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Preface

As silicon technology evolves, chip multi-processor (CMP) and system-on-chip (SoC) de-

signs are dramatically changing from limited, robust and homogeneous logic blocks to

integrating billions of fragile transistors into complex and heterogeneous cores/IPs. This

increased integration has compelled architects to design resource-heavy, complex and

power-hungry on-chip interconnects, moving towards network-on-chip (NoC) structures.

In addition, the waning reliability of silicon poses a great threat to these communication

structures as they could potentially be a single point of failure. Further, the heterogene-

ity and fast time-to-market of upcoming devices makes it nearly impossible to thoroughly

verify NoC architectures and optimize them for power at design-time. Failure of NoC ar-

chitectures to meet correctness, reliability and power-budget requirements has detrimental

effects on the runtime operation of NoC-based CMPs and SoCs. Therefore, highly efficient

runtime detection and reconfiguration mechanisms are becoming a key requisite to unlock

the full potential of future CMPs and SoCs. Such mechanisms can overcome both func-

tional bugs that escaped design-time verification and device failures due to an unreliable

silicon substrate. Similarly, these runtime reconfiguration solutions can also be leveraged

to optimize the communication paths dynamically; particularly, to minimize power dissi-

pation and prevent overheating of the NoC structures.

The solutions proposed in this thesis address the challenges to NoCs’ runtime health by

employing a reactive approach, i.e., error detection followed by recovery. As a result, this

thesis is able to address a wide range of unforeseen problems; particularly the ones aris-

ing from design errors, reliability threats, and excessive power dissipation. Further, the

proposed solutions adopt an integrated approach, addressing both detection and recovery

from errors at runtime. To attain quick and minimalistic error isolation, an application’s ex-

ecution is divided into fixed-time monitoring windows, or epochs, during which distributed

checkers at each NoC router monitor the traffic activity to detect anomalous behavior. If a

failure is detected, a reconfiguration procedure is triggered at epoch boundaries to circum-

vent the detected failures. The reconfiguration procedure is implemented with lightweight

and distributed hardware, and it utilizes broadcasts to synchronize the operation of all NoC
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nodes.

This thesis ensures the design correctness of NoCs at a low cost by observing that as-

pects that are verified at design-time do not require further checking at runtime. Therefore,

it is sufficient to monitor only a subset of the NoC’s functionality, along with a lightweight

recovery support, to ensure complete design correctness. On the reliability front, this thesis

leverages a novel fault model to diagnose and repair transistor failures at a fine granularity.

In addition, the end-to-end diagnosis and repair procedures are cohesively designed to offer

a graceful performance degradation with an increasing number of faults, losing less than a

third of the processing power when compared to other state-of-the-art solutions. Finally, to

prevent overheating, this thesis proposes a runtime-adaptable and power-tunable NoC de-

sign that dynamically power-gates the NoCs’ components based on application’s activity.

As a result, the leakage power is slashed by up to 37% with less than 2% degradation in the

application’s performance. All the proposed solutions incur an area and power overhead

within 5% of the baseline NoC, and are widely applicable as they require minimal changes

to the underlying design. By offering correct, reliable and power-aware NoC operation

in the face of adverse silicon trends, this thesis enables functional NoC implementations in

future silicon generations that would otherwise have not been possible.
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Abstract

As silicon technology evolves, chip multi-processor (CMP) and system-on-chip (SoC) de-

signs are dramatically changing from limited, robust and homogeneous logic blocks to

integrating billions of fragile transistors into complex and heterogeneous cores/IPs. This

increased integration demands greater on-chip communication bandwidth, which, in turn,

has compelled architects to design resource-heavy, complex and power-hungry on-chip in-

terconnects, moving towards network-on-chip (NoC) structures. In addition, the waning

reliability of silicon poses a great threat to these communication structures as they could

potentially be a single point of failure. Further, the heterogeneity and fast time-to-market

of upcoming computers makes it nearly impossible to thoroughly verify NoC architectures

and optimize them for power at design-time. Failure of NoC architectures to meet cor-

rectness, reliability and power-budget requirements has detrimental effects on the runtime

operation of NoC-based CMPs and SoCs. Therefore, runtime detection and reconfiguration

mechanisms are becoming a key requisite to unlock the full potential of future CMPs and

SoCs. Runtime mechanisms can overcome both functional bugs that escaped design-time

verification and device failures due to an unreliable silicon substrate. Similarly, runtime

reconfiguration solutions can also be leveraged to optimize the communication paths dy-

namically; particularly, to minimize power dissipation and prevent overheating of the NoC

structures.

The solutions proposed in this thesis address these challenges to NoCs’ runtime health

by employing a reactive approach, i.e., error detection followed by recovery. A reactive

approach is a natural choice as it can address a wide range of unforeseen problems; partic-

ularly those arising during runtime operation. Further, the solutions proposed in this thesis

provide integrated detection and recovery from errors. To attain temporal error isolation,

an application’s execution is partitioned into fixed-time monitoring windows, or epochs,

during which distributed checkers, at each NoC router, monitor the traffic activity to de-

tect anomalous behavior. If a failure is detected, a reconfiguration procedure is triggered

at epoch boundaries to circumvent it. The reconfiguration procedure is implemented with

lightweight and distributed hardware, and it utilizes broadcasts to synchronize the oper-

xiii



ations of all network nodes. The solutions are designed to be passive, lightweight and

independent of the baseline design. For all solutions, the design complexity is kept at a min-

imum and the area overhead is within 5% with respect to a baseline NoC. In a nutshell, this

thesis provides low-cost NoC-specific solutions that enable: correct behavior by avoiding

functional bugs, reliable execution by circumventing faults and power-aware operation by

averting overheating. The solution targetting functional correctness ensures correct NoC

operation under all execution scenarios; the reliable NoC degrades >3× more gracefully

than other state-of-the-art solutions, while the power-aware NoC design is able to reduce

leakage power by up to 37% with less than 2% performance loss. The work presented in

the thesis will enable designers to aggressively push scalability and time-to-market limits

with respect to NoC design.
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Chapter 1

Introduction

Digital computers, lead by advancements in microelectronics technology over the past few

decades, have become pervasive in modern society. These advancements, for the most part,

can be summarized by Moore’s law, which states that the number of transistors integrable

on a single chip doubles every 18 months [108]. Today, most people, as well as corpora-

tions and institutions, are relying on computers to handle their daily tasks more than ever

before. Computers are the driving force behind phones we use to communicate with each

other; they run banking and stock market systems for business and commerce. Even auto-

mobiles and airplanes are dependent on computer systems for enhanced efficiency, safety

and user-experience.

The penetration of computing systems in human society has been driven by the con-

stant efforts of computer architects to design innovative architectures that fully utilize the

additional transistors made available by Moore’s law. To this end, computer architects have

traditionally prioritized constraints such as performance, energy efficiency and cost for the

commercial success of their products. On a broad scale, the computing industry has seen

three major design paradigms. Up until the early 2000s, the focus was on adding complex

features to microprocessor architectures to boost single thread performance. However, the

resulting processors exhibited unmanageable power dissipation density due to their many

complex performance-oriented components working in tandem to execute the same task

[62, 3].

To continue benefiting from technology scaling, the trend since early 2000s has been

towards a growing number of simpler, mostly homogeneous power-efficient cores on-chip.

The idea is to utilize the greater number of cores to better exploit thread-level parallelism.

As a result of the increase in the number of on-chip entities that operate collaboratively,

there has been a significant rise in inter-core communication demands. This trend has

caused a paradigm shift from computation-centric to communication-centric designs. Re-

cently, due to the faster growth in component count in comparison to the reduction in

per-transistor power, multi-cores have also hit the power wall. Homogeneous application-
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oblivious multi-core architectures, no matter how power-efficient, cannot be scaled further

without operating portions of the multi-core system at throttled frequencies, or even com-

pletely switching some components off [37].

Moving forward, industry experts envision the use of additional silicon area available

to deploy a wide variety of heterogeneous application-specific components as a way to

overcome power constraints. This shift has led the transition of homogeneous CMPs to

heterogeneous collections of IPs that resemble systems-on-chip (SoCs) in many aspects.

Therefore, in addition to providing low-latency communication between the many compo-

nents, an efficient on-chip interconnect should also adapt to the vastly varying applications

that run on these diverse architectures. As a result, the complexity of the on-chip commu-

nication substrate has exacerbated.

Naturally, the transition from computation-centric to communication-centric design has

rapidly sidelined traditional interconnects, such as simple buses, due to their limited band-

width and poor scalability. Networks-on-chip (NoCs), characterized by highly concurrent

communication and better scalability, have emerged as the de facto choice for on-chip

interconnects. With efficient communication at the center of current and upcoming com-

puter designs, NoCs have grown in importance and have attracted increasing attention from

computer architects. However, similar to the processor designs of the past, the focus till

now has been on increasing communication performance, occasionally focusing on energy

efficiency. The ever increasing need for faster and more capable NoCs, along with the as-

tronomical increase in the number and variety of cores/IPs they bind together, has caused

an enormous growth in the complexity of NoC architectures and of the communication

subsystem as a whole.

Technology experts predict future computers to be complex machines composed of

several billions of minuscule and fragile transistors. At future technology nodes, they ex-

pect frequent errors throughout the lifetime of a system [115, 15] due to failing silicon

devices. Even for existing silicon, large scale studies have shown error rates that are orders

of magnitude higher than previously assumed [86]. As a result, CMP and SoC designs are

transitioning from limited, robust and homogeneous logic blocks to complex systems inte-

grating a vast sea of fragile transistors into heterogeneous cores/IPs. This waning reliability

of silicon poses a challenge for on-chip communication reliability, since the communica-

tion hardware is typically not a redundant resource. Faulty communication can cause loss

of valuable data, corruption of program’s output, or even crash of the entire software appli-

cation. NoC designs can make a successful transition to future fragile silicon generations

only if they are equipped with capable and pervasive robustness mechanisms that protect

them from failing. Providing these mechanisms is precisely the goal of this dissertation.
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As the variety and quantity of heterogeneous components comprising future multi-

cores/SoCs grows, the interconnect design methodology must also evolve. Current NoCs

without any runtime reconfiguration support often fail to adapt to dynamic application en-

vironments. This can be particularly harmful from the perspective of power dissipation.

Modern NoCs consume a significant portion of the on-chip power budget (as much as 30%

of the entire chip power [103, 130]). If power is not accurately monitored and limited, it can

lead to overheating emergencies. Power emergencies in turn can cause unnecessary throt-

tling of other components on-chip, and consequently lead to performance loss. Increased

power dissipation also translates to higher temperatures on chip, and it can considerably

accelerate the transistor breakdown phenomenon [59]. Therefore, monitoring and limiting

power consumption by an NoC, while still maintaining good performance, is of paramount

importance to NoCs’ runtime health.
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Figure 1.1 Overview of the NoC challenges tackled by the dissertation. This thesis develops

the design methodologies to enhance the runtime health of NoCs of the future. It particularly focuses

on: i) guaranteeing correctness under unmanageable design complexity, ii) providing dependable

communication with unreliable silicon substrate, and iii) enabling adaptable interconnect designs to

tackle excessive power dissipation.

In view of the challenges to NoC design that were described above, the current archi-

tectures and design methodologies that focus only on performance are no longer adequate.

In addition, as the sole medium for on-chip communication when deployed, the NoC also

becomes a single point of failure. Therefore, ensuring healthy NoC operation is of great
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importance. Figure 1.1 provides a graphical overview of the thesis. Specifically, this disser-

tation identifies three new barriers that limit advancements of future computer systems from

the perspective of NoC design: i) escalating design complexity, ii) waning reliability of sili-

con devices, and iii) excessive power dissipation. Overcoming these limitations is essential

to tap the full potential of future semiconductor technologies. The dissertation provides

novel solutions to overcome these barriers by developing NoC-specific design methodolo-

gies to equip the communication substrate with the capability to bypass these threats. In

addition, the thesis describes runtime mechanisms to promptly detect and pinpoint issues

while the system is in operation. These mechanisms allow the system to quickly react to a

failure at runtime and adapt to bypass the components affected.

1.1 Network-on-Chip Basics

Continuous technology scaling has enabled computer architects to design larger and more

complex CMPs and SoCs for improved performance. As a result, the corresponding in-

crease in communication demands has led to an industry-wide shift towards scalable and

efficient interconnects, typically a network-on-chip (NoC). NoCs leverage communication

concurrency and resource sharing to provide a distributed and scalable solution. An NoC

is a collection of routers connected together via links (channels) and organized in a cer-

tain topology. In NoCs, data is transmitted between communicating entities in units called

packets, which are often further divided into smaller blocks called flits. Packets are injected

into the network via a dedicated network interface (NI) that forms the interface between a

core and a network router. Once packets are injected into the network, its routers provide

packets with temporary buffering as they are routed to their respective destinations accord-

ing to some routing protocol. The left side of Figure 1.2 shows an NoC with its routers

organized in the popular mesh (grid) topology.

The right side of Figure 1.2 shows the micro-architecture of a simple NoC router. Pack-

ets received at the router are temporarily buffered at the input ports, while the routing logic

determines the output port that leads to the correct destination. Once the correct output

port is determined, packets request access to the crossbar that connects all input ports to

all output ports. An arbiter is responsible for handling requests and grants to the cross-

bar. Once the packets traverse the crossbar, they are transferred to the input buffers of the

downstream router via inter-router channels. The protocol governing the flow of packets or

flits through the routers and channels is termed as the flow control.

Figure 1.3 depicts the micro-architecture of a more complex virtual channel (VC)
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Figure 1.2 Network-on-chip basics. The left side of the figure shows a high-level diagram of an

NoC organized in a mesh topology. The right side of the figure depicts the micro-architecture of a

simple NoC router.

router. A VC router decouples the dependency between channels and input buffers, al-

lowing multiple interleaved packet flows through the same channel. The primary idea is to

deploy multiple buffers and VC control units at each input port, and allocate a buffer and

a VC control unit to each packet flow before the packet enters the router’s pipeline. A VC

allocation (VA) unit is responsible for managing the buffering resources for these indepen-

dent packet flows. Similarly, a switch allocation (SA) unit manages requests and grants to

the crossbar in a VC router.
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Figure 1.3 A typical virtual channel router. Virtual channels decouple the dependency between

channels and input buffers to allow multiple interleaved packet flows through the same channel.

1.2 NoC Verification Bottleneck

The shift towards communication-centric designs has placed increasing demands on the

interconnection fabrics, which, in turn, have become progressively large, distributed and

complex. Therefore, a greater number of interactions must be verified at design time. This

steep increase of the verification space can be perceived in the vast verification effort that
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is invested in current microprocessor designs: up to 70% of human and monetary resources

dedicated to microprocessor designs are channeled towards verification [58].

Failures that are caught early in the design process through pre-silicon verification tech-

niques do not significantly impact the time-to-market. Therefore, the computer industry

relies heavily on pre-silicon verification techniques to filter out most bugs. Pre-silicon

validation efforts involve a combination of simulation-based verification techniques and

formal methods. Simulation-based verification, though helpful in catching many easy-to-

find bugs, is incomplete, as it cannot exhaustively test the countless different execution

scenarios within an NoC. In contrast, formal methods, such as model checking, are com-

plete but only effective in verifying small portions of the design, and cannot scale to verify

end-to-end system-level correctness.

Despite massive industry efforts in verification, escaped functional bugs that manifest

at runtime are a reality. Failures in the field have the most critical impact, which, in the

absence of any runtime detection and recovery scheme, often lead to product recalls. In

addition to costing huge amounts of money, recalls also adversely affect the competitive-

ness of the company’s product. For example, the Pentium FDIV bug, which caused a

divide-by-zero condition, costed Intel $475 million in recalls [77]. Figure 1.4 shows a

study of the number of escaped bugs for various generations of Intel processors as reported

in processor errata documents [60], [61]. It can be seen that there has been a steady in-

crease in the number of bugs detected per month with each design generation, especially as

the designs moved to dual-core (Core 2 Duo) and multi-core (Core i7) architectures. The

growing complexity of inter-core communication is the leading cause for this rise, with

10%-13% of the reported design errors related to the communication system of dual and

multi-cores. The growth in the bug-rate is expected to continue as the CMPs transition to-

wards more complex NoC-based interconnects, with a lot of hard-to-find bugs contributed

by the communication infrastructure.

Recently, the research community has started to explore runtime verification solutions

where the system’s activity is monitored at runtime and checked for correctness. Runtime

verification can greatly reduce the impact of escaped design bugs. The associated cost,

however, includes silicon area for runtime monitoring and recovery, dedicated design ef-

fort and a performance impact due to continuous monitoring activities. Therefore, naı̈vely

safeguarding against all possible failures scenarios at runtime is prohibitively expensive.
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Figure 1.4 Bugs discovered after deployment for a number of Intel processors. The rate of es-

caped bugs increased drastically with the transition from uni-core to multi-core architectures. Thus,

it can be speculated that a significant fraction of the bugs relate to the interconnect sub-system.

1.3 NoC Reliability Challenge

In today’s landscape of extreme technology scaling, silicon transistors are highly suscep-

tible to a wide variety of reliability threats. Specific sources of hardware failures include:

particle strikes on silicon components, device degradation over time, and voltage and

temperature fluctuations. Failures may manifest as one-time upset to device operation

(transient or soft faults) or as a permanent hardware failure (permanent or hard faults).

Transient failures do not permanently damage the device functionality and typically can

be overcome by re-execution of the erroneous computations. However, without proper de-

tection, transient errors can silently corrupt data produced by digital systems. In addition,

naı̈vely re-executing the entire application is often not possible, especially for mission-

critical and real-time systems. The problem is further exacerbated by the increasing rate

of these single-event upsets (SEUs), making the re-execution of entire applications an im-

practical solution.

Permanent failures, unlike transient faults, are persistent changes to the behavior of sil-

icon devices. Permanent failures in the field are typically introduced by transistor wear-out

phenomena: electromigration [47], negative-bias temperature instability [8], and time-

dependent dielectric breakdown [117]. Commonly, permanent faults are overcome by

disabling the malfunctioning component and leveraging redundancy in the design to con-

tinue execution. Naturally, the smaller the disabled circuit portion, the more graceful is the

7



performance degradation with each fault manifestation. A gracefully degrading solution,

therefore, requires a fine-resolution fault detection and diagnosis, followed by reconfigura-

tion around the faulty component.

Both transient and permanent faults can lead to undesirable consequences. Both fault

types can cause silent corruptions to program’s output or can lead to expensive service dis-

ruptions [107]. In addition, permanent failures can lead to complete loss of functionality

due to their recurring nature [73], often forcing product recalls. As an example, the recent

Intel Cougar-Point chipset was recalled due to a wear-out problem in the SATA controller:

a recall that industry experts estimated to cost approximately $1 Billion [113].

In the context of NoC sub-systems, all components of the NoC are susceptible to soft-

errors: from buffers and logic in the routers [34] to the on-chip links that are additionally

affected by cross-talk and coupling noise effects. Further, as wear-out phenomena are

accelerated by increased activity and higher temperatures, the heavily utilized on-chip net-

works become vulnerable to permanent faults. To make things worse, the network-on-chip

is often the sole medium for on-chip communication, and may become a single-point of

system failure, leading to critical loss of data and failure of software applications or of the

entire system. Therefore, effective techniques ensuring reliable operation of NoCs in face

of hardware failures are a critical requirement for overall system reliability.

1.4 Power-agnostic NoC Designs

In the past decade, designers have relied on multi-core designs to provide increased per-

formance scaling at reduced power budgets. Unfortunately, adding more cores on a chip

is no longer sufficient to provide meaningful performance improvements within reasonable

power budgets [37]. Researchers have termed this phenomenon dark-silicon as it is no

longer possible to run all components in a system at full throttle, and a significant portion

of the chip must be completely switched off to avoid overheating.

Performance improvements in the dark-silicon era can be achieved by designing

application-specific hardware components that accelerate certain types of computations.

However, as the variety and quantity of heterogeneous components that make it into future

computers increase, the interconnect that binds them together must also evolve to accom-

modate this shift in the design paradigm. In addition to the varying bandwidth requirements

of heterogeneous components, the interconnect must also adapt to the needs of different ap-

plications that stress different portions of the network. The growing heterogeneity, the short

time-to-market and the need for NoC designs to be generic enough to run a variety of appli-
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cations, have rendered design-time optimizations difficult and ineffective. This often leads

to over-provisioned NoC architectures that are designed to handle the most adverse com-

munication patterns at all times. This shift in the design paradigm requires the development

and deployment of novel interconnect architectures that can adapt to a wide range of com-

munication demands at runtime, and avoid the alternative of over-provisioning hardware

resources.

Particularly problematic is the trend of growing power-dissipation in NoC devices de-

signed for worst-case traffic patterns, which today can consume up to 30% of the entire

chip’s power-budget. The problem is further exacerbated by leakage effects, causing power

dissipation even during periods of low activity. For NoCs at 22nm, leakage can be a ma-

jority contributor to the total interconnect power [120], and the share of leakage power is

expected to grow in future generations. The result is excessive power dissipation, even

when an NoC is not under heavy use. However, heterogeneous workloads stressing only

a portion of the design create opportunities for isolation of the lightly-used portions of

the system and corresponding NoC region. The isolated components can be switched to a

low-power mode using power-gating [57]. Such a solution requires application behavior

monitoring and prediction, followed by runtime reconfiguration of components to optimize

the NoC resources for the executing workload. By updating the reconfiguration trigger

criterion, it is also possible to provide a variety of power and performance trade-offs, de-

pending on the available on-chip power budget.

1.5 Threats to NoCs’ Runtime Health

This dissertation aims at circumventing threats to NoCs’ runtime health. In other words,

we aim to detect and overcome spurious NoC behaviors that manifest at runtime and cannot

be adequately addressed at design-time. Ensuring correct NoC operation in the presence

of runtime malfunctions is challenging because: i) the faulty behavior can manifest unpre-

dictably at any time or in any component, making prediction and prevention non viable

options, ii) the continuous monitoring required to detect malfunctions results in substantial

resource and performance overhead, and iii) complete recovery to a correct state after error

manifestation is difficult without employing high redundancy in the design. Developing an

effective solution without sacrificing performance or dedicating heavy silicon resources re-

quires careful study of the characteristics of each type of failure. The characteristics of each

failure’s manifestation in silicon components is referred to as a fault model. In addition to

an accurate fault model, ensuring runtime health also requires a thorough understanding
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of the component under threat, i.e., the NoC in our case. Note that NoCs are particularly

critical because they are the only communication medium between interacting units in a

chip and, therefore, a malfunctioning interconnect can potentially render the entire chip

unusable.

In this dissertation we propose solutions to overcome three classes of failures that af-

fect NoCs’ runtime health. Specifically, we deem the following threats to NoCs’ runtime

health as major roadblocks to their evolution: i) design errors due to the increasing com-

plexity of on-chip communication infrastructures, ii) transistor failures due to the waning

reliability of transistors in the fragile silicon era, and iii) power dissipation beyond the

cooling capacity of chips due to increasing transistor density. We believe that overcoming

the issues above is the key to unlocking the full potential of communication-centric com-

putation in future generations of computer systems. In the remainder of this section we

discuss the characteristics of each failure class when they manifest in NoCs. We leverage

these characteristics to design low-cost and high-coverage runtime solutions.

Design errors. As the name suggests, these are errors that are introduced accidentally into

the hardware design, often due to its complexity and the challenges associated with a large

and distributed development effort. Design errors cause the hardware not to conform to the

specification and can have impacts ranging from minor delays in product launch to recall

of the malfunctioning hardware. We particularly target design errors that have escaped all

verification efforts before launch. Note that the computer industry spends massive effort in

ensuring that released products are bug-free. Therefore, bugs that slip through the verifica-

tion effort are typically associated with rare runtime occurrences. Even though these bugs

rarely manifest, they can affect any NoC component in an unpredictable manner.

Design bugs can be overcome by re-execution of the application from a correct state,

while operating the hardware in a barebone but guaranteed-to-be-correct mode. How-

ever, any hardware complexity introduced to protect the NoC against design errors has

the potential of adding further complexity to the design. Taking these observations into

consideration, our runtime verification solutions incorporate the following features:

• they are optimized for error coverage, rather than speed of recovery as design errors

manifest rarely but in an unpredictable manner.

• they involve a lightweight recovery phase that operates the NoC in a guaranteed-to-

be-correct mode till the error is circumvented.

• they add only simple and easily verifiable hardware logic to the NoC, simultaneously

ensuring that the recovery operation does not interfere with the baseline micro-

architecture.
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Transistor failures manifest either as temporary corruptions of transistor output values or

as permanently malfunctioning transistors. The former, called soft-errors, are similar in

their manifestations to design errors. Soft-errors occur rarely and unpredictably, and they

can be overcome by re-executing from an uncorrupted state. The latter, referred to as per-

manent faults, permanently damage transistor outputs. Therefore, the affected components

are unusable for the rest of the chip lifetime. To continue operation, diagnosis of such per-

manent malfunctions is required, followed by a hardware reconfiguration step to disable

the failed components. Similar to other failures, permanent faults also occur rarely but

unpredictably. Permanent faults can also render the entire chip unusable if not addressed

appropriately. The guiding principle for protection against permanent faults is graceful

performance degradation. In other words, with each new fault, components should be di-

agnosed and disabled frugally so as to prolong the chip’s lifetime. Naturally, overcoming

permanent faults requires some resource redundancy in the design. Based on these char-

acteristics, our solutions for protection against transistor failures incorporate the following

features:

• soft-error solutions leverage a detection and recovery mechanism similar to our de-

sign error tolerance design.

• they provide fine-grained diagnosis and reconfiguration to frugally bypass perma-

nently faulty components.

• solutions protecting against permanent faults are optimized for diagnosis accuracy

rather than reconfiguration latency.

• they utilize redundancy built into the NoC architecture, rather than adding reliability-

specific hardware.

Excessive power dissipation. Contemporary CMPs and SoCs incorporate a variety of

application-specific components, and they run a variety of workloads exhibiting vastly

different characteristics within and across applications. This trend compels designers to

over-provision resources at design-time. Over-provisioning allows CMP/SoC designs to

appropriately tackle the worst possible execution scenarios at runtime. However, over-

provisioning of resources leads to excessive power dissipation.

NoCs, being a central component in CMPs and SoCs, also suffer from increased power

dissipation due to over-provisioning. In addition, they consume a significant portion of the

on-chip power budget. Note that a majority of NoC power dissipation can be attributed to

transistors leaking power even when not in use. Finally, the available power-budget varies

at runtime depending on the current chip operating conditions. Thus, we propose to develop
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power-conscious NoC design solutions with the following characteristics:

• targeting the reduction of leakage power dissipation.

• performing dynamic optimization at runtime, based on workload characteristics.

• providing application-specific power efficiency, i.e., greater power savings for less

demanding applications.

• enabling flexible and tunable trade-offs between power and performance.

1.6 A Functional, Reliable and Power-aware NoC Archi-

tecture

With the growing relevance of communication-centric microprocessor designs, NoCs have

emerged as the de facto scalable on-chip interconnect. However, focusing on performance

and scalability of NoC designs alone does not completely address the challenges brought

upon by silicon scaling. To this end, this thesis identifies and addresses the roadblocks

arising from three key trends in extreme-integration silicon technology.

The first trend is the growing complexity of interconnect architectures due to the

sheer number of collaborating entities and the never-ending quest for low-latency, high-

bandwidth communication. This dissertation first provides evidence that design-time

verification tools and methodologies are no longer adequate to validate all the complex

interactions in NoC operation, and, as a result, bugs slipping into final silicon are a reality.

It then proposes a verification approach that operates completely at runtime to detect and

recover from errors in the field [2]. We further improve coverage and overhead of the solu-

tion by designing a complementary design- and run- time verification solution [90]. These

solutions rely upon a lightweight and guaranteed-to-be-correct checking mechanism to de-

tect execution anomalies, and they utilize interconnect reconfiguration for error recovery.

The interconnect operates in a degraded and verified mode for the duration of the bug ac-

tivity. Once the recovery is complete, the interconnect switches back to a full performance

mode.

Similar to design errors, reliability failures also manifest non-deterministically at run-

time. Functional bugs are triggered in rare execution scenarios, and they often disappear on

re-execution. Similarly, soft-errors are single-event upsets, and they can be easily protected

against by detecting and re-executing. Therefore, this dissertation proposes a soft-error

protection solution [92] that is similar to our runtime verification approach. Handling

permanent failures, however, is more involved and it requires: i) detection of the faulty
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behavior, ii) diagnosis of the fault site, and iii) reconfiguration around the faulty compo-

nent to prevent it from affecting future operations. To overcome permanent failures, this

dissertation describes solutions that enable all these mechanisms. In our scheme, detec-

tion is facilitated by lightweight execution checkers, while information collected from the

detection procedure is analyzed for accurate diagnosis [48]. We also propose a gracefully

degrading NoC design that leverages a fine-grained fault localization mechanism and a

frugal routing-reconfiguration solution [91]. Finally, we describe a solution to provide first-

response operation while the reconfiguration procedure re-organizes the network around

the fault [71].

The final part of this dissertation describes the design of a runtime-adaptable NoC ar-

chitecture that is capable of addressing excessive NoC power dissipation resulting from

growing heterogeneity, short time-to-market, and application diversity in modern micro-

processors. Our solution [93] ensures healthy runtime operation of NoCs by avoiding

overheating. Further, our NoC design adapts at runtime, eliminating the need for costly

and time-consuming design-time optimizations. To this end, our solution leverages the dis-

tributed runtime monitors that are similar in philosophy to the ones used for functional and

reliable NoC design. It further utilizes the routing and topology reconfiguration method-

ologies developed in the earlier chapters of this dissertation for the purpose of providing

runtime adaptivity.

The solutions proposed in this thesis address challenges to NoCs’ runtime health by

employing a reactive approach, i.e., error detection followed by recovery. In this manner,

our solutions can address a wide range of unforeseen problems; particularly, design errors,

reliability threats, and excessive power dissipation. Further, we adopt an integrated ap-

proach to guarantee NoCs’ runtime health, addressing both detection and recovery from

errors at runtime. A bird’s eye view of the mechanisms proposed in this thesis is shown in

Figure 1.5. Figure 1.5a shows the generic execution flow of the schemes proposed in this

dissertation. We divide applications’ execution into fixed-size time windows, or epochs,

so as to provide temporal error isolation. During an epoch, distributed checkers at each

network router monitor the traffic activity to detect anomalous behavior. If a failure is

detected, a reconfiguration procedure is triggered at epoch boundaries to circumvent the

detected failures. The reconfiguration procedure is implemented with lightweight and dis-

tributed hardware, and it utilizes broadcasts to synchronize the operations of all network

nodes. Figure 1.5b shows the hardware additions at each router required to implement

these capabilities: i) a failure monitor, ii) reconfiguration logic, and iii) a reconfiguration

decision/control unit. The runtime monitoring and reconfiguration capabilities enable our

NoC architecture to efficiently tackle threats to correct runtime operation.
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Figure 1.5 Overview of the solutions proposed in this dissertation. a) The figure shows the

generic execution flow of our runtime mechanisms. Execution is divided into epochs, and the NoC

is continuously monitored for anomalous behavior. A reconfiguration procedure circumvents the

failures detected using synchronized broadcasts. b) The figure shows hardware additions at each

router required to implement monitoring and reconfiguration capabilities. The added hardware is

designed to be lightweight and distributed.

1.7 Dissertation Organization

The main body of this document is organized in three parts, each of which is dedicated

to discuss solutions that provide protection against a specific runtime threat class affect-

ing NoCs. This dissertation dedicates one chapter each to innovative NoC designs that

provide: i) functional correctness in face of design errors arising from growing communi-

cation complexity, ii) resilient operation under both soft- and permanent- faults caused by

the waning reliability of silicon, and iii) power-aware execution to keep NoCs’ power den-

sity under check. The final chapter is dedicated to summarize the work in this dissertation

and conclude the discussion.

Specifically, Chapter 2 discusses two solutions that ensure functional correctness in the

presence of design errors. The first solution, called SafeNoC [2], employs a pure runtime

approach to detection and recovery from an erroneous design state. The second solution,

ForEVeR [90], leverages both design and runtime verification approaches to broaden the de-

sign error detection scope and reduce overheads. Chapter 3 discusses separate solutions for

soft-errors and permanent failures. The soft-error protection scheme [92] exploits similari-

ties between soft-error and design error manifestations, and it is built with minimal changes
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to ForEVeR’s infrastructure. Chapter 3 also details separate solutions for permanent fault

detection, diagnosis, reconfiguration and recovery. The proposed detection and diagno-

sis scheme [48] leverages lightweight monitors to accurately pinpoint faulty components,

while the reconfiguration scheme, uDIREC [91], leverages this fine-grained information to

provide graceful degradation with faults. The recovery scheme, BLINC [71], provides a

quick first-response on fault manifestations and allows uninterrupted operation of the net-

work even during the occurrence of the fault. The work on tackling the power challenges

of NoCs is described in Chapter 4. The proposed scheme leverages the execution informa-

tion collected from distributed monitors to switch off sparingly used components. Finally,

Chapter 5 summarizes and concludes the dissertation.
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Chapter 2

Addressing Functional Bugs

Designing a functionally correct microprocessor is a challenging task due to its sheer com-

plexity and the vast scale of modern designs. With the advent of the communication-centric

design paradigm, much of this design complexity has shifted to on-chip interconnects, i.e.,

typically a network-on-chip (NoC) for large multicore and SoC designs. NoCs are imple-

mented as a network of routers and links, carrying messages to their destinations abiding

to some routing protocol. The routers themselves often include advanced features, such

as pipelining, speculation, prioritization, complex allocation schemes, etc. In addition,

the routers are organized in a wide range of topologies, supported by complex routing al-

gorithms. With these advanced performance features, it is a challenge to ensure correct

functionality under all circumstances for the entire network. Functional bugs, or failure by

a design to meet its specification, are filtered through various stages of verification, includ-

ing techniques like simulation, emulation and formal verification. Even though computer

architects channel significant resources to design-time verification, functional bugs slipping

into the shipped silicon are a reality. Bugs manifesting in the field are the most devastat-

ing, necessitating permanent performance-degrading workarounds, and in extreme cases,

forcing semiconductor companies to recall the affected product. This chapter presents the

solutions to reduce or completely eliminate the cost of NoC functional bugs manifesting

at runtime. We first propose a complete runtime verification approach that overcomes the

majority of design errors in NoCs [2], followed by a hybrid pre-silicon and runtime verifica-

tion approach that improves verification coverage and reduces the overhead of the runtime

protection mechanism [90].

2.1 Inadequacy of Design-Time Verification

Pre-silicon verification efforts are used to ensure correctness using a combination of sim-

ulation, emulation and formal techniques. Simulation- and emulation- based verification
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techniques, though helpful in catching many easy-to-find bugs, are incomplete as they can-

not exhaustively test the countless different execution scenarios within a network. Even

though incomplete, simulation and emulation are still the prime approach for catching the

majority of design bugs early-on during the design phase. Design-time detection and cor-

rection provides three advantages. First, bugs caught at this stage can be fixed simply by

modifying the design and cause only minor delays in schedule. Second, simple designs or

small components of a complex design can be exhaustively tested to guarantee functional

correctness. Finally, for complex designs, well designed test cases stress the most common

usage scenarios to circumvent the majority of simple bugs. On the other hand, formal meth-

ods, such as model checking, are complete but only effective in verifying small portions

of the design [43, 18]. Formal methods also suffer from state-space explosion problem

for bigger designs. Therefore, formal methods typically do not scale to verify end-to-end

system-level correctness properties.

Recently, the research community has started to explore runtime verification solutions

where the system’s activity is monitored at runtime after product deployment. Runtime

verification can reduce the cost of design bugs that escape design-time verification by de-

tecting their occurrence and preventing the corruption of network/processor state, loss of

data and/or failure of the entire system. However, runtime verification solutions require

dedicated monitoring and recovery hardware, which entails additional design and verifica-

tion effort. Therefore, a naı̈ve runtime verification solution results in substantial design,

area and runtime overhead. To keep these overheads low and still be effective, a runtime

verification solution should have the following properties:

• have no performance overhead during normal operation,

• cover a wide variety of failure scenarios,

• incur only a small area and power overhead, and

• entail minimal design and verification effort.

Runtime verification solutions have so far primarily focused on microprocessor designs

[10, 83, 128]. In this chapter, we leverage runtime verification techniques to overcome

functional bugs in NoCs, while trying to enable all the desirable properties stated above.

Our designs are based on the observation that all frequently-occurring bugs are typically

caught during pre-silicon verification: the bugs that slip through most often manifest very

rarely. This observation allows our runtime verification methodologies to operate with low

overhead detection and recovery hardware, yet they are capable of overcoming a wide va-

riety of errors. We also strive for solution’s designs that entail only minimalistic design

modifications that are easily verifiable and mostly decoupled from the NoC hardware, and

17



incur no performance overhead in the absence of errors.

To evaluate the effectiveness of pre-silicon techniques for NoC verification, we per-

formed an experimental study on a simple 2x2 mesh NoC design, with 5-port wormhole

routers [28]. Since we are aiming for complete NoC correctness, simulation-based verifi-

cation cannot be considered a suitable solution as it cannot exhaustively traverse an NoC’s

state space comprising tens of thousand of state elements. Therefore, we focused on for-

mal verification techniques, and wrote properties as System Verilog Assertions (SVA) [1]

describing high-level network behavior. We then tried to formally prove those properties

using Synopsys Magellan [122]. However, the model checking-based formal verification

engine was unable to complete the task due to the state explosion problem. Therefore, we

restricted ourselves to properties that can be verified within a single router (component-

level verification) to avoid state explosion. However, formal verification failed even in

these scenarios if properties were not specified carefully. In general, it was hard to verify

liveness properties and bounded properties with a large time bound.

In subsequent efforts, we were successful in verifying router-level specifications by

breaking them down into simple sub-properties. An example of a property, “router does

not drop any flits”, is illustrated in Figure 2.1. For this particular example, we also decou-

pled the liveness requirement (“flit leaves eventually”), with the property we targeted to

verify (“router does not drop any flits”). This analysis led to three important guidelines:

i) verifying properties at component-granularity is tractable, in contrast to monolithic end-

to-end verification, ii) broad-scope properties can be tackled by breaking them into simple

sub-properties, and iii) formal verification is inadequate in proving liveness or large time-

bound properties: the bugs that cannot be exposed in the process are good candidates for

runtime detection and recovery. We used the observations above in developing the hybrid

design- and run- time verification solution described in Section 2.3.

2.1.1 Overview of this Chapter

To counter the shortcomings of design-time verification, we propose novel runtime vali-

dation schemes tailored to NoC-centric multi-cores and SoCs. This chapter first presents

SafeNoC in Section 2.2, a solution that provides end-to-end protection against NoC design-

failures at runtime. SafeNoC leverages the observation that bugs that escape into the final

silicon are rarely triggered, and a potentially slow software-based recovery mechanism has

little overall performance impact. The chapter then introduces ForEVeR in Section 2.3,

which guarantees complete NoC correctness, while keeping the area and reconfiguration

overhead at minimum. ForEVeR leverages the observation that components that can be
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Figure 2.1 Formal verification guidelines. State explosion avoided by: i) verifying routers indi-

vidually, ii) breaking specification into simple sub-properties and iii) checking liveness requirements

at runtime.

fully verified during design-time do not need protection at runtime. Particularly, ForEVeR

uses formal verification to guarantee correctness in small components, such as routers,

while relying on a runtime detection and recovery mechanism to overcome network-level

errors. The hallmark of both these techniques is that they apply minimal modifications

to the baseline NoC, mostly conducting the verification activities in a decoupled fashion.

Both solutions are independent of the topology organization, the router architecture and the

routing scheme of the baseline NoC.

2.2 Runtime Verification with SafeNoC

SafeNoC is a end-to-end runtime detection and recovery mechanism to guarantee the func-

tional correctness of the communication fabric in CMPs and SoCs. To this end, SafeNoC

augments the existing interconnect with a simple and lightweight checker network that is

guaranteed to deliver messages correctly. For each data message sent over the primary

NoC, a look-ahead signature is transmitted over the checker network and is used to detect

errors in the corresponding data message. Specifically, if a message is delivered without the

corresponding signature present at the destination, SafeNoC triggers a recovery event. On

error detection, all the flits in-flight in the NoC at the time of detection are reliably transmit-

ted through the checker network to all the destination cores. There, a novel software-based

recovery algorithm reconstructs the original packets from the erroneous flits, leveraging the
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available signatures for the same. SafeNoC, thus ensures that all data reaches the intended

destinations. Figure 2.2 shows a baseline CMP interconnect overlaid with the checker net-

work. Both the checker router and the NoC router connect to the network interface to which

two signature calculation units are also added. A generic 64-bit, 4-stage pipeline, 2-VC,

8-flit buffer per VC, wormhole router with inbuilt ECC functionalities is assumed as the

baseline.
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Figure 2.2 High-level overview of SafeNoC. SafeNoC augments the original interconnect with

a lightweight checker network. For every data packet sent on the primary network, a look-ahead

signature is routed through the checker network. Any mismatch between the received packet’s

computed signature and its look-ahead signature flags an error and triggers recovery.

SafeNoC is not limited to any particular interconnect topology or router architecture,

and it can overcome a wide variety of functional bugs affecting the NoC. In addition,

SafeNoC exhibits no overhead in the absence of errors, incurring a penalty of few millisec-

onds in the worst-case bug manifestation. Unlike traditional end-to-end ‘retransmission-

based’ detection and recovery techniques for NoCs [85] that require large buffers for

retransmission of clean data copies, SafeNoC requires small storage of compact signatures.

SafeNoC leverages the infrequent nature of bug manifestations for trading-off recovery la-

tency for a low hardware overhead design. SafeNoC’s silicon footprint is a considerable

improvement over the retransmission-based recovery scheme, as we will discuss in Section

2.5. Moreover, SafeNoC’s hardware additions are simple and mostly decoupled from the

existing interconnect hardware, and they are formally verified to be functionally correct.

The SafeNoC solution has separate error detection and error recovery phases. In the

error detection phase, whenever a packet is to be sent over the primary network, a signature
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of that packet is computed and sent through the checker network. The signature serves as a

look-ahead packet and a unique identifier of the corresponding main packet, and it is used

as a basis for detecting errors in the main interconnect. When a destination receives a data

packet, it recomputes its signature and compares it against previously received look-ahead

signatures. If a match is not found within a certain timeout period, an error is flagged and

recovery is initiated. During the recovery phase, in-flight flits and packets are recovered

from the network and reliably transmitted through the checker network to all destinations.

Any destination that has a mismatched signature runs a software-based reconstruction al-

gorithm, in which it uses the recovered flits to reconstruct the original data packets, so that

they match their corresponding signatures.

2.2.1 Error Detection

SafeNoC’s checker network incurs minimal area overhead, is formally verifiable and it de-

livers look-ahead signatures before actual data packets arrive through the primary network.

A checker network that does not deliver signatures before their corresponding data packets

would only introduce a performance penalty but would not affect correctness. SafeNoC’s

optimized checker network minimizes such cases by deploying a simple, single-cycle la-

tency, packet-switched router, organized in a ring topology [67]. The details of the checker

network design are presented in Section 2.4.

SafeNoC’s bug model assumes that data within a packet’s flits is protected by built-in

ECC, and functional errors can either manifest by affecting entire packets, such as a dead-

lock, or by affecting individual flits within a packet, such as misrouting or re-ordering of

flits. Within this bug model, for a signature to uniquely identify a packet, its value must de-

pend on the flits’ data values, as well as their order within the packet. As a result, every flit

in the data packet must be augmented with a flit ID. The 64-bit data of each flit is rotated by

a fixed amount that depends on the flit’s position. The resulting values are XORed together

into a 64-bit intermediate value. The intermediate value is divided into 4 parts that are then

XORed to give the final 16-bit signature. This signature computation provides low aliasing

probability (3.05× 10−5), and it can be implemented with low area overhead. Each des-

tination router maintains a timeout counter for every look-ahead packet it receives. If the

signature from the newly received packet matches any of the look-ahead signatures, then

this packet is considered to have been delivered correctly. In case of a signature time-out,

an error is flagged and recovery is initiated.
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2.2.2 Error Recovery

The recovery phase consists of four steps in the following order: network drain, packet

recovery, flit recovery and packet reconstruction. First the network drain phase is initiated,

during which the network is forced to drain its in-flight packets for a preset amount of time,

as shown in Figure 2.3a. The draining stage only leaves problematic packets and flits stuck

within the network. The network then enters the packet recovery phase, which involves

recovery of these problematic packets and flits. All primary routers remain active during

this phase, except they do not service new packets. Only one primary router tries to recover

packets at any time. To this end, a token is circulated through the checker network to de-

termine the recovering router. When a router receives the token, it checks its input buffers

to determine if there is a complete packet, in which case it is retrieved and sent over the

checker network, as shown in Figure 2.3b.
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Figure 2.3 SafeNoC recovery process. Recovery proceeds in four steps. The last step is executed

in software, while the others are implemented in hardware.

The next step, flit recovery, recovers stray flits from the network. A flit is considered

stray if it is stuck in a router buffer or if it is delivered to the wrong destination. All stray
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flits are candidates for the reconstruction process. Figure 2.3c illustrates this phase: a FIFO

checker at every input buffer of each router tracks valid stray flits. Using a token-based

protocol, each router, in turn, sends the stray flits over the checker network to all desti-

nations in the NoC. During the last phase, packet reconstruction, the processor cores run

a software algorithm to reconstruct the original packets using the stray flits (Figure 2.3d).

Candidate flits are organized in separate groups, one for each flit ID, and an index is main-

tained for each group to indicate which flits have already been considered. For each flit

ID, a candidate is added to the set of current candidates. The current candidates are then

assembled into a new packet and its signature is computed. If the signature matches any of

the remaining look-ahead signatures, the packet is delivered to the application and all its

flits are removed from the candidate groups.

2.2.3 Experimental Evaluation

Wemodeled SafeNoC both in Verilog HDL and with a cycle-accurate C++ simulator. Using

Synopsys Magellan [122], we formally verified the Verilog model of the hardware involved

in recovery. The impact of recovery on performance was evaluated using the C++ simula-

tor modeling a variety of functional bugs in the baseline system. The model was simulated

with two different types of workloads: directed random traffic (16 flits per packet), as well

as application benchmarks from the PARSEC suite [14]. The SimpleScalar [19] simulation

infrastructure was leveraged to estimate the reconstruction algorithm’s execution time. The

network drain time was set to 2,000 cycles and the packet delivery timeout to 4,000 cycles.

Bug name Bug description

dup flit a flit is duplicated within a packet

misrte 1flit a flit is misrouted to a random destination

misrte 3flit 3 flits of a packet are misrouted to a random destination

misrte 1pkt a packet is misrouted to a random destination

misrte 2pkt 2 packets are misrouted to random destinations

misrte flit pkt a packet is misrouted, another packet’s flits are misrouted

dup pkt a packet is duplicated

dup misrte pkt a packet is duplicated and one copy is misrouted

reorder flit flits within packet are reordered

deadlock some packets are deadlocked in the network

livelock some packets are in a livelock cycle in the network

Table 2.1 Functional bugs injected in SafeNoC.

We injected 11 different bugs reported in Table 2.1 into the NoC infrastructure and
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evaluated the detection and recovery time. One bug was injected per execution, and each

simulation was repeated for all traffic patterns. The simulations were further repeated for

10 different bug trigger times and for 10 different random seeds for statistical confidence.

With SafeNoC, all workloads complete, delivering all packets correctly to their destina-

tions. Figure 2.4aa reports the recovery time required by each benchmark, averaged over

all random seeds, activation points and bugs, for a total of 11,000 runs.
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Figure 2.4 SafeNoC recovery time. Execution cycles for the first 3 steps of recovery (bars-left

axis, network drain repeated twice) and for packet reconstruction (line-right axis).
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On average, SafeNoC spends approximately 11,000 cycles in the first four steps of re-

covery. The drain time is a preset design parameter, at 4,000 cycles. The packet recovery

and flit recovery steps require on average 1,600 and 5,300 cycles, respectively. In addition,

SafeNoC incurs an average of 3.4M execution cycles to reconstruct erroneous packets.

Therefore, the performance overhead of SafeNoC is dominated by the reconstruction algo-

rithm. In Figure 2.4b, we also analyze SafeNoC’s recovery time by bug. The reconstruction

time varies widely depending on the severity of the bug and the number of flits and packets

it affects. For example, bug misrte 2pkt affects 32 flits in 2 different packets. Therefore,

the reconstruction algorithm must consider two candidate flits for each position within the

packet, requiring up to 38M execution cycles to complete. The packet recovery time is

constant for almost all bugs, at 1,473 cycles, required for the token to traverse all routers,

with the exception of deadlock and livelock, where entire packets are retrieved from the

primary network.

2.3 ComplementaryDesign andRuntimeVerificationwith

ForEVeR

ForEVeR’s approach is based on the insight that although formal methods do not scale to

the complexity of an entire NoC, yet they can ensure component-level correctness, which,

in turn, could greatly reduce the need for runtime bug detection and recovery. During sys-

tem development, ForEVeR recommends a methodology for providing complete formal

verification of the individual NoC routers. In addition, ForEVeR provides hardware addi-

tions to equip the NoC for monitoring and correcting the network execution at runtime. In

the case that even individual network routers are too complex to be amenable to formal

verification, ForEVeR proposes an additional runtime solution targeting specifically only

those aspects of the routers’ functionality that could not be verified during system devel-

opment. The ForEVeR (Formally Enhanced Verification at Runtime for NoCs) solution

is independent of topology, router architecture and routing scheme. ForEVeR can detect

and recover from a wide variety of functional errors in the interconnect, and it can ensure

forward progress in the execution with no data corruptions. ForEVeR comes at a small area

cost of 4.8% for an 8x8 mesh interconnect, while incurring a minimal performance impact

only when an error manifests.
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2.3.1 Methodology

As reported in [16], the functional correctness of an NoC can be organized along four high-

level requirements. Three of them can be satisfied by guaranteeing their validity locally at

each network router: no packet drop, requires that no packet is lost while traversing the

network; no data corruption states that packets’ payloads should not become corrupted

while traveling from source to destination; finally, no packet create requires that no new

packet is generated within the network (packets can only be injected from network’s source

nodes). If each individual router satisfies these properties, then they hold for the NoC sys-

tem as a whole, since network links are simple wires and cannot embed functional bugs that

corrupt, create or drop packets. ForEVeR leverages formal verification to ensure these three

properties and maintain packet integrity. Finally, the last requirement (bounded delivery),

specifies that each packet is delivered to its intended destination within a finite amount of

time and it ensures that there is forward progress in the transmission. This last requirement

cannot be validated locally, since it affects the entire network. The runtime component of

ForEVeR detects the violations of this property, and also provides a mechanism for error

recovery.

To this end, Figure 2.5 shows a high-level overview of the hardware additions re-

quired by ForEVeR, and, in particular, it highlights the components required to enable

bounded delivery. Partially verified routers are connected together to form an NoC that is

completed by detection and recovery logic. Runtime checkers and recovery logic are used

at the router-level to protect complex router components against design flaws (if they can-

not be formally verified at design time). In addition, the primary NoC is augmented with

a lightweight checker network that is used to transmit advanced notifications to the moni-

tors at the destination nodes. During recovery, the checker network is also used to reliably

deliver in-flight data packets to their respective destinations. Note that each component of

the router can be classified into i) verified at design-time, ii) monitored at runtime, or iii)

providing advanced performance features to be disabled during recovery.

ForEVeR’s checker network is similar in design to SafeNoC’s checker network, and so

is the philosophy of operating it concurrently for error detection and recovery. However,

the checker network in ForEVeR is smaller as the notifications it carries do not contain any

packet signatures. In addition, ForEVeR eliminates the need of the majority of SafeNoC’s

structures: i) signature buffers at destinations, ii) signature-packet comparators at desti-

nations, and iii) a software-based reconfiguration. ForEVeR also greatly simplifies the

recovery operation, requiring just a single packet recovery phase. Finally, ForEVeR pro-

tects against a wider variety of bugs, guaranteeing no dropped or corrupted flits, which is

not the case with SafeNoC. In summary, ForEVeR leverages complementary verification
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for a more holistic solution at cheaper cost.

 NI

chk

 NI

chk

 NI

degrd

chk

 NI

chk

partially
verified
router

partially
verified
router

partially
verified
router

partially
verified
router

verifiable checker 
network (detection and 

recovery)

partially 
verified NoC

recovery 
support 

logic

verified 
router core

monitored 
components

advanced performance 
features

NoC router

data packet

normal op.- 
notifications

network-level 
detection logic

recovery op.- 
data packets

monitor executions to 
maintain data integrity 

at all times

Figure 2.5 High-level overview of ForEVeR.A combination of router-level verification and run-

time monitoring, and network-level detection and recovery ensures correct NoC operation.

2.3.2 Router Correctness

A correctly functioning router should ensure that each packet’s integrity is maintained

while it transfers within the router. This can be achieved by guaranteeing that routers

do not drop any individual packet’s flits and flit ordering from head to tail is preserved

during the transmission in a wormhole fashion. The methodology to achieve router correct-

ness is presented via an example of a fairly complex and generic 3-stage pipelined router

that is input-queued and that uses virtual channel (VC) flow control, look-ahead routing

and switch speculation. This verification methodology can however be generalized to any

network and router architecture, as discussed in Section 2.3.5. The datapath components

consist of input buffers, channels and crossbar, and are controlled by input VC control

(IVC), route computation unit (RC), VC allocator (VA), switch allocator (SA), output VC

control (OVC) and flow control manager. The datapath components are fairly simple and

can be completely verified at design-time, while verification of the control components

presents a greater challenge. First, we attempt a full formal verification of the routers, and

in case some aspects of the router cannot be proven correct, we leverage a runtime solution

to monitor and correct any functional bug in those components.
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Router-level Formal Verification

The verification process can be efficiently partitioned into three sub-goals: i) ensuring

that no flit is dropped (no packet drop), ii) showing that no flit is created or duplicated

(no packet create), and iii) ensuring that packets maintain integrity as they travel through

the router (no data corruption). For the first sub-goal, it must be verified that all valid flits

received at input channels are written into valid buffer entries, that the buffers operate in a

FIFO manner, and that each flit after gaining access to the output channel moves from in-

put buffer to the output channel in a fixed number of clock cycles (depending on the router

pipeline depth). To accomplish the second sub-goal, we verify that flits are not duplicated

as they travel through the various stages of router pipeline (IVC, crossbar and OVC). We

also verify that these stages do not create flits out of thin air. The third sub-goal encom-

passes the behavior of entire packets, rather than individual flits, ensuring that all body flits

belonging to any particular packet should follow that packet’s head flit in a wormhole order,

as the packet traverses through the router’s datapath. We pursued the formal verification

of the baseline router design, using the structure described above and Synopsys Magellan

[122], a commercial formal verification tool. Table 2.2 summarizes the sub-goals, how

many properties were proven for each of them and how much computation time they re-

quired. Properties were described as System Verilog Assertions and verification executed

on an Intel Xeon running at 2.27 GHz and equipped with 4GB of memory.

Correctness goal Property to be verified #SVA time(s)

no packet drop * valid flit written to buffer 4 90

(router datapath and control) * buffer operates as FIFO 20 660

* transferred from IP to OP channel 17 170

no packet create * no flit/packet duplication at IVC 4 30

(control components) * no flit/packet duplication at crossbar 1 10

* no flit/packet duplication at OVC 2 10

no data corruption * wormhole preserved (leaving IVC) 25 1,800

(complex component interaction) * wormhole preserved (leaving crossbar) 5 350

* wormhole preserved (leaving OVC) 5 200

Table 2.2 Organization of router’s formal verification with ForEVeR.

Router-level Runtime Verification

ForEVeR provides runtime checkers to protect router components that could not be fully

verified at design-time. Such components, typically, control the interaction between multi-
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ple router activities [43]: VC allocator, switch allocator and buffer management. Note that

the route control unit does not need additional protection because its activity is monitored

as part of the network-level solution. If any router-level checker detects the occurrence of

a bug, the router is reconfigured to a barebone mode of operation that can be completely

formally verified. Recovery is performed by transferring the packets in this degraded mode

of operation, which is guaranteed to be correct. After router-level recovery, a network-

level recovery step is also performed. Below we describe ForEVeR’s runtime router-level

monitors for error detection in detail.

1. VC and switch allocator. A design error in the VC allocator may give rise to various

erroneous conditions. However, some of these conditions are tolerable as they either do

not violate router correctness rules, or they are detected and recovered by the network-level

correctness scheme. Assignment of an unreserved but erroneous output VC to an input

VC is an example of such an error as, in the worst case, it may only lead to misrouting or

deadlock, which can be detected and recovered by our network-level correctness scheme.

Starvation is another example that needs no detection or remedy at the router-level. Crit-

ical errors, i.e., errors that threaten data integrity, arise when an unreserved output VC is

assigned to two input VCs, or an already reserved output VC is assigned to a requesting

input VC. This situation will lead to flit mixing and/or packet/flit loss. Similar to the VC al-

locator situation, a design flaw in a switch allocator may or may not have an adverse affect

on ForEVeR’s operation. To monitor VCs and switch allocators at runtime, we propose the

use of an Allocation Checker (AC) unit, a simplified version of a unit proposed in [94] for

soft-error protection. The AC unit is purely combinational and it performs all comparisons

within one clock cycle. It simultaneously analyzes the state of VC and switch allocators for

duplicate and/or invalid assignments. If an error is flagged, all VC and switch allocations

from the previous clock cycle are invalidated. Flits in flight in the crossbar are discarded

at the output. To avoid dropping flits during the invalidation/discard operation, an extra flit

storage slot per input port is reserved for use during such emergencies. To implement this

runtime monitor, VA, SA and crossbar units are modified to accept invalidation commands

from the AC.

2. Buffer management. A design error in buffer management can lead to either buffer

underflow or overflow. Input buffers can be easily modified to detect and refuse communi-

cation during an underflow, thus not loosing or corrupting any data. On the other hand, a

hardware checker is used to detect buffer overflow errors. Additionally, each input port is

equipped with two emergency flit storage slots. Upon receiving a flit when the correspond-

ing buffer is full, the communicating routers switch to a NACK-free variant of ACK-NACK
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flow control, that guarantees freedom from buffer overflows using a simple scheme. The

emergency slots are reserved for flits in flight during this event. During this NACK-free

flow control operation, a flit awaiting acknowledgement is re-transmitted every two cy-

cles (round trip latency of the links). This scheme, though detrimental for performance,

is extremely simple and can be implemented with little modification to the baseline buffer

management scheme. In addition, the router operates in this simple and verified mode only

during recovery, switching back to its high performance mode after recovery is complete.

Note that, to safeguard against all errors, at most two emergency slots per input port are

required and this storage can be implemented as a simple shift register. In addition, the cost

of this extra storage is amortized across multiple VC buffers in a single input port.

2.3.3 Network Correctness

At the network level, it must be guaranteed that all packets are delivered to their intended

destination within a bounded amount of time. Specifically, the network-level solution must

detect and recover from design errors that inhibit forward progress in the network (dead-

lock, livelock and starvation) or cause misrouting of packets. To achieve this, ForEVeR

augments the NoC design with a checker network similar in architecture to the checker

network of the SafeNoC solution 2.2. Similar to SafeNoC, ForEVeR operates its checker

network concurrently with the original NoC, providing a reliable fabric to transfer notifica-

tions and packets to be recovered. During normal operation, each packet transmitted on the

primary network generates a corresponding notification over the checker network, directed

to the same destination.

Network-level Error Detection

All design errors preventing forward progress result in packet(s) trapped within the net-

work. Therefore, the detection mechanism should be capable of detecting such scenarios.

Any unaccounted packet at destination will lead to a counter with an always positive value,

and hence the detection mechanism will flag an error. Figure 2.6 illustrates the hardware

implementation and execution flow of the detection scheme. The detection operation is

organized into ‘check epochs’ or time intervals of fixed length. The detection algorithm

increases the counter at the local destination node for each notification received and de-

creases it for each packet received. In addition it stores in a separate register, reset at the

beginning of each check epoch, whether a zero has been observed. Recovery is initiated if

one or more network nodes have not yet observed a zero at the end of a check epoch. The
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implementation requires a counter connected to both the primary and the checker network,

a timer to track epochs and a zero-observed storage bit. Finally, note that design errors

leading to misrouting of packets can be detected by analyzing the routing information in

the header flit at the destination nodes.
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Figure 2.6 ForEVeR network-level (runtime) detection scheme. The counter at destination NI

is incremented (decremented) upon notification (data packet) arrival, and recovery is triggered if

zero is not observed during a check epoch.

Network-level Error Recovery

When an error is reported either by the router-level runtime monitors or by the network-

level detection scheme, the NoC enters a recovery phase, consisting of a network drain step

followed by a packet recovery step. The recovery phase is depicted graphically in Figure

2.7. During network drain, the network is allowed to operate normally to drain its in-flight

packets, while no new packets are injected. At the end of this phase, which runs for a fixed

time length, recovery terminates if all destinations have received all their outstanding pack-

ets. This situation indicates that recovery was triggered by a false positive detection, which

can be caused due to inaccuracies in ForEVeR’s detection scheme. The subsequent phase,

i.e., packet recovery, recovers all remaining outstanding packets. To this end, a token is cir-

culated through all routers in the NoC via the checker network, and NoC routers can only

operate when they hold this token. In addition, all routers are prevented from servicing new

packets. When a router receives the token, it examines all its VC buffers sequentially to find

packet headers. If a header is found, the corresponding packet is extracted and transmitted

over the checker network. The token circulates through all routers retrieving packets from

one router at a time. Retrieving all packets may require repeating the token loop through

all routers, as certain packets may still remain in their respective buffers.
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Figure 2.7 ForEVeR network-level (runtime) recovery scheme. All packet injections are sus-

pended during the network drain phase, while remaining packets are recovered via the checker

network during the packet recovery phase.

2.3.4 Experimental Evaluation

ForEVeR’s experimental setup is similar to SafeNoC: Verilog implementation is used for

formal verification and area estimates, while C++ simulator [28] is used to evaluate For-

EVeR’s operation. We injected 9 different design bugs into the C++ implementation of

ForEVeR, described in Table 2.3. Bugs 1-6 are errors that inhibit forward progress, bugs

7-8 are misrouting errors, whereas bug 9 is an error that affects router operation while it

is servicing a packet. One distinct bug is triggered during each execution of simulation

traces, while varying the trigger time (5 trigger points, 10,000 cycles apart), the location

of bug injection (10 random locations) and packet size (4, 6 and 8 flits). ForEVeR was

able to detect all design errors with no false positives or negatives and correctly recover

from them, executing all workloads to completion and delivering all packets correctly to

their destinations. Each recovery entailed an execution overhead, due to network drain and

packet recovery. During network drain, the primary NoC was allowed to drain for a fixed

period of 500 cycles, a parametric value that we set by simulating the draining of a con-

gested network. Table 2.3 reports the additional average packet recovery time incurred for

each bug, averaged over all benchmarks, packet sizes, activation times and locations.

Note that routing errors are caught at incorrect destinations, while errors affecting router

operation are uncovered immediately by the distributed hardware monitors. On average,

ForEVeR spends approximately 2,633 cycles in packet recovery for each bug occurrence.

This value is primarily affected by the number of packets that must be recovered; thus bugs

affecting a large portion of the network, such as an entire port (VA port strv), take more

time to recover than bugs that influence smaller portions, such as only one VC (VA vc strv).
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Similarly, deadlock errors that may affect many packets, require the largest recovery time.

We observed the worst case recovery time of 30K cycles across all our simulation runs, in-

cluding all packet sizes and both uniform and application traffic. A key aspect of ForEVeR

design is that it incurs no overhead during normal operation, spending time in recovery

only on bug manifestation. Therefore, it can afford a longer recovery time as design bugs

manifest infrequently.

Bug name Bug description recovery time

deadlock some packets deadlocked in the network 4,821 cycles

livelock some packets in a livelock cycle 3,084 cycles

VA vc strv input VC never granted an output VC 2,827 cycles

VA port strv no input VC in a port granted output VC 3,055 cycles

SW vc strv one input VC never granted switch access 2,123 cycles

SW port strv no input VC in a port granted switch access 2,490 cycles

misroute1 one packet routed to a random destination 1,724 cycles

misroute2 two packets routed to random destinations 1,810 cycles

router bug hardware monitors in routers detect a bug 1,764 cycles

average 2,633 cycles

Table 2.3 Functional bugs injected in ForEVeR and average packet recovery time.

Bugs that typically escape into production hardware are extremely rare corner-case situ-

ations buried deep in the design state space that were not uncovered by extensive pre-silicon

and post-silicon validation efforts. Hence, it is safe to assume that these bugs are extremely

infrequent as they have escaped months of verification efforts. Therefore, even though

more than 100 bugs were discovered in the latest Intel chips (Figure 1.4) after production,

released bug patches (mostly software-based) do not lead to significant slow down in over-

all performance. In perspective, ForEVeR’s recovery penalty of 2.6K cycles on average

is insignificant even for a unrealistic bug rate of one error every 5 minutes. For a 1 GHz

NoC, exhibiting an error rate of one error every 5 minutes, this translates to a negligible

performance penalty, less than one hundred millionth (10−8).

To closely study the relationship between recovery time and number of flits recovered

via the checker network, we injected a varying number of packets in the NoC and prevented

them from ejection at the network interfaces. The network-level detection scheme flags an

error after the second epoch due to un-accounted primary network packets at destinations,

thus triggering a network recovery. Concurrently, we noted the time required to drain all

stuck packets through the checker network. Figure 2.8 plots our results for varying packet

sizes, reporting packet recovery time vs. number of extracted flits. As seen from the figure,

packet recovery time varies almost linearly with the number of stuck flits, requiring less
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Figure 2.8 ForEVeR’s packet recovery time. ForEVeR’s recovery overhead increases almost

linearly with the number of flits stuck in the primary NoC that must be transmitted reliably through

the checker network. Worst case packet recovery time of 45K cycles is observed in this limit study.

than 45K cycles, even in the worst case. Note that in this artificial scenario, we are inten-

tionally jamming the main network with many more flits than usual network occupancy at

any instant. Thus, this serves as a limit study, and, in practice, ForEVeR’s packet recovery

time is limited by 30K cycles, as seen by our results on recovery from design bugs.
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Figure 2.9 False positive rate vs. check epoch size, for various packet sizes. The false positive

rate drops rapidly with larger check epochs and decreasing network load.

False Positives

False positives occur when an unnecessary recovery is triggered in absence of a bug occur-

rence, and they are due to inaccuracies in the runtime monitors. Note that, a false positive

in the detection mechanism does not affects the network’s correctness but only its perfor-

mance. The false positive rate of the detection scheme depends on the duration of the check

epoch, relative to traffic conditions. Note that false positives are triggered when the desti-

nation counter is non-zero for an entire check epoch; hence a heavily loaded network will
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trigger more false recoveries as unaccounted notifications accumulate at destinations while

their corresponding packets are being delayed due to congestion in the network. Intuitively,

a longer check epoch will reduce the false positive rate by allowing more time for packets

to reach their destinations. Figure 2.9 shows the decrease in false positive rate with increas-

ing check epoch size. The false positive rate drops to a negligible value beyond a certain

check epoch size (Epochmin), whose value depends on network load. Additionally, a heav-

ily loaded network exhibits a higher false positive rate than a moderately loaded network,

and hence a heavily loaded network requires a larger Epochmin to practically eliminate all

false positives. Extensive simulations indicate that Epochmin rises to intolerable values only

when the network is operated at loads well past its saturation. However, NoC workloads

are characterized by the self-throttling nature of the applications, which prevents them from

operating past saturation loads [87].
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low network load and 4-flit packets. False negatives decrease with increasing primary network

offset.

False Negatives

False negatives might cause an error to go undetected for a few epochs. But, since no loss

of flits/packets is guaranteed, the data would eventually be delivered in an uncorrupted state

to the correct destinations upon error detection. To avoid false negatives in the detection

scheme altogether, the checker network is constrained to deliver notifications before the

corresponding data packets arrive via the primary network. In ForEVeR’s evaluation sys-

tem, the checker network almost always delivers notifications ahead of data packets, except

for very low latency situations, where primary network packets take shorter routes through

the primary NoC, while notifications travel longer routes in the ring-based checker network.
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To counter these cases, the updating of the monitor counters can be delayed by an amount

determined by the maximum latency difference between primary and checker network at

zero load (we call this value counter update delay). We ran low latency simulations using

uniform traffic with a small packet size (4 flits) and a check epoch of 300 cycles. With this

setup the primary network is only lightly loaded, and hence it has a greater chance of cre-

ating false negatives. Figure 2.10 plots the maximum number of false negatives observed

over 10 different seeds for different counter update delay values. Note that the rate of false

negatives falls quickly and are completely eliminated at a delay of 20 cycles or greater.
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Figure 2.11 Epochmin and latency with increasing network load for uniform traffic. Epochmin
is within tolerable limits for all but deeply saturated networks.

Optimal Epoch Length

To calibrate the check epoch, we ran rigorous simulations using both uniform random traffic

and PARSEC benchmarks. After operating ForEVeR normally for a preset length of time, a

random primary network packet is dropped to emulate the impact of an error in the primary

network; the false positive and negative rate for a range of check epochs is then calculated.

Figure 2.11 plots Epochmin (necessary to minimize the false positive rate) and the average

network latency as network load is varied, under uniform network traffic. Epochmin ex-

hibits a slow increase with rising injection rate up to network saturation, and a steep rise

afterwards. From the plot, a worst case Epochmin of 7K cycles is sufficient to eliminate

all false positives when the network is in deep saturation, operating at an average latency

of about 4 times the zero-load latency. With similar experiments on PARSEC benchmark

traces, we observed that the check epoch of length 600 cycles is sufficient to eliminate all

false positives.
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Verification of ForEVeR’s Recovery

All components involved in the detection and recovery processes must be formally veri-

fied to guarantee correct functionality. Detection leverages the checker network and the

counting logic in the network interfaces. In addition to the interface between primary and

checker routers for packet draining, the recovery operation also uses the checker network.

To verify the correctness of the checker network, we need to show that it delivers all

packets to their intended destination in a bounded amount of time, as discussed in Section

2.3.1. We partition this goal into four properties: injection, guaranteeing correct injection

of packets into the network; progress, ensuring packets advance towards their intended

destinations; ejection, proving timely ejection of packets; and data integrity, ensuring that

data remains uncorrupted throughout.

As discussed earlier, during recovery, the NoC routers operate in a barebone mode with

all complex hardware units disabled, thus making the verification task much less challeng-

ing. To ensure correct recovery, we have to verify that routers fairly take turns in retrieving

valid packets from their respective buffers. To this end, we check the following aspects:

i) fairness and exclusivity during extraction (fairness) to guarantee that routers take turns

in transmitting packets on the checker network. ii) We also verify that complete packets

are extracted (complete packet), emptying the buffer completely (buffer empty). We also

check that iii) only valid packets are recovered (valid packet). Table 2.4 reports the time

required to prove these verification goals using our setup.

checker network correctness recovery operation correctness

verified property time(sec) verified property time(sec)

injection 8 fairness 15

progress 156 complete packet 10

ejection 86 buffer empty 46

data integrity 10 valid packet 29

Table 2.4 Formal verification of ForEVeR’s network-level detection and recovery.

Area Results

A central goal in designing ForEVeR is to keep silicon area at a minimum. The amount of

hardware required to implement router-level correctness varies with the designer’s ability to

verify different router components as formally verified functionalities need no protection at

runtime. Thus, we present the area overhead for network-level and router-level correctness

separately. Table 2.5b reports additions for network-level correctness, indicating a 4.8%
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area overhead over a primary network router. The overhead is due to recovery support at

each router, contributing 1.7%, and network interface additions and checker router, which,

combined, are responsible for the remaining 3.1%.

Table 2.5a reports the overhead for ForEVeR’s router-level hardware monitors and

reconfiguration hardware, accounting for 9.2% additional area over the baseline router. Re-

covery support for router-level correctness costs 7.8%, whereas the monitoring hardware

results in 1.4% overhead. In our framework, we were able to formally verify the baseline

router completely, and hence we only incurred the network-level area cost (4.8%).

(a) router-level correctness (b) network-level correctness (per router)

design area (µm2) % design area (µm2) %

baseline router 77,723 100.00 recovery support 1,300 1.67

recovery support 6,071 7.81 NI additions 1,550 1.99

monitoring 1,053 1.35 checker router 845 1.09

overhead 7,124 9.16 overhead 3,695 4.75

Table 2.5 ForEVeR area overhead.

ForEVeR leverages formally verified components within the router to recover from

design errors to keep the overhead low when compared to purely runtime verification tech-

niques [85, 2]. Without these verified components there would be a need for substantial

extra hardware. Specifically, in case of an error, a full runtime solution would require stor-

age to duplicate all the in-flight data and retransmit that using the same unreliable network

or transfer that over a secondary network that is guaranteed to be correct. We present the

comparison against runtime schemes in Section 2.5.

2.3.5 Generalization

Generalization to other NoC Designs

Both the detection and recovery schemes of ForEVeR can be generalized to any NoC

design/architecture. ForEVeR is agnostic to NoC topology and the routing algorithm em-

ployed, as long as the checker network, used both during detection and recovery, can adapt

to consistently deliver notifications ahead of time. To this end, checker network’s perfor-

mance can be tuned to the needs of the baseline network by various mechanisms, such as

increasing bandwidth or bundling notifications together before transmission. For the base-

line design, a low bandwidth checker network sufficed to deliver notifications as required.

38



Generalization to other Router Designs

ForEVeR can be generalized to all mainstream router designs, as they have similar under-

lying structure, where control components manage the flow of data through the data-path

components. ForEVeR’s hardware monitors for router-level detection provide protection

to router components that handle complex interactions such as flow control and resource

allocators. Although the baseline router implementation is completely formally verified in

our experiments, we designed these generalized hardware monitors (flow control checkers

and allocation comparators) to be able to extend ForEVeR’s detection scheme to more com-

plex router designs that may be outside the scope of formal verification. As for ForEVeR’s

recovery scheme, only guaranteed basic router functionality is required to safely salvage

packets from the routers. To ensure this, basic router components (input ports, buffers,

arbiters, crossbar) required for bare-bone functionality are formally verified. These com-

ponents are common to all router architectures, while many of the other router features

that are design specific tend to be performance oriented: these type of features are disabled

during recovery.

2.4 Checker Network Design

This section discusses the design principles behind the design of the checker network for

ForEVeR. The same design principles apply to the checker network design for SafeNoC,

and hence it is not discussed separately. A suitable checker network should have three main

properties: i) it should be formally verifiable; ii) it should provide low latency transmis-

sion; iii) and finally, it should incur a low area overhead. A formally verifiable network

should present a simple router and network architecture, and a simple routing algorithm.

In contrast, a naı̈ve solution to consistently deliver notifications before their counterpart

data packets arrive through the primary network, may require complex router and network

designs that are area-intensive and difficult to verify. Fortunately, exploiting the nature of

traffic flowing through the checker network (i.e., notifications), we are able to design a

network satisfying both these conflicting requirements. Note that these properties are not

a strict requirement for the correctness of our solution. However, not meeting them leads

to additional costs in area, development time and performance. For instance, a checker

network that does not deliver notifications before their corresponding data packets, may

result in an error going undetected over multiple epochs. In such a scenario, error detection

latency is affected, but NoC correctness is still guaranteed. The checker network, therefore,

is tailored to the characteristics of the primary network so to minimize the occurrence of
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such cases.

The checker network is used exclusively to transmit notifications to their destinations.

The notifications contain no data, only including destination address (6-bits for a 64-node

NoC) and a valid bit. Having to transmit only packets of uniform and small sizes presents

many advantages that can be leveraged to design a simple and efficient NoC architecture.

First, packet-switched routers, without large buffers or many wires between routers, can

be utilized. This eliminates the need of complex switching techniques for buffer and/or

wire cost amortization, including circuit switching, store-and-forward, virtual-cut through,

wormhole and virtual channel switching, which all require a substantial amount of con-

trol and book-keeping hardware for proper functioning. Additionally, such a simple router

design can be implemented to have single-cycle latency, as we discuss later in this sec-

tion. Second, the small fixed-size packets require no packetization hardware at the network

interfaces (NIs) and fully utilize the available bandwidth on packet switched networks

(no bandwidth fragmentation). Finally, since the notifications are not stored at destina-

tions, multiple notification can be ejected simultaneously, without requiring any additional

buffering.

Based on these observations, our checker network should be packet-switched, with

channel/buffer allocation and traffic transmission performed at packet granularity. To fur-

ther simplify the design, we chose a ring topology for the checker network, leveraging

a simple, single-cycle latency, packet-switched buffer-less router, based on the solution

proposed in [67]. All the nodes in the network are connected in a bidirectional ring. A

predetermined allocation ensures that there is no contention for network resources in rout-

ing a packet from source to destination; therefore, pipeline registers at the router inputs are

sufficient to ensure loss-less transmission. To this end, once a packet is injected into the

network, it has priority over other packets that are trying to enter the network, and thus the

packet is guaranteed to make progress toward the destination. For each packet, a decision

is made to inject it in one ring or the one in the opposite direction based on minimal rout-

ing distance. Each packet, once in the network, keeps moving forward through the same

ring until it is ejected at its destination. Two packets traveling on separate rings may try to

eject at the same node in the same cycle, causing contention for the ejection port. This is

resolved by providing a separate ejection port for both ring directions at each node. The

valid bit from ejection ports connects to the detection counter, while the destination ID

is discarded at ejection. The checker router architecture is shown in Figure 2.12, and the

checker network normal operation is shown in Figure 2.15a.

Ring topologies suffer from higher hop-counts when compared to common topologies

like meshes, but in our system this is mitigated by three factors: i) the checker routers can
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Figure 2.12 Checker network architecture for ForEVeR and SafeNoC. The checker router is

packet switched with a single cycle latency. Packets are guaranteed to move forward once inside

the checker network. To this end, packets that are waiting injection are given a lower priority as

compared to the packets already inside the checker network. Finally, there is no contention at the

ejection port.

be traversed in a single-cycle, ii) there is no contention within the checker network, and iii)

in contrast to notifications, the main network transfers large data packets (e.g., cache lines)

that are typically divided up into long wormholes. As a result, the checker network design

presented above consistently delivers notifications before their counterpart data packets ar-

rive via the primary network. In exceptional situations, when notifications lag data packets,

our scheme may produce a false negative detection result. In general, however, our scheme

has a certain amount of tolerance to having a few notifications lagging behind and this rarely

leads to false negatives. When it does, false negatives only increase the detection latency

and do not affect the correctness of our scheme as we guarantee no loss of flits/packets, and

the data would eventually be delivered in an uncorrupted state to the correct destinations

upon error detection.

We ran experiments by injecting uniform traffic with varying packet sizes into the pri-

mary network and simultaneously injecting one notification into the checker network for

each primary network packet. At the destination, the notifications were matched with corre-

sponding data packets, and the following statistics were logged: i) which network delivered

the packet or notification first (main or checker), and ii) the time difference between cor-

responding deliveries. Figure 2.13 shows the fraction of packets delivered first by each

network for varying injection rates. If the main network uses short packets (Figure 2.13a),

the majority of the notifications are delivered before the corresponding main network pack-

ets. However, there is a non-negligible fraction of packets (10-35%) for which the main

network delivers first. Also, note that due to better congestion management in the ring,

a larger fraction of notifications are delivered first when the main network is subjected to

heavy traffic. Moreover, when the main network packets are larger (16 flits, Figure 2.13b),
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Figure 2.13 Fraction of checker notifications delivered first. The checker network delivers

almost all notifications before their counterpart primary network packets. The effect is more pro-

nounced at higher injection rates and for larger main network packets.

the checker network is comparatively less loaded, and hence more than 99% of the notifi-

cations make it to their destination before the main network packets at any injection rate

above 0.008 packets per node per cycle. In summary, the majority of the notifications are

delivered ahead of their corresponding network packets under all conditions, with an ad-

ditional marked improvement on notifications being delivered first when packets are large

and the network is under heavy traffic load.

Figure 2.14 plots the distribution of notification-main packet deliveries for a range of

delivery-time differences. A positive time difference indicates that the notifications arrived

first. For small main network packets (4 flits, Figure 2.14a), most notifications are deliv-

ered 0-50 cycles ahead of the main network packets. Few main network packets (11%

of total) are delivered before their corresponding notifications, and a negligible number of

main network packets (<0.5%) are delivered more than 25 cycles before their notifications.

Our detection scheme is tolerant to a few main network packets delivered early, when the

notifications follow shortly after (<25 cycles later). ForEVeR employs a technique based

on delayed counter update to eliminate false negatives. As can be noted from Figure 2.14b,

the complete distribution is positive for networks with large packets, with only a negligible

number of main network packets (<0.2%) delivered ahead of their notifications.

Recovery operation: As mentioned earlier, during recovery, each main network flit is

transmitted in multiple segments through the checker network. The network interfaces

house the dis-assembling/re-assembling logic to support recovery. The checker network

recovery operation and logic is greatly simplified because only one router is transmitting

packets to a single destination at a time. To this end, the checker network’s channels include

additional dedicated wires for head and tail indicators that are used during recovery oper-

ation. The checker packet with head indicator carries the destination address and reserves

an exclusive path between the source and the destination. All intermediate valid packets
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Figure 2.14 Distribution of notification-main packet pairs over a range of delivery-time dif-

ferences at heavy injection. The checker network delivers almost all notifications before their

corresponding network packets.

traversing the ring network are ejected at the same destination until a packet is received

with a tail indicator. Moreover, all transmissions on the checker network during recovery

occur in the same (clockwise) direction to avoid wormhole overlap of two packets. In con-

trast to normal operation, the address field is not discarded on ejection, as it contains data

in body/tail checker packets. In our evaluation system of 64 nodes, the checker network

channel is 8 bits wide, with 6 bits for address and 1 bit each for head and tail indicators.

Thus, each 64-bit primary network flit is partitioned into 12 checker networks packets (1

head, 11 body/tail) when transferred on the checker network. We expect design errors to

manifest infrequently, and thus this serial transmission scheme, while slow, it should not

significantly affect overall system’s performance. The operation of the checker network

during recovery is illustrated in Figure 2.15b.
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Figure 2.15 ForEVeR’s checker network operation. (a) Normal operation: notifications are

transmitted in both ring directions and multiple source-destination pairs are active simultaneously.

(b) recovery operation: only the clockwise ring is used to transmit disassembled main network

flits, that are then reassembled at the destination’s NI. Additionally, only one source can be sending

packets to one destination at any time.
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2.5 Comparison of Runtime Protection Solutions

Table 2.6 outlines the qualitative comparison of SafeNoc and ForEVeR with other pure-

runtime schemes. The comparison is with the following runtime solutions: i) ACK-

Retransmission [85], which maintains a fresh copy of injected data until it receives a

positive acknowledgement from the destination, and ii) Park-06 [94], which utilizes var-

ious micro-architectural modifications to overcome soft-errors both in router datapath and

control-logic. We compare the four schemes on four aspects: protection against design

errors, area overhead, and power overhead. Soft-error resilience is also considered for

comparison because soft-error manifestations are similar to design error manifestations,

and certain runtime-verification schemes can also be leveraged for soft-error protection.

We discuss this aspect in detail in the next chapter. Only ForEVeR can guarantee complete

correctness, while others fail to overcome either forward progress bugs or drop/duplicate

packets or both. ACK-Retransmission, for instance, cannot recover from bugs like dead-

lock and livelock, and even for other bugs it uses the same untrusted network to retransmit

data upon error detection, possibly incurring the error again and again. Therefore, the

delivery of the retransmitted data in ACK-retransmitted cannot be guaranteed.

type of design errors protected area overhead

solution forward duplicate/ storage link

progress drop pkt buffers wires

ForEVeR yes yes none low

SafeNoC yes no high moderate

ACK-Ret no yes very high none

Park-06 no no very high none

performance overhead SEU protection

solution normal recovery data control

operation operation path path

ForEVeR no impact short yes yes

SafeNoC no impact intractable no no

ACK-Ret high impact short yes yes

Park-06 low impact low impact yes yes

Table 2.6 Comparison of runtime verification solutions.

ForEVeR does not need to buffer main network packets to support its detection and

recovery operation. However, storage of notification packets at injection ports is required

in our checker network architecture. The notifications only store the destination address

(6-bits), and hence are considerably small as compared to main network packets. In our

simulations, the worst-case storage required at checker network injection port was 11 no-
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tifications when operated beyond saturation. As on-chip networks do no operate beyond

saturation [87], this adds up to only 9 bytes of storage for the worst case, almost the same

as one main network flit of 64 bits. Thus, the amount of notification storage required is

insignificant.

In contrast, SafeNoC utilizes buffers at destination nodes to store checksums and pack-

ets waiting for their counterparts, while ACK-Retransmission maintains large source node

buffers for all in-flight packets. Finally, Park-06 [94], requires additional buffering at each

router FIFO to overcome deadlocks caused by soft errors, such that the total buffer size

is large enough to accommodate the remaining flits of a packet allocated to the FIFO

and still have one empty slot. Naturally, the storage requirement grows with larger pack-

ets. Moreover, this additional buffering is required at each VC for each input port. We

ran stress tests on the NoC using uniform traffic to calculate the maximum buffering re-

quired over time for the SafeNoC and ACK-Retransmission solution. For SafeNoC, we

observed the maximum number of outstanding checksums and data packets at any time,

and for ACK-Retransmission we noted the maximum number of data packets in-flight.

Buffer requirements for Park-06 can be calculated using the analytical equations provided

in [94]. Figure 2.16 shows the results of our study and plots the worst case buffering

required at each node. Note that ForEVeR requires no additional buffers, while all oth-

ers require substantial buffer space for proper operation. The buffer requirements for

ACK-Retransmission and Park-06 grow substantially for large packet sizes, while SafeNoC

requires buffering for∼40 flits/node independent of packet size. Note that provisioning for

buffers to store 50-100 flits at each node can be prohibitively expensive for a constrained

NoC environment. For instance, for data packets of 16 flits, the buffers in SafeNoC, ACK-

Retransmission and Park-06 alone result in 12.5%, 37% and 26% area overhead over our

baseline NoC, respectively. ForEVeR, however, does use some additional wires on a sepa-

rate checker network, but since the transmitted notifications contain no data, we can design

an area-efficient checker network, as we will discuss in Section 2.4. In contrast, SafeNoC

uses a similar checker network to transfer larger (16-32 bit) checksum packets, while the

ACK-Retransmission and Park-06 solutions do not use a separate checker network to over-

come errors.

On the performance front, neither ForEVeR nor SafeNoC has any impact during nor-

mal error-free NoC operation, whereas ACK-Retransmission and Park-06 create additional

traffic due to end-to-end and switch-to-switch acknowledgements, respectively. During re-

covery, all techniques other than SafeNoC can quickly recover from anomalous behavior.

SafeNoC runs a packet reconstruction algorithm in software that, in the worst case, can be

exponential in the number of flits to be recovered and reassembled.
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Although protection against soft-errors is not the focus of this chapter, we briefly com-

pare the solutions on this aspect due to the similarities between soft-error and design error

manifestations. ACK-Retransmission and Park-06 can provide the best protection against

soft-errors, while SafeNoC has no mechanism to overcome soft-errors. In contrast, as we

will demonstrate in Chapter 3, ForEVeR with a few modifications can be leveraged to over-

come soft-errors affecting both the datapath and control path of NoC routers. In summary,

the low area and performance overhead, combined with the ability to protect against both

design and soft-errors, makes ForEVeR the most complete runtime solution.
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Figure 2.16 Storage requirement of runtime-verification schemes. ForEVeR requires minimal

storage only for notifications waiting injection. SafeNoC stores signatures and packets until their

counterpart arrives. ACK-Retransmission maintains a backup copy, while Park-06 requires escape

buffers at each router FIFO to break deadlock cycles.

2.6 Related Work

NoC simulator distributions [28, 38], and RTL simulation and emulation platforms [54]

are widely used for performance and functional verification. However, both simulation and

emulation techniques are inherently incomplete, since they cannot check all possible ex-

ecution scenarios. In contrast, formal techniques can provide the guarantees of complete

correctness; however, they either cannot be automated, as in theorem proving, or they are

limited by the state explosion problem, as in model checking. This has led designers to

use formal verification exclusively for small portions of NoC designs [64] or to verify the

abstracted model of the implementation [23, 16, 55]. Other works [16, 126] utilize theo-

rem proving to guarantee NoC correctness and are also able to verify liveness properties

like deadlock-freedom [125]. However, these abstracted NoC models, often do not model

advance features like virtual channels, flow control techniques, etc. Moreover, properties
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proven over the abstracted NoC model cannot guarantee correctness of the actual micro-

architectural implementation. In contrast, SafeNoC and ForEVeR guarantee the correctness

of all the executions of the NoC implementation, and they also enable designers to deploy

aggressively-designed NoCs that are not exhaustively verified at design-time.

To address the limitations of design-time verification, runtime solutions have been re-

cently proposed to ensure the correct transfer of data packets through the interconnect.

Several of these works target deadlock, a prominent issue in adaptive routing. Tradition-

ally, the deadlock problem in NoCs is overcome by deadlock avoidance [116, 29, 74], or

through detection [79, 75] and recovery [9]. Other works tackle a wider, still incomplete,

set of NoC errors through end-to-end detection and recovery techniques, and are surveyed

in [85]. The most common among these is the acknowledgement-based retransmission

(ACK-Retransmission) technique, where error detection codes are transmitted along with

data packets, to check for data corruption at the receiver. An acknowledgement is sent back

after each successful transfer. In case of failure, the sender times out and re-transmits the

locally-stored packet copy. Apart from large storage buffers and performance degradation

due to the additional acknowledgement packets, this approach is incapable of overcoming

deadlock, livelock and starvation errors. Moreover, since it uses the same untrusted net-

work for re-transmission, ultimately it cannot guarantee packet delivery. In contrast, both

SafeNoC and ForEVeR safeguard against a wide range of functional bugs, including, i) bug

manifestations that cause data corruption, such as, duplicated or misrouted packets, and

ii) bug manifestations that stall the forward progress of the network, such as, deadlock,

livelock, and starvation. In addition, both SafeNoC and ForEVeR are end-to-end solutions

leveraging hardware units mostly decoupled from the primary NoC and requiring minimal

changes to the primary NoC.

We are not aware of any runtime solutions that deal with design errors in NoCs. How-

ever, there has been few such works for processors, [10, 83, 128]. In general, these solutions

add checker hardware to verify the operation of untrusted components. Our solutions are

similar to such solutions, in the sense that they use a simple and functionally correct checker

network to verify the operation of the complex primary network.

Our solutions rely on augmenting the original network with a small and lightweight one

that operates concurrently. The idea of using multiple overlaid networks has been proposed

for various purposes. [11] and [131] use multiple networks for performance enhancement.

Others, such as TILE64 [13], use separate dedicated networks, each supporting a distinct

functionality of the NoC. Mostly, these networks share the same topology and are compa-

rable to each other in complexity. To the best of our knowledge, ours is the first attempt

to overlay a network with another low-cost and error-free one to ensure the functional
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correctness of the original interconnect.

Very few research works have proposed complementary use of formal and runtime tech-

niques. Among them, [12] leveraged hardware checkers in model checking to avoid state

explosion by validating abstractions at runtime. However, [12], unlike ForEVeR, cannot

be directly applied to ensure NoC correctness. Another work proposed property checking

at both design time and runtime [124]. However, as recovery from design errors in not

supported, this is not a complete correctness solution.

Finally, ForEVeR’s detection mechanism relies on the use of router-level runtime mon-

itors, when formal methods fail to ensure router correctness. Runtime checkers has been

proposed for various purposes, like soft-error induced anomaly detection in NoCs [98, 94]

or post-silicon debug and in-field diagnosis [17]. In contrast, ForEVeR leverages special-

ized hardware monitors coupled with recovery support, specifically for NoC correctness.

2.7 Summary

In this chapter, we first presented SafeNoC, a runtime end-to-end error detection and recov-

ery technique to guarantee the functional correctness of on-chip interconnects. SafeNoC

augments the interconnect with a lightweight and simple checker network, and it detects

functional errors by comparing the signature of every received data packet with its look-

ahead signature that was delivered through the checker network. In case of mismatches, our

novel recovery approach collects blocked packets and stray flits from the primary network

and distributes them over the checker network to all processor cores, where our recon-

struction algorithm reassembles them. SafeNoC can detect and recover from a broad range

of functional design errors, while incurring a small performance impact, requiring only

between 11K and 39M execution cycles to recover from an error.

This chapter then describes ForEVeR, a solution that improves the error coverage and

reduces the area overhead compared to SafeNoC. ForEVeR complements the use of for-

mal methods and runtime verification to ensure complete functional correctness in NoCs.

Formal verification is used to verify simple router functionality, augmented with a network-

level runtime detection and recovery scheme to provide NoC correctness guarantees. For-

EVeR augments the NoC with a simple checker network used to communicate notifications

of future packet deliveries to corresponding destinations. A runtime detection mechanism

counts expected packets, triggering recovery upon unusual behavior of the counter values.

Following error detection, all in-flight packets in the primary NoC are safely drained to

their intended destinations via the checker network. ForEVeR’s detection scheme is highly
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accurate and can detect all types of design errors. The complete scheme incurs only 4.9%

area cost for an 8x8 mesh NoC, requiring only up to 30K cycles to recover from errors.
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Chapter 3

Addressing Reliability Threats

Reliability has emerged as a first-class design constraint for CMPs and SoCs with the

shrinking of silicon feature size. Traditionally, memory elements have been the most vul-

nerable to transistor failures [109]. However, recent industrial-level studies have shown

that transistor failures in logic components are far more prevalent than previously assumed

[89, 86]. Protection of memory elements has been well researched; therefore, special at-

tention is required for failures affecting logic components: both datapath and control logic.

This chapter focuses on reliability schemes that protect the NoC against failures in both

datapath and control logic.

NoCs occupy a significant portion of the on-chip real estate [56, 130] and observe

high activity, making them susceptible to both transient and permanent faults. We tackle

transient faults by observing that their manifestation is similar to instances of design er-

rors: detection and re-execution is enough to overcome such errors. Therefore, in Section

3.2, we present an extension of ForEVeR that, with only a few modifications, can also

overcome transient failures. In case of permanent transistor failures, however, a complete

solution should entail detection and diagnosis of the fault site, followed by reconfigura-

tion around the malfunctioning components. This chapter proposes solutions to tackle each

aspect of protection against permanent faults. We first describe a low-overhead passive

on-line detection and diagnosis scheme in Section 3.3, followed by a unified diagnosis and

reconfiguration scheme for frugal bypass of NoC faults in Section 3.4. We conclude by

presenting a novel NoC testing approach that ensures uninterrupted availability in the pres-

ence of faults by leveraging a quick and minimal-impact reconfiguration solution called

BLINC (Section 3.5).
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3.1 Detection, Diagnosis and Reconfiguration for Reliable

NoC design

There are many different sources of errors in modern digital devices, and thus in NoCs:

crosstalk, radiation-induced soft-errors, degradation-induced timing errors, etc. Often these

effects result in temporary faulty behavior of the system, known as soft or transient errors.

In addition, there are permanent faults resulting from manufacturing defects, infant mortal-

ity, or hardware aging. While manufacturing and burn-in tests may screen most permanent

failures caused by the first two phenomena, permanent wear-out faults cannot be detected

before shipment. Moreover, Borkar [15] predicts a 20% transistor failure rate in future

CMPs due to variability effects, with an additional 10% over the lifetime of the chip due

to aging. This waning reliability of silicon makes the problem even worse. As the sole

medium for on-chip communication, NoCs are particularly susceptible to become a single

point of failure.

Recent studies [34, 86] have confirmed the alarming rate of transient errors affecting

both logic and memory components. As NoCs occupy a significant portion of the on-

chip real estate [56, 130], their susceptibility to soft-errors is notable and, additionally,

they suffer from single event upsets (SEUs) due to crosstalk and coupling noise in link

wires. Soft-error tolerance solutions typically involve monitoring hardware to detect the

occurrence of malfunctions, while relying on re-execution from an uncorrupted state for

error recovery. For example, [26] employs N-modular redundancy (NMR) to detect and/or

recover from soft-errors. The silicon overhead makes NMR impractical for commodity sys-

tems; hence soft-error recovery is often based on temporal redundancy, that is, re-execution.

Still, naı̈vely executing duplicates for all computation and communication is not a feasible

solution. Hence, designers leverage lightweight monitoring hardware to catch the major-

ity of soft-errors, triggering a re-execution-based recovery procedure only upon an error

detection.

In the last chapter, we proposed an NoC design that can overcome design errors. We

further noticed that design errors that slip into the final silicon are rare corner-case exe-

cution scenarios. Even though a design error is a permanent disagreement between the

hardware and its specification, it is unlikely that re-execution of the same application will

lead to the manifestation of the same design error again. The reasons are as follows: first,

corner-case bugs are triggered only during intricate interactions between components, and

it is unlikely that execution scenarios are recreated precisely in large computer systems.

Second, the execution trace depends on the operating environment, which is also hard to

recreate. Finally, on detection of an error, we change the system to a configuration that
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is simple and verified-to-be-correct. Therefore, design errors, similar to soft-errors, are

typically one-off events. In this project, we exploit the similarities between soft-error and

design error manifestations: i) both are relatively infrequent; therefore, a slow recovery is

acceptable, and ii) re-execution from an uncorrupted state is a promising recovery solu-

tion for both. By leveraging these properties, we are able to design a lightweight solution,

based on our design error protection solution, that can detect and overcome the majority of

soft-errors and design errors in both control and datapath logic of NoCs.

Permanent faults pose a greater challenge, as simple detection and re-execution is likely

to result in repeated errors. As a result, it is important to accurately diagnose the location of

faulty components and to disable/bypass them for future executions. Reliability solutions,

therefore, try to leverage the redundancy built into the system to enable the system to be op-

erational, even after some of its components have been disabled. The process of disabling

faulty components and replacing them with healthy ones is often termed reconfiguration.

The guiding principle behind all reconfiguration solutions is to achieve graceful degrada-

tion in performance with increasing number of faults. Fortunately, NoCs provide many

concurrent paths between communicating nodes, and thus they inherently benefit from

fairly high redundancy. However, it is essential to diagnose the faults at a fine-granularity

and to disable only small portions of the NoC’s hardware with each fault manifestation.

Therefore, a carefully designed combination of diagnosis and reconfiguration solutions is

vital for NoC reliability: we propose a novel diagnosis solution in Section 3.3, while we

present a frugal routing reconfiguration scheme in Section 3.4.

Even though routing reconfiguration can be leveraged for circumventing permanent

failures, it requires lengthy suspension of network operation for reconfiguration changes to

take effect. In addition, reconfiguration is triggered on a fault detection, by which time the

network could already be in a corrupted state. In other words, routing reconfiguration fails

to provide uninterrupted availability in presence of faults: a property that a digital system

expects from its communication infrastructure. This property is particularly important for

mission critical systems, where a down time of even a few milliseconds can be detrimental.

To this end, we propose BLINC (Section 3.5), a novel reconfiguration solution that pro-

vides a quick and minimal-impact response to faults. We particularly leverage our BLINC

algorithm to develop a transparent reliability solution for NoCs, based on aggressive on-

line testing and failure prevention. In our setup, individual components undergo preventive

testing by being taking offline on a rotating basis via our BLINC algorithm. The compo-

nents are only brought back online if they do not show signs of failure under a strict testing

environment.
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3.1.1 A case for the need for better NoC reliability

In this section, we present a case study to drive the need for better NoC protection against

permanent faults. Due to the continuous scaling of silicon and the saturation of single-

thread performance, CMPs and SoCs with many on-chip processors are a growing market

segment. Further, these large CMPs and SoCs are increasingly relying on NoC intercon-

nects to provide scalable inter-core communication. With the waning reliability of silicon,

permanent wearout faults are affecting silicon components at runtime with a greater prob-

ability. In the context of CMPs and SoCs, cores and the interconnect are the primary logic

blocks; those that require careful safeguarding against permanent faults.

Researchers have recently proposed novel chip multiprocessor (CMP) architectures that

can tolerate up to a few hundred (∼500) processor-logic permanent faults [96, 53] in a

64-node CMP. These reliability schemes do not consider faults in the NoC infrastructure;

however, faults in that sub-system may potentially lead to the isolation of one or multiple

cores, thus greatly reducing the computational power of the system. The loss of many cores

may occur even if the cores themselves are fault-free, simply because they become discon-

nected due to a faulty interconnect. Data from a few industrial CMP designs [130, 56]

reports that roughly 6-15% of the chip area has been dedicated to the interconnect, and

roughly 50% to the processor logic. Assuming such an area partition and a uniform distri-

bution of faults over silicon area [65], 500 permanent faults affecting the 50% area occupied

by processor logic translates to 60-150 permanent faults affecting the NoC logic that occu-

pies 6-15% of the chip area. Therefore, the NoC should be able to gracefully tolerate up

to 60-150 faults to match state-of-the-art processor-oriented reliability schemes. To eval-

uate the capabilities of current fault-tolerance schemes for NoCs, we modeled a 64-node

NoC equipped with state-of-the-art fault-diagnosis [39] and route-reconfiguration schemes

[4, 39]. We then randomly injected a varying number of permanent faults at gate outputs

of the NoC netlist with uniform distribution over silicon area. The gate-level faults were

then mapped to dysfunctional links using the model proposed in [39]. Finally, our model

reported the number of isolated CMP nodes in each fault injection experiment.

Figure 3.1 plots the average number of processing nodes unreachable within such an

NoC with increasing permanent faults. Each data-point on the graph corresponds to the

average of 1,000 different spatially-random fault injection experiments. It is clear from the

figure that existing state-of-the-art solutions deteriorate considerably beyond 30 transistor

faults, dropping many nodes with just a few additional faults (see slope change). If 60

permanent faults were to occur in the silicon area occupied by the NoC, then almost 2/3rd

of the nodes would become isolated, because the network would be partitioned into two or

more distinct regions. Without the deployment of a more gracefully degrading NoC relia-
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bility solution, the CMPs would potentially lose many healthy processing units with only a

few permanent faults affecting the NoC.
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Figure 3.1 Loss of processing capability induced by faults in the NoC for a 64 node mesh network

equipped with [4, 100] schemes.

To address this problem, we propose a novel solution in Section 3.4, called uDI-

REC, which drops over 3× fewer nodes than existing solutions, and thus it minimizes the

network-induced loss of processing capability. Further, it is often the case with uDIREC

that cores (and other on-chip functionalities) are only discarded when the number of faults

is beyond the capacity of the fault-tolerant mechanisms protecting the cores themselves.

uDIREC is beneficial for a variety of multi-core configurations (few or many cores) and

varied fault rates (few to fault-ridden). For example, configurations with few cores degrade

drastically and often become dysfunctional with the loss of one (or few) core(s). uDIREC

extends the lifetime of such configurations by dropping the first (few) node(s) only after a

significantly higher number of faults have manifested.

3.2 Soft-Error Detection and Recovery with ForEVeR++

The ForEVeR architecture described in the previous chapter, with few modifications, can

also detect and recover from transient errors affecting any NoC component type: control,

datapath or links. For the rest of this document, we refer to the soft-error resilient version

of ForEVeR, as ForEVeR++. ForEVeR++ incurs minimal performance penalty up to a flit

error rate of 0.01% in lightly loaded networks. In addition, ForEVeR++ hardware costs

only 6% area over the baseline ForEVeR design.

We make the following observations to provide a cheap soft-error protection solution
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Figure 3.2 Reliable checker network design. ForEVeR++ employs switch-to-switch single error

correction ECC (12-bit codeword, 8-bit data) to protect the checker network data, while it deploys

triple modular redundancy (TMR) to protect the packet-valid bit.

with baseline ForEVeR: first, the router-level monitors designed to detect anomalous be-

havior due to design errors, can also prevent the network from entering an unrecoverable

state upon a soft-error manifestation. Second, ForEVeR++ can provide low-cost soft-error

resilience by utilizing the same recovery hardware as ForEVeR to reliably transmit the soft-

error affected packets. Finally, to protect the recovery hardware (e.g., checker network)

itself against soft-errors, simple ECC and duplication based techniques can be leveraged

without significant overhead. Overall, with these hardware modifications, ForEVeR++ can

provide better soft-error coverage compared to the previous state-of-the-art techniques.

The most common soft-error resiliency techniques augment NoC packets with ECC

information for error checking [85, 35], while relying on costly data retransmission for

error recovery. Retransmission schemes cannot tackle all erroneous scenarios, especially

the ones arising from control logic malfunction, e.g., deadlock. A technique to recover

from soft-errors in both the router’s data-path and control logic was presented in [94]. It

uses switch-to-switch ECC and retransmission for data-path errors, while the router control

logic is protected with hardware checkers. However, this approach leads to a prohibitive

area overhead, especially for networks with large data packets, as shown in Section 2.5.

In contrast, ForEVeR++ does not require backup data storage, can overcome the deadlock

scenarios, and it can recover from the errors in the control logic.

3.2.1 Methodology and Hardware Additions

Since ForEVeR++ intentionally builds on top of the hardware features of ForEVeR (Chap-

ter 2.3), we borrow the terminology from the previous chapter without re-introduction.

Reliability-oriented features in ForEVeR++ are focused on two aspects: i) enhancing the

checker network reliability, and ii) ensuring that the integrity of data is always maintained
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within the main network routers. The second aspect allows ForEVeR++ to eliminate any

backup storage, and instead drain the erroneous packets via the reliable checker network.

ForEVeR++ relies on the end-to-end locality-aware ECC [112] for fixing one-to-few bit

data corruptions in the primary network packets. Link and datapath related errors, typically

only affect single (or few) bit(s), which are corrected by the ECC. Based on the insight that

severe data corruptions are only caused by errors in router control logic, ForEVeR++ can

preserve data integrity by only protecting the router control logic.

Checker network reliability. For ForEVeR++’s reliable operation, the checker network

should always deliver unaltered packets to their correct destinations. To this end, we aug-

ment the checker network with a switch-to-switch single-error-correct (SEC) ECC code.

ForEVeR++ assumes that due to the small channel width of the checker network, in the

worst case, only a single bit can be affected per notification. For the baseline 8-bit wide

checker network, a 12-bit wide codeword is required for SEC capability. Additionally, the

packet-valid bit is protected by triple-modular redundancy (TMR) to prevent from errors in

the ECC output and to avoid transmission of an invalid packet. Thus, the sum total channel

width of the reliable checker network is 15 bits (12 codeword, 3 packet-valid TMR). Figure

3.2 shows the architecture of the reliable checker router.

Error detection. Remember from Section 2.3.2, the router control components are aug-

mented with runtime monitors to prevent an erroneous state due to design errors. These

checkers can also be leveraged to detect anomalies due to soft-errors. Note that ForEVeR++

detects the anomalous behavior before the network goes into an unrecoverable state (for

instance, by dropping a flit) and prevents any data loss/corruption by provisioning small

emergency storage. Finally, in a rare scenario, soft-errors can also lead to forward progress

errors: a situation easily identified by ForEVeR’s network-level detection scheme.

Error recovery. Although the majority of the soft-error bugs can be overcome by restart-

ing the router operation after a soft-error manifestation, we opt for network-wide recovery

(Section 2.3.3) initiation at each error detection. This is because the hardware monitors

cannot diagnose the source of error (design bug or soft-error), and thus our scheme sticks

to a uniform measure in avoiding any unrecoverable state, i.e., trigger a network-wide re-

covery. During recovery, all main network packets are delivered over the reliable checker

network to their final destinations.
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3.2.2 Experimental Evaluation

The performance of soft-error recovery schemes depends on the soft-error rate (SER). The

greater the SER, the larger the performance penalty on network operation. For NoC spe-

cific experiments, average network latency with varying flit error rates is a well accepted

metric to judge the quality of a recovery solution [85]. Flit error rate is defined as the prob-

ability of one or more errors occurring in a flit. Errors in a flit may be caused either by

soft-error-induced malfunction of router control logic, or by data bit-flips in router datap-

ath/links. Assuming equal logic, memory and link SER, we make a simplifying estimate

that the probability of a flit error being caused by control logic malfunction is proportional

to the silicon area percentage dedicated to control components. We conducted an area anal-

ysis of the components of the baseline router and observed that approximately 14% of the

area is dedicated to control components, while the rest is attributed to datapath and links.

Further, datapath corruptions are tackled by ECC with no performance overhead, while

overcoming control logic errors involves freezing the router pipelines and draining packets

over the checker network.

We ran simulations injecting errors in flits with varying probability. The simulator clas-

sified the injected flit errors as control-induced with 14% probability. The remainder were

tagged as performance-neutral datapath-induced errors as they are correctable by the end-

to-end ECC. On the other hand, the control-induced errors trigger a network-wide recovery,

causing a performance hit. Figure 3.3 shows the average network latency with increasing

flit error rate for varying loads of uniform random traffic. Naturally, the average network

latency suffered with the increasing flit error rate. The effect on average network latency

was tolerable (11% worse for 0.1 flits/cycle/node injection rate) up to the flit error rate of

0.01%, beyond which the latency degradation was quick. We also observed that the latency

degradation was more drastic for higher injection rates. This is because more main network

flits are transferred via the reliable checker network upon recovery initiation. Finally, un-

like retransmission schemes based on sending acknowledgement messages during normal

operation [85, 5], ForEVeR++ does not introduce any extra traffic into the main network,

and hence it does not incur a performance hit in the absence of errors. We conclude that

ForEVeR++’s soft-error protection is suitable for networks operating at high load and ex-

pecting a flit error rate of less than 0.001% (worst-case latency degradation of 7%), while

ForEVeR++ can sustain a flit error rate of up to 0.01% for networks operating at low load.
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Figure 3.3 Average network latency vs. flit error rate for varying injection rates. A minimal

impact on latency is observed up to the flit error rate of 0.01%. As more flits are transferred via the

reliable checker network upon recovery initiation for high injection runs, the latency degradation

increases with the injection rate.

3.3 Permanent Fault Detection and Diagnosis

A permanent fault in any datapath component along the path of a transmitted data packet

can manifest as a corrupted packet payload. Datapath components include routers’ external

and internal wires, input FIFOs, crossbars and output buffers. The control components, on

the other hand, manage the flow of packets and flits from input channels to output chan-

nels via the routers’ datapath. If a fault strikes the control hardware of a router, it can

result in dropped, spurious, duplicated, or misrouted flits or complete packets [7]. Hence,

it is vital to protect both datapath and control logic against permanent faults. To this end,

comprehensive diagnosis of NoC permanent faults, both data and control, is required.

We present a low-cost and fine-resolution mechanism to detect and diagnose perma-

nent faults in both the datapath and control logic of the NoC. The proposed solution is

passive, i.e., it does not inject any test traffic into the network. It comprises of an end-

to-end error symptom collection mechanism for locating datapath faults, and a distributed

counting and timeout-based technique to locate defective control components. Figure 3.4

shows a generic NoC architecture, briefly describing our detection and diagnosis scheme.

Faults in router datapath (highlighted grey) are diagnosed using a software-based score-

board (highlighted green-checked), while simple counters and timers (highlighted green)

are deployed to detect failures in router control components (highlighted blue). Our solu-

tion assumes that the network is already equipped with ECC-based forward error correction

[35] to detect and correct data corruptions due to soft-errors. To make up for data possibly

lost between error manifestation and detection, we assume that the system is equipped with
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an orthogonal data recovery scheme, such as the recovery scheme of ForEVeR (Section

3.2). Experimental results show that the proposed method can precisely pinpoint a defec-

tive component, while introducing no performance overhead in the absence of faults and

only leading to 2.7% area overhead.
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fied into datapath (grey) and control (blue) components, with a software scoreboard (green-checked)

used to diagnose datapath faults and counters (green) used to detect control failures.

3.3.1 Diagnosis Resolution

The work in [112] proposed an online diagnosis mechanism that analyzes payload data

errors to locate faulty links, while ECC is used to correct those data errors. However, the

scheme in [112] is limited to the faults in links between routers and does not directly con-

sider faults inside the router logic. Moreover, this method does not address control errors,

such as packet drop/duplication.

Our detection and diagnosis scheme extends the proposal in [112] by localizing fault

manifestations in any router component (links, datapath or control logic) to the finest

resolution possible when observing end-to-end traffic. The extension is based on two in-

novations: i) the deployment of simple counters and timers to diagnose errors affecting

routers’ control logic at fine-granularity, and ii) the perception of routers’ datapath as an

extension of the links connected to it. Elaborating on the latter, since our diagnosis mech-

anism can only observe errors in an end-to-end fashion, it can differentiate between faults

in two components only if there are certain packets that go through one component and

not through the other, and vice-versa. Similarly, when considering route-reconfiguration to
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circumvent permanent faults, the finest granularity at which components can be disabled

is exactly the same. Therefore, faults in the following set of datapath components are not

differentiable from an end-to-end diagnosis and route-reconfiguration perspective:

• output port buffer at the upstream router,

• link between routers,

• input port buffer at the downstream router, and

• crossbar contacts with the output (input) port at the upstream (downstream) router.
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Figure 3.5 A datapath segment includes the crossbar contacts to the output port and the output

port in the upstream router, the link, the input port buffer and the crossbar contacts from it in the

downstream router.

Throughout the rest of this document, we call the combined set of these datapath com-

ponents that are non-differentiable from network ends, as a datapath segment. Figure 3.5

illustrates the concept and constituent components of a single datapath segment. We further

observed that a fault manifestation in any of these constituent components can be modeled

as the failure of a single unidirectional link at an architectural level. We empirically stud-

ied the micro-architecture of wormhole routers to establish that a majority of faults can be

masked by re-routing around a single datapath segment. To this end, we synthesized a 5-

port baseline mesh router, and conceptually divided all router components into two pools:

i) components that only affect one datapath segment’s functionality, and ii) components

that affect the entire router’s functionality. Examples of the former category are crossbars,

output ports, input ports and links, while the latter category includes arbiters, allocators and

routing table. Components that only affect one datapath-segment accounted for 96% of the

router’s silicon area: 96% of the faults will affect only one datapath segment, assuming

an area-uniform fault distribution. We ascertained our observations by randomly inject-

ing stuck-at faults at gate outputs of every such component, and testing the “unaffected”

datapath segments for proper functionality with random test vectors.
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After diagnosing faults at a fine resolution, our scheme subsequently reconfigures by

leveraging the location of the malfunctioning datapath segments or unidirectional links.

Our reconfiguration algorithm, described in Section 3.4, fully utilizes this fine-grained di-

agnosis information to enable graceful degradation with increasing transistor faults. We

also present the design of a unified diagnosis and reconfiguration NoC architecture to en-

able frugal bypass of NoC faults in Section 3.4.

3.3.2 Datapath Faults

We introduce a novel diagnosis method based on a probabilistic scoreboard, similar to the

one proposed in [112]. The scoreboard, implemented in software, maintains the probabil-

ity of routers’ datapath components being faulty. Before determining the probability of a

datapath component being faulty, it is essential to detect the errors in data transmission. To

this end, we add flit-level end-to-end ECC to each packet. Since data errors must be caused

by one of the datapath components on the routing path of the erroneous packet, analyzing

the erroneous packet’s route provides insights into the failure location.

When a data error is detected at the destination, an error symptom packet is sent to

a designated “supervisor node” responsible for scoreboarding and diagnosis. This packet

contains the source and the destination address of the erroneous packet and the bit position

where the error occurred. Based on this information, we use a probabilistic method to cal-

culate the fault probability for each component along the possible paths from the source

to the destination. Our scheme accumulates these probabilities in the scoreboard on each

fault occurrence. After observing sufficient erroneous traffic in the system, the diagnosis

scheme declares the component corresponding to the scoreboard entry with the highest

accumulated fault probability as defective.

Calculation of fault probabilities. The scoreboard is a table of floating point fault prob-

ability entries for each datapath segment of the network. Every time an erroneous packet

symptom is received by the supervisor node, we calculate and accumulate the fault prob-

ability for each datapath component that could be responsible for the failure. Specifically,

all components lying on the path of the erroneous packet are equally likely candidates for

being faulty. Our diagnosis scheme is based on the intuition that in the case of a perma-

nent fault, the scoreboard entry corresponding to the faulty datapath segment will quickly

accumulate a value higher than the healthy datapath segments’ entries. Hence, our scheme

monitors the scoreboard for the highest fault probability value, till the number of erroneous

packets exceeds a preset threshold. After monitoring sufficient number of erroneous trans-
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missions to gain diagnostic confidence, our scheme declares the component corresponding

to the highest fault probability as faulty.

For a deterministic routing algorithm, the routing path is fixed for a given source-

destination pair, and hence error probabilities are updated in equal proportion for all

datapath segments on the path of an erroneous transmission. However, the correspond-

ing calculation is tricky for minimally-adaptive routing algorithms. To this end, we assign

separate usage probabilities to all NoC datapath segments, with respect to each source-

destination pair. These usage probabilities correspond to the fraction of times a particular

datapath segment will be traversed, when a packet is transmitted between a particular

source-destination pair. Therefore, usage probabilities depend on the path selection algo-

rithm employed at each router and can be easily calculated a-priori for static path selection

algorithms. On each erroneous transmission between a particular source-destination pair,

we update the scoreboard entry for each datapath segment by that segment’s usage proba-

bilities corresponding to that source-destination pair.

3.3.3 Control Faults

A fault in a router’s control logic may lead to many different failure scenarios: corruption

of data, complete flits/packets being dropped, or spurious ones generated. In addition, such

faults can also lead to packets being misrouted, potentially resulting in deadlock or live-

lock. Other errors that inhibit forward progress, such as starvation, are also possible due to

faults in the arbitration logic. Hence, our scheme tries to detect various symptoms of con-

trol logic faults and accurately diagnose the faulty datapath segment(s) using the following

techniques:

• Corrupted data: based on the diagnosis mechanism described in Section 3.3.2.

• Dropped or spurious flits: by counting the number of flits per packet received by a

router’s input port.

• Dropped or spurious packets: by keeping a count of packets inside a router.

• Misrouted packet: by detecting packet reception at wrong destination.

• Starvation: using timeouts.

We monitor these symptoms at a per-router or per-datapath-segment basis, and all di-

agnosis information is relayed back to the “supervisor node”. In addition to maintaining a

scoreboard for diagnosing datapath faults, the supervisor node also keeps a “status table”

to reflect the state (working or faulty) of each datapath segment in the NoC. We update
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this table upon receiving the diagnosis information from various nodes. This forms a con-

venient representation for interfacing with the route-reconfiguration algorithms, as will be

discussed later in Section 3.4. As detection of misrouting or starvation errors is straight-

forward, we only discuss detection of dropped/spurious flits/packets in detail.

Dropped or Spurious Flits

In an NoC, packets are typically broken down into fragments called “flits”. The number

of flits per packet can be extracted from the header flit or implied in case of a fixed packet

size. Our scheme uses this information to detect dropped or spurious/duplicated flits by

counting the number of flits sent from each input port (towards the output port), starting

with the header flit and stopping at the tail flit. If this count differs from its expected value,

then either a flit was dropped or created within this input port or the connecting output

port of the upstream router, i.e., within the corresponding datapath segment. To enable

this scheme, only one counter per input port, bounded by the maximum size of any packet

serviced by the network, is required.

Dropped or Spurious Packets

In order to detect a dropped or duplicated/spurious packet, our scheme maintains a packet

counter at each router, incrementing the counter at a packet’s tail flit being received and

decrementing the counter at a packet’s tail flit being sent. This counter value is analyzed to

detect dropped and spurious packets. The diagnosis granularity using this scheme is at the

router-level. However, we also propose an alternate scheme of counting packets per datap-

ath segment. Although, it improves the diagnosis granularity to the datapath-segment-level,

this alternative requires more hardware additions.

Dropped packet. A packet dropped inside a router/datapath-segment means that there are

more packets coming into the router/datapath-segment than going out of it. To this end, we

maintain a packet counter per router/datapath-segment that is incremented on each packet

received and decremented on each packet sent. A dropped packet will result in the counter

never reading a zero value. Therefore, a dropped packet can be detected if the packet

counter does not read a zero value during an entire execution window or “check epoch”.

This scheme avoids false negatives, but may cause false positives when heavy traffic in

the routers leads to continuously occupied routers. We experimentally show that choos-

ing a suitable check epoch size can reduce the false positive rate to an acceptable level.

This scheme is similar to the end-to-end notification counting scheme of ForEVeR that was

63



described in Section 2.3.

Spurious packet. A duplicated/spurious packet error is flagged when the packet counter

reaches a negative value. A negative packet counter value means that more packets have

been sent out of the router/datapath-segment than have entered the router. Note that this

scheme is susceptible to false negatives: even if one or more packets are duplicated within a

router/datapath-segment, the corresponding counter can possibly remain at a non-negative

value if the faulty router/datapath-segment is continuously occupied by other packets for

an extended period of time. However, experiments show that false negatives are extremely

rare for realistic traffic loads, and detection typically occurs within a few cycles.

3.3.4 Experimental Evaluations

We assessed our scheme’s diagnosis accuracy for datapath faults using Monte Carlo sim-

ulations with a simple C++ simulator. However, we used a cycle-accurate NoC simulator

[28] for evaluating our scheme’s accuracy in diagnosing dropped or spurious packets. Our

baseline NoC is an 8x8 XY-routed mesh network with 4-flit packets; routers are a simple 3-

stage pipeline with no virtual channels and 5-entry deep buffers per input port. Our scheme

was analyzed with two different types of workloads: random traffic and application traces

from the PARSEC benchmark suite [14].
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Figure 3.6 Diagnosis accuracy with increasing number of erroneous packets observed by the

supervisor node. Higher diagnosis accuracy is achieved for deterministic routing as compared to

minimal adaptive routing for the same number of erroneous packets observed.

Datapath faults

Intuitively, the location of the faulty component is diagnosable with high confidence if a

sufficiently large number of erroneous packets are observed. Figure 3.6 shows the diag-

nosis accuracy of our method for a selected faulty datapath segment, while varying the
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number of erroneous packets observed. The figure shows results for both XY and minimal-

adaptive routing. Over 98% diagnosis accuracy is achievable after fewer than 15 erroneous

packet observations with XY routing and around 40 erroneous packet observations with

minimal-adaptive routing. The difference can be attributed to the exact knowledge of rout-

ing paths with XY routing, while relying on a probabilistic estimation of routing paths for

minimal-adaptive routing.
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Dropped Packet

The scheme proposed for the detection of dropped packets can exhibit false positives. The

false positive rate depends on the duration of the check epoch and traffic conditions. Note

that false positives are triggered when the packet counter is non-zero for an entire check

epoch; a heavily loaded network will see more false positives as packets accumulate at

router buffers. Intuitively, a longer check epoch reduces the false positive rate by allow-

ing more time for packets to clear routers’ buffers. Figure 3.7 shows the decrease in false

positive rate with increasing check epoch size for datapath-segment-level diagnosis. As

seen from the figure, a heavily loaded network exhibits a higher false positive rate than a

moderately loaded network, and hence requires a larger check epoch to limit the false pos-

itives. Finally, false positives drop to a negligible value beyond a certain check epoch size,

referred to as epochmin).

Figure 3.8 plots the epochmin value necessary to eliminate all false positives and the

average network latency, under uniform traffic at various loads. Epochmin exhibits a slow

increase with rising injection rate up to network saturation and a steep rise afterwards. From

the plot, the worst case epochmin of 1K cycles is sufficient to eliminate all false positives
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Figure 3.8 The Figure shows the variation of epochmin and latency with increasing network load

for the dropped-packet detection scheme. An epochmin size of 400 cycles is sufficient to eliminate

all false positives for networks at onset of saturation.

when the network is in deep saturation, operating at an average latency of well over 3 times

the zero-load latency. A similar result was observed for 9 different PARSEC benchmark

traces (1 million instructions each), where a check epoch size of 300 cycles was sufficient

to eliminate all false positives for every benchmark. Our simulations indicate that epochmin

rises to high values only when the network is operated at loads well past saturation. Such a

scenario is unlikely: NoC workloads are characterized by the self-throttling nature, which

prevents them from operating past saturation [87].
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Figure 3.9 Spurious-packet detection scheme under uniform random traffic. The Figure plots

the average of highest detection latency observed during multiple runs. The figure also shows aver-

age network latency during those runs with increasing network load. The detection latency is within

20 cycles before the onset of network saturation.
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Spurious Packet

Our detection scheme for spurious packets can exhibit false negatives, while false positives

are not possible. Hence, a different methodology was required to evaluate this scheme. Af-

ter operating the network fault-free for a preset length of time,withpacket is intentionally

created with a certain probability and written to the buffer of a randomly chosen datapath-

segment of a random router. To gain statistical confidence, we injected 10,000 such faults,

one after the other, and repeated each simulation 10 times with different seeds. We define

detection latency as the time required to detect the error after the packet was created. If

detection latency for a specific case is more than 10,000 cycles, we flag it as a false neg-

ative. Figure 3.9 plots highest detection latency across all 10,000 faults, averaged over all

random seeds, with increasing network load. The figure also plots the average network

latency to indicate the network operational condition. Again, average detection latency

increases slowly up to a certain network load, after which there is a steep increase. We

observe that worst case average detection latency is within 1K cycles even for networks

operating at deep saturation. At this load, the average network latency is greater than

8x of the zero load network latency. For the network loads shown in the graph, no false

negatives were observed. Similarly, for the 9 PARSEC benchmark traces, a maximum de-

tection latency (across all faults and different executions) of 178 cycles was observed for

the datapath-segment-level diagnosis.

3.4 Frugal Reconfiguration with uDIREC

Once the fault locations are diagnosed at a fine granularity, it is essential to effectively

utilize the information towards a gracefully degrading reliability solution. To this end, we

propose a novel solution, called uDIREC, which, upon fault manifestations, drops over 3×

fewer nodes than existing solutions, and thus minimizes the network-induced loss of pro-

cessing capability. uDIREC builds on the findings presented in Section 3.3.1, which states

that majority of the router logic and wire faults can be localized to a single datapath seg-

ment. Further, as discussed earlier, the functionality of a datapath segment can be entirely

masked by disabling and re-routing around a single unidirectional router-link. Our fine-

resolution diagnosis scheme (Section 3.3) provides the opportunity for graceful degradation

by allowing us to disable only a single unidirectional link on each fault. However, existing

route-reconfiguration solutions [4, 100] fail to exploit these healthy unidirectional links, as

they can operate with bidirectional links only. Therefore, these reconfiguration schemes

unnecessarily consider a fault in one direction to be fatal for the entire bidirectional link,
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and cannot benefit from the fine-grained diagnosis information. uDIREC’s contributions

can be summarized as:

• A fine-grain fault model for NoCs that enables the frugal bypass of faulty unidirec-

tional links, without disabling other healthy link(s).

• A novel routing algorithm to maximally utilize unidirectional links in fault-ridden

irregular networks that result from the application of our fine-grain fault model to

faulty NoCs. The routing algorithm is guaranteed to discover only deadlock-free

routes without requiring additional VCs.

• Software-based reconfiguration handles in-field permanent faults in NoCs. It

places no restriction on topology, router architecture or the number and location of

faults. Internally, it utilizes uDIREC’s novel routing algorithm to discover a new set

of deadlock-free routes for the surviving topology.

• uDIREC (for unified DIagnosis and REConfiguration). The integration of the

fine-grained diagnosis and reconfiguration scheme enables a low-cost and frugally-

degrading reliability solution. Experiments on a 64-nodeNoCwith 10-60 interconnect-

related faults show that uDIREC drops 60-75% fewer nodes and provides 14-40%

higher throughput over other state-of-the-art fault-tolerance solutions.

3.4.1 Fault Model

We call the traditional fault model, the coarse-grain fault model Coarse FM: it constrains

the residual network to have bidirectional links only. Therefore, reconfiguration solutions

based on the Coarse FM [39, 4, 100] are often inspired by irregular routing algorithms

designed for networks with bidirectional links only [25, 110]. Up*/down* routing [110] is

a classic example of such a routing algorithm. Up*/down* works by assigning directions

to all links in the network: up or down. Links towards the root node (connecting to a node

closer to the root) are tagged as up links, while links away from the root are tagged as down

links. Links between nodes equidistant to the root are tagged arbitrarily. All cyclic depen-

dencies are broken by disallowing routes traversing a down link followed by an up link.

With this solution, we propose a novel and refined fault model where all link- or router-

level faults are mapped to datapath segments, i.e., to unidirectional links. We call this fine-

grain fault model Fine FM. uDIREC leverages the additional links reported as fault-free by

the Fine FM to improve the reliability and performance of the faulty networks.

• Improved Reliability: A solution based on the Fine FM can provide better connec-

tivity than theCoarse FM, as the number of working links shrinks faster for the latter.
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Figure 3.10 Fine FM provides additional working unidirectional links. They can be utilized

to (a) connect more nodes (reliability), and (b) provide path diversity (performance).

In Figure 3.10a, R1 is isolated when using the Coarse FM. However, the Fine FM

allows deadlock-free routes between any pair of nodes by simply disabling the turn

R0→R1→R2.

• Improved Performance: The Fine FM can improve path diversity over theCoarse FM,

as working unidirectional links can be used to transmit packets. In Figure 3.10b, the

unidirectional link R1→R0 is faulty. With the Coarse FM, only one path remains

from R0 to R1, via links R0→R2 and R2→R1. However, with the Fine FM, an

additional route can be utilized from R0 to R1, via the unidirectional link R0→R1.

For the experiments, we have modeled the diagnosis scheme described in Section 3.3,

which can localize most fault manifestations to the resolution of a single datapath segment.

The same diagnosis information is provided to all evaluated route-reconfiguration schemes

(uDIREC and prior works). However, prior works such as Ariadne [4] and Immunet [100],

restricted by the Coarse FM, cannot utilize this fine-grained fault localization information

due to the limitations of their underlying routing algorithms.
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3.4.2 Routing with Unidirectional Links

The constraint that all network links are bidirectional enables a desirable property: if a

path between two nodes exists, irregular routing algorithms based on spanning tree con-

struction can enable at least one deadlock-free route between them. In contrast, finding

deadlock-free routes between any pair of nodes in a connected network is not always pos-

sible if the network has unidirectional links. Since our routing algorithm must enable only

deadlock-free routes, it is possible to have to sacrifice a few connected nodes to achieve

this goal.

Connectivity and Deadlock Freedom

We consider a network to be connected only if transmission is possible between any pair

of nodes in either direction (two-way connectivity). Additionally, we assume that VCs are

only used for separation of traffic into classes and/or avoiding deadlock in client protocols,

but we do not require them to overcome routing deadlocks [51]. Based on their connectivity

characteristics, we can divide all networks with unidirectional links into three categories:

R0 R1

R2 R3

R0 R1

R2 R3

R0 R1

R2 R3

(c) disconnected 

to avoid deadlock

(b) connected; 

deadlock-free(a) disconnected

cannot reach 
R2, R3

cannot reach 
R0,R1

turn disabled to 

avoid deadlock
turn disabled to 

avoid deadlock

faulty 
link

LEGEND:

X
X

X
X

cyclic 
dependency

X turn disabled 
by routing

Figure 3.11 (a) Network disconnected. (b) Deadlock-free connectivity possible by disabling turn

R1→R0→R2. (c) Network connected but deadlock freedom not possible without sacrificing con-

nectivity.

(i) Disconnected: The network in Figure 3.11a is disconnected as traffic cannot traverse

from R2 & R3 to R0 & R1.

(ii) Connected and deadlock-free: In Figure 3.11b, a connected network has a cyclic

dependency in the anticlockwise direction. Such a cycle can cause deadlock, as packets re-

siding in routers’ buffers can be indefinitely waiting for packets in front of them to free up

buffer space. Formally, as a sufficient condition for deadlock freedom, all such dependency

cycles should be eliminated [29]. Thus, we use an approach based on disabling certain
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connections between links, called ‘turns’ in [50], so that the packets cannot form a cyclic

dependency. For example, in Figure 3.11b, the R1→R0→R2 turn is disabled to break the

anticlockwise cycle. In other words, the routing algorithm prohibits messages to go from

R1 to R2 & R3 via R0 to avoid packets from deadlocking. Connectivity is maintained even

after disabling this turn.

(iii) Disconnected to avoid deadlock: The network in Figure 3.11c is connected as mes-

sages can be exchanged between any pair of nodes. However, if the turn R1→R0→R2

is disabled to break the anticlockwise cycle, connectivity is lost. Specifically, R1 cannot

send messages to R2 & R3, as the only path connecting the concerned nodes goes through

this disabled turn. Even when disabling any other turn to break the cyclic dependency,

connectivity is jeopardized.

uDIREC’s routing algorithm is designed to maximally utilize resources in faulty net-

works that result from the application of the Fine FM. uDIREC deploys this routing

algorithm on each fault manifestation, to quickly discover reliable routes between the still-

connected nodes. The routing algorithm works by constructing two separate spanning trees

with unidirectional links: one for connections moving traffic away from the root node

(down-tree), and the other for connections moving traffic towards the root node (up-tree).

Each node is then assigned a unique identifier corresponding to each tree: identifiers in-

crease numerically with increasing distance from (to) the root in the down-tree (up-tree),

while equidistant nodes are ordered arbitrarily. This leads to a unique ordering of nodes

(lower order = closer to root) in each tree. Thereafter, the up link is defined as the uni-

directional link towards the node with the lower identifier in the up-tree and the down

link is defined as the unidirectional link towards the node with the lower identifier in the

down-tree.

Lockstep Construction

The two spanning trees, however, cannot be constructed independently of each other. Be-

cause of the use of unidirectional links, such an approach could lead to a mismatch in the

node ordering between the trees, and links could consequently receive inconsistent tags: up

or down. An example of such situation is shown in Figure 3.12, where mismatched node

orderings lead to link R1→R2 being tagged up in the up-tree and down in the down-tree.

Thus, the construction of the two trees must be in lockstep, guaranteeing matched ordering

by construction.
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Figure 3.12 Independent construction of up-tree and down-tree causes inconsistent labeling

of link R1→R2. (a) Up-tree: link is towards a node that is closer to the root; hence tagged up. (b)

Down-tree: link is between nodes at the same level; hence tagged arbitrarily as down.

Matched Ordering by Construction

uDIREC’s routing algorithm builds the two trees using a breadth-first search, but advances

the construction of the two trees in lockstep, expanding to new nodes only if a node order

matching on both trees exists. To this end, each leaf node reached in the network expands

the two trees to its descendants only when the node itself is reachable by both the up-tree

and the down-tree. Otherwise, the up-tree (down-tree) construction is halted until both

tree constructions reach that node. All nodes that are reachable by both the up-tree and

the down-tree can communicate among themselves by enabling deadlock-free routes. All

other unreachable nodes timeout after waiting for one or both tree(s) to reach them. As

shown in Figure 3.14a, starting from the root node (R0), both the up-tree and the down-tree

expand to R2 using bidirectional link R0↔R2; hence R2 can expand to its descendants. At

the same time, the down-tree expands to R1 and halts at R1 for the up-tree to catch-up. In

the next iteration, R2 expands the up-tree to R1, cancelling the halting status of R1. At this

time, both trees reach all nodes, and hence the network is connected and deadlock-free.

For deadlock-freedom, all routes traversing a down link followed by an up link (down→up

turn) are disallowed. Finally, a route search algorithm finds the minimal route(s) between

each source-destination pair.

Property 1. uDIREC’s routing algorithm provides deadlock-free connectivity among all

nodes reachable by both up-tree and down-tree.

Proof’s outline. With consistent node ordering, any deadlock causing cycle will contain at

least one up→down turn and one down→up turn [29]. Since uDIREC’s routing algorithm

guarantees consistent tagging of links, all dependency cycles are broken by disallowing just

down→up turns. Additionally, all the nodes connected by the spanning trees can commu-

nicate deadlock-free, as any node can reach all other nodes by going to the root node first,
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ROOT = pick root()

newly reached = up-tree = down-tree = ROOT;

/*Begin up-tree and down-tree construction*/

do:

| for(NODE in newly reached):

| | up-tree += nodes with link to(NODE)

| | down-tree += nodes with link from(NODE)

| newly reached = new overlap(up-tree,down-tree)

while(newly reached != NULL)

disable unreached nodes()

order = order nodes reachable by both trees()

apply down up turn restrictions(order)

find minimal routes with turn restrictions()

Figure 3.13 uDIREC’s deadlock-free routing algorithm to determine deadlock-free routes in

networks with unidirectional links. To guarantee a matched node ordering, nodes expand the

trees to their neighbors only if both up-tree and down-tree have reached them. The resulting

matched-ordering governs the turn restrictions, and the evaluated minimal routes adhere to these

turn restrictions.

thus following up links first and down links afterwards. In any such routing path, there will

be no disabled down→up turn.

Property 2. Routing configurations produced by uDIREC’s routing algorithm perform at

least as well as configurations generated by up*/down*, in any fault scenario.

Proof’s outline. In the worst case, to provide consistent marking of links, both up-tree and

down-tree can be build only via bidirectionally working links, as in up*/down*. Therefore,

uDIREC’s routing algorithm is always able to connect at least as many nodes as up*/down*

and is able to provide at least as many deadlock-free routes as up*/down*.
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Figure 3.14 Growing the up-tree and down-tree in lockstep. The choice of root affects con-

nectivity. (a) Success with root R0: both up-tree and down-tree connect all nodes with consistent

labeling. (b) Failure with root R1: up-tree (down-tree) halted at R0(R2).
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Root Node Selection

The structure of both trees greatly depends on the root node selection. However, as shown

in Figure 3.14, this aspect may also affect the connectivity characteristics of the network.

In this example, if instead of R0 (Figure 3.14a), R1 (Figure 3.14b) is chosen as root, uDI-

REC’s routing algorithm is unable to find deadlock-free routes to any other node in the

network. With R1 as root in Figure 3.14b, the up-tree uses the link R0→R1 to expand to R0

and the down-tree takes the link R1→R2 to expand to R2. Both trees halt at their frontier

nodes (R0 for up-tree; R2 for down-tree) waiting for their counterpart trees. The algorithm

terminates with R1 connected to no other node, as the down-tree (up-tree) never reaches R0

(R2) in this configuration. Therefore, optimal root selection can improve the connectivity

characteristics of the network when using uDIREC’s routing algorithm.

3.4.3 Reconfiguration

uDIREC designates any one node in the multi-core system as the “supervisor”, which

implements the reconfiguration algorithm in software. uDIREC takes advantage of the

fact that our fault diagnosis scheme already stores the topology information in a software-

maintained scoreboard at any one node. For simplicity of implementation, uDIREC des-

ignates the same node as the “supervisor”. With this setup, only the supervisor node is

entitled to make diagnostic decisions on the health of the NoC, and hence information

about fault locations and the surviving topology is already present at the supervisor. In this

manner, uDIREC avoids hardware overhead incurred by software-based reconfiguration so-

lutions [110, 84] to reliably collect the topology information at a central node. Upon a new

fault detection, the supervisor node transmits a reserved message to all routers/nodes in the

system, informing them about recovery initiation. On receiving this message, all routers

suspend their current operation and wait for routing function updates from the supervisor,

while the nodes stop new packet injections. In the meantime, the supervisor computes

deadlock-free routes for the surviving topology, using the routing algorithm described in

the previous section. The computed tables are finally conveyed back to each router/node,

which then resume normal operation.

As described in Section 3.4.2, network connectivity depends strongly on the choice

of the root node. To this end, uDIREC’s reconfiguration algorithm discovers the largest

connected topology via an exhaustive search of the root node that maximizes network con-

nectivity. Each node, in turn, is appointed as the temporary root node and the number of

nodes it connects is calculated. The optimal root-selection is finalized when one of the
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/* Root Selection by connectivity evaluation */

ROOTwin = -1; max connectivity = 0

for(ROOT in all nodes):

| connectivity = eval uDIREC connectivity(ROOT)

| if(connectivity == num nodes):

| | ROOTwin = ROOT; break;

| if(connectivity > max connectivity):

| | ROOTwin = ROOT;

| | max connectivity = connectivity

/* Route Construction for winner root */

apply uDIREC routing algo(ROOTwin)

Figure 3.15 uDIREC’s reconfiguration algorithm. All nodes are tried as root, and the root that

provides maximum connectivity, is chosen to build the new network. Within each root trial, uDI-

REC’s novel unidirectional routing algorithm is leveraged to determine deadlock-free routes and

determine connectivity.

following two conditions occur: (i) a root node that provides deadlock-free connectivity

among all nodes is found; or (ii) all nodes have been considered as root node. At the end of

the selection, a winner-root is determined, i.e., the node that could connect the maximum

number of nodes when chosen as root.

Reconfiguration duration. Considering all nodes as root is inefficient, and algorithmic

optimizations are possible, but uDIREC trades reconfiguration time for simplicity of the

algorithm. This is because permanent faults (even when up to tens or hundreds) are not

frequent enough for reconfiguration duration to affect overall performance. Tree-based

routing algorithms can be efficiently implemented in software, and typically take only hun-

dreds of milliseconds to complete (∼170ms [110]). Even though uDIREC requires multiple

iterations of the tree-based routing algorithm, we expect the reconfiguration overhead to be

within a few seconds at worst. Assuming an aggressive life-span of 2 years for high-end

servers and consumer electronics, and 150 NoC faults in the worst case, an NoC would

suffer 1 fault every 5 days. Therefore, an overhead of few seconds per fault manifestation

is negligible.

Reconfiguration-induced deadlock. Reconfiguration can cause routing deadlocks even

if both the initial (before fault manifestation) and final (after reconfiguration) routing

functions are independently deadlock-free [76, 97]. uDIREC avoids such deadlocks by

identifying the packets that request a turn that is illegal according to the updated routing

function. These packets are then ejected to the network interface of the router, in which they

are buffered during reconfiguration. After reconfiguration, these packets are re-injected

into the network upon buffer availability. Other state-of-the-art reconfiguration techniques
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[4, 100] utilize a similar technique to overcome reconfiguration-induced deadlocks.

Early diagnosis. Our diagnosis scheme pinpoints the fault locations in the router datap-

ath before the faults grow to fatal proportions. The first few faults in the router datapath

are corrected by the end-to-end ECC in the process of obtaining diagnostic information

about fault locations. This presents the opportunity to keep using the network (for some-

time) even after the fault has been diagnosed, as the initial few faults in the router datapath

are within the correction capacity of the ECC. The pre-emptive diagnosis enables the sal-

vaging of the processor and memory state of the about-to-be-disconnected nodes while the

network is still connected. Traditionally, computer architects have relied on check-pointing

support [99] for this purpose, while a recent research proposal [32] adds emergency links

to this end. Using this technique, it is possible to greatly simplify this additional reliability-

specific hardware. uDIREC, however, does not guarantee the integrity of packets that are

traversing the network after fault manifestation and before fault detection, and relies on

orthogonal recovery schemes [85, 5, 90] for that. However, the property of early diagnosis

can greatly reduce the likelihood of fatal data corruptions and reduce the reliance on such

recovery schemes.

Optimal root and tree. The choice of root node also affects the network latency and

throughput characteristics [105]. In addition, the performance of tree-based routing algo-

rithms is sensitive to the way trees are grown (breadth-first vs. depth-first), and the order in

which nodes are numbered [105]. Further, the surviving set of on-chip functionalities may

also differ with different root selection and tree growth schemes. However, the correspond-

ing analysis is beyond the scope of this project and we do not consider these metrics in the

root selection or tree-building process. uDIREC chooses the optimal node solely on the

basis of number of connected nodes, breaking ties by comparing statically assigned node

IDs, while the trees are build in a breadth-first fashion.

3.4.4 Implementation

In a typical software-based reconfiguration scheme, such as the ones used for off-chip net-

works [110, 106], the surviving nodes first collaborate to choose the root node, following

which, the surviving topology information is communicated to this root node. Finally, the

newly computed routing tables are delivered to all the surviving nodes. Dedicated hardware

resources are required to reliably communicate this information to and from the root node.

Fortunately, uDIREC completely eliminates the need of collecting the NoC health status at

a central node on each failure. The tight integration of the diagnosis and reconfiguration
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scheme in uDIREC makes it possible to utilize the topology information already available

with the supervisor node.
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Figure 3.16 Distribution of the routing tables from the supervisor. One control and one data

wire, organized in a unidirectional ring, are used to transfer routing tables to each NoC router in a

serial fashion. Distributed controllers, one per router, snoop on the bit-stream broadcasted on the

control wire and decode it to identify the data bit-stream relevant to the current router. The flagged

bit-stream is then assembled and written into the routing table. As permanent faults are rare, this

serial distribution poses insignificant performance overhead.

The overhead of routing table distribution can be drastically reduced by noting that

permanent faults are rare occurrences and all reconfiguration-specific transmissions can be

done serially over a single wire. To this end, uDIREC utilizes a combination of one control

wire and one data wire, that are managed by distributed controllers (at each NoC router)

organized in a ring topology. The control wire is utilized to notify all NoC routers of re-

covery initiation, and to set up the data communication between the supervisor and any

particular router. Once the communication is set up, the data wire is used to transmit the

routing table for that specific router, bit-by-bit. The process is repeated for all routers in the

NoC: upon completion, an end-of-reconfiguration signal is broadcasted again via the same

control wire. Specifically, a decode unit is included within each controller that snoops on

the bit-stream broadcasted on the control wire and identifies data bit-streams relevant to

the current router. Once a relevant data bit-stream is identified, the assemble unit gathers

the information transmitted on the data wire and writes it to the routing table. Note that

for a 64-node mesh NoC, the routing table at each node is 64 (destination nodes)×4 (di-

rections) bits. Thus, the routing information for the entire NoC is 2KB only, which should

take insignificant time to transmit when compared to the 100s of milliseconds required

for software-based route evaluation. The hardware implementation of the scheme just de-
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scribed is shown in Figure 3.16. The 2-bit wide links are used only during reconfiguration,

and are otherwise disabled with power-gating, greatly reducing both the risk of wearout

faults and the power overhead. Further, due to their small area footprint, simple resilience

schemes to protect them (TMR or ECC), do not add significant overall overhead.

We synthesized the baseline 64-bit channel mesh router using Synopsys DC [121], tar-

geting the Artisan 45nm library. We also estimated the link wire area for the same using

Orion2.0 [63] considering dimensions from an industrial chip [56]. The baseline router has

a total area of 0.138mm2 (logic=0.08mm2,wire=0.06mm2). In comparison, the distributed

controller logic required to implement the routing table distribution scheme is trivial, and

the two additional distribution wires (unidirectional ring) lead to an area overhead of only

0.34% compared to this baseline NoC. For this study, we assume that the router wires and

the two distribution wires are of the same length, and a unidirectional ring has 1/4th the

number of channels compared to a mesh.

3.4.5 Experimental Results

We evaluated uDIREC by modeling an NoC system in a cycle-accurate C++ simulator

based on [28]. The baseline system is an 8x8 mesh network with a generic 4-stage pipeline

with 2-message classes, 1-VC per message class routers. Each input channel is 64-bits

wide and each VC buffer is 8-entry deep. For comparison, we also implemented Ariadne

[4], which outperformed all previous on-chip reconfiguration solutions, i.e., Vicis [39] and

Immunet [100]. Ariadne [4] reports 40% latency improvement over Immunet, which falls

back to a high-latency ring to provide connectivity, and 140% improvement over Vicis,

which occasionally deadlocks. Since both Ariadne and Immunet guarantee connectivity

if routes (using only bidirectional links) between pairs of nodes survive, they show iden-

tical packet delivery rates. They also deliver a higher fraction of packets compared to

Vicis, especially at high number of faults when Vicis tends to deadlock. uDIREC achieves

substantial improvements over Ariadne, and thus uDIREC’s improvements over Vicis and

Immunet are expected to be even more impressive. Note that Ariadne assumed a perfect di-

agnosis mechanism, so for a fair comparison, we have paired it with our diagnosis scheme,

discussed in Section 3.3.

The uDIREC framework is analyzed with two types of workloads (Table 3.1a): syn-

thetic uniform random traffic, as well as applications from the PARSEC suite [14]. PAR-

SEC traces are obtained from Wisconsin Multifacet GEMS simulator [78] modeling a

fault-free network and configured as detailed in Table 3.1b. After fault injections, we ig-

nore messages originating from and destined to the disconnected nodes, and this could
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lead to some evaluation inaccuracies for parallel collaborating benchmarks running on a

partitioned multi-core. However, the traces are intended to subject the faulty NoC to the

realistic burstiness of application traffic, and provide a simple and intuitive comparison.

The metrics provide valuable insights considering that a particular fault manifestation in

uDIREC and prior work(s) could lead to vastly different configurations in terms of num-

ber/location/functionality of working cores/IPs.

(a)

traffic
uniform

PARSEC

packet
1flit (control)

5flits (data)

simulation 1M cycles

warm-up 10K cycles

(b)

processor in-order SPARC

coherence MOESI

L1 cache
Private: 32KB/node

ways:2 latency:3

L2 cache
Shared: 1MB/node

ways:16 latency:15

Table 3.1 (a) Simulation inputs. (b) GEMS configuration.

Fault injection. Our architectural-level fault injection technique randomly injects gate-

level faults in network components with a uniform spatial distribution over their silicon

area. Each fault location is then analyzed to map it to dysfunctional link(s), modeling

our fault diagnosis scheme (Section 3.3). The links that are marked as dysfunctional are

bypassed using the evaluated route-reconfiguration schemes. We injected a varying num-

ber of permanent faults (0-60 transistor failures) into the NoC infrastructure, and analyzed

uDIREC’s reliability and performance impact. For each number of transistor failures, the

experiment was repeated 1,000 times with different fault spatial locations, selected based

on a uniformly random function.

Scope of experiments. We restricted the scope of our experiments by injecting faults only

in the NoC infrastructure because the system-level performance and reliability depends

on the vast number of unrelated factors: fault location, fault timing, memory organiza-

tion, programming model, processor and memory reliability schemes, and architecture

specific characteristics. As a result, the surviving system functionality might not be di-

rectly comparable. Hence, we have provided a generalized evaluation across a wide range

of faults, consisting of insightful performance (latency, throughput) and reliability (number

of dropped nodes, packet delivery rate) metrics for fault-tolerant NoCs.

Reliability Evaluation

As faults accumulate, networks may become disconnected. Performance of parallel work-

loads running on a multi-core chip, with a faulty network, directly depends on the number
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Figure 3.17 Average number of dropped nodes. Compared to Ariadne, uDIREC drops 3×

fewer nodes and approximately doubles the number of faults tolerated before the same number of

nodes are dropped.

of connected processing elements (PEs) and other on-chip functionality, e.g., memory con-

trollers, caches. Thus, the ability of an algorithm to maximize the connectivity of a faulty

network is critical. In this section, we study: a) average number of dropped nodes, i.e.,

nodes not part of the largest connected sub-network, and b) the packet delivery rate for

uniform traffic, as faults accumulate in the NoC.
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Figure 3.18 Packet delivery rate. Higher network partitioning in Ariadne causes steep decrease

in delivery rate beyond 10 faults. In contrast, uDIREC degrade gracefully.

It can be noted in Figure 3.17 that Ariadne consistently drops over 3×more nodes than

uDIREC. Even with just a few faults (5-20), uDIREC shows substantial improvement over

Ariadne, dropping 1 node against Ariadne’s 3 at 20 faults, as shown in the zoomed section
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of Figure 3.17. Further, Figure 3.18 reports the number of packet delivered as a percentage

of packets generated in the network. As packets, with source and destination in discon-

nected subnetworks, cannot be delivered, this metric is an indication of partitioning in the

NoC. From the figure, both uDIREC and Ariadne deliver the majority (or all) of packets up

to 10 faults. Beyond 15 faults, Ariadne starts partitioning into multiple sub-networks, and

hence its delivery rate drops substantially below that of uDIREC. At 25 faults, uDIREC

delivers 7% more packets than Ariadne, and the gain goes up to ∼ 3× at 60 faults. uDI-

REC’s ability to deliver a large fraction of packets even at a high number of faults makes it

an excellent solution for fault-ridden NoCs.

Performance Evaluation

After reconfiguration, the NoC should keep functioning adequately with only a graceful

performance degradation. In our evaluation, we report two performance metrics: average

network latency and saturation throughput, after the network is affected by transistor faults.

Latency and throughput measures are reported for the largest connected sub-network, as-

suming nodes disconnected from each other cannot work collaboratively. First, we report

the average zero-load network latency, that is, the steady-state latency of a lightly loaded

network (0.03 flits injected per cycle per node).
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Figure 3.19 Zero load latency. Initially, latency degrades more gracefully for uDIREC as it pro-

vides path diversity. Beyond 40 faults, Ariadne becomes highly partitioned and hence latency drops

steeply. Packet delivery rate is much lower for Ariadne, confirming its excessive partitioning.

Analyzing Figure 3.19, both uDIREC and Ariadne initially show an increase in la-
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tency because the number of paths affected increases with increasing faults, while very few

nodes are disconnected from the network. uDIREC, however, degrades more gracefully

and at 30 faults, uDIREC on average has 7% lower latency than Ariadne. Beyond that

point, Ariadne’s latency starts falling. This effect is easily understood by analyzing Figure

3.17 beyond the 30-faults mark: a substantial number of nodes are dropped by Ariadne.

As a result, packets now travel shorter routes to their destinations, and thus the average

network latency is reduced. The crossover between the two latency graphs is at∼40 faults,

and as noted from the packet delivery rate chart copied over in Figure 3.19, the differ-

ence between the delivery rate of the two techniques is large (35% more in uDIREC) and

grows rapidly beyond that point. We observed similar latency trends in simulations using

PARSEC benchmark traces.
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Figure 3.20 Saturation throughput. uDIREC consistently delivers more packets per cycle as it

uses additional unidirectional links to connect more nodes and enable more routes.

In addition to latency, we also measured saturation throughput of the largest surviving

sub-network. Figure 3.20 plots the packet throughput delivered by the network. uDIREC

consistently delivers more packets per cycle as it uses additional unidirectional links to con-

nect more nodes and enables more routes. uDIREC delivers 25% more packets per cycle

than Ariadne at 15 faults. This advantage further increases to 39% at 60 faults.

Performance, energy and fault-tolerance (PEF) metric [68]. Traditional NoC metrics,

such as energy-delay product (EDP), do not capture the importance of reliability and its

relation to both performance and power. To this end, [68] proposed a composite metric

which unifies all three components: latency, energy, and fault-tolerance. They defined PEF
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Figure 3.21 Performance-energy-fault tolerance (PEF) metric [68]. uDIREC monotonically

improves with increasing faults. uDIREC (uDIREC nv) shows 2× (1.6×) improvement at 60 faults.

as in Equation 3.1. In a fault-free network, Packet Delivery Rate=1; thus, PEF becomes

equal to EDP. We assume total network energy to be proportional to the number of active

routers in the network, as we use identical routers in our setup. Therefore, we estimate

per packet energy to be proportional to the fraction of number of active routers by packet

throughput, as shown in Equation 3.2. Figure 3.21 shows PEF values for uDIREC variants

normalized against PEF values for Ariadne. Note that a lower value of PEF is better. The

relative difference in the PEF values between uDIREC variants and Ariadne monotonically

increases with the increasing number of faults. At 15 faults, uDIREC (uDIREC nv) has

24% (17%) lower PEF than Ariadne, while showing more than 2× (1.6×) improvement at

60 faults. The reported PEF values confirm the benefits of using uDIREC across a wide

range of fault rates. At few faults, the additional paths provided by uDIREC lead to reduced

latency, while at higher number of faults, uDIREC delivers a greater fraction of the packets

to their intended destinations.

PEF =
(Average Latency)× (Energy per Packet)

Packet Delivery Rate
(3.1)

Energy Per Packet ∝
Number o f Active Routers

Packet Throughput
(3.2)

83



3.5 Minimal-Impact Reconfiguration with BLINC

Current solutions for permanent fault circumvention, including the one described in the

Section 3.4, often require suspending the normal network activity while executing a cen-

tralized and global-impact reconfiguration algorithm. Network activity is suspended during

reconfiguration because new routes may conflict with old routes, possibly triggering a dead-

lock situation. In addition, the change in routes can lead to loss of data. These techniques

are based on the assumption that fault occurrences are rare events, and orthogonal data re-

covery mechanisms can be leveraged without much impact on correctness or performance.

Thus, they only strive to provide optimal or quasi-optimal post-fault routing configurations,

at a high reconfiguration latency cost. For instance, reconfiguration takes between a 1K and

10K clock cycles for an 8×8 mesh with dedicated hardware [127, 4]. When reconfiguration

is conducted in software, it takes substantially longer [42]. Overall, these solutions fail to

provide non-stop operation with no data loss under faults; something that a digital system

expects from its communication infrastructure.

To this end, we propose a Brisk and Limited-Impact NoC routing re-Configuration

(BLINC) algorithm. BLINC deploys a topology-agnostic routing algorithm, which pro-

vides maximal connectivity and deadlock-freedom. The algorithm leverages a novel

representation of the network topology, which allows to quickly perform reconfiguration

locally, affecting very few routers. The representation consists of routing metadata stored

at each router in a distributed fashion and updated upon each reconfiguration event through

neighbor-to-neighbor updates. The metadata is used to compute alternative (emergency)

routes, which affect only a few routers in most cases and can be quickly deployed upon

a failure. BLINC maintains the deadlock-free network connectivity at all times, if at all

possible.

We use the BLINC algorithm to develop a transparent reliability solution for NoCs,

based on aggressive online testing and failure prevention. In this framework, individual

datapath segments (Section 3.3.1) are taken offline and tested to evaluate if they are close

to failing, in which case they are disabled. BLINC allows the quick movement of datapath

segments offline and back online, and it provides a first-response routing solution when

a failure is deemed imminent. These capabilities allow this framework to operate uninter-

rupted and without data loss through testing and fault reconfiguration. Experimental results

show an 80% reduction in the average number of routers affected by a reconfiguration

event, when compared to state-of-the-art techniques. BLINC enables negligible perfor-

mance degradation in the non-stop detection and reconfiguration solution, while solutions

based on current techniques suffer a 17-fold latency increase.
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Figure 3.22 Route computation. BLINC deploys two route computation components: routing

table (white) and reconfiguration module (gray). On fault occurrence, invalid routes are immedi-

ately replaced by emergency routes, while a procedure running in the background figures out an

optimized routing configuration. The optimized configuration for the new topology is updated after

the background procedure completes.

3.5.1 Methodology

In distributed routing, forwarding directions are selected locally at each router. Thus,

rerouting entails recomputing the routing tables for all routers in the network [100, 39, 4].

We observe that the re-computation effort can be limited by utilizing pre-computed routing

metadata, so to quickly pinpoint the affected routes. The immediate rerouting response

from BLINC is fast and deadlock-free, but not necessarily minimal. However, a new min-

imal routing configuration is computed in background in software to reflect the topology

change. Once this process is complete, the minimal routing tables are transferred to the

nodes, replacing the temporary emergency routes.

Figure 3.22 shows the components required for the BLINC algorithm. The components

shown with the white-background are part of baseline routers: routing tables are gener-

ated offline and ready when the network becomes operative. Upon a topology change, the

gray-background reconfiguration module quickly calculates valid alternative routes, so that

packets affected by the change can be safely sent through alternative (emergency) routes.

Note that the majority of packets still utilize the original optimal routes.
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Figure 3.23 Network segmentation example. a) The segmentation process identifies a segment

that starts and ends at the root node (nodes 0-root, 1, 4, and 5). Additional segments stem from nodes

already a part of other segments (nodes 2 and 6). b) The corresponding segment-to-segment tree

structure reflects this construction from root to leaves. c) Nodes within each segment are organized

in an intra-segment tree. Note how each segment includes two connections to a parent segment.

Network Segmentation

It is possible to design alternative routes based on local information if a few constructs of

segment-based routing [84] are leveraged. In segment-based routing, the entire network is

partitioned into segments. The segmentation process starts by selecting a root node, and

then identifying a segment as a sequence of nodes that start and end at the root node. Each

subsequent segment is identified by building a sequence of nodes that start and end at nodes

already included in the segmented portion of the network. Figure 3.23a shows an example

of segmentation. Note that the definition of segments in segment-based routing corresponds

to topology segments, rather than datapath segments as defined in Section 3.3.1. To avoid

confusion, we will predominantly use the term link instead of datapath segment.

BLINC’s off-line routing solution augments segment-based routing with an additional

high-level tree structure, showing the connectivity between segments. The higher-level tree

(Figure 3.23b) is built by traversing the network following adjacency, segment-by-segment

starting from the root segment. Any two adjacent segments have a parent-child relation-

ship if the segment under consideration (child segment) has links connecting to one or more

segments already in the tree (parent segments). For example, once segment A and B have

been considered, segment C is found to be a child of both. Nodes in the tree are ordered

from root to leaves based on the order in which they are included in the tree (to improve

readability, Figure 3.23b shows the segment order by using letters instead of numerals).

Moreover, BLINC also introduce an ordering of the nodes within each segment by building

“intra-segment trees” (see Figure 3.23c). Once all nodes are ordered, deadlock-free rout-
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Figure 3.24 Routing metadata. a) Port types are assigned based on the network segmentation

process. b) Each port in a node has an associated children set through child and intra-segment ports.

c) Preference direction lists associated with each node are optional.

ing can be enforced by forbidding the turns around the highest order node. Note how the

forbidden turns indicated in Figure 3.23a follow the approach just described: in segment

E, the highest order node is 11 according to Figure 3.23c, and hence turns 10-11-7 and

7-11-10 are disabled.

To gather an intuitive understanding of our approach, notice that each segment is con-

nected to segments closer to the root through two links. Thus, upon a link failure within

a segment, it is possible to use the two links to reach the two disconnected portions of the

segment. The tree structure remains unchanged, and it is sufficient to find a different route

through one or more segments. As an example, in Figure 3.23a, assume that packets going

from node 4 to node 13 traverse nodes 8 and 9. If the link 8-9 fails, it is possible to find an

alternate route via 5, 6, 10 and 9.

Routing Metadata

Routing metadata is computed during network segmentation and is embedded at each

router. It includes three types of information:

• Port type: A router port can be connected to a lower-order node (parent port), or to a

higher-order node in the same segment (intra-segment port), or to higher-order node

in a different segment (child port). Figure 3.24a indicates the type of all ports for a

example network.

• Children set: the set of reachable nodes along downward routes for each port. Figure

3.24b shows the children sets for node 9.
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• Preference list (optional): An ordered list indicating the preferred output directions.

If available, this list is used to improve the quality of the emergency routes generated.

Figure 3.24c shows an example of a preference list.

The following storage is required to store the routing metadata at each router: 2 bits to

encode the port type, a bit array to indicate the children set for each port, and 6 bits per

destination to encode the preference list (at most 3 directions, 2 bits to encode each direc-

tion). Thus, for an 8x8 mesh, at least 264 bits per router are required (384 additional bits if

the preference list is provided).

3.5.2 Reconfiguration Algorithm

Upon a link failure, BLINC leverages the metadata described above to quickly generate

alternative routes for the affected packets. Figure 3.25 illustrates the process with a high

level schematic: each segment can be represented as a chain of nodes, and thus the segment

affected by the failure will find itself disconnected. The localized reconfiguration process

will re-establish connectivity for all the nodes by exploiting the additional routing paths

that had earlier been disabled to avoid deadlock. Indeed, each segment contains exactly

one disabled turn, which at this point will be re-enabled. Then all the children sets within

the segment must be updated, so that each node is reachable from the segment boundary.

This entails adding some children to some nodes and removing children from other nodes.

In the example of Figure 3.25, Y was originally reachable via X only, but after the failure,

it becomes reachable via Z instead. Finally, the additions and subtractions to the children

sets are propagated outside the segment, until a common ancestor is reached. The reason

for keeping the children sets updated is that, during a topology change, packets whose

routing is affected by the change will use the children sets to determine their new paths.

Note that a new optimal routing configuration is generated in the background in software;

once computed, it overwrites all emergency routes. A reconfiguration example, showing

all algorithm steps (described below), is presented in Figure 3.26.

X
Y

a) before b) after

-X,Y,T

+X
+X,Y

T
Z

X
Y

T
Z

+X,Y

Figure 3.25 Children set update on reconfiguration.
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Step 1. Disabling the link: Nodes stop sending packets through the faulty link.

Step 2. Re-enabling the turn: Before the fault, the node with the disabled turn (T in Fig-

ure 3.25) was the leaf in the intra-segment tree. After the fault, the portion of the segment

between the turn-disabled node and the faulty link becomes isolated (portion between X

and T in Figure 3.25). To reconnect that portion, i) the turn at T must be re-enabled, ii) the

port types between the ends of each link of the isolated portion must be swapped (as shown

in Figure 3.26.2 and then iii) an “added-children set” must be computed for each port in

the isolated portion, which includes all the nodes downstream towards X.
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Figure 3.26 Reconfiguration example. The turn restriction in the segment with a fault is elimi-

nated and the node next to the faulty link (node 9) is the new intra-segment leaf. An added-children

set is created to indicate the new routes to reach the downward nodes after the fault, and it is prop-

agated towards the root node. Once this step completes, acknowledgment messages are propagated

back down. A similar process is followed to propagate removed-children sets starting from the other

end of the fault (node 8). Finally, invalid routes are disabled.

Step 3. Enabling alternative routes: Once the added-children set for the turn-restricted

node (T in Figure 3.25) is computed, the set is propagated toward the root node, across

segment boundaries, to instruct every node of the new route to reach the destination next

to the faulty link. For each node towards the root, the current children set of that node is

compared against the incoming added-children set, and then the latter is reduced to include
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only the nodes that are not already present in the children sets of the node under considera-

tion. The process stops when the added-children set becomes empty. In Figure 3.26.3, the

added-children set is propagated from node 10 all the way to the root node and node 4.

Step 4. Waiting for ack: The last recipients of the added-children set generate an ac-

knowledgment message that is propagated all the way back to the node adjacent to the link

failure.

Step 5. Disabling invalid routes: Finally, the other portion of the segment (the one con-

nected to the parent port side of the faulty link) generates a “removed-children set” to

indicate that it cannot reach the other end of the link. The removed-children set is prop-

agated towards the root in a similar fashion to the added-children set: the only difference

is that nodes are eliminated from the removed-children set when they already exist in the

union of the children sets of all router’s ports other than the port receiving the remove-

children message.

3.5.3 Experimental Evaluation

BLINC was evaluated with a cycle-accurate NoC simulator [28]. The baseline network

design uses wormhole, 3-stage pipelined routers with buffers for eight 64-bit flits per input

port, connected in a mesh topology. Packets are 10 flits long, injected using random traffic

at a 0.05 flits/cycle/router rate. Finally, the fault model is similar to the uDIREC scheme

(Section 3.4.5). We evaluate three fault rates: 1%, 5% and 10% links were made faulty. 10

distinct faulty topologies were constructed out of a baseline mesh for each fault rate, and

one more failure was added on top of the baseline at 10 different sites. In total, each fault

rate is evaluated with 100 fault situations (10 baseline topologies x 10 failure locations).

Number of affected routers. The left part of Table 3.2 reports the average number of

routers affected by a reconfiguration event over a range of fault densities and network sizes.

The affected number of routers increases slowly with network size, showing that BLINC

localizes the fault manifestation to a small region. Compared to existing methods [4, 118],

BLINC achieves more than 80% reduction in the number of affected routers, across a wide

range of fault densities.

Reconfiguration latency. Reconfiguration latency was computed assuming each node

takes 5 cycles to process an add/remove children-set message and 1 cycle to propagate

the acknowledgement messages. The reconfiguration latency is reported on the right part

of Table 3.2. While reconfiguration latency is minimally sensitive to network size, it does

show a steady increase with growing fault density. We believe this is due to the natu-

rally occurring longer segments in faulty networks, which in turn, impose more hops in
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the transmission of reconfiguration messages. Overall, BLINC’s reconfiguration latency is

98% shorter than previous hardware-based techniques [4].

method
% # affected routers reconf. latency (cycles)

faults 6×6 8×8 10×10 6×6 8×8 10×10

BLINC

0% 7.0 9.0 9.9 21.0 26.0 30.1

1% 6.8 9.3 10.3 21.0 28.1 31.1

5% 7.1 9.1 10.0 23.9 28.7 30.6

10% 6.6 8.9 10.0 24.9 30.0 34.4

ARIADNE [4] - all routers 1.3K 4.1K 10K

OSR-Lite [118] - all routers - ∼569* -

Wachter et al.[127] - all routers - - ∼0.2K-208K

Table 3.2 Average number of affected routers and reconfiguration latency

3.6 Uninterrupted Availability with BLINC

To showcase the value of BLINC’s approach, we evaluated its deployment in a fault detec-

tion and reconfiguration solution that provides uninterrupted availability. The methodology

tests network resources aggressively to detect early signs of an upcoming fault. Each link

(or datapath-segment), in turn, is taken offline for testing, which is performed through

transmission of testing packets generated by a test pattern generator, such as the one in

[52]. This approach can detect a majority of router faults [39]. For this methodology to

be valuable, i) the network should be available and connected while a link is being tested

and ii) the testing approach should be capable of detecting early signs of link failure (e.g.:

increased delay, etc.), so that the network can reconfigure around the upcoming fault with

no loss of packets. The first requirement can be accommodated by the BLINC algorithm:

as shown in the previous section, it can provide emergency routes with minimal overhead.

The latter requirement has been solved in the context of microprocessor designs [114, 132]

but, to date, no solution of this kind has been developed for NoCs. BLINC can simply

reconfigure the NoC to avoid the target link before the testing phase, and then reactivate

the original routing after the test completes. If a link is found at risk of experiencing fail-

ure, emergency routing is maintained until a new segment-based routing solution can be

computed in the background.

The testing flow is characterized by two parameters: the length of the test duration

for each link (L) and the network testing rate ( f ), as illustrated in Figure 3.27. One com-

plete testing cycle entails testing each link in turn. Note that the network should remain
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Figure 3.27 Online testing flow. The network should remain completely available even during

testing, so that an aggressive testing frequency does not degrade network performance.
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Figure 3.28 Average packet latency under online testing. BLINC reconfigures routing quickly,

supporting online testing with only negligible performance degradation.

Figure 3.28 reports our findings: it plots average packet latency under a range of testing

rates and test durations. Viable testing rates and durations were derived from [72, 52, 132].

For instance, the rightmost data point in the plot corresponds to one complete test period

every 112,000 cycles. We compare these measurements against a routing solution (called

Stall) that does not benefit from the BLINC solution. In Stall, packets are simply stalled

in their buffers whenever they are trying to use a link undergoing testing. We only com-

pared against Stall, because other solutions [100, 39, 4, 127] have reconfiguration latencies

longer than the test durations employed. Analyzing Figure 3.28, average packet latency

is minimally affected (6% in the worst case) by the ongoing testing and reconfiguration

process when using BLINC, regardless of test durations. Moreover, Stall cannot provide

uninterrupted availability beyond a test duration of 500 cycles, even at very low testing

rates (the latency increase is 17-fold for L = 1,000 and f = 1%).
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3.7 Related Work

Ensuring reliability in NoCs has been the subject of much previous research, focusing on

a variety of aspects. Works such as [94, 85] focus on NoC protection against soft faults.

Other methods enhance NoC reliability against permanent faults by enabling one or a com-

bination of the following features: i) detection of erroneous behavior [85, 48], ii) diagnosis

of fault site [48, 39, 101, 27, 69], iii) recovery from erroneous state [85], iv) system recon-

figuration to bypass the permanent faults [100, 39, 4, 70, 21] or v) architectural protection

for router logic [26, 39, 68].

Protection against soft-errors. The most common reliability techniques augment NoC

packets with ECC information that can be checked on an end-to-end or a switch-to-switch

basis [85, 35]. ECC codes can also correct a few bit errors, beyond which the system relies

on costly data retransmission using a backup copy. Retransmission schemes cannot tackle

all erroneous scenarios, especially the ones arising from control logic malfunction, e.g.,

deadlock. [5] proposed to retransmit clean copies of data directly from the memory sub-

system, alleviating the need of large backup buffers. However, the required changes to the

cache coherence protocol present a design and verification challenge. Further, their solu-

tion also cannot recover from deadlock scenarios. A technique to recover from soft-errors

in both the router’s data-path and control logic was presented in [94]. It uses switch-

to-switch ECC and retransmission for data-path errors, while the router control logic is

protected with hardware checkers. Deadlocks due to soft-errors are broken by using ad-

ditional buffers at each router port. However, this approach leads to a prohibitive area

overhead (as was discussed in Section 2.5), especially for networks with large data packets.

In contrast, ForEVeR++ does not require backup data storage for soft-error recovery, and

it can also overcome forward progress errors such as deadlock. Additionally, ForEVeR++

also protects both the router data-path and control logic against soft-errors, at low design

complexity.

Detection and diagnosis of permanent-faults. Forward Error Control (FEC) methods use

ECC in order to detect and correct data faults during transmission by adding data redun-

dancy to the packets [35]. However, these methods quickly lose their efficiency in presence

of permanent faults, since the correction strength of ECC is quickly exhausted due to the

recurring nature of errors arising from permanent faults.

Addressing both data and control faults, authors of [26] demonstrated a reliable router

using N-Modular Redundancy (NMR). However, NMR imposes a prohibitively high area

overhead with low returns on reliability. A diagnosis method was introduced in [39] where

the authors proposed embedding Built-In-Self-Test (BIST) hardware for fault diagnosis and
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a rerouting mechanism to bypass the defective parts. Their results indicate that each router

incurs a 43% area overhead, with BIST contributing to the majority. Moreover, this method

entails periodic intervals of dedicated NoC testing. Our scheme provides fine-grained fault

diagnosis information covering both datapath and control-path faults. Additionally, it in-

curs low area overhead, and ensures no performance degradation or network operation

interruption in the absence of errors.

Reconfiguration around permanent-faults. Our route-reconfiguration scheme, uDIREC,

is orthogonal to architectural approaches that extend the lifetime of NoC links (ECC [85],

reversible transmission [6], partially-faulty links [88]) or components ([26, 68]). When the

number of faults affecting a link/component are beyond repair using such approaches, the

corresponding link/component can be switched off, and traffic re-routed around it using

uDIREC. With uDIREC, we specifically investigate fine-resolution diagnosis and route-

reconfiguration to cope with permanent faults.

During route-reconfiguration, a new set of deadlock-free routes are generated to replace

the current ones, whenever a new fault is detected. The unpredictable number and location

of fault occurrences cause reconfiguration solutions, which are designed for a bounded

number [49, 51] or constrained pattern [22, 46, 41] of faults, to be unfit for NoCs. There-

fore, we compare uDIREC only against solutions that do not put constraints on number

and location of faults. Table 3.3 presents a qualitative comparison of the algorithms in this

domain. All previous reconfiguration algorithms, either off-chip [110, 84, 106] or on-chip

[100, 39, 4, 21], are limited to the granularity of a bidirectional link, if not any coarser.

Therefore, they are limited by the shortcomings of the Coarse FM, failing to capitalize on

performance and reliability benefits of using the Fine FM. This is confirmed by the fact that

uDIREC drops less than 1/3rd of the nodes when compared to the best performing prior-art

[4].

Except for Vicis [39], which uses a costly BIST (10% overhead [33]) unit for diagnosis,

no other previous solution presented a unified approach to diagnosis and reconfiguration.

Typically, standalone route-reconfiguration schemes assume an ideal accuracy diagnosis

scheme, which either localizes a fault to an entire link/router [110, 84, 106, 100], or to a

datapath segment pair [4].

uDIREC uses simple hardware additions to assist its software-based reconfiguration,

incurring the lowest area cost among the route-reconfiguration schemes. Implementing

off-chip reconfiguration schemes requires dedicated reliable resources for the collection of

the surviving topology and the distribution of routing tables, to and from a central node,

respectively. Ariadne [4] reports that the software-managed reconfiguration algorithms

for off-chip networks, lead to 23.2% area overhead, if implemented on-chip without any
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solution diagnosis support
resolution

node-drop rate reconf area(%)
diagnosis reconf

off-chip NO – bi-link high, >3× 23

Immunet NO – bi-link high, >3× 6

Vicis YES sgmt-pair bi-link high,dlock 1.5

Ariadne NO – bi-link high, >3× 2

uDIREC YES segment u-link low, 1× <1

Table 3.3 uDIREC’s comparison with other route-reconfiguration solutions. uDirec provides

unified fault diagnosis and reconfiguration at fine granularity, resulting in better reliability charac-

teristics. Moreover, the hardware structures required for uDIREC, are small and simple. The area

numbers for schemes other than uDIREC are as reported in prior-work [4].

modifications. Immunet [100], on the other hand, ensures reliable deadlock-free routes

by reserving an escape virtual network with large buffers, which, in the worst case, re-

configures to form a unidirectional ring of surviving nodes. Vicis [39] leverages a bulky

BIST unit at each router. In addition, the routing algorithm that Vicis implements is not

deadlock-free, and it often deadlocks at high number of faults.

Quick and minimalistic reconfiguration. Global reconfiguration solutions [100, 39, 4,

127] can tolerate an arbitrary number of faults before the network gets segmented, but suffer

from high reconfiguration overhead. In contrast, local reconfiguration solutions [133, 36]

leverage bypass rules to quickly reroute around faults using local connectivity information.

However, due to the localized nature of these solutions, they can only sustain a few faults

without causing livelock or deadlock.

Quick routing reconfiguration has been investigated mostly for off-chip interconnection

networks, such as local area networks (LANs). [20] and [111] propose dynamic, progres-

sive reconfiguration procedures to this end. However, they only discuss reconfiguration

principles without investigating the details and hardware required to support the recon-

figuration procedure. In the on-chip networks domain, OSR-Lite [119] proposes a fast

reconfiguration solution utilizing resources to support two routing-computation logic sets

based on [102], with only one of them active at a time. Upon a fault occurrence, a central

manager calculates the new replacement routes, while the old ones are still in use, then

the two are swapped. While OSR-Lite is reported to be faster than hardware solutions,

the dedicated central manager is a single-point of failure. [123] improves [119] with a

disconnection-rescuing algorithm, but it still misses potential connections due to its limited

routing capability. [44] proposes a time/space-efficient reconfigurable routing algorithm,

but it does not show its applicability to fault tolerance. In Table 3.4, we present a com-

parison of relevant routing reconfiguration techniques. Our proposed solution, BLINC, is

quick and provides high tolerance against a wide range of faults.
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method context computation impact speed
fault

tolerance

BLINC (our solution) on-chip hardware local very fast high

ARIADNE [4] on-chip hardware global fast high

MD [36] on-chip hardware local very fast low
Sem-Jacobsen et al. [111] off-chip software local slow high

OSR-Lite [119, 123] on-chip software global moderate moderate

Table 3.4 BLINC’s comparison with other route-reconfiguration techniques

3.8 Summary

This chapter described solutions to protect an NoC against both soft-errors and perma-

nent faults. Protection against soft-errors requires detection capabilities, followed by a

recovery procedure. For permanent faults, however, diagnosis of the fault site is essential,

in addition to fault detection. Once a faulty component is identified, the reconfiguration

procedure either replaces the malfunctioning component with a healthy substitute, or it dis-

ables the faulty component permanently, while leveraging the redundancy in the system to

still continue operation, although at a lower performance level.

We first presented ForEVeR++ that leverages the ForEVeR infrastructure (Chapter 2)

for protecting the NoC against soft-errors. ForEVeR++ protects the NoC against soft-errors

affecting all component types (control, datapath and links). To this end, ForEVeR++ lever-

ages the ForEVeR monitoring hardware to detect soft-error manifestations, in addition to

design errors. Recovery of the soft-error affected packets is guaranteed by building re-

siliency features into our checker network. ForEVeR incurs a minimal performance penalty

up to a flit error rate of 0.01% in lightly loaded networks, while incurring an area cost of

only 6% over the baseline ForEVeR design.

We then introduced a novel method to comprehensively detect and diagnose perma-

nent faults in on-chip networks. We present a novel representation of the router micro-

architecture, partitioning it into datapath-segments for the purpose of fine-grained diagno-

sis. The high-resolution diagnosis information is then utilized by our route-reconfiguration

solution (uDIREC) to replace the defective components sparingly. Our diagnosis method

imposes no performance overhead during error-free network operation. Additionally, the

system suffers no down time on error-detection, while our diagnosis scheme is passive,

introducing no dedicated test traffic into the network. Our solution is able to achieve 98%

diagnosis accuracy by monitoring only 15 erroneous transmissions. In addition, the area

overhead is kept as low as 2.7%.

We then presented uDIREC, a solution for reliable operation of NoCs providing grace-

ful performance degradation, even in presence of a large number of faults. uDIREC
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leverages a novel deadlock-free routing algorithm to maximally utilize all the working

links in the NoC. Moreover, uDIREC incorporates a software-based fault diagnosis and

reconfiguration algorithm that places no restriction on topology, router architecture or the

number and location of faults. Experimental analysis shows that, for a 64-node NoC at 15

faults, uDIREC drops 68% fewer nodes and provides 25% higher bandwidth over state-of-

the-art reliability solutions. A combined performance, energy and fault-tolerance metric

that integrates energy-delay product with packet delivery rate, reports a 24% improvement

at 15 faults, which more than doubles beyond 50 faults, showing that uDIREC is beneficial

over a wide range of fault rates.

Finally we presented BLINC, a brisk and local-impact NoC routing reconfiguration

algorithm. BLINC utilizes a combination of online route computation procedures for im-

mediate response, paired with an optimal offline solution for long term routing. To achieve

its goal, BLINC employs compact and easy-to-manipulate routing metadata. Our evalua-

tion shows more than 80% reduction in the number of routers affected by reconfiguration,

and 98% reduction in reconfiguration latency, compared to state-of-the-art solutions. We

also discussed how BLINC enables uninterrupted availability for networks-on-chip, by al-

lowing individual network links to be taken offline for testing at high frequency. BLINC

maintains stable network performance with only a 6% increase in latency during testing, in

contrast with a 17-fold latency increase for a baseline approach that stalls one link segment

at a time.
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Chapter 4

Addressing Excessive Power Dissipation

Recent studies have shown that power-efficient performance improvements can be achieved

by designing application-specific hardware components that accelerate certain types of

computations. Research in this area has focused on integrating and utilizing several cores

implementing a diverse set of solution points in the performance, application specificity

and power dissipation space into heterogeneous Systems-on-Chip (SoCs). As the diver-

sity and quantity of heterogeneous components that make it into future CMPs and SoCs

increase, the interconnect that binds them together must also evolve to accommodate this

shift in the design paradigm. Specifically, the interconnect should be able to deliver reason-

able performance under a power budget across a diverse set of workloads. It should also

be able to monitor its own health by keeping the power consumption under check: possi-

bly by turning off unused components. A few approaches to designing Networks-on-Chip

(NoCs) for heterogeneous platforms have recently been proposed in literature, focusing on

tunable design and synthesis processes that optimize architectural parameters for a target

set of applications. This chapter proposes a new design framework that enables the NoCs

to be reconfigured at runtime, based on changing application and hardware configurations.

This design methodology allows heterogeneous system designers to quickly deploy on-

chip interconnects providing near-optimal communication in a wide range of architectures

running a variety of workloads. This differs greatly from previous approaches that require

the application’s characteristics to be known at design time and remain static throughout its

execution.

From the perspective of NoCs’ runtime health, this chapter focuses on avoiding exces-

sive power dissipation. The NoC architectures presented in this chapter reconfigure their

topology and routing dynamically to save power, optimizing based on the applications’

communication characteristics. During reconfiguration, unused or under-utilized datapath-

segments (remember the definition of datapath segment from Section 3.3.1) or even entire

routers within the NoC are switched off, and routing is re-configured to better manage ac-

tive paths. The reconfiguration mechanism is implemented in a low-overhead distributed
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hardware that allows for quick reconfigurations without affecting network performance.

All the heuristics/implementations presented guarantee that the network never enters an

erroneous state, such as deadlock or disconnection. Using such a framework, designers

will be able to provide fine-grained optimization mechanisms for pushing power-conscious

operation to the limit.

4.1 Power-Aware NoC with Panthre

NoCs are scalable and flexible, however, they are crippled by excessive power consumption

[56, 130]. Particularly problematic for NoC structures is leakage power, which is dissipated

regardless of communication activity or lack thereof. At high network utilization, static

power may comprise more than 74% of the total NoC power at a 22nm technology node

[120], and this figure is expected to increase in future technology generations. At low net-

work utilization, leakage power is an even higher fraction of the total power budget for the

NoC. With growing system integration, larger and larger portions of the NoC will be only

lightly used at any point in time, with the lightly used set varying with each application and

even within a single application over time.

Power-gating [57] is a promising solution to minimize the dissipation of leakage power.

However, conventional power-gating schemes [57] that opportunistically put components

to sleep during periods of no activity are ineffective for distributed and shared resources,

like an NoC. The problem is two-fold: i) even when lightly utilized, NoC components of-

ten do not observe long idle-periods, failing even to compensate for the energy spent in

the power-gating event itself, and ii) packets that encounter sleeping components in their

paths accrue latencies due to wake-up delays. Power-gating at a finer granularity than entire

routers [81] provides more sleeping opportunities. However, it further worsens the prob-

lem of accumulated wakeup latencies, as it puts components to sleep more aggressively.

Early wakeup with lookahead routing was proposed to compensate for wakeup latency

[80]. However, for a typical 2-stage pipeline router, lookahead can only hide a small

fraction of the wakeup latency, which is typically many cycles. In our evaluations with

multi-programmed workloads, we have identified that such conventional schemes often

lead to significant application slowdown and net energy loss.

A workload stressing only a portion of the network creates opportunities for power-

gating the remaining, lightly-used portions of the network. However, deterministic routing

algorithms provide fixed routes among source-destination pairs, and in practice do not al-

low for isolation of any network component. A possible solution is to use an adaptive
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routing algorithm and deflect packets toward active units when they encounter a sleeping

component on their regular path. However, this approach requires additional resources to

maintain deadlock freedom, which must be kept active at all times. Moreover, accruing

multiple deflections leads to increased packet latency.

Our solution, called Panthre (for Power-aware NoC through Routing and Topology

Reconfiguration), overcomes these issues by modifying routing paths periodically so to ex-

clude lightly used portions of the topology. When Panthre’s decision engine determines

that the set of power-gated components must be updated, Panthre executes a route recon-

figuration procedure that avoids the new set of power-gated components, while providing

deadlock-free routes for all packets. This step eliminates deflections and the need for ded-

icated resources to support deadlock-freedom. Panthre leverages the rich set of alternate

paths that are available in NoC fabrics to keep traffic away from sleeping components. In

addition, it pro-actively adapts to application’s demands by power-gating only those net-

work components that are under-utilized. Similar to any route-reconfiguration approach,

the smallest granularity of route manipulation with Panthre is a datapath segment, i.e., a

collection of components within an NoC router as defined in Section 3.3.1. Therefore,

Panthre applies power-gating at the granularity of one datapath segment. This approach

presents great saving potential for leakage power, as the five constituent datapath segments

of a mesh router account for 99% of the router’s static power (Section 4.2.1).

Naturally, Panthre leads to an increase in traffic on the links kept active by channel-

ing traffic away from sleeping components. Therefore, it is essential for Panthre that

substantial low-usage links exist in the NoC. To this end, we conducted a study, whose

findings are plotted in Figure 4.1. The plot shows the contribution of network links to to-

tal network activity. Our testbed consisted of an 8x8 mesh CMP running a network-light

multiprogrammed mix of applications from the SPEC CPU2006 suite. Links are sorted by

increasing utilization during the execution, and the plot on the right indicates what fraction

of network traffic (Y axis) was carried out by a given fraction of sorted links. The plot on

the left is an enlargement of the contribution by the bottom 30% of active links: more than

20% of the links share only 5% of the traffic load on average, and only 10% of the traf-

fic travels through the bottom 30% of used links. Beyond the 30 percentile of utilization,

this disparity is no longer obvious, thus Panthre’s goal is to identify and leverage the 30%

least used links, so to maximize power savings without a significant load increase on active

links.

Panthre deploys a simple and distributed framework for traffic activity collection and

subsequent exclusion of low-usage components. Even though frequent decisions to power-

gate components are made locally at each router, Panthre’s novel reconfiguration solution
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Figure 4.1 Fraction of traffic load shared by the least utilized links. The fraction of traf-

fic transferred by the bottom 30% of used links is very small, thus Panthre targets this pool for

power-gating without burdening other links with high load.

ensures uninterrupted operation with guaranteed connectivity and deadlock-freedom for the

NoC topology globally. Panthre, by construction, is also free of reconfiguration-induced

routing deadlocks [76], thus eliminating the need for expensive dedicated buffering, virtual

channels (VCs), and a retransmission protocol [24, 104].

Panthre is the first solution that applies topology and routing reconfiguration in a dis-

tributed manner to maximize power savings by adapting routing decisions to changing

application communication needs. Panthre’s routing reconfiguration abilities are in stark

contrast to previous proposals, which require statistics collection, decision making, route

update and reconfiguration operation, all to be executed at a central node [104]. Such a

process requires dedicated channels to communicate with the central entity and typically

takes a long time, often requiring to suspend network operation. As a result, such cen-

tralized schemes provide little adaptivity and can only be applied at a coarse-granularity

(entire routers), and only when communication patterns are known well in advance.

In our evaluation with multiprogrammed benchmarks running on a 8x8 mesh net-

work, Panthre was able to reduce NoC power consumption by 14.5% on average for

communication-light workloads, while causing less than a 2% application slowdown. In

contrast, power-gating with lookahead [80, 81], leads to 9-11% application slowdown if

implemented at a router level, while causing as much as 20% performance loss if fine-

grained power-gating is applied. Finally, Panthre leakage power savings are 36.9% on

average when 10-16 nodes of a 64-node CMP are communication-idle.
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Figure 4.2 Overview of Panthre. Panthre consists of four components at each router: a) a usage

activity count and compare (ACC) framework to identify lightly used components, b) an ON/OFF

decision engine that determines the set of components to be power-gated, c) a Panthre-enabled route

computation unit that can execute in the background without interrupting regular NoC operation,

and d) an anomaly-based feedback algorithm that tracks application’s needs dynamically and sends

updates to the ON/OFF engine.

4.2 Panthre Design

Panthre consists of four components at each router: i) a component usage collection frame-

work (ACC), ii) a lightweight ON/OFF decision engine that determines the set of links to

power-gate based on local usage data, iii) a route compute module that updates the rout-

ing tables using broadcasts after each decision event, without interrupting normal NoC

operation, and iv) a feedback-based anomaly-detection and management unit that commu-

nicates updates to the ON/OFF decision engine so that Panthre can adapt dynamically to

changing communication patterns in the application over time. The four components of

Panthre are highlighted in Figure 4.2. These four components are implemented using fast

and lightweight distributed hardware, with minimal information communicated globally

via a few single-bit wires. The lightweight distributed hardware allows Panthre to adjust to

application’s communication needs very quickly and without ever interrupting the normal

network operation.

4.2.1 Fine-Grained Power Gating

Panthre provides fine-grained power-gating by allowing components to be excluded at the

granularity of a single unidirectional link. Upon careful examination of routers’ datapath,

we identified that powering-down a unidirectional link between two routers is equivalent

to powering down the corresponding crossbar contact and the output port at the upstream

102



router, the unidirectional link itself, and the input port, input buffer and crossbar contacts

at the downstream router. We call this combined set of components, a datapath segment:

it represents the smallest granularity at which routing-based reconfiguration can be applied

for the purpose of power-gating. The concept of a datapath segment is illustrated in Figure

4.3 and was previously described in Chapter 3. Fortunately, crossbar, links and buffers

consume most of the leakage power in a router, and they can all be powered off using our

fine-grained power gating. DSENT [120] reports that 99% of the leakage power consump-

tion of the baseline mesh router synthesized at 22nm can be attributed to its 5 datapath

segments. The remaining 1% is attributed to shared units such as route computation and

allocators. Note that Panthre is unable to exclude the local datapath segment (the one con-

necting to the local core) in absence of alternate paths for them to connect to the NoC.

Therefore, in the rest of this chapter, we exclude these local datapath segments from our

computations, and assume that orthogonal power-saving schemes are being deployed for

them.
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Figure 4.3 A datapath segment. 99% of the mesh router’s leakage power is dissipated by its 5

datapath segments. Results are obtained from DSENT at 22nm node.

4.2.2 Execution Flow

Panthre’s execution is divided into fixed time windows or epochs, with power-gating de-

cisions made at the beginning of each epoch. Thus, Panthre ensures that power-gated

components are off for at least an interval of one epoch. The distributed activity counter

units (ACC, Figure 4.2) periodically collect datapath segment usage statistics by the means

of simple counters: the data is then used to guide the decision process for the next epoch.

Panthre’s decision process is simple: all datapath-segments that experience activity below

a threshold (ATH ) are put to sleep. Thereafter, a route update process updates routing tables
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to operate the network in the new configuration. However, different communication loads

require different ATH for Panthre to be effective. A fixed value could lead to an excessive

or insufficient number of power-gated segments. Therefore, we propose a threshold update

algorithm that leverages feedback from the anomaly detection unit deployed at each router.

When the number of power-gated segments is excessive, two types of anomalies may

arise: i) a large fraction of packets suffering long detours to their destinations, and ii)

congestion due to the increased load on active links. Thus, we detect these anomalies to

provide feedback to our threshold update algorithm. In addition, these anomalies are de-

tected locally at each router and broadcasted globally using single-bit wires. Each ON/OFF

decision engine is equipped with logic to update the threshold value based on this feedback

information. Note that the global anomaly broadcast ensures that ATH values are kept con-

sistent throughout the NoC. This aspect, in turn, guarantees that power-gating decisions are

fair, tackling the least used segments in the NoC.

Panthre provides the ability to systematically trade-off performance for power savings

by adjusting the criterion for the detection of these anomalies. With Panthre, stable and

power-efficient configurations are typically attained 10-15 epochs (1 epoch is 10K cycles

in our design) after a program phase change, which is quick considering that application

phases are up to 10s of millions of cycles.

4.2.3 Reconfiguration Algorithm

A hallmark of Panthre is that all power-gating decisions can be made independently at

each router, while deadlock-freedom and connectivity among all nodes is still guaranteed

throughout execution. This allows for frequent reconfigurations, in the order of one recon-

figuration event per tens of thousands of cycles. In addition, Panthre eliminates the need of

any additional hardware to recover from pathological scenarios such as deadlock. This is a

great advantage in terms of silicon cost (and power), and it also limits the impact of recon-

figuration on performance. Panthre’s reconfiguration is based on the up*/down* routing

algorithm, which breaks deadlocks by forbidding certain through-router connections be-

tween non-local links (turns). Up*/down* routing works by organizing all network nodes

on a spanning tree starting from a root node of choice. Each node receives a unique order

based on its distance from the root, and equidistant nodes are ordered arbitrarily. There-

after, all routes first leading away from the root node (down-traversal) and then towards it

(up-traversal) are marked invalid. This ensures deadlock-freedom as all dependency cycles

involve at least one ‘down→up turn’(down-traversal followed by up-traversal). A breadth-

first construction of the spanning tree rooted at node 0 is shown in Figure 4.4a. As an
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Figure 4.4 Panthre reconfiguration algorithm allows power-gating decisions to be made inde-

pendently at each router without causing disconnection or deadlock. a) Breadth-first construction

of the up*/down* spanning tree and corresponding turn restrictions. Each turn restriction node

(L-group) presents a power-gating choice between datapath-segments. b) A minimally-connected

network configuration degenerates into a spanning tree. c) A dynamically-adapted NoC where

low-usage datapath-segments are power-gated.

example, 1→4 is a down-traversal, while 4→3 is an up-traversal. Therefore, turn 1→4→3

must be marked invalid.

Note that a spanning tree, by definition, connects all the nodes in the network and it

is acyclic. In this context, Panthre’s route-reconfiguration algorithm leverages the fact that

turn restrictions are placed between two links if and only if one of them can be part of

the spanning tree. As a result, it is possible to power-gate one of the two datapath seg-

ments connected to a disabled turn and still maintain full network connectivity. Figure 4.5

illustrates the property just outlined: the left portion of the figure shows a spanning tree

construction, such that nodes 0,1 and 3 are already on the spanning tree rooted at node R,

while node 2 is being added. It can be noted that either link 0-2 or link 3-2 are sufficient to

connect to node 2. Since both are available, there will be a turn restriction 0-2-3. A similar

situation is shown on the right side of the figure, where links 1-3 and 2-3 are sufficient

to reach the to-be-added node 3, and the turn restriction is 1-2-3. The middle part of the

figure shows a more general case, where both node 2 and 3 are being added to the spanning

tree, using links 0-2 and 1-3, respectively. In this case, either the turn 0-2-3 or 1-3-2 must

be disabled to break the cycle. Depending on the turn restriction placement, this situation

degenerates into the one shown on the left or the right.

In order to organize Panthre’s reconfiguration process, we call any two links connected

by a disabled turn an L-group, as shown in Figure 4.4a. Therefore, a decision can be taken

locally at each L-group, to power-gate one of the two bi-directional datapath links, while
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Figure 4.5 Each turn restriction provides an opportunity for power-gating one bidirectional

link. Panthre leverages this property to put low-utilization links to sleep. Note how the property

holds for any topology, and it is independent of how the up*/down* tree is grown.

the network would still be connected globally. Note that each bi-directional links comprises

two opposite unidirectional datapath segments (see Section 4.2.1). In the extreme case

when all L-groups decide to power-down two datapath segments each, the topology will

degenerate into a spanning tree, as shown in Figure 4.4b. Panthre leverages a distributed

and adaptive datapath-segment ON/OFF decision engine that determines the power-gating

decisions locally at each L-group, according to application communication characteristics.

An example network configuration produced using Panthre is shown in Figure 4.4c.

Even though many reconfiguration algorithms [4, 104] replace deadlock-free routing

paths with another set of deadlock-free routing paths after reconfiguration, packets in-

transit following the old routing paths can cause deadlocks by interacting with packets

following the new routing paths. This is because paths valid in the old routing function

might be disabled in the new routing function, or vice-versa. To circumvent this issue,

Panthre ensures that any newly developed routing configuration complies with the turn-

restrictions that were determined for an all-powered-ON NoC configuration (e.g., Figure

4.4a), eliminating the possibility of reconfiguration-induced deadlocks. Since Panthre only

disables a link if it is a part of a turn-restriction (L-group), the corresponding turn would

not be exercised, whether the corresponding link is enabled or disabled. Intuitively, if all

L-groups maximally power-gate, the network topology will degenerate into a spanning tree

(Figure 4.4b), and none of the restricted turns would be exercised. Note that Panthre’s

reconfiguration, though transparent and deadlock-free, may lead to reordering of packets

between a source-destination pair. For systems where point-to-point ordering is essen-

tial, like for certain cache coherence protocols, we suggest the use of tag matching and

reordering of packets at network interfaces, as is done in the Tilera architecture [130].
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Figure 4.6 All possible power-gated configurations at each L-group. Configuration decisions

can be made independently at each L-group without causing deadlock or disconnection. Topology

degrades into a spanning tree when maximum possible (2) datapath segments are switched-off at

each L-group.

Figure 4.6 shows the eight power-gated configurations that are possible at each L-group

(around node 3 in the example). Any L-group in the network can have any of these eight

configurations (or an all-on configuration), and the network would still be connected glob-

ally. In addition, Panthre guarantees that even though the L-groups transition locally from

one configuration to the other, the network never enters a deadlock-situation. The nine con-

figurations at each L-group give Panthre great flexibility in choosing the low-usage datapath

segments to be power-gated.

Table 4.1 summarizes Panthre’s leakage power saving potential when applied to dif-

ferent topologies. The table reports the total number of non-local datapath-segments in

each topology and the number of datapath-segments required to construct the spanning tree

(#span-seg). During periods of low activity, all the non-spanning datapath-segments could

potentially be power-gated without sacrificing connectivity. We observe that Panthre has

a great potential for reducing power consumption in popular topologies, such as mesh and

tori, up to a 51% static power saving in a 8x8 torus.

topology #seg #span-seg %off topology #seg #span-seg %off

mesh-4x4 48 30 38 mesh-8x8 224 126 44

torus-4x4 64 30 53 torus-8x8 256 126 51

Table 4.1 Panthre’s leakage power saving potential for various topologies.
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4.2.4 Implementation

In this section we discuss the detailed functionality and the hardware requirements of each

of Panthre’s four components as shown in Figure 4.2. We then overview the application-

adaptive algorithm.

Activity counters and comparator (ACC).An ACC unit is associated with each datapath-

segment that belongs to an L-group. The activity counters are 10-bit counters, incremented

upon each flit traversing the corresponding datapath-segment. In addition, a 6-bit compara-

tor (compares higher order bits only) is required to compare against the ATH value provided

by the ON/OFF decision engine to determine the power-gating status of the segment in the

next epoch. An 8x8 mesh has 49 L-groups, with 4 datapath-segments each.

We monitor usage activity on an epoch-to-epoch basis. The smaller the epoch size,

the more frequently Panthre initiates reconfiguration to quickly adapt to application char-

acteristics. However, the lower-bound on epoch size is constrained by the latency of

our: i) reconfiguration (∼4K cycles), and ii) statistics collection (few thousand cycles for

capturing patterns). We determined that an epoch size of 10K cycles provides a good trade-

off between reconfiguration overhead and the amount of time Panthre takes to adapt to

changing application characteristics. We further determined that power-gating a datapath

segment that is used for more than 210 cycles within an interval of 10K cycles, is always

detrimental to performance. Therefore, our activity counters are only 10-bits wide, and all

datapath-segments with more usage than that are considered vital and always kept active.

In addition, the ATH values are incremented or decremented in quanta of at least 24, and

thus comparing the 6 higher order bits of the counters is sufficient.

The ON/OFF decision engine is deployed for each L-group and maintains and updates

the ATH value. It interfaces with the anomaly management unit to decide when the ATH

value should be incremented or decremented. To this end, a 6-bit adder/subtracter circuit

is required at each L-group. In addition, the ON/OFF decision engine instructs the route

computation unit to initiate a route-update once new power-gating decisions are made.

For simplicity of implementation, decision engines associated with all L-groups operate

in a synchronized manner. This is achieved by simply ensuring that the ATH updates,

the ON/OFF decisions and the route-updates are all applied only at epoch ends. After a

datapath-segment has been power-gated, a few packets may still require to go through old

routes to make forward progress. In this situation, the datapath-segment behaves as a con-

ventional power-gating state machine: waking up on packet arrival and sleeping again upon

its departure. Note that this scenario is extremely rare, and does not offset the benefits of

Panthre: our experiments incorporate the delays and power costs due to these situations.
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The Panthre-enabled route computation unit is shown in Figure 4.7. It consists of two

sub-components: i) a logic-based distributed routing (LBDR) implementation [40] that pro-

vides routes corresponding to an all-segments-ON configuration, and ii) a routing table that

stores the most up-to-date routes reflecting the power-gating status of the network. Having

a backup LBDR implementation has three advantages: i) upon detection of an anomaly it

allows the network to instantly switch to an all-segments-ON mode and limit performance

impact, ii) it allows the routing table to be updated bit-by-bit in the background by provid-

ing a default path if no valid option yet exists in the table, and iii) it can be implemented

cheaply. LBDR is a critical unit for Panthre as it allows uninterrupted operation even during

reconfiguration. Note that all dynamic NoC route configurations follow the minimal set of

turn restrictions, and hence packets are never stalled in router buffers due to unavailability

of valid routing paths.

Panthre is based on up*/down* routing, a naı̈ve implementation of which leads to con-

gestion at a relatively low-load compared to the popular XY routing. Therefore, we choose

less congested topology nodes as root and implement popular optimizations such as depth-

first construction of the spanning tree and load-balanced path selection [105]. Therefore,

we are able to extract at-par performance compared to XY routing, as is evident from the

results in Section 4.4. Also note that Panthre disables all its functionalities at heavy loads

because its leakage power savings are minimal at high loads. This keeps Panthre free of

any additional congestion or power dissipation at high loads.

We leverage a distributed route-update algorithm inspired by Ariadne [4] to update the

routing table on each reconfiguration event. Ariadne utilizes time-synchronized broadcasts

from all destination routers in turn, communicated to all routers through simple forwarding

operations. Each broadcast takes 64 cycles in an 8x8 mesh, and the entire reconfigura-

tion process is completed in ∼4K cycles. Figure 4.7 summarizes the features of Ariadne’s

route-update algorithm. If Ariadne-style functionality is already available in fault-tolerant

NoCs, it can be leveraged by Panthre with only minor modifications.

The anomaly management unit monitors two types of adverse behaviors that arise due to

power-gated datapath segments: i) excessive detours, and ii) network congestion. For the

purpose of detecting excessive detours, a special ‘misroute’bit is reserved in the header flit

of every packet. We set this bit if, at any router, a packet is routed through a port that takes

it further away from the destination. For a mesh topology, this is as simple as calculating

the relative X and Y coordinates of current and destination nodes: this information is al-

ready available in logic-based routing algorithms [40]. Each destination counts the fraction

of packets that suffered a detour over those that did not. If the ratio is > 1, the destination

node will broadcast a misrouting flag on a single-bit wired-OR ring (Figure 4.2). We deploy
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Figure 4.7 Panthre route computation unit consists of an up-to-date routing table reflecting the

power-gating status of the NoC, and a default logic-based routing unit to provide backup routes if the

routing table is unavailable due to an ongoing reconfiguration. It also incorporates a broadcast-based

route-update scheme inspired by Ariadne.

one wired-OR ring for each of 4 8x2 regions in our 8x8 mesh. These 4 rings drive a sepa-

rate wired-AND connection, and the root node is designated to monitor its anomaly status.

If the wired-AND connection is set, the root node broadcasts an anomaly code on a 1-bit

global wire that all routers can snoop. In other words, our detour detection scheme raises

a flag if at least one node in each of the 4 regions observes more than 50% misroutes. We

use a similar, but simpler scheme for congestion detection, inspired by the maximum buffer

occupancy metric of [31]. If the total buffer occupancy, at any time and at any router in

the NoC, is more than a certain threshold (29 in our implementation), the router noting the

congestion broadcasts the anomaly code on the same 1-bit global wire used for reporting

excessive detours.

Panthre’s application-adaptive algorithm is shown in Figure 4.8. At the start of execu-

tion, ATH is initialized to its maximum value, ATHmax (= 800 in our setup). All datapath

segments with utilization above this value are never considered for power-gating. Among

the others, the ones with activity below ATH are switched-off. At the end of the execu-

tion epoch, the application-adaptive algorithm takes different actions based on whether or

not an anomaly is flagged. If an anomaly is flagged (right part of the figure), suggesting

that too many links are powered-off, then all components are instantly powered back on.

This anomaly indicates that the current ATH value is causing too aggressive power-gating.

Therefore, if anomalies are detected in the last L consecutive epochs (L=3 in our design),

ATH is lowered. Power-gating decisions are then reassessed in light of the new ATH value.

Note that decreasing ATH reduces the amount of switched-off segments and, in turn, de-

creases the likelihood of anomalies in the near future. In addition, the threshold values
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Figure 4.8 Flow-chart of Panthre’s usage-threshold update algorithm.

are lowered in two phases, with first a coarse-grain (∆ATH = 128 in our setup), and then a

fine-grained tuning (∆ATH = 16).

If an entire epoch is executed without any anomaly being flagged (left portion of the

figure), indicating that our current configuration is performance-friendly, the next epoch is

executed without updating power-gating decisions. However, if no violations are observed

in the last N consecutive epochs (N=16 in our design), suggesting that our power-gating

selection is too conservative and there is room for greater power savings, ATH is increased

and ON/OFF decisions are redone. After M (=10) successive ATH increments, we deter-

mine that the application load has considerably increased and the current ATH value is far

from optimal, thus we update ATH to ATHmax, and re-execute the algorithm from the start.

The state machine for our algorithm is very simple and can be implemented in hardware

at low cost. It is replicated in each ON/OFF decision engine at every L-group, requiring a

6-bit adder/subtracter for ATH updates, and small counters and comparators for the other

parameters (L,M,N).

Implementation overhead. The unidirectional ring wire for anomaly broadcasts, com-

bined with wired-OR and wired-AND wires for detection of excess detours, leads to a

wiring area overhead of only 0.39% [120] in comparison to the channels of our baseline

router. We also assume that Ariadne-style route-updating functionality is already available

for fault-tolerance. All other Panthre components are extremely lightweight, with small

counters, comparators and adders added to each L-group. Therefore, compared to the deep

buffers and many virtual channels of modern routers, Panthre-specific logic is trivial both

in terms of power and area. Finally, the additional hardware is primarily for monitoring,

and thus does not add to the delay of the critical timing paths.
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4.3 Complete Router Shutdown

If some cores in a CMP system are idle, neither sending nor receiving traffic, the routers

corresponding to these cores could be completely power-gated as long as doing so does not

isolate any active node. A complete router shutdown is equivalent to shutting down 8 dat-

apath segments (4 incoming and 4 outgoing), and hence it is a very lucrative power saving

option. Panthre’s deadlock-free and connectivity-preserving reconfiguration algorithm can

be easily extended to shut down entire routers and still provide all its valuable properties.
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Figure 4.9 Complete router shutdown scheme within Panthre. Routers associated with

communication-idle cores can be put to sleep while maintaining system connectivity, as long as

they correspond to leaf nodes in the routing’s spanning tree(s). Routers that can never be considered

for shutdown are called ‘compulsory’. a) Successful shutdown of routers 7 and 13. b) Routers 11

and 14 cannot be simultaneously shutdown because this would lead to isolating an active node, i.e.,

node 15.

A router can be considered a candidate for shutdown only if it is a leaf node in at

least one of Panthre’s spanning tree constructions. The intuition behind this observation

is that a leaf node is connected to the rest of the tree only via a single link. In addition,

that link is only used for transferring packets originating or destined for that leaf router.

Therefore, if the leaf node is communication-idle, the corresponding link can be switched-

off without affecting the remaining topology. To provide an example, in Figure 4.9, the

‘compulsory’routers that can never be completely shut down are shaded in black. In the

setup of the Figure, the root is node 0 and the spanning tree was generated in a breadth-first

fashion. Note that the compulsory routers are set once a root node and a turn-restriction

configuration have been selected. Note also that in an 8x8 mesh, only 13 out of 64 routers

are compulsory. We equipped Panthre to distinguish between compulsory nodes and those

that can be shut down, and to apply shutdowns whenever possible for communication-idle
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nodes. If all compulsory routers are kept active, and if connectivity is at all possible after

shutting down all routers associated with sleeping cores, Panthre too is successfully able to

provide connectivity and deadlock-freedom.

For applications running on a multicore with 25% idle cores, our entire router shutdown

scheme can be applied successfully to more than 48% of the configurations. The integra-

tion of this scheme with Panthre is also simple: upon a group of cores notifying their idle

state, the routers associated with them (if they are not compulsory for connectivity) are put

to sleep. A route-update procedure is then executed and, if all active cores are still con-

nected to the root core (this can be easily detected by analyzing the routing table), Panthre

continues in router shutdown mode. If however, connectivity is lost, Panthre defaults back

to its baseline routing, which power-gates at the granularity of a datapath segment.

L
leaf-
link

leaf 
node

Figure 4.10 Leaf node and a leaf link. Figure shows a valid configuration with Panthre, where

all-but-one links around the leaf-node are power-gated. In this scenario, the leaf-link only carries

traffic originating or terminating at the leaf-node. Further, the leaf-link is not involved in any depen-

dency cycle. Therefore, switching-off the leaf-link, and hence switching-off the entire leaf-router,

will not affect connectivity or deadlock-freedom among the remaining nodes.

4.3.1 Connectivity with Complete Router Shutdown

Complete router shutdown can be easily implemented with Panthre and provides excellent

leakage power-saving opportunities. In this section, we provide insight into the properties

of Panthre’s reconfiguration algorithm that make complete router shutdown possible with-

out causing deadlock or disconnection. Complete router shutdown can be used to isolate a

router if that router is at the leaf node of at-least one spanning tree instance realizable with

Panthre. Panthre guarantees connectivity and deadlock-freedom for all network configura-

tions that are generated by obeying the principles outlined in Section 4.2.3. In a particular

configuration, if a router is at the leaf of the spanning tree, then by definition, it is connected
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to the rest of the network via just one bidirectional link. Let us call this bidirectional link,

a leaf link. The concept of a leaf-node and a leaf-link is shown in Figure 4.10. In such

a configuration, the leaf link is only used for communication originating or terminating at

the leaf router. In other words, the leaf link is not used for providing connectivity between

any node pair that does not contain the corresponding leaf node. Additionally, the leaf link

is not part of any cyclic dependencies. Therefore, switching-off the leaf link would not

affect the connectivity or deadlock status of the rest of the network. Since the configuration

before the link was switched-off, was deadlock-free and connected, so the configuration

after switching-off the leaf link will also be connected and deadlock-free. Notice that

powering-down the leaf link is equivalent to powering-down the entire leaf router in such a

scenario.
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Figure 4.11 Complete router shutdown for a 4x4 mesh. Every router that is a leaf node in at

least one of Panthre’s spanning tree constructions, is candidate for shutdown. The candidates for

shutdown are fixed for a particular root and turn-restriction configuration. Figure shows two span-

ning tree instances realizable with Panthre, showing all shutdown candidate routers at the leaf of the

(at least one) spanning tree. The nodes that are not at the leaf of any spanning tree are marked as

‘compulsory’.

Figure 4.11 shows two spanning tree instances, which together cover all the possible

router candidates for shutdown in the 4x4 mesh example. In other words, the two spanning

tree instances combined show all the possible leaf routers. Routers at node 0, node 1, node

2, node 4 and node 8, cannot be at the leaf node of any spanning tree that is rooted at node

0 and that follows the turn-restrictions shown in the figure. We denote such nodes as ‘com-

pulsory’, as it is necessary to keep them active if deadlock-freedom and connectivity is to

be maintained. In addition, the set of compulsory nodes is fixed for a particular choice of

root node and turn-restrictions. The location of the compulsory nodes can be hardwired to

complete router shutdown controllers at design-time.
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4.4 Experimental Results

We evaluated Panthre on a cycle-level trace-driven multi-core simulator [30], modeling a

64-core CMP system as described in Table 4.2. We used a front-end functional simulator

based on Pin [95] to collect instruction traces from applications, which are then transfered

to the trace-driven cycle-level simulator. We also integrated a detailed on-chip network

model, simulating a state-of-the-art two-stage router, described in Table 4.2b. In addition

to the baseline design with no power-gating and the Panthre design, we also implemented

router-level conventional power-gating with lookahead wakeup (PG conv) [80] and a fine-

grained port-level power-gating scheme (PG fg) [81] for comparison. For both PG conv

and PG fg, we used an idle-detection time of 4 cycles of inactivity [80]. The Panthre

design parameters described in Section 4.2.4 (e.g., ATHmax) are calibrated after detailed

design space exploration to provide a suitable trade-off between performance and power:

the values we used in our evaluation are reported in Figure 4.8.

(a) Processor @2GHz

Cores
2-wide fetch/commit

64-entry ROB

coherence 4-hop MESI, 64B block

L1 cache
Private: 32KB/node

ways:4 latency:2

L2 cache
Shared: 256KB/node

ways:16 latency:6

Memory
Distributed: 1GB/bank

banks:4 latency:160

(b) Network @2GHz

Topology 8x8 mesh, 128 bit links

Pipeline 2-stage VC flow ctrl

VCs 4 VCs/port, 8 flits/VC

Routing
XY for baseline

up*/down* for Panthre

Workload
synthetic: uniform

multi-prog: SPEC CPU06

Simulation synthetic: 5M

(cycles) multi-prog: 10M

Table 4.2 Experimental CMP: configuration of processor and network.

We analyzed our framework with two types of workloads: synthetic uniform ran-

dom traffic, as well as 35 applications from the SPEC CPU2006 and commercial

(sap, t pcw,s jbb,s jas) benchmark suites. We experimented across 40 randomly generated

multi-programmed workload mixes, with each mix containing 10 copies each of 6 ap-

plications randomly picked from our suite of 35 applications. For brevity of results, we

categorize the 40 workload mixes into four categories of 10 workloads each based on the

amount of cache misses per kilo instructions (MPKI). Most network transactions originate

because of misses in the caches, and hence MPKI correlates well with application commu-

nication load. The light category has benchmarks within MPKI of 200, while light-med

spans the MPKI range 200-500. The med group includes relatively network heavy bench-

marks, with MPKI between 500-1500, while the heavy category covers the MPKI range

1500-2500.
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A considerable amount of energy is spent in putting components to sleep and bringing

them back up. The amount of sleeping time required to compensate for this energy loss is

called the ‘breakeven time’. In our evaluation, we assume a breakeven time of 10 cycles and

a wakeup delay of 4ns in agreement with previous research [24, 80]. The effective sleeping

time after accounting for breakeven energy is called compensated sleep cycles (CSC) [80].

The CSC over total execution is a direct measure of leakage power savings. In our results,

we report CSC values, in addition to latency increase and application slowdown. Finally,

we use DSENT [120] to estimate total network power, accounting for both dynamic and

static power at the 22nm technology node. For dynamic energy, DSENT is used to re-

port energy spent per event (for e.g., buffer write), which is then tracked accurately in our

cycle-level simulator.

4.4.1 Synthetic Traffic

We first compare Panthre with other power-gating schemes using synthetic random traf-

fic. Random traffic is the worst case scenario for Panthre as it distributes traffic uniformly

across the network, reducing the number of low-usage links. Panthre’s primary goal is to

extract maximum power-savings by only turning-off low value datapath-segments, while

keeping latency degradation in check. Figure 4.12a plots the average packet latency for

each of the solutions evaluated. It is clear from the figure that PG conv and PG fg both

lead to a high latency increase (>2x at low load). This is due to the fact that, at low load,

network components observe packet traversals infrequently, and spend most of their time

sleeping. Therefore, packets accumulate wakeup latency at each hop. At this injection

rate, both the conventional power-gating schemes spend more than 75% of the time asleep.

However, this level of latency degradation leads to unacceptable (>10%) application slow-

down, as we will note in Section 4.4.2. Note that the latency and CSC for PG conv, both

decrease with increasing network load. However, we observe that at the injection rate

where the latency degradation becomes acceptable for PG conv (0.16 flits/cycle/node), the

CSC value drops down to only 2.7%.

In contrast, Panthre’s latency degradation is only 16.5% on average for the range of in-

jection rates shown in the graph. At an injection rate beyond 0.16 flits/cycle/node, Panthre

leads to negligible latency degradation as it keeps all links active at such high load. Natu-

rally, the power-savings are also little at that point as almost all components are considered

vital and not switched off. At low traffic loads, however, Panthre can lead to more than

20% leakage power savings (CSC) as can be noted from Figure 4.12b. With increasing

load, CSC values decrease, but Panthre still saves 10.3% leakage power on average for the
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(b) Compensated sleep cycles (CSC) obtained with

Panthre. Panthre’s leakage power savings decrease

with increasing load, the average ranges between

9.8% and 20.8% for injection rates varying from 0.01

to 0.16.

Figure 4.12 Panthre’s network latency and CSC under uniform random traffic.

range shown in the graph.

4.4.2 Multiprogrammed Workloads

Panthre is designed to save leakage power only when it is possible without degrading per-

formance. Figure 4.13a shows the speedup values for all power-gating schemes, normalized

to the baseline CMP with no power-gating capability. The average slowdown with Panthre

is only 1.9% across all four benchmark categories. In contrast, PG conv and PG fg lead

to 9.8% and 15.7% slowdown averaged over all benchmark categories, respectively. Slow-

ing down the application by such an amount is detrimental to system energy consumption.

Therefore, these conventional power-gating schemes cannot be deployed in modern CMPs.

In Figure 4.13b, we show that Panthre saves 15.6% leakage power for communication-light

workloads on average, while 9.8% leakage power is saved on average across all benchmark

categories. The total network power is reduced by 14.5%, 9.3%, 6.1% and 5.1% for light,

light-med, med and heavy workloads, respectively. With substantial power savings at very

little performance degradation, Panthre provides a good design trade-off for power-aware

systems. In addition, if designers are willing to sacrifice more performance, the Panthre

algorithm can be easily tuned for more aggressive power-gating.
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(b) Compensated sleep cycles (CSC) saved by Pan-

thre. For light workloads, the average leakage power

savings are 15.6%, while Panthre saves less for

heavy workloads (6.7%).

Figure 4.13 Panthre’s network latency and CSC with multi-programmed workloads.

4.4.3 Complete Router Shutdown

As discussed in Section 4.3, Panthre can completely shutdown a significant number of

routers associated with idle cores, and still ensure connectivity and deadlock-freedom

among the active cores. This property is useful in scenarios where certain cores are

communication-idle for substantial periods of time. We experimentally assessed Panthre’s

potential at successfully connecting all active cores after shutting down all routers associ-

ated with idle cores. To this end, we power-gated all routers associated with idle cores,

varying the number of idle cores and selecting the pool randomly (among the non- com-

pulsory ones). For each number of idle cores, we generated 1,000 distinct configurations

and reconfigured using Panthre; we finally tested the NoC to determine if any active node

was disconnected. Table 4.3 presents the results of this study for 6 different amounts of idle

cores. It can be seen that with its simple scheme, Panthre can isolate up to 25% (16 routers)

of the routers in most cases without causing any disconnection. The gains are reflected in

the power-savings achieved by Panthre with complete-router-shutdown (Panthre RS) under

low injection rate (0.01 flits/cycle/node) and uniform traffic, as shown in Figure 4.14b. It

can be noted that 36.9% of leakage power can be saved on average for 10-16 idle cores.

Note that, if Panthre RS is unsuccessful at maintaining connectivity for active cores af-

ter complete router shutdown, it reverts to its baseline approach of isolating only datapath

segments. As shown in Figure 4.14a, Panthre RS keeps latency increase under 30% on

average, providing both better power saving and latency profile than our baseline Panthre

solution.
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(b) Percentage compensated sleep cycles (CSC)

for Panthre RS is 37% for 10-16 idle cores. Pan-

thre RS improves power savings further over Pan-

thre.

Figure 4.14 Panthre’s latency and CSC when complete router shutdown is enabled at a low

injection rate and for uniform random traffic.

#idle-nodes 1 3 7 10 13 16

%connected after router shutdown 100 99 96 86 70 48

Table 4.3 Percentage of complete router shutdown configurations that provide connectivity

among active nodes. More than 48% configurations are connected with 16 or less shutdown idle

cores.

4.4.4 Adapting to Application Phase

In this section we present a case study to show Panthre’s adaptivity to changing applica-

tions’ communication characteristics. In this experiment, the network is operated at low

load (injection @ 0.01 flits/cycle/node) for 1,000 epochs, and then the network load is sud-

denly increased to 0.10 flits/cycle/node. After 1,000 epochs at high load, the network traffic

is again decreased to low load. This case-study is synonymous to typical application behav-

ior, where major phase changes are rare and in spans of millions of cycles (1,000 epochs =

10M cycles). In addition, this case study tests Panthre’s adaptivity to both increasing and

decreasing network load. Figure 4.15 plots the updates to the ATH values over the timeline

of execution. At the start of execution, ATH is initialized to ATHmax. Since the network is

observing little traffic, activity of almost all datapath segments is below the ATHmax value,

and Panthre’s ON/OFF decision engines switch-off datapath-segments maximally at each

L-group. Consequently, during the first epoch execution, Panthre’s anomaly management

units broadcast a flag indicating excess detours due to the many powered-down links. On

reception of this flag at any L-group, all its datapath-segments will be instantly powered-

up. At the same time, the ATH is decreased by ∆ATH . Note that, Panthre first goes through

coarse-grain adaptation (∆ATH = 128) and quickly settles around the stable value at around

119



15 epochs. Thereafter, the ATH value stays around the stable value, with periodic and

fine-grained adjustments using ∆ATH equal to 16.
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Figure 4.15 Panthre quickly adapts to low-to-high and high-to-low load transitions in appli-

cations’ traffic.

Just before the transition from low-to-high load, the ATH value is stable at a low value,

and hence none of the links are powered-down when traffic suddenly increases. Thus,

Panthre operates with very few powered-down datapath segments for the next few epochs,

without observing an anomaly. The ATH value starts incrementing in small steps after

N (=16, Figure 4.8) such epochs, in absence of an anomaly. Eventually, the ATH value

is increased (after M = 10 such epochs of small ATH increments, Figure 4.8) to ATHmax.

Thereafter, the ATH value stays around this stable mark for the duration between 1,000-

2,000 epochs. Finally, during the high-to-low traffic load transition at 2,000th epoch, the

ATH value again reduces to a stable value, in a pattern similar to the one observed at the

start of execution. This case study shows that Panthre can effectively handle both low-to-

high and high-to-low load transitions in an application phase. Similarly, Panthre was able

to adapt to both low-to-medium (0.01-0.05 flits/cycle/node) and medium-to-low (0.05-0.01

flits/cycle/node) load transitions in application phase. As can be seen from Figure 4.16, the

value of ATH stays around the optimal mark during medium traffic load, with only a few

exceptions when ATH increases to ATHmax. However, Panthre’s anomaly detection units

quickly detect excess power-gating in such cases and reduce the value of ATH .

Figure 4.17 shows the adaptation of ATH when the network is stimulated with uniform

random traffic at a stable injection rate of 0.01 flits/cycle/node. The figure also shows the

number of datapath segments that are put to sleep in each epoch. As can be seen from

the figure, both ATH and number of power-gated datapath segments start at high values.

Therefore, Panthre detects excess detours and reduces the ATH value. A stable ATH value

is reached within 10-15 epochs, leading to 47 power-gated datapath segments on aver-

age. In addition, Panthre quickly adjusts the number of power-gated datapath segments, if
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Figure 4.16 Panthre quickly adapts to low-to-medium and medium-to-low load transitions

in applications’ traffic.

power-gating decisions become too aggressive or too conservative.
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Figure 4.17 Variation in ATH and the number of power-gated datapath segments across 1000

epochs of low-load uniform random traffic. Panthre updates ATH to maintain a suitable level of

power-gating.

4.5 Related Work

A number of power-gating schemes have been been proposed for NoC components, op-

erating at different levels of granularity: routers [80], ports [81], VCs [82], buffers [66].

However, all such schemes suffer from accumulated wakeup times and excess energy

spent in each power-gating event. NoRD [24] elongates periods of router sleep by steer-

ing light, sleep-interrupting traffic to a low-power ring network that is always kept active.

However, NoRD requires additional VC resources both in the ring and primary network
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to break deadlocks that may arise due to route-reconfiguration. In addition, NoRD re-

quires substantial dedicated hardware design and verification effort. Router Parking [104]

proposes to completely switch off routers associated with idle cores by leveraging route-

reconfiguration at a central node. Note that this schemes suffers from all the drawbacks of

centralized software-based reconfiguration algorithms. Additionally, Router Parking pro-

vides no power benefits when all cores are active, while Panthre saves up to 15% network

power even in a fully-active CMP. Catnap [31] proposes the use of multiple lightweight

networks in CMPs, while applying power-gating at the network granularity to keep the per-

formance overhead low. However, Catnap is only applicable to CMPs with high-bandwidth

requirements, and unlike Panthre, it cannot be utilized for fine-grained power-gating. Cer-

tain other route-reconfiguration solutions target performance improvement by dedicating

more resources to contentious paths. For example, the Abacus turn model [45] leverages

local and deadlock-free reconfigurations to divert additional routing paths towards heavy

traffic. However, it cannot isolate components and save leakage power by power-gating.

Finally, route-reconfiguration has been well studied in the literature in the context of

fault-tolerant routing. However, faults are rare occurrences; therefore, the majority of

the algorithms designed for fault tolerance are centralized and take significant time and

hardware resources. A notable exception is Ariadne [4], which describes a very quick

(4K cycles for a 64 node network) and lightweight route reconfiguration scheme (<2%

area overhead). Ariadne, however, also requires suspending the NoC operation during

reconfiguration and can lead to reconfiguration-induced deadlocks. In our context, since

we frequently reconfigure the NoC routing, network suspension would be detrimental.

In contrast, our route reconfiguration algorithm, although inspired by Ariadne, provides

deadlock-freedom throughout the reconfiguration, with no interruption of the mainstream

NoC activity.

4.6 Summary

In this chapter, we targeted NoCs’ runtime health from the perspective of runtime power

dissipation. NoCs consume a significant portion of the on-chip power budget: during pe-

riods of heavy activity NoC can consume up to 30% of the on-chip power. The leakage

phenomenon, that causes power dissipation irrespective of operational activity, contributes

a majority share to the NoC power at 22nm, and the ratio is worsening further with shrink-

ing transistor dimensions. We expect leakage power to be the limiting phenomenon for the

coming silicon generations. We identified that power-gating, though effective in drastically
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reducing leakage power when in effect, cannot be naı̈vely applied to shared resources, such

as the NoC. Packets communicated over the network seldom allow NoC components to

have long periods of sleep. In addition, packets that encounter sleeping components on

their paths, accumulate latencies required to wake-up the sleeping components.

To this end, we propose Panthre, that maximizes leakage power savings by guarantee-

ing long periods of uninterrupted power-gating for NoC components. It leverages topology

and routing reconfiguration to steer traffic away from sleeping components so to minimize

the latency impact. Panthre’s application-adaptive reconfiguration algorithm is imple-

mented in a lightweight and distributed manner, and it guarantees a globally-connected and

deadlock-free network at all times. In addition, Panthre monitors events indicating network

performance degradation, and updates its power-gating decisions to provide a more suitable

power-performance trade-off. Our experiments with light multi-programmed workloads

show that Panthre reduces total network power by 14.5% on average, with only a 1.8%

degradation in performance. Panthre’s network power savings increases to as much as

36.9% on average, if 10-16 nodes are idle in a 64-node CMP.
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Chapter 5

Conclusion

This dissertation addresses the most pressing challenges in ensuring the runtime health of

networks-on-chip, which are becoming more and more the interconnect of choice in multi-

core chips and SoCs. Communication infrastructure’s health is critical to the operation of

concurrent digital systems, where multiple computational units collaborate to complete a

same task. In these systems, a malfunctioning interconnect may constitute a single point

of failure if it disconnects one or more compute units from the rest of the system. Un-

fortunately, the complexity and size of these NoCs render them prone to design failures.

In addition, its constituent components are increasingly susceptible to transistor failures as

silicon dimensions shrink. Finally, contemporary NoCs bind together multitude of hetero-

geneous components, often forcing the common-case NoC designs to deliver sub-optimal

power-efficiency at runtime, which, in turn, might cause excessive power dissipation.

The solutions developed in this thesis mitigate threats to NoCs’ health by addressing

these problems at runtime, i.e., in a reactive manner. Consequently, they can address a wide

range of unforeseen problems. Further, we take an integrated approach to ensure NoCs’

runtime health, proposing a unified error detection and recovery framework. To this end,

we divide the execution of the NoC into small time windows (or epochs) so as to provide

quick error detection and recovery. During each epoch, our solutions monitor the execution

activity of NoCs in a localized and distributed manner using lightweight checkers. Upon

detection of critical events, we update the configuration of the routing scheme and the net-

work topology to better adapt to the runtime environment. The end result of our work is

a reliable and adaptable NoC infrastructure that is resilient to failures both in design and

silicon, and that adapts its power dissipation at runtime to the needs of the heterogeneous

designs and workloads.
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5.1 Summary of the Contributions

This thesis develops design methodologies to enhance the runtime health of NoCs of the

future. It particularly focuses on: i) guaranteeing correctness under unmanageable design

complexity, ii) providing dependable communication with an unreliable silicon substrate,

and iii) designing a power-aware and adaptable interconnect that tackles excessive power

dissipation. To this end, we developed novel monitoring and reconfiguration techniques

that exploit the unique characteristics of each failure class to provide low-cost, yet effective,

solutions.

Runtime protection against design errors. Our first contribution is runtime protection

against design errors that escape the pre-runtime verification effort. We presented SafeNoC,

a runtime end-to-end error detection and recovery technique to guarantee the functional

correctness of CMP interconnects. SafeNoC can detect and recover from a broad range of

functional design errors, while incurring a low performance impact only on bug manifes-

tation. This dissertation then described ForEVeR that improves error coverage and reduces

area overhead compared to SafeNoC. ForEVeR complements the use of formal methods

and runtime verification to ensure complete functional correctness in NoCs.

Runtime protection against transistor failures. The second contribution of this thesis is

the protection of NoCs against both soft- and permanent- faults. Protection against soft-

errors requires detection capabilities, followed by a recovery procedure. To this end, we

exploited ForEVeR’s infrastructure as soft-errors share many manifestation characteristics

with design errors. For permanent faults, however, diagnosis of the fault site is essential,

in addition to fault detection. To counter permanent faults, we first proposed a fine-grained

detection and diagnosis scheme that is highly accurate and runs in the background, in-

curring no performance overhead in absence of errors. Once the faulty component is

determined, the reconfiguration procedure either replaces the malfunctioning component

by a healthy counterpart, or it disables the faulty component permanently, while leverag-

ing the redundancy in the system. We then propose a reconfiguration solution, uDIREC,

which utilizes fine-grained diagnosis information to disable components frugally, while us-

ing the redundancy built into the NoC for graceful performance degradation with increasing

faults. We finally proposed a high-availability fault-tolerant solution, BLINC, based on a

novel quick-reconfiguration scheme that limits the effect of a fault manifestation to few

NoC components. Consequently, BLINC is able to provide uninterrupted availability for

mission-critical applications, even during fault manifestations.

Runtime solution to avoid excessive power dissipation. The final contribution of this
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thesis consists of avoiding excessive power dissipation in NoCs by monitoring execution

and reconfiguring accordingly at runtime. NoCs consume a significant portion of the on-

chip power budget: during periods of heavy activity NoC can consume up to 30% of the

on-chip power [103, 130]. Our solution focuses on leakage power savings by power-gating

idle components. However, the typical network traffic seldom allows NoC components to

have long periods of sleep. In addition, packets that encounter sleeping components on

their paths, accumulate latencies required to wake them up. To this end, we proposed Pan-

thre, that maximizes leakage power savings by guaranteeing long periods of uninterrupted

power-gating for NoC components. It leverages topology and routing reconfiguration to

steer traffic away from sleeping components so to minimize the latency impact. In addition,

Panthre is application-adaptive, i.e., power savings are more aggressive for communication-

light workloads, while savings are less for communication-heavy workloads.

5.2 Future Directions

The distributed checking and reconfiguration framework developed in this thesis can be

extended to protect against other threats to NoCs’ runtime health. Among the threats that

we have not addressed in this dissertation, we believe that security breaches are the most

devastating; therefore, addressing them will be the most compelling future research direc-

tion. Our framework can also be leveraged for runtime optimization of more conventional

computer architecture metrics, such as performance or energy.

Secure communication. NoC is a centralized resource that is shared by all programs run-

ning on the CMP or the SoC. Therefore, applications actively sharing the NoC can cause

interference in each other’s execution. A tainted application running on an unprotected

NoC can thus extract information from critical applications sharing the same NoC. Con-

ventional wisdom to design secure NoCs has been to over provision hardware resources

to provide isolation at runtime [129]. Using the techniques developed in this thesis, we

propose a different approach to avert security breaches on NoCs. Rather than prevention,

we rely upon continuous traffic monitoring to detect anomalous behavior, and triggering a

recovery solution to avoid/thwart security breaches. Such a solution will result in a low-

cost solution that suffers from performance degradation only when a security attack is

underway.

Runtime optimization for performance. With the growing integration of application-

specific components in CMPs and SoCs, optimizing the on-chip interconnect for the various

execution scenarios is becoming increasingly difficult. This trend, combined with short-
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time-to-market targets, leads to an over-provisioned NoC that is designed for the worst

case. The schemes developed in this thesis can accurately monitor and predict applications’

communication characteristics, and optimize the NoC at runtime for better performance or

energy-efficiency. We can also employ our quick and transparent routing and topology

reconfiguration techniques to tailor the NoC hardware to application traffic at runtime.
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