactivity of this design in responding to
changes is as low as 20,000 cycles, and we measure its performance impact to be as low as
3.5%.

7.1.3 Modularity

All modern state-of-the-art processor designs are characterized by extremely high non-
recurring engineering costs. As future semiconductor technologies are expected to increase
component integration even further, this problem can only worsen. The two design char-
acteristics that have the largest impact on the overall engineering effort are: i) the tight
interconnection between hardware components and ii) the extensive control logic needed to
synchronize and manage the interaction among a processor’s modules. To reduce both these
costs, our research developed a microarchitectural solution that promotes simplicity through
modularity as a key design guideline.

Viper is our solution to overcome this issue. Modular systems can be designed faster
than non-modular ones because engineers are able to focus their attention on developing
and testing individual components. Our solution organizes hardware modules into a recon-

158

figurable fabric of small, state-less units. Each module can accomplish one or more services
towards the execution of a portion of a program. Such a design greatly simplifies hardware
organization, since each component is autonomous and the number of available service
providers does not affect the operations of the rest of the system.

The original execution model of the modular design developed here constitutes the
backbone of our complete final adaptive and distributed architecture, Cobra. This final
design targets highly parallel workloads and integrates all the contributions of this thesis
into a comprehensive distributed architecture. A design such as this enables unprecedented
robustness and adaptability, as demonstrated in this dissertation. Hence, it has the oppor-
tunity to reduce overall engineering cost, extend system lifetime, and leverage specialized
functional units to increase computational efficiency.

7.2 Future Research Directions

The novel distributed execution paradigm explored in this thesis opens new frontiers for
research in computer architecture. There are a number of new and stimulating research
topics that can stem from this research:

What is the best dynamic configuration granularity for a distributed architecture?

Our novel way to approach computer architectures enables unmatched flexibility in terms of
runtime hardware adaptability. This execution model supports components of any size and
with any capability, and offers very short reconfiguration times. Hence, such architecture
can benefit a large range of applications and design constraints. Given all the possible
design choices laid out by our distributed execution model, we believe that architects will
find a plethora of applications and systems that can take advantages of these distributed
architectures.

Which characteristics of a distributed architecture can be exposed to software devel-
opers?

In our research we did not change how programs perceive the underlying hardware, therefore
allowing unmodified legacy software to run on our architecture. Nevertheless, distributed
architectures introduce some interesting features that could be presented to software pro-
grammers. For instance, the fabric connecting the different hardware units can be exploited

159

to enable fast low-cost inter-thread communication. Another example of a semantic change
of programs that is worth investigating is the relaxation of the strict sequentiality of memory
operations in order to enhance hardware efficiency and improve instruction parallelism.
These are just two examples of how the interface between software and a distributed ar-
chitecture can be relaxed to decrease power consumption, increase performance, or limit
hardware complexity.

What are the best ways to achieve high performance on a distributed architecture?

Even though our research presents several solutions to improve the proposed design, deeper
analyses on distributed architectures are needed to identify more opportunities and better
optimize performance and efficiency. A multitude of hardware resource assignment poli-
cies can be developed for this purpose, and one example of tradeoff worth investigating is
between fairness and performance.

7.3 Summary

This dissertation has presented a number of solutions to build adaptable and distributed
computer architectures that can address the three obstacles that undermine the adoption
of future semiconductor technologies: increasing transistor fragility, challenges connected
to the management of heterogeneous components, and lack of design modularity. In this
work we have shown that these designs are effective in providing reliability, adaptability,
and modularity to a hardware system. Beyond these already significant achievements, our
architectures offer a revolutionary opportunity to rethink computer organization in broader
terms, offering further advantages that can extend far beyond the ones presented in this
dissertation.

160

Bibliography

[1] E. Ackerman. Google gets in your face. IEEE Spectrum, 2013.
http://spectrum.ieee.org/consumer-electronics/gadgets/
google-gets-in-your-face.

[2] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock rate versus IPC: the
end of the road for conventional microarchitectures. In International Symposium on
Computer Architecture, jun. 2000.

[3] A. Alaghi, N. Karimi, M. Sedghi, and Z. Navabi. Online NoC switch fault detection
and diagnosis using a high level fault model. In International Symposium on Defect
and Fault Tolerance, sep. 2007.

[4] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and S.-L. Lu. Energy-
efficient cache design using variable-strength error-correcting codes. In International
Symposium on Computer Architecture, jun. 2011.

[5] Amazon Web Services Discussion Forums. Intermittent internal connectivity failures.
World Wide Web, 2008. http://developer.amazonwebservices.com/
connect/thread.jspa?threadID=21401&tstart=15.

[6] A. Ansari, S. Feng, S. Gupta, and S. Mahlke. Necromancer: enhancing system
throughput by animating dead cores. In International Symposium on Computer
Architecture, jun. 2010.

[7] Arvind and D. Culler. Dataflow architectures. Annual Review of Computer Science,
1(1):225–253, jun. 1986.

[8] A. Baghdadi, D. Lyonnard, N.-E. Zergainoh, and A. Jerraya. An efficient architecture
model for systematic design of application-specific multiprocessor SoC. In Design
Automation and Test in Europe, mar. 2001.

[9] P. Balaji, W. Mahmoud, E. Ososanya, and K. Thangarajan. Survey of the counterflow
pipeline processor architectures. In Proceedings of the Southeastern Symposium on
System Theory, mar. 2002.

[10] C. Baldwin and K. Clark. Design Rules, volume 1 of MIT Press Books. The MIT
Press, aug. 2000.

161

http://spectrum.ieee.org/consumer-electronics/gadgets/google-gets-in-your-face
http://spectrum.ieee.org/consumer-electronics/gadgets/google-gets-in-your-face
http://developer.amazonwebservices.com/connect/thread.jspa?threadID=21401&tstart=15
http://developer.amazonwebservices.com/connect/thread.jspa?threadID=21401&tstart=15

[11] C. Barnes, D. Fleetwood, D. Shaw, and P. Winokur. Post irradiation effects (PIE) in
integrated circuits [MOS]. In European Conference on Radiation and its Effects on
Devices and Systems, sep. 1991.

[12] W. Bartlett and L. Spainhower. Commerical fault tolerance: a tale of two systems.
IEEE Trans. on Dependable and Secure Computing, 1, jan.-mar. 2004.

[13] M. Bass and C. Christensen. The future of the microprocessor business. Spectrum,
IEEE, 39(4):34 –39, apr. 2002.

[14] R. Baumann. The impact of technology scaling on soft error rate performance and
limits to the efficacy of error correction. In International Electron Devices Meeting,
dec. 2002.

[15] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W. Anderson,
E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. TILE64
- processor: a 64-core SoC with mesh interconnect. In International Solid-State
Circuits Conference, feb. 2008.

[16] A. Benso, A. Bosio, P. Prinetto, and A. Savino. An on-line software-based self-test
framework for microprocessor cores. In International Conference on Design and Test
of Integrated Systems in Nanoscale Technology, sep. 2006.

[17] B. Bentley. Validating the Intel Pentium 4 microprocessor. In Design Automation
Conference, jun. 2001.

[18] B. Bentley. Validating a modern microprocessor. In International Conference on
Computer Aided Verification, jul. 2005.

[19] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. Hill,
and D. Wood. The gem5 simulator. SIGARCH Computer Architecture News, 39(2):1–
7, aug. 2011.

[20] N. Binkert, A. Davis, N. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and
J. Ahn. Optical high radix switch design. IEEE Micro, 32(3):100–109, may 2012.

[21] S. Borkar. Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation. IEEE Micro, 25(6):10–16, nov.-dec. 2005.

[22] S. Borkar. Thousand core chips: a technology perspective. In Design Automation
Conference, jun. 2007.

[23] S. Borkar and A. Chien. The future of microprocessors. Communications of the ACM,
54(5):67–77, apr. 2011.

[24] S. Borkar, N. Jouppi, and P. Stenstrom. Microprocessors in the era of terascale
integration. In Design Automation and Test in Europe, mar. 2007.

162

[25] P. Bose, D. Albonesi, and D. Marculescu. Guest editors introduction: power and
complexity aware design. IEEE Micro, 23(5):8–11, sep.-oct. 2003.

[26] F. Bower, P. Shealy, S. Ozev, and D. Sorin. Tolerating hard faults in microprocessor
array structures. In International Conference on Dependable Systems and Networks,
jun. 2004.

[27] D. Burger, S. Keckler, K. McKinley, M. Dahlin, L. John, C. Lin, C. Moore, J. Burrill,
R. McDonald, W. Yoder, and the TRIPS Team. Scaling to the end of silicon with
EDGE architectures. IEEE Computer, 37(7):44–55, jul. 2004.

[28] M. Bushnell and V. Agarwal. Essentials of Electronic Testing for Digital Memory
and Mixed-Signal VLSI Circuits. Springer, 2000.

[29] A. Chang and W. Dally. Explaining the gap between ASIC and custom power: a
custom perspective. In Design Automation Conference, jun. 2005.

[30] L. Chen and T. Pinkston. NoRD: node-router decoupling for effective power-gating
of on-chip routers. In International Symposium on Microarchitecture, dec. 2012.

[31] L. Chen, S. Ravi, A. Raghunathan, and S. Dey. A scalable software-based self-test
methodology for programmable processors. In Design Automation Conference, jun.
2003.

[32] X. Chen, Y. Yang, G. Gopalakrishnan, and C.-T. Chou. Reducing verification com-
plexity of a multicore coherence protocol using assume/guarantee. In Proceedings of
the Formal Methods in Computer Aided Design, nov. 2006.

[33] Y.-K. Chen. Challenges and opportunities of Internet of things. In Asia and South
Pacific Design Automation Conference, feb. 2012.

[34] G. Chrysos. Knights Corner, Intel’s first many integrated core (MIC) architecture
product. In Hot Chips, aug. 2012.

[35] J. Clemons, A. Jones, R. Perricone, S. Savarese, and T. Austin. EFFEX: an embed-
ded processor for computer vision based feature extraction. In Design Automation
Conference, jun. 2011.

[36] J. Clemons, A. Pellegrini, S. Savarese, and T. Austin. EVA: an efficient vision archi-
tecture for mobile systems. In International Conference on Compilers Architectures
and Synthesis for Embedded Systems, oct. 2013.

[37] J. Clemons, H. Zhu, S. Savarese, and T. Austin. MEVBench: a mobile computer vi-
sion benchmarking suite. In International Symposium on Workload Characterization,
nov. 2011.

[38] K. Compton and S. Hauck. Reconfigurable computing: a survey of systems and
software. ACM Computing Surveys, 34(2):171–210, jun. 2002.

163

[39] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman. Architecture support
for accelerator-rich CMPs. In Design Automation Conference, jun. 2012.

[40] K. Constantinides, J. Blome, S. Plaza, B. Zhang, V. Bertacco, S. Mahlke, T. Austin,
and M. Orshansky. BulletProof: a defect-tolerant CMP switch architecture. In
International Symposium on High-Performance Computer Architecture, feb. 2006.

[41] K. Constantinides, O. Mutlu, T. M. Austin, and V. Bertacco. Software-based online
detection of hardware defects: mechanisms, architectural support, and evaluation. In
International Symposium on Microarchitecture, dec. 2007.

[42] E. Cota, P. Mantovani, M. Petracca, M. Casu, and L. Carloni. Accelerator memory
reuse in the dark silicon era. IEEE Computer Architecture Letters, 99, jul. 2012.

[43] E. Czeck and D. Siewiorek. Effects of transient gate-level faults on program behavior.
In International Symposium on Fault-Tolerant Computing, jun. 1990.

[44] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar, S. Siers,
I. Stolero, and A. Subbiah. A 22nm IA multi-CPU and GPU system-on-chip. In
International Solid-State Circuits Conference, feb. 2012.

[45] A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu, and G. K. Chen.
A reliable routing architecture and algorithm for NoCs. IEEE Trans. on CAD of
Integrated Circuits and Systems, 31(5):726–739, apr. 2012.

[46] A. DeOrio, J. Li, and V. Bertacco. Bridging pre- and post-silicon debugging with
BiPeD. In International Conference on Computer-Aided Design, nov. 2012.

[47] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bowman, J. Howard,
J. Tzchanz, V. Erraguntla, N. Borkar, V. De, and S. Borkar. Within-die variation-
aware dynamic-voltage-frequency-scaling with optimal core allocation and thread
hopping for the 80-core TeraFLOPS processor. IEEE Journal of Solid-State Circuits,
46(1):184–193, jan. 2011.

[48] M. Dimitrov and H. Zhou. Unified architectural support for soft-error protection or
software bug detection. In International Conference on Parallel Architectures and
Compilation Techniques, sep. 2007.

[49] A. Dixit and A. Wood. The impact of new technology on soft error rates. In
International Reliability Physics Symposium, apr. 2011.

[50] T. Dorta, J. Jimenez, J. Martin, U. Bidarte, and A. Astarloa. Overview of FPGA-based
multiprocessor systems. In International Conference on Reconfigurable Computing
and FPGAs, dec. 2009.

[51] N. Durrant and R. Blish. Semiconductor device reliability failure models. World
Wide Web, 2000. http://www.sematech.org/.

164

http://www.sematech.org/

[52] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In International Symposium on Computer
Architecture, jun. 2011.

[53] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: probabilistic soft error
reliability on the cheap. In International Conference on Architectural Support for
Programming Languages and Operating Systems, mar. 2010.

[54] A. Ferrari, A. Filipi-Martin, and S. Viswanathan. The NAS parallel benchmark
kernels in MPL. Technical Report CS-95-39, NASA, dec. 1995.

[55] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester. Vicis: a reliable
network for unreliable silicon. In Design Automation Conference, jul. 2009.

[56] D. Fick, R. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik, S. Satpathy, Y. Lee,
D. Kim, N. Liu, M. Wieckowski, G. Chen, T. Mudge, D. Blaauw, and D. Sylvester.
Centip3De: a cluster-based NTC architecture with 64 ARM Cortex-M3 cores in 3D
stacked 130 nm CMOS. IEEE Journal of Solid-State Circuits, 48(1):104 –117, dec.
2013.

[57] L. Fiorin, L. Micconi, and M. Sami. Design of fault tolerant network interfaces for
NoCs. In Euromicro Conference on Digital System Design, sep. 2011.

[58] M. J. Fischer. The consensus problem in unreliable distributed systems (a brief
survey). In Conference on Fundamentals of Computation Theory, aug. 1983.

[59] M. Flatte. Spintronics. IEEE Transactions on Electron Devices, 54(5):907 –920, may
2007.

[60] S. Frehse, G. Fey, and R. Drechsler. A better-than-worst-case robustness measure. In
Workshop on Design and Diagnostics of Electronic Circuits and Systems, apr. 2010.

[61] G. Gielen, P. De Wit, E. Maricau, J. Loeckx, J. Martı́n-Martı́nez, B. Kaczer, G. Groe-
seneken, R. Rodrı́guez, and M. Nafrı́a. Emerging yield and reliability challenges
in nanometer CMOS technologies. In Design Automation and Test in Europe, mar.
2008.

[62] D. Gizopoulos, M. Psarakis, S. Adve, P. Ramachandran, S. Hari, D. Sorin, A. Meixner,
A. Biswas, and X. Vera. Architectures for online error detection and recovery in
multicore processors. In Design Automation and Test in Europe, mar. 2011.

[63] B. Goldwater and G. Hart. Recent false alerts from the nation’s missile attack warning
system. Technical report, United States Senate, 1980.

[64] R. Golla and P. Jordan. T4: a highly-threaded, server-on-a-chip with native support
for heterogenous computing. In Hot Chips, aug. 2011.

[65] O. Goloubeva, M. Rebaudengo, M. Reorda, and M. Violante. Soft-error detection
using control flow assertions. In International Symposium on Defect and Fault
Tolerance, nov. 2003.

165

[66] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative versioning cache. In
International Symposium on High-Performance Computer Architecture, feb. 1998.

[67] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, P. Huang,
M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. Taylor. The GreenDroid
mobile application processor: an architecture for silicon’s dark future. IEEE Micro,
31(2):86 –95, mar.-apr. 2011.

[68] J. Grinschgl, A. Krieg, C. Steger, R. Weiss, H. Bock, and J. Haid. Modular fault
injector for multiple fault dependability and security evaluations. In Euromicro
Symposium on Digital Systems Design, sep. 2011.

[69] R. Guo, S. Mitra, E. Amyeen, J. Lee, S. Sivaraj, and S. Venkataraman. Evaluation of
test metrics: stuck-at, bridge coverage estimate and gate exhaustive. In Proceedings
of the VLSI Test Symposium, apr. 2006.

[70] P. Gupta and A. Kahng. Manufacturing-aware physical design. In International
Conference on Computer-Aided Design, nov. 2003.

[71] S. Gupta, A. Ansari, S. Feng, and S. Mahlke. Adaptive online testing for efficient
hard fault detection. In International Conference on Computer Design, oct. 2009.

[72] S. Gupta, A. Ansari, S. Feng, and S. Mahlke. StageWeb: interweaving pipeline stages
into a wearout and variation tolerant CMP fabric. In International Conference on
Dependable Systems and Networks, jun. 2010.

[73] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke. The StageNet fabric for
constructing resilient multicore systems. In International Symposium on Microarchi-
tecture, nov. 2008.

[74] S. Gupta, S. Feng, A. Ansari, and S. Mahlke. Erasing core boundaries for robust and
configurable performance. In International Symposium on Microarchitecture, dec.
2010.

[75] G.Yoh and F. Najm. A statistical model for electromigration failures. In International
Symposium on Quality Electronic Design, mar. 2000.

[76] T.-J. Ha, D. Akinwande, and A. Dodabalapur. Hybrid graphene/organic semiconduc-
tor field-effect transistors. Applied Physics Letters, 101(3):033309 –033309–3, jul.
2012.

[77] T. Hacker, F. Romero, and C. Carothers. An analysis of clustered failures on large
supercomputing systems. Journal of Parallel Distributed Computing, 69(7):652–665,
jul. 2009.

[78] T. Halfhill. Intel’s tiny Atom. Microprocessor Report, apr. 2008.

[79] L. Hammond, B. Nayfeh, and K. Olukotun. A single-chip multiprocessor. IEEE
Comp., 30(9):79–85, sep. 1997.

166

[80] S. Hari, S. Adve, and H. Naeimi. Low-cost program-level detectors for reducing
silent data corruptions. In International Conference on Dependable Systems and
Networks, jun. 2012.

[81] S. Hari, M.-L. Li, P. Ramachandran, B. Choi, and S. Adve. mSWAT: low-cost hard-
ware fault detection and diagnosis for multicore systems. In International Symposium
on Microarchitecture, dec. 2009.

[82] A. Hartstein and T. Puzak. The optimum pipeline depth for a microprocessor. In
International Symposium on Computer Architecture, may 2002.

[83] J. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Computer Architec-
ture News, 34(4):1–17, sep. 2006.

[84] T. Hey. Quantum computing: an introduction. Computing Control Engineering
Journal, 10(3):105 –112, jun. 1999.

[85] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein. Scaling,
power, and the future of CMOS. In IEEE International Electron Devices Meeting,
2005., dec. 2005.

[86] M. Hrishikesh, D. Burger, S. Keckler, P. Shivakumar, N. Jouppi, and K. Farkas. The
optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays. In International
Symposium on Computer Architecture, may 2002.

[87] B. Huang, A. Schmidt, A. Mendon, and R. Sass. Investigating resilient high per-
formance reconfigurable computing with minimally-invasive system monitoring. In
International Workshop on High-Performance Reconfigurable Computing Technology
and Applications, nov. 2010.

[88] C.-C. Huang and A. Kusiak. Modularity in design of products and systems. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,
28(1):66–77, jan. 1998.

[89] M. Huebscher and J. McCann. A survey of autonomic computing–degrees, models,
and applications. ACM Computing Surveys, 40(3):7:1–7:28, aug. 2008.

[90] IBM Corp. IBM 1961 BRL report. World Wide Web, 2013. http://www.
ed-thelen.org/comp-hist/BRL61-ibm1401.html.

[91] Intel Corp. Intel processor comparison. World Wide Web, 2012. http:
//www.intel.com/content/www/us/en/processor-comparison/
compare-intel-processors.html.

[92] Internet World Stats. Internet users in the world by years. World Wide Web, 2012.
http://www.internetworldstats.com/.

[93] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core fusion: accommodating
software diversity in chip multiprocessors. In International Symposium on Computer
Architecture, jun. 2007.

167

http://www.ed-thelen.org/comp-hist/BRL61-ibm1401.html
http://www.ed-thelen.org/comp-hist/BRL61-ibm1401.html
http://www.intel.com/content/www/us/en/processor-comparison/compare-intel-processors.html
http://www.intel.com/content/www/us/en/processor-comparison/compare-intel-processors.html
http://www.intel.com/content/www/us/en/processor-comparison/compare-intel-processors.html
http://www.internetworldstats.com/

[94] M. Jacome and G. de Veciana. Design challenges for new application specific
processors. Design Test of Computers, IEEE, 17(2):40–50, apr.-jun. 2000.

[95] P. Jamieson, W. Luk, S. Wilton, and G. Constantinides. An energy and power con-
sumption analysis of FPGA routing architectures. In International Conference on
Field-Programmable Technology, dec. 2009.

[96] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to eliminate volt-
age emergencies in high performance processors. In International Symposium on
High-Performance Computer Architecture, feb. 2003.

[97] D. Josephson. The good, the bad, and the ugly of silicon debug. In Design Automation
Conference, jul. 2006.

[98] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge. Reliability modeling and manage-
ment in dynamic microprocessor-based systems. In Design Automation Conference,
jul. 2006.

[99] A. Kent. A Texas Instruments application report: MOS programmable logic arrays.
Bulletin CA-158., oct. 1970.

[100] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan, D. Gulati, D. Burger,
and S. Keckler. Composable lightweight processors. In International Symposium on
Microarchitecture, dec. 2007.

[101] A. KleinOsowski and D. Lilja. MinneSPEC: a new SPEC benchmark workload
for simulation-based computer architecture research. IEEE Computer Architecture
Letters, 1, jan.-dec. 2002.

[102] J. Kurose and K. Ross. Computer Networking: a Top-Down Approach. Addison-
Wesley Publishing Company, USA, 5th edition, 2009.

[103] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, jul. 1982.

[104] W. Lee, D. Grosh, F. Tillman, and C. Lie. Fault tree analysis, methods, and ap-
plications – a review. IEEE Transactions on Reliability, R-34(3):194–203, aug.
1985.

[105] M.-L. Li, P. Ramachandran, R. Karpuzcu, S. Hari, and S. Adve. Accurate
microarchitecture-level fault modeling for studying hardware faults. In International
Symposium on High-Performance Computer Architecture, feb. 2009.

[106] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou. Trace-based
microarchitecture-level diagnosis of permanent hardware faults. In International
Conference on Dependable Systems and Networks, jun. 2008.

168

[107] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou. Understanding
the propagation of hard errors to software and implications for resilient systems
design. In International Conference on Architectural Support for Programming
Languages and Operating Systems, mar. 2008.

[108] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi. Mcpat: an in-
tegrated power, area, and timing modeling framework for multicore and manycore
architectures. In International Symposium on Microarchitecture, jun. 2009.

[109] X. Li and D. Yeung. Application-level correctness and its impact on fault tolerance.
In International Symposium on High-Performance Computer Architecture, feb. 2007.

[110] Y. Li, S. Makar, and S. Mitra. CASP: concurrent autonomous chip self-test using
stored test patterns. In Design Automation and Test in Europe, mar. 2008.

[111] Y. Li, O. Mutlu, and S. Mitra. Operating system scheduling for efficient online
self-test in robust systems. In International Conference on Computer-Aided Design,
nov. 2009.

[112] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flaut-
ner. SODA: a high-performance DSP architecture for software-defined radio. Micro,
IEEE, 27(1):114 –123, jan.-feb. 2007.

[113] A. Ling, D. P. Singh, and S. D. Brown. FPGA technology mapping: a study of
optimality. In Design Automation Conference, jun. 2005.

[114] I. Loi, F. Angiolini, and L. Benini. Synthesis of low-overhead configurable source
routing tables for network interfaces. In Design Automation and Test in Europe, apr.
2009.

[115] P. Lucassen and J. Udding. On the correctness of the Sproull counterflow pipeline
processor. In Proceedings of the International Symposium on Advanced Research in
Asynchronous Circuits and Systems, mar. 1996.

[116] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Reddi,
and K. Hazelwood. Pin: Building customized program analysis tools with dynamic
instrumentation. In International Conference on Programming Language Design and
Implementation, jun. 2005.

[117] T. May and M. Woods. Alpha-particle-induced soft errors in dynamic memories.
IEEE Transactions on Electron Devices, 26(1):2–9, jan. 1979.

[118] J. McCalpin. STREAM: sustainable memory bandwidth in high performance comput-
ers. Technical report, University of Virginia, 2007. http://www.cs.virginia.
edu/stream/.

[119] H. McIntyre, S. Arekapudi, E. Busta, T. Fischer, M. Golden, A. Horiuchi, T. Menegh-
ini, S. Naffziger, and J. Vinh. Design of the two-core x86-64 AMD “Bulldozer”
module in 32 nm SOI CMOS. IEEE Journal of Solid State Circuits, 47(1):164 –176,
jan. 2012.

169

http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/

[120] M. Mehrara, M. Attariyan, S. Shyam, K. Constantinides, V. Bertacco, and T. Austin.
Low-cost protection for SER upsets and silicon defects. In Design Automation and
Test in Europe, apr. 2007.

[121] D. Menasce’ and J. Kephart. Guest editors’ introduction: autonomic computing.
IEEE Internet Computing, 11(1):18–21, jan.-feb. 2007.

[122] G. Michelogiannakis, D. Pnevmatikatos, and M. Katevenis. Approaching ideal NoC
latency with pre-configured routes. In International Symposium on Networks-on-Chip,
may 2007.

[123] M. Miller, K. Janik, and S.-L. Lu. Non-stalling counterflow architecture. In Interna-
tional Symposium on High-Performance Computer Architecture, feb. 1998.

[124] S. Mitra, M. Zhang, T. Mak, N. Seifert, V. Zia, and K. S. Kim. Logic soft errors: a
major barrier to robust platform design. In International Test Conference, nov. 2005.

[125] M. Muller, K. Kalyanasundaram, G. Gaertner, W. Jones, R. Eigenmann, R. Lieber-
man, M. VanWaveren, and B. Whitney. SPEC HPG benchmarks for high-performance
systems. Journal of High Performance Computing and Networking, pages 162–170,
jan. 2004.

[126] S. Murali, T. Theocharides, N. Vijaykrishnan, M. Irwin, L. Benini, and G. De Micheli.
Analysis of error recovery schemes for networks on chips. IEEE Design Test of
Computers, IEEE, 22(5):434 – 442, sep.-oct. 2005.

[127] E. Musoll. Mesh-based many-core performance under process variations: a core
yield perspective. ACM SIGARCH Computer Architecture News, pages 27–34, sep.
2009.

[128] P. Neumann. Principled assuredly trustworthy composable architectures. Technical
Report 11459, SRI International, dec. 2004.

[129] E. Nightingale, J. Douceur, and V. Orgovan. Cycles, cells and platters: an empirical
analysis of hardware failures on a million consumer PCs. In EuroSys, apr. 2011.

[130] S. Nomura, M. Sinclair, C.-H. Ho, V. Govindaraju, M. de Kruijf, and K. Sankar-
alingam. Sampling + DMR: practical and low-overhead permanent fault detection.
In International Symposium on Computer Architecture, jun. 2011.

[131] E. Normand. Single event upset at ground level. IEEE Transactions on Nuclear
Science, 43(6):2742–2750, dec. 1996.

[132] J. Orton and K. Weick. Loosely coupled systems: a reconceptualization. Academy of
Management Review, 15:203–223, apr. 1990.

[133] K. Palem and A. Lingamneni. What to do about the end of Moore’s law, probably!
In Design Automation Conference, jun. 2012.

170

[134] B. Panzer-Steindel. Data integrity, internal CERN/IT study. World Wide Web, 2007.
http://indico.cern.ch.

[135] H. Park, Y. Park, and S. Mahlke. Polymorphic pipeline array: a flexible multi-
core accelerator with virtualized execution for mobile multimedia applications. In
International Symposium on Microarchitecture, dec. 2009.

[136] Y. Park, J. Park, H. Park, and S. Mahlke. Libra: tailoring SIMD execution using
heterogeneous hardware and dynamic configurability. In International Symposium
on Microarchitecture, dec. 2012.

[137] B. Parviz. Augmented reality in a contact lens. IEEE Spectrum,
sept. 2009. http://spectrum.ieee.org/biomedical/bionics/
augmented-reality-in-a-contact-lens/.

[138] G. Passas, M. Katevenis, and D. Pnevmatikatos. A 128 x 128 x 24gb/s crossbar inter-
connecting 128 tiles in a single hop and occupying 6% of their area. In International
Symposium on Networks-on-Chip, may 2010.

[139] A. Patel, C. Madill, M. Saldana, C. Comis, R. Pomes, and P. Chow. A scalable
FPGA-based multiprocessor. In IEEE Symposium on Field-Programmable Custom
Computing Machines, apr. 2006.

[140] Y. Patt, S. Patel, M. Evers, D. Friendly, and J. Stark. One billion transistors, one
uniprocessor, one chip. Computer, 30(9):51 –57, sep. 1997.

[141] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer. SymPLFIED: symbolic
program-level fault injection and error detection framework. In International Confer-
ence on Dependable Systems and Networks, jun. 2008.

[142] A. Pellegrini and V. Bertacco. Application-aware diagnosis of runtime hardware
faults. In International Conference on Computer-Aided Design, nov. 2010.

[143] A. Pellegrini and V. Bertacco. Cardio: adaptive CMPs for reliability through dynamic
introspective operation. In International High-Level Design, Validation and Test
Workshop, nov. 2011.

[144] A. Pellegrini and V. Bertacco. Cobra: a comprehensive bundle-based reliable archi-
tecture. In International Conference on Embedded Computer Systems, jul. 2013.

[145] A. Pellegrini, V. Bertacco, and T. Austin. Fault-based attack of RSA authentication.
In Design Automation and Test in Europe, mar. 2010.

[146] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar, V. Bertacco, and T. Austin.
CrashTest: a fast high-fidelity FPGA-based resiliency analysis framework. In Inter-
national Conference on Computer Design, oct. 2008.

[147] A. Pellegrini, J. Greathouse, and V. Bertacco. Viper: virtual pipelines for enhanced
reliability. In International Symposium on Computer Architecture, jun. 2012.

171

http://indico.cern.ch
http://spectrum.ieee.org/biomedical/bionics/augmented-reality-in-a-contact-lens/
http://spectrum.ieee.org/biomedical/bionics/augmented-reality-in-a-contact-lens/

[148] A. Pellegrini, R. Smolinski, L. Chen, X. Fu, S. Hari, J. Jiang, S. Adve, T. Austin, and
V. Bertacco. CrashTest’ing SWAT: accurate, gate-level evaluation of symptom-based
resiliency solutions. In Design Automation and Test in Europe, mar. 2012.

[149] M. Powell, A. Biswas, S. Gupta, and S. Mukherjee. Architectural core salvaging
in a multi-core processor for hard-error tolerance. In International Symposium on
Computer Architecture, jun. 2009.

[150] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: cost-effective architectural support
for rollback recovery in shared-mem multiprocessors. In International Symposium
on Computer Architecture, may 2002.

[151] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A. Raghunathan, and
S. Ravi. Systematic software-based self-test for pipelined processors. In Design
Automation Conference, jul. 2006.

[152] S. Raman, V. Pentkovski, and J. Keshava. Implementing streaming SIMD extensions
on the Pentium III processor. IEEE Micro, 20(4):47 –57, jul. 2000.

[153] S. Reinhardt and S. Mukherjee. Transient fault detection via simultaneous multi-
threading. In International Symposium on Computer Architecture, jun. 2000.

[154] T. Rintaluoma and O. Silvn. SIMD performance in software based mobile video
coding. In International Conference on Embedded Computer Systems, jul. 2010.

[155] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21:120–126, feb. 1978.

[156] E. Rotenberg, S. Bennett, and J. Smith. Trace Cache: a low latency approach to high
bandwidth instruction fetching. In International Symposium on Microarchitecture,
dec. 1996.

[157] G. Saggese, N. Wang, Z. Kalbarczyk, S. Patel, and R. Iyer. An experimental study of
soft errors in microprocessors. IEEE Micro, 25(6), nov.-dec. 2005.

[158] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. Pande,
C. Grecu, and A. Ivanov. System-on-Chip: reuse and integration. Proceedings of the
IEEE, 94(6):1050–1069, jun. 2006.

[159] R. Schaller. Moore’s law: past, present and future. Spectrum IEEE, jun. 1997.

[160] M. Schilling. Towards a general modular systems theory and its application to
inter-firm product modularity. Academy of Management Review, 25:312–334, apr.
1999.

[161] D. Schroder and J. Babcock. Negative bias temperature instability: road to cross in
deep submicron silicon semiconductor manufacturing. Journal of Applied Physics,
94(1), jul. 2003.

172

[162] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild: a large-scale
field study. In Proceedings of the International Joint Conference on Measurement
and Modeling of Computer Systems, jun. 2009.

[163] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham, T. Rodeheffer, E. Sat-
terthwaite, and C. Thacker. Autonet: a high-speed, self-configuring local area network
using point-to-point links. IEEE Journal on Selected Areas in Communications, pages
1318–1335, oct. 1991.

[164] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: a many-core x86 architecture for visual computing. In ACM SIGGRAPH,
aug. 2008.

[165] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud. Multiple-block ahead branch
predictors. In International Conference on Architectural Support for Programming
Languages and Operating Systems, oct. 1996.

[166] M. Shah, R. Golla, G. Grohoski, P. Jordan, J. Barreh, J. Brooks, M. Greenberg,
G. Levinsky, M. Luttrell, C. Olson, Z. Samoail, M. Smittle, and T. Ziaja. SPARC T4:
a dynamically threaded server-on-a-chip. IEEE Micro, 32(2):8–19, apr. 2012.

[167] S. Shamshiri and K.-T. Cheng. Modeling yield, cost, and quality of a spare-enhanced
multicore chip. IEEE Trans. Computers, 60(9):1246–1259, sep. 2011.

[168] D. Shaw, M. Deneroff, R. Dror, J. Kuskin, R. Larson, J. Salmon, C. Young, B. Batson,
K. Bowers, J. Chao, M. Eastwood, J. Gagliardo, J. Grossman, R. Ho, D. Ierardi,
I. Kolossváry, J. Klepeis, T. Layman, C. McLeavey, M. Moraes, R. Mueller, E. Priest,
Y. Shan, J. Spengler, M. Theobald, B. Towles, and S. Wang. Anton, a special-
purpose machine for molecular dynamics simulation. In International Symposium on
Computer Architecture, jun. 2007.

[169] S. Shende and A. Malony. The TAU parallel performance system. Journal of High
Performance Computing Applications, pages 287–311, may 2006.

[170] A. Shimpi. The source of Intel’s Cougar Point SATA bug. World
Wide Web, 2011. http://www.anandtech.com/show/4143/
the-source-of-intels-cougar-point-sata-bug.

[171] P. Shivakumar, S. Keckler, C. Moore, and D. Burger. Exploiting microarchitectural
redundancy for defect tolerance. In International Conference on Computer Design,
oct. 2003.

[172] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T. Austin. Ultra low-
cost defect protection for microprocessor pipelines. In International Conference
on Architectural Support for Programming Languages and Operating Systems, oct.
2006.

173

http://www.anandtech.com/show/4143/the-source-of-intels-cougar-point-sata-bug
http://www.anandtech.com/show/4143/the-source-of-intels-cougar-point-sata-bug

[173] H. Siegel, L. Siegel, F. Kemmerer, P. Mueller, H. Smalley, and S. Smith. PASM:
a partitionable SIMD/MIMD system for image processing and pattern recognition.
IEEE Transactions on Computers, C-30(12):934 –947, dec. 1981.

[174] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar processors. In International
Symposium on Computer Architecture, jun. 1995.

[175] D. Sorin. Fault Tolerant Computer Architecture. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2009.

[176] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet: improving the availability of
shared memory multiprocessors with global checkpoint/recovery. In International
Symposium on Computer Architecture, may 2002.

[177] J. Sosnowski. Software-based self-testing of microprocessors. Journal of Systems
Architecture: the EUROMICRO Journal, 52(5):257–271, may 2006.

[178] E. Sprangle and D. Carmean. Increasing processor performance by implementing
deeper pipelines. In International Symposium on Computer Architecture, may 2002.

[179] R. Sproull, I. Sutherland, and C. Molnar. The Counterflow pipeline processor archi-
tecture. IEEE Design & Test of Computers, 11(3):48–59, jul. 1994.

[180] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. The impact of technology scaling
on lifetime reliability. In International Conference on Dependable Systems and
Networks, jun. 2004.

[181] Standard Performance Evaluation Corp. SPECweb2005. World Wide Web, 2005.
http://www.spec.org/web2005/.

[182] J. Stearley. Defining and measuring supercomputer reliability, availability, and ser-
viceability (RAS). In In Proceedings of the Linux Clusters Institute Conference, jun.
2005.

[183] A. Stoica and R. Andrei. Adaptive and evolvable hardware - a multifaceted analysis.
In Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems,
aug. 2007.

[184] A. Strong, E. Wu, R.-P. Vollertsen, J. Sune, G. LaRosa, and T. Sullivan. Reliability
Wearout Mechanisms in Advanced CMOS Technologies. Wiley-IEEE Press, 2006.

[185] M. Strus, R. Keller, and N. Barbosa. Electrical reliability and breakdown mechanisms
in single-walled carbon nanotubes. In International Conference on Nanotechnology,
aug. 2011.

[186] Sun Microsystems Inc. OpenSPARC T1. World Wide Web, 2005. http:
//opensparc-t1.sunsource.net/.

[187] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar. In International
Symposium on Microarchitecture, dec. 2003.

174

http://www.spec.org/web2005/
http://opensparc-t1.sunsource.net/
http://opensparc-t1.sunsource.net/

[188] S. Swanson and M. Taylor. Greendroid: exploring the next evolution in smartphone
application processors. Communications Magazine, IEEE, 49(4):112–119, apr. 2011.

[189] D. Tarjan, S. Thoziyoor, and N. Jouppi. Cacti 4.0. Technical report, HP Laboratories
Palo Alto, 2006.

[190] M. Taylor. Is dark silicon useful?: harnessing the four horsemen of the coming dark
silicon apocalypse. In Design Automation Conference, jun. 2012.

[191] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-
man, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. The Raw microprocessor:
a computational fabric for software circuits and general-purpose programs. IEEE
Micro, 22(2):25–35, mar.-apr. 2002.

[192] M. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. Scalar operand networks:
on-chip interconnect for ILP in partitioned architectures. In International Symposium
on High-Performance Computer Architecture, feb. 2003.

[193] Textuality Services, Inc. Bonnie file system benchmark. World Wide Web, 1996.
http://www.textuality.com/bonnie/.

[194] Tom’s Hardware. CPU: articles & reviews. World Wide Web, 2012. http:
//www.tomshardware.com/reviews/Components,1/CPU,1/.

[195] J. Tubella and A. González. Control speculation in multithreaded processors through
dynamic loop detection. In International Symposium on High-Performance Computer
Architecture, feb. 1998.

[196] K. Underwood. FPGAs vs. CPUs: trends in peak floating-point performance. In
International Symposium on FPGAs, feb. 2004.

[197] A. Veen. Dataflow machine architecture. ACM Computing Surveys, 18(4):365–396,
dec. 1986.

[198] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor. Conservation cores: reducing the energy of mature
computations. In International Conference on Architectural Support for Programming
Languages and Operating Systems, mar. 2010.

[199] J. Villasenor, B. Schoner, K.-N. Chia, C. Zapata, H. Kim, C. Jones, S. Lansing,
and B. Mangione-Smith. Configurable computing solutions for automatic target
recognition. In Proceedings of IEEE Workshop on FPGAs for Custom Computing
Machines, apr. 1996.

[200] I. Wagner and V. Bertacco. Caspar: hardware patching for multicore processors. In
Design Automation and Test in Europe, apr. 2009.

175

http://www.textuality.com/bonnie/
http://www.tomshardware.com/reviews/Components,1/CPU,1/
http://www.tomshardware.com/reviews/Components,1/CPU,1/

[201] I. Wagner, V. Bertacco, and T. Austin. Shielding against design flaws with field
repairable control logic. In Design Automation Conference, jul. 2006.

[202] I. Wagner, V. Bertacco, and T. Austin. Using field-repairable control logic to correct
design errors in microprocessors. IEEE Trans. on CAD of Integrated Circuits and
Systems, 27(2):380–393, feb. 2008.

[203] N. Wang and S. Patel. ReStore: symptom based soft error detection in micropro-
cessors. In International Conference on Dependable Systems and Networks, jun.
2005.

[204] P. Wang, J. Collins, C. Weaver, B. Kuttanna, S. Salamian, G. Chinya, E. Schuchman,
O. Schilling, T. Doil, S. Steibl, and H. Wang. Intel Atom processor core made
FPGA-synthesizable. In International Symposium on FPGAs, feb. 2009.

[205] J. Weber. FAA: computer glitch caused airport delays. World Wide
Web, 2009. http://www.washingtontimes.com/news/2009/nov/19/
faa-computer-glitch-causing-airport-delays/.

[206] M. Woh, S. Satpathy, R. Dreslinski, D. Kershaw, D. Sylvester, D. Blaauw, and
T. Mudge. Low power interconnects for SIMD computers. In Design Automation
and Test in Europe, mar. 2011.

[207] E. Wu, E. Nowak, A. Vayshenker, W. Lai, and D. Harmon. CMOS scaling beyond the
100-nm node with silicon-dioxide-based gate dielectrics. In IBM Journal of Research
and Development, mar.-may, 2002.

[208] E. Wu, J. Sune, W. Lai, E. Nowak, J. McKenna, A. Vayshenker, and D. Harmon.
Interplay of voltage and temperature acceleration of oxide breakdown for ultra-thin
gate dioxides. In Solid-state Electronics Journal, nov. 2002.

[209] L. Wu, C. Weaver, and T. Austin. CryptoManiac: a fast flexible architecture for
secure communication. In International Symposium on Computer Architecture, jun.
2001.

[210] G. Xenoulis, D. Gizopoulos, N. Kranitis, and A. Paschalis. Low-cost, on-line software-
based self-testing of embedded processor cores. In International On-Line Testing
Symposium, jul. 2003.

[211] Xilinx Corporation. Microblaze processor reference guide. World Wide
Web, 2009. http://www.xilinx.com/support/documentation/sw_
manuals/mb_ref_guide.pdf.

[212] X. Yang, Z. Wang, J. Xue, and Y. Zhou. The reliability wall for exascale supercom-
puting. IEEE Transactions on Computers, 61(6), jun. 2012.

[213] K. Yeager. The Mips R10000 superscalar microprocessor. Micro, IEEE, 16(2):28–41,
apr. 1996.

176

http://www.washingtontimes.com/news/2009/nov/19/faa-computer-glitch-causing-airport-delays/
http://www.washingtontimes.com/news/2009/nov/19/faa-computer-glitch-causing-airport-delays/
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf

[214] S. Zafar, B. Lee, J. Stathis, A. Callegari, and T. Ning. A model for negative bias
temperature instability (NBTI) in oxide and high-K pFETs. In Symposia on VLSI
Technology and Circuits, jun. 2004.

[215] J. Zhang, A. Lin, N. Patil, H. Wei, L. Wei, H.-S. Wong, and S. Mitra. Carbon nanotube
robust digital VLSI. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 31(4):453 –471, apr. 2012.

[216] W. Zhang, M. Kandemir, N. Vijaykrishnan, M. Irwin, and V. De. Compiler support
for reducing leakage energy consumption. In Design Automation and Test in Europe,
mar. 2003.

[217] J. Ziegler. Terrestrial cosmic rays. IBM Journal of Research and Development, pages
19–39, jan. 1996.

177

	Title
	Dedication
	Acknowledgments
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	1.1 Challenges
	1.1.1 Hardware Failures
	1.1.2 Management of Specialized Components
	1.1.3 Lack of Design Modularity

	1.2 How to Address These Issues?
	1.2.1 Reliability
	1.2.2 Adaptability
	1.2.3 Modularity

	1.3 A Comprehensive Reliable and Adaptive Distributed Architecture
	1.4 Dissertation Organization

	Chapter 2 Motivation
	2.1 Chapter Organization
	2.2 Hardware Failures
	2.2.1 Impact of Runtime Failures
	2.2.2 The Dangers of SDCs: Faulty RSA Authentication
	2.2.3 Reliability

	2.3 Management of Specialized Functional Units
	2.3.1 Specialized Hardware in the Dark Silicon Era
	2.3.2 Hardware Adaptability

	2.4 Lack of Design Modularity
	2.4.1 Modularity

	2.5 Limits of Current Approaches
	2.5.1 Reconfigurable Logic
	2.5.2 Control-flow Machines
	2.5.3 Data-flow Machines

	2.6 Summary

	Chapter 3 Reliability
	3.1 Chapter Organization
	3.2 Analyzing Reliability Issues Through CrashTest
	3.2.1 Requirements for a Reliability Analysis Framework
	3.2.2 CrashTest Overview
	3.2.3 Gate-Level Fault Injection Methodology
	3.2.4 FPGA-Based Fault Emulation

	3.3 CrashTest'ing the OpenSPARC T1
	3.3.1 Fault Injection Methodology
	3.3.2 Fault Injection Results
	3.3.3 Detection latency

	3.4 Adaptive Hardware Reliability
	3.4.1 Application-Aware Coverage
	3.4.2 Application-Aware Diagnosis
	3.4.3 Evaluation

	3.5 Summary

	Chapter 4 Hardware Adaptability
	4.1 Chapter Organization
	4.2 Better Computer Vision With Specialized Hardware
	4.3 Hardware Adaptability through Cardio
	4.3.1 Design Philosophy

	4.4 Cardio Runtime Operation
	4.4.1 Core Monitoring
	4.4.2 Interconnect Monitoring
	4.4.3 Cardio Distributed Resource Manager

	4.5 Evaluation
	4.5.1 Experimental Setup
	4.5.2 Acknowledgment Buffer Sizing
	4.5.3 Dynamic Discovery Period
	4.5.4 Static Hardware Adaptation
	4.5.5 Dynamic Hardware Adaptation
	4.5.6 Performance and Traffic Impact
	4.5.7 Energy vs. Performance Trade-off
	4.5.8 Area Overhead

	4.6 Summary

	Chapter 5 A Modular Computer Architecture
	5.1 Chapter Organization
	5.2 Design Modularity
	5.3 Viper Hardware Organization
	5.4 Regular Execution in Viper
	5.4.1 Bundle Creation
	5.4.2 Virtual Pipeline Generation
	5.4.3 Operand Tag Generation
	5.4.4 Bundle Execution
	5.4.5 Bundle Termination

	5.5 Handling Exceptional Events
	5.5.1 Mispredicted Branches
	5.5.2 Exception and Trap Handling

	5.6 Discussion
	5.6.1 Additional Advantages
	5.6.2 Possible Optimizations
	5.6.3 Comparison to Previous Work

	5.7 Evaluation
	5.7.1 Hardware Model
	5.7.2 Simulation Infrastructure
	5.7.3 Design Choices
	5.7.4 Area
	5.7.5 Power
	5.7.6 Performance
	5.7.7 Faulty Behavior

	5.8 Summary

	Chapter 6 Putting It All Together
	6.1 Chapter Organization
	6.2 A Reliable, Adaptive Distributed Architecture
	6.3 Optimized Hardware Adaptation
	6.3.1 Creating a Localized Hardware Configuration
	6.3.2 Hardware Configuration Lifespan

	6.4 Scalable Performance
	6.4.1 Temporary Data Persistence
	6.4.2 Boosting Memory Access Performance

	6.5 Reliability
	6.5.1 Full Redundancy
	6.5.2 Selective Redundancy
	6.5.3 Periodic Online Testing

	6.6 Evaluation
	6.6.1 Hardware Model
	6.6.2 Software Benchmarks
	6.6.3 Simulation Infrastructure
	6.6.4 Hardware Adaptability & Fault-Free Throughput
	6.6.5 Reliability
	6.6.6 Reliability Analysis

	6.7 Summary

	Chapter 7 Conclusions
	7.1 An Adaptive, Reliable, and Distributed Architecture
	7.1.1 Reliability
	7.1.2 Adaptability
	7.1.3 Modularity

	7.2 Future Research Directions
	7.3 Summary

	Bibliography

