
Harnessing Simulation Acceleration

to Solve

the Digital Design Verification Challenge

by

Debapriya Chatterjee

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in The University of Michigan

2013

Doctoral Committee:

Associate Professor Valeria M. Bertacco, Chair

Professor Todd M. Austin

Professor Igor L. Markov

Assistant Professor Zhengya Zhang

c© Debapriya Chatterjee

All Rights Reserved

2013

To my parents

ii

Acknowledgments

I would like to thank my advisor Professor Valeria Bertacco, who introduced me to re-

search. Her willingness to let me explore new ideas has been a cherished freedom, while

our discussions on research directions have enabled me to pursue a fixed direction in an

interesting and uncharted research territory. Moreover, my writing and presentation skills

have grown significantly as a result of her mentoring and her careful attention.

I am also grateful for my committee members. I am appreciative of Professor Igor

Markov’s contributions: often pointing me to relevant research articles as well as our

friendly interactions in the department and various conferences. Professor Todd Austin

has been a consistent source of extremely valuable feedback on various matters throughout

my studies. I am grateful to Professor Zhengya Zhang for his kind feedback.

Early in my graduate school career, I was very fortunate to work with Ilya Wagner and

Andrew DeOrio – they instilled the fundamentals of the role of a graduate student into me.

I am especially grateful to Joseph Greathouse, Andrea Pellegrini and Biruk Mammo for the

innumerable illuminating discussions we have had in the office, often extending into late

hours. I am indebted to Ronny Morad, Amir Nahir, Avi Ziv and Anatoly Koyfman from

IBM Research, Haifa for allowing me to engage in a very close collaboration with the in-

dustry. I am really appreciative of the people I have collaborated with on many projects over

the years: Andrew DeOrio, Calvin McCarter, Biruk Mammo, Chang-Hong Hsu, Doowon

Lee, Sara Vinco, Nicola Bombieri, Ronny Morad, Amir Nahir, Avi Ziv, Anatoly Koyfman,

Raviv Gal, Dmitry Pidan and Professor Franco Fummi. I am also appreciative of the in-

teresting and insightful discussions with my colleagues Rawan Abdel-Khalek and Ritesh

Parikh.

I would like to thank Dhanajay Anand, my friend and apartment mate for the entire

duration of my stay in Ann Arbor, who supported me through thick and thin. I would also

like to thank my friend from college days, Shaunak Chatterjee, for motivating me on many

occasions. Finally, I would like to thank my parents: for providing me emotional support

over half a decade halfway across the globe.

iii

Preface

Today, design verification is by far the most resource and time-consuming activity in the

hardware development process for complex commercial integrated circuit designs such as

microprocessor and system-on-chip (SoC) designs. Within this area, the vast majority of

the verification effort in industry relies on simulation platforms, which can be implemented

either in hardware or software. A “simulator” includes a model of each component of a

design and has the capability of simulating its behavior under any input scenario provided

by an engineer. Thus, simulators are deployed to evaluate the behavior of a design under

as many input scenarios as possible and to identify and debug all incorrect functionality.

Two features are critical in simulators for the validation effort to be effective: performance

and checking/debugging capabilities. A wide range of simulator platforms are available to-

day: on one end of the spectrum there are software-based simulators, providing a very rich

software infrastructure for checking and debugging the design’s functionality, but execut-

ing only at 1-10 simulation cycles per second (compare this to actual silicon chips, which

execute at GHz speeds). At the other end of the spectrum, there are hardware-based plat-

forms, such as accelerators, emulators and even prototype silicon chips, providing higher

performances by 4 to 9 orders of magnitude, at the cost of very limited or non-existent

checking/debugging capabilities. As a result, today, simulation-based validation is crip-

pled: one can either have satisfactory performance on hardware-accelerated platforms or

critical infrastructures for checking/debugging on software simulators, but not both.

This dissertation brings together the two ends of this spectrum by providing high perfor-

mance solutions for software-based platforms and quality checking/debugging capabilities

for hardware-based verification systems. To this end, the dissertation uses a two-pronged

approach: it infuses performance into software simulators, and it brings in checking and

debugging capabilities into hardware-based platforms. Specifically, it addresses the perfor-

mance challenge of software simulators by leveraging inexpensive off-the-shelf graphics

processors as a massively parallel execution substrate, and then exposing to it the paral-

lelism inherent in the design model. The outcome is a simulation solution that achieves

an order of magnitude speedup over traditional software-based simulation. For hardware-

iv

based platforms, the dissertation provides solutions that offer enhanced checking and

debugging capabilities by abstracting the relevant data to be logged during simulation

so to minimize the cost of collection, transfer and processing. Observability for check-

ing/debugging on these platforms is improved with a state restoration solution that is

capable of reconstructing a number of signals while observing only a small fraction of

them. Along with improved observability, the dissertation also brings in a number of high

quality checking capabilities, comparable to those of their software-based simulation coun-

terparts, while only imposing minimal logic or performance overhead (∼20%). Altogether,

the contributions of this dissertation enable effective high-performance simulation-based

validation.

v

Table of Contents

Dedication . ii

Acknowledgments . iii

Preface . iv

List of Figures . x

List of Tables . xii

Chapter 1 Introduction . 1

1.1 Importance of verification in the design flow 2

1.2 Phases of functional verification . 6

1.2.1 Pre-silicon verification . 7

1.2.2 Post-silicon validation . 8

1.3 Factors crippling simulation-based validation 9

1.3.1 Limited performance of software-based simulation 10

1.3.2 Limited validation capability for hardware-accelerated simulation . 10

1.3.3 The simulation-based validation gap 11

1.4 Overview of my dissertation . 12

1.4.1 Bridging the simulation-based validation gap 12

1.4.2 Improving performance of software-based simulation 13

1.4.3 Bringing in validation capability to hardware-accelerated platforms 14

1.5 Organization of the dissertation . 16

Chapter 2 The Simulation Spectrum . 18

2.1 Spectrum of validation platforms . 19

2.1.1 Software-based simulation . 20

2.1.2 Acceleration platform . 21

2.1.3 Emulation platform . 22

2.1.4 Silicon prototype . 23

2.2 State-of-the-art in high-performance simulation-based validation 24

2.2.1 Synthesizing checking constructs 25

2.2.2 Tracing signals for off-line checking 25

vi

2.2.3 Observability via reconstruction 26

2.2.4 Replay from state snapshot . 27

2.3 Key challenges . 27

2.4 Contributions . 29

2.4.1 Infusing performance into software-based simulation 29

2.4.2 Providing observability through restoration 30

2.4.3 Enabling checking capability in hardware-accelerated platforms . . 30

Chapter 3 The Quest for Simulation Speed . 33

3.1 High-performance simulation through massive parallel processing 33

3.1.1 Overview of this chapter . 35

3.2 Introduction to GP-GPU architecture and programming model 36

3.3 Towards high-performance logic simulation 38

3.4 Oblivious simulator overview . 40

3.4.1 Synthesis and combinational netlist extraction 41

3.4.2 Clustering . 41

3.4.3 Cluster balancing . 43

3.4.4 Simulation . 43

3.5 Event-driven simulator overview . 44

3.5.1 Segmentation into macro-gates . 45

3.5.2 Macro-gate balancing . 46

3.5.3 Simulation phase . 47

3.6 GCS experimental results . 49

3.6.1 Performance of the oblivious simulator 50

3.6.2 Performance of the event-driven simulator 50

3.7 Towards high-performance behavioral simulation 51

3.8 Mapping SystemC to GP-GPU . 53

3.8.1 Construction of process dependency graph 53

3.8.2 Partitioning into concurrent dataflows 55

3.8.3 Parallel execution in CUDA . 56

3.9 SAGA experimental evaluation . 58

3.9.1 Experimental setup . 58

3.9.2 Performance . 60

3.9.3 Architecture comparison . 61

3.10 Related work . 61

3.11 Summary . 63

Chapter 4 Providing Observability for Hardware-accelerated Simulation . . . 65

4.1 Towards obtaining observability beyond software-based simulation 65

4.1.1 Overview of this chapter . 67

4.2 Background of state restoration . 67

4.3 Structure of existing signal selection algorithms 69

4.3.1 The problem of diminishing return with greedy selection 70

4.4 Improving restoration capacity metric . 71

4.5 Proposed signal selection algorithm . 75

vii

4.6 Experimental results . 77

4.6.1 Restoration quality . 78

4.6.2 Effect of pruning . 79

4.6.3 Algorithm execution performance 80

4.7 Related Work . 81

4.8 Summary . 82

Chapter 5 Providing Checking Capability for Hardware-accelerated Simulation 84

5.1 Background . 85

5.2 Towards providing checking capability . 87

5.3 Reducing checker logic overhead with approximation 89

5.4 Checker classification . 90

5.5 Approximation techniques . 91

5.6 Approximation quality metrics . 94

5.7 Case study: calculator design . 95

5.7.1 Evaluation of the approximate calc3 checkers 97

5.8 Leveraging on-platform compression for checking 99

5.8.1 IBI background . 100

5.8.2 IBI for acceleration platforms . 100

5.9 In depth view of the solution . 102

5.9.1 On-platform data tracing . 102

5.9.2 On-platform data compression . 103

5.9.3 Off-platform software checker . 105

5.10 On-platform tracing unit . 106

5.10.1 Select and encode logic . 107

5.10.2 Trace buffer . 108

5.11 Experimental evaluation of the IBI solution 109

5.11.1 Bug detection capability . 109

5.11.2 Tracing overhead . 110

5.12 Related work . 111

5.13 Summary . 113

Chapter 6 Hybrid Checking . 115

6.1 Towards hybrid checking . 116

6.1.1 Overview of this chapter . 117

6.2 Synergistic checking approach . 119

6.2.1 Checker partitioning . 120

6.3 Functionality checking with on-platform compression 121

6.4 Case-study design . 122

6.5 Experimental evaluation of hybrid checking 123

6.5.1 ALU Checker . 124

6.6 Related work . 126

6.7 Summary . 127

Chapter 7 Conclusions . 128

viii

7.1 Summary of the contributions . 128

7.1.1 Infusing performance into software-based simulation 129

7.1.2 Bringing in debug capability . 130

7.1.3 Bringing in checking capability 131

7.2 Directions of future research . 132

Bibliography . 133

ix

List of Figures

Figure

1.1 Study on types of design bug . 3

1.2 Trend of released bugs in Intel processors 6

1.3 The simulation-based validation gap . 11

1.4 Overview of the dissertation . 13

2.1 The simulation spectrum . 19

2.2 Challenges and scope of research . 28

3.1 CUDA GP-GPU architecture . 37

3.2 The GCS compiler . 40

3.3 GCS’s compiled-netlist data structures . 42

3.4 Pseudo-code for the clustering algorithm 43

3.5 GCS simulation on CUDA . 44

3.6 Segmentation topology . 46

3.7 Macro-gate segmentation algorithm . 47

3.8 Macro-gate balancing . 47

3.9 The event-driven simulation . 48

3.10 Traditional SystemC simulator scheduler 52

3.11 SAGA tool flow . 54

3.12 Dataflow partitioning algorithm . 56

3.13 Dataflow levelization algorithm . 57

4.1 Example of state restoration process . 68

4.2 Pseudo-code for the general structure of greedy signal selection algorithms 69

4.3 Diminishing return in restoration with increasing trace buffer size 70

4.4 Correlation of restoration capacity metric 72

4.5 Restoration probability estimates can be misleading 73

4.6 Variation of SRR with trace buffer depth 74

4.7 Correlation of observed SRR with our proposed restoration capacity metric 74

4.8 The flip-flop selection process . 75

4.9 Pseudo-code for the final algorithm . 76

4.10 The effect of pruning during execution of trace signal selection algorithm . 80

x

5.1 Boolean approximation for a four input function 92

5.2 Portion of an FSM for a protocol checker 93

5.3 Approximate representation for an IPv4 packet 93

5.4 Calc3 checker ensemble for one port . 96

5.5 Distribution of detections for calc3 bugs 98

5.6 Overview of IBI solution . 101

5.7 Detection accuracy of a range of checksum schemes 105

5.8 Detector block to identify the source of data 108

5.9 Trace buffer writing unit . 109

5.10 Impact of tracing logic . 111

6.1 Hybrid checker-mapping approach . 118

6.2 Two-phase checking . 120

6.3 Microarchitectural blocks . 122

6.4 ALU-checker - Accuracy vs. compression 125

6.5 ALU-checker - Logic overhead . 126

xi

List of Tables

Table

1.1 Real world impact of functional bugs . 5

3.1 Testbench designs for evaluation of the simulator 49

3.2 Oblivious GCS performance . 50

3.3 Event-driven GCS performance . 51

3.4 Testbench designs for evaluating SAGA 59

3.5 SAGA performance . 60

3.6 SAGA vs other concurrent solutions . 61

4.1 Benchmark circuits used to evaluate proposed signal selection algorithm . . 77

4.2 State restoration ratio without input knowledge for ISCAS89 circuits 79

4.3 GPU acceleration of the selection algorithm 81

5.1 Approximation ideas for the checker classes 94

5.2 List of bugs for the calc3 design . 98

5.3 Logic reduction for calc3 checker . 99

5.4 Distribution of bugs detected by our solution 110

6.1 ALU checker - injected functional bugs 124

6.2 ALU checker - Compression schemes . 125

xii

Chapter 1

Introduction

Digital integrated circuits (IC) are pervasive in the modern world. Without digital IC’s

we would not have the broad range of today’s consumer electronics: smartphones, tablets,

personal computers (PC), teleconference systems, gaming consoles, interactive systems

such as Microsoft Kinect [68] etc. Computers are built on several such digital chips; they

include a microprocessor at their heart, and have become one of the most indispensable

machines in modern human civilization. They form the backbone of the enterprise systems

that run banking and stock markets for business and commerce; they collectively enable

the Internet by operating in networked structures. All forms of transportation, such as au-

tomobiles, trains and airplanes are dependent on computer systems for propulsion, control

and navigation.

Since digital systems have become an indispensable part of our lives, almost always

deployed at the heart of activities that are critical for our safety and for the functioning

of our society, it is critical that they are devoid of design flaws. However, these designs

are conceived and developed by humans and design errors are unavoidable. Such design

errors are known as functional bugs, as they deviate the function of a design from the

ideal behavior. As several recent microprocessor manufacturer errata documents indicate

[5, 49, 50, 48, 51], many functional bugs are often detected after the release of the product,

and thus are present in almost every computer currently in use. The fallout of some func-

tional bugs can be avoided via software workarounds. However, the impact of a critical

functional bug released in the final product can be catastrophic. A malfunctioning system

can cause financial loss, computer security breach or even loss of human life. A buggy

product released in the field can cause irreparable damage to the reputation of a company

and even jeopardize its survival due to the cost of product recalls. For example, the in-

famous Pentium FDIV bug was discovered in 1994. This bug caused some floating point

division operations to compute a wrong result. Ultimately, the defective processors were

recalled at a cost of $475 million for the manufacturer [65]. A similar issue today would

cost at least 5 times as much due to faster ramp up timelines. Hence, it is imperative to

1

perform rigorous verification on a digital design to minimize the exposure to catastrophic

situations.

The problem of verifying the functionality of digital designs during the development

process has become increasingly challenging. Modern computer chips are vastly complex

systems comprising billions of tiny transistors. Shrinking transistor sizes over each tech-

nology generation has lead to doubling of transistor count in a digital design every 18–24

months as predicted by Moore’s law. With exponentially rising transistor count, digital de-

signs can fit more logic. Designers take advantage of this trend by deploying more complex

functionality into the design, as well as integrating a growing number of design compo-

nents. This phenomenon has resulted in a proportional increase in verification and design

debugging effort. For the past decade, the verification of digital designs has consumed

about 70% of the time and effort dedicated to the development process. In 2008, a 16 core

chip by Sun Microsystems required 100 person-years of verification [91]; some estimates

by Intel corporation for their own development flow are in the thousands of person-years

[87]; and efforts are rising over time. As we have now entered the era of mobile comput-

ing, new chips are released approximately every 6 months, exacerbating the verification

problem.

Simulation-based validation is the primary workhorse in digital design houses. Simu-

lation entails exercising an abstract model of a design with appropriate stimuli. A design

is simulated at various levels of abstraction throughout the design process to validate dif-

ferent aspects of correctness. Appropriate validation coverage metrics are chosen to reflect

what fraction of possible design behaviors have been exercised via simulation and subse-

quently validated. The more we explore the design behavior space, the higher the degree

of coverage and our confidence in design correctness. Clearly, the rate of design behavior

space exploration is proportional to simulation performance. Hence, to generate a desired

level of validation coverage for a design in a shorter time frame it is imperative to increase

the performance of simulation, and thus this aspect remains an area of active research.

Naturally, verification engineers are resorting to high-performance simulation platforms;

however, due to the very nature of such platforms, harnessing their simulation performance

for efficient design checking and debugging is a problem which is unresolved today.

1.1 Importance of verification in the design flow

Digital integrated circuit designs are one of the most complex artifacts yet created by

mankind. Typical designs, such as modern microprocessors, consist of billion of tran-

2

sistors (2.3 billion for the recent Nehalem-Ex [46] processor from Intel). Such complex

designs would have been impossible to develop without a design flow that uses many lay-

ers of abstractions to harness the design process. First of all, specifications for a new design

are obtained. Then designers develop the chip through several levels of abstraction: first

a functional model, then a model in a hardware design language (HDL) and, finally, the

physical design.

Figure 1.1 Functional bugs are more prevalent than any other type of bug, according to a

verification study published by Wilson research group and Mentor Graphics [40]. This graph is

based on the number of responses from verification engineers in the field on the question whether

they have encountered a particular type of bug. (Reproduced with permission from Harry Foster of

Mentor Graphics)

The process of verification is intricately intertwined with the design development pro-

cess. The main purpose of verification is to ensure that the specifications are met at each

layer of abstraction and for the final silicon chip itself. One of the most important classes

of verification in this regard is functional verification. Functional bugs, which prevent the

design from working as specified, usually occur due to human errors either in the func-

tional modeling itself due to wrong interpretation of the specification, or while developing

the register transfer level (RTL) model in a HDL, due to erroneous behavioral modeling.

There can be inconsistencies in the specification itself, which will also result in erroneous

behavior. Functional verification attempts to ensure that the functionality of a logic design

is as it was intended in the specifications, and attempts to detect functional bugs. It may

even detect inconsistencies in the specification after the design is available. This disser-

tation focuses on enhancing the performance of functional verification and the solutions

presented are primarily concerned with detection and diagnosis of functional bugs. Indus-

3

try verification experiences [15, 53] indicate that upwards of 43% of the total bugs in a

microprocessor design are functional bugs. A more recent verification study published by

Wilson research group and Mentor Graphics [40], reveals that functional bugs are more

prevalent in a typical design than any other type of bug (see Figure 1.1).

Even though functional bugs are typically introduced early in the design process, they

may not be detected until silicon prototypes are tested, or even after product deployment.

Most of these bugs are detected during extensive functional verification using simulation

or other verification methods early in the RTL design phase. The simulation stimuli are

provided by a testbench connected to the design model. At this stage, eliminating a bug

involves first understanding the issue by studying simulation traces. Then, the error can

be fixed by modifying the RTL source code. However, due to performance limitations of

software-based simulation, only relatively simple and short tests can be performed at this

stage. When designing large integrated digital systems, which are increasingly common

due to proliferation of system-on-chips (SoC) deployed in smartphones and tablets, this

can be a serious limitation, as system-level tests cannot be executed. The impact of a bug

caught in this phase may be limited to a schedule delay of a few months.

Further into the design process, hardware-accelerated simulation platforms, such as ac-

celerators and emulators come into play. These platforms offer orders of magnitude better

simulation performance than software-based simulators; however, checking and debugging

is not as straightforward as software-based simulation. The simulation performance of

these platforms allow for executing much more complex and long tests on a design, which

is critical to obtain more coverage on design correctness. If an erroneous design behavior

is found at this stage, tracing it back to its root cause requires substantially more effort than

the previous stage of software-based simulation, as checking and debugging capabilities are

limited. On the positive side, a functional bug detected at this phase can still be remedied

by modifying the RTL source code.

As the design process continues, the physical design steps of technology mapping,

placement and layout are performed, and early silicon prototypes are manufactured for

fast, at-speed testing. A functional bug that escapes pre-silicon functional verification can

still be detected at this stage. Electrical and transistor faults can also manifest at this stage.

However, failures identified at this stage require re-tooling the manufacturing process for

a modified design, called a re-spin. Re-spins may require several months of delay and are

very expensive due to the high re-tooling cost, which can range from approximately $3

million to $30 million.

Following silicon prototype testing and necessary re-spins, a new chip can be shipped

to customers. At this late stage, failures have widespread and critical impact. A recall on a

4

Bug Year Description Aftermath

Intel

Pentium

FDIV

bug

1994 This bug caused some floating point

division operations to compute the

wrong result, affecting approxi-

mately 1 in 9 billion possible divi-

sions.

Ultimately, the defective processors

were recalled at a cost of $475 mil-

lion [65].

Intel

Pentium

F00F bug

1997 As a result of this bug, execution of

a certain instruction would put the

processor in such a state that it stops

servicing any interrupt and it must

be reset to recover [1].

A later stepping of the processor

fixed the bug.

AMD

Athlon

X2

bootup

bug

2002 A cache coherency bug between the

2 cores resulted in some speculative

write operations to not to be seen by

the other core.

Significant delay during the boot up

process.

AMD

Phenom

TLB bug

2007 A bug in the TLB can lead to a

race condition and subsequent sys-

tem lockup.

A BIOS fix was issued; however, it

limited the performance of this chip

to the levels of its predecessor.

Intel

82574L

Ethernet

controller

bug

2013 Sending a specially crafted packet

to some Intel 82574L Ethernet con-

trollers can cause the hardware to

hang, and the “packet of death”

could be put to malicious use and

crash systems even when protected

by a firewall [47].

This bug can be fixed by reprogram-

ming the EEPROM in the chip;

however, many computer systems

across the world still remain vulner-

able.

Table 1.1 Real world impact of functional bugs.

faulty product can take up to a year, at which point newer, competing products may already

be available. The life of a company can be jeopardized by loss of reputation due to failures

in the field, as well as associated costs of recall. A list of functional bugs released into the

final product over last few decades and their aftermath is presented in Table 1.1.

A product released with such functional bugs can cause immense damage to the repu-

tation of a company, and can also have severe impact on the customer. However, as design

complexity increases with the advent of many-core microprocessor designs, the number

of functional bugs released in final product show an upward trend. This is illustrated in

Figure 1.2, which is compiled from data [49, 50] released by Intel corporation reporting

information on the of bugs discovered in some Intel processor products after the product

release date. Evidently, more recent products have a higher number of bugs escaped in the

field, as well as a higher rate of additional bugs exposed after the initial release.

In view of the consequences of a functional bug escaped in the final product, functional

verification has become a very critical component of the digital design flow. This is re-

5

60

80

100

120

140

160

B
u

g
s

a
ft

e
r

p
ro

d
u

ct
 r

e
le

a
se

Core i7

Core 2 Duo

Pentium 4

Xeon 1.4-3.2 Core Duo

0

20

40B
u

g
s

a
ft

e
r

p
ro

d
u

ct
 r

e
le

a
se

Pentium M

Figure 1.2 Number of bugs discovered after product release for recent Intel microprocessors.

flected in current industry trends; during the 2007-2010 period, the number of verification

engineers in the semiconductor industry has increased by 58% compared to a mere 4% for

design engineers [40]. In fact up to 70% of the effort in a modern microprocessor design

project is dedicated to verification, of which functional validation claims the lion’s share

[15]. The earlier in the design flow a bug is detected and diagnosed, the less is the as-

sociated cost to correct it. As a result, improving the performance of verification without

sacrificing quality is bound to have have a direct positive impact on shortening the length

of the design cycle and on providing higher confidence in the correctness of a product.

1.2 Phases of functional verification

The process of verifying the correctness of a digital design continues along the entirety of

the design process. Pre-silicon verification is performed on different abstractions of the

design model to ensure that the design meets the specifications at all levels of abstraction.

When silicon prototypes are available, post-silicon validation is performed to detect the

design bugs that escaped pre-silicon verification, as well as to detect other design failures.

6

All in all, the goal of design verification is to ensure that the final product strictly obeys the

design specifications.

1.2.1 Pre-silicon verification

Pre-silicon verification is applied on different abstractions of the design model. Typically

most functional design bugs are discovered and corrected during this phase. The main ad-

vantage of diagnosing a functional design bug in pre-silicon phase is that engineers may

only need to correct the RTL code describing a design, while in post-silicon phase it will

need a re-spin of the whole chip: an exorbitantly costly process. The pre-silicon verification

techniques fall under three broad categories: formal, simulation-based and semi-formal.

Formal verification techniques can mathematically prove that a certain property holds

for a design. The main advantage of formal verification is that it is a complete method, e.g.

if a property is proven by model checking then it holds for all possible execution scenarios

of the design. Formal techniques implicitly enumerate all possible states of a design with

the aid of binary decision diagrams [22] or convert property checking into Boolean satis-

fiability (SAT) instances and deploy a SAT solver [69]. As a result, for large designs with

large number of sequential elements, the state explosion problem can happen; which leads

to exponential memory requirements for the decision diagram representation, rendering the

formal tool useless. The same problem can also manifest in the SAT solver as exponential

runtime, when the SAT solving algorithm needs to actually explore exponentially large so-

lution space before reaching a decision. Additionally, formal verification requires a large

amount of human effort to precisely state the properties to be proven and writing a com-

plete set of formal properties for a large design can require as much effort as the design

process itself.

Currently formal verification is primarily applied either on individual components of a

large design such as floating point units of a micro-processor [15] or on abstracted repre-

sentations of a design, such as the Murϕ [35] tool for verifying cache coherence protocols.

Another approach to pre-silicon verification that is closely related with formal verification

is known as assertion-based verification, where certain behavioral properties are attached

to the relevant parts of the behavioral description of a design from the very beginning of

design process. Modern hardware description languages support assertions as a part of

the language framework, e.g., SystemVerilog provides SystemVerilog Assertions (SVA).

These properties can either be decided formally, or a counter-example could be found with

simulation or semi-formal methods.

7

Simulation-based validation is used as the primary workhorse in the industry to de-

tect functional design bugs and for debugging the design under development. A model

of the design (expressed in behavioral, RTL or structural logic gate-level abstraction) is

simulated using either hand-written testbenches or constrained-random inputs. Typical

hardware description languages (such as Verilog, VHDL) provide means of writing test-

benches and several verification languages (e, Vera, SystemVerilog) provide mechanisms

to provide constrained-random inputs to an interfaced design. A comprehensive overview

of functional validation using simulation can be found in [94]. Simulation is an incomplete

method, since all possible execution paths cannot be exhausted in the available development

time window. However, validation engineers strive to simulate as many tests as possible

within the available time frame to achieve higher coverage according to some pre-defined

coverage metric (such as code / functional coverage). As a result, simulation performance

is extremely important from a practical stand point.

The traditional simulation platform is “software-based simulation” where a simulation

software executes on a general purpose processor in a workstation or server. Tradition-

ally software-based simulation is primarily used for design time verification; however, on

large industrial designs such simulation is extremely slow (1-10 clock cycles per second).

As a result only a limited set of simple and short testcases are feasible to be validated by

software-based simulation. From a design debug perspective software-based simulation is

an excellent platform since any design signal value can be accessed by the validation engi-

neer, which leads to a relatively easy debug process. Higher performance can be obtained

from expensive hardware-accelerated platforms; however, it generally comes at a cost of

signal observability and debugging ease. Presented with a limited design time window, it

is imperative to use such platforms to simulate complex and long test regressions.

Semi-formal verification is essentially a hybrid of formal and simulation-based tech-

niques. Simulation based state-space exploration with guidance from a formal engine is an

example of such a technique. Verification tools such as Magellan [90] deploy such tech-

niques to disprove a property by finding counter-examples through formal engine guided

simulation.

1.2.2 Post-silicon validation

Post-silicon validation is only possible when the first silicon prototypes become available.

The advantage in post-silicon phase is the fact that test execution speed can be same as

8

the chip itself, which is orders of magnitude faster than all forms of pre-silicon simulation.

Hence, long programs such as operating systems or extensive constrained random tests can

be executed. Test outcomes can then be validated with a mix of hardware assertions, com-

parison of test outputs against a golden model, or with the aid of self-checking mechanisms.

These testcases can reach very deep states of a design or expose corner cases that are hard

to reach with limited simulation performance of pre-silicon verification. Hence the hard to

find functional bugs may be discovered during this phase of verification. However, on the

downside, if a test failure indicates an error, it can be functional, electrical (process, logic

or circuit related), or due to a manufacturing defect. Additionally, while pre-silicon mod-

eling is deterministic, manufactured silicon circuits may have non-deterministic behavior.

Verification engineers have access to very limited amount of debugging capability for tests

on the silicon: such as on-chip logic analyzers, re-purposed design-for-test (DFT) features

like scan chains and partially reconfigurable embedded checkers [3, 77]. As a result of very

limited observability and controllability characteristics, post-silicon failure diagnosis and

debug is an extremely challenging proposition.

1.3 Factors crippling simulation-based validation

In the industry, functional validation of digital designs has been traditionally performed

with software-based simulation of the design description. A software application named

design simulator, executes on a general purpose computer (such as a PC or a server), reads

in files describing the design and the associated testbench, and then simulates the design

as intended. Synopsys VCS or Cadence NC-verilog are examples of such simulation soft-

ware. The golden output corresponding to correct design behavior is generated using a

high-level model of the design or by other means and compared with the simulation output.

A plethora of checking and debugging solutions exist for software-based simulation [94].

However, in the wake of ever larger and complex designs, and the long and intricate tests

such designs necessitate, performance of software-based simulation is not even close to

adequate for the verification need. Hence, verification engineers are increasingly adopting

expensive hardware-accelerated simulation platforms for functional validation, and even

performing functional validation in silicon prototypes of a design. Though these platforms

offer high-performance simulation, checking and debugging capability is extremely lim-

ited.

9

1.3.1 Limited performance of software-based simulation

The available commercial software-based simulators can only deliver 1-10 simulation cy-

cles per second for a full-chip simulation of typical current designs. At this speed, even

a ten million cycle regression, fairly common in a typical micro-processor validation suit,

will take an inordinate amount (more than a week) of time to simulate. A billion cycle

regression will be completely infeasible. Clearly software-based simulation performance

is far short of adequate. Hence, even though excellent checking and debugging capabil-

ity exists for software-based simulation, they cannot be leveraged to perform high-quality

validation. To exacerbate the problem, product cycles in the leading design houses are

becoming shorter, making it infeasible to reach a desired level of verification coverage

by software-based simulation alone. Expensive hardware-accelerated simulation platforms

can provide higher performance. However, using these platforms can drive up the cost

of the validation process. Under these circumstances, solutions for high-performance

software-based simulation at a low cost are extremely desirable. It will contribute towards

meeting product schedules while assuring design correctness by achieving functional cov-

erage goals alongside adequate checking and debugging capability.

1.3.2 Limited validation capability for hardware-accelerated simula-

tion

Hardware-accelerated platforms offer simulation speed in the range of few kHz to hun-

dreds of MHz, though still short of silicon speed, they bring down the simulation time

needed for even the longest of test regressions into the realm of feasible. However, as we

move to hardware-accelerated platforms beyond traditional software-based simulation, the

ease of checking and debugging is drastically diminished. An array of tools and check-

ing/debugging methodologies has been built around software-based simulation over last

few decades, where it is possible to have complete observability into the inner workings

of a simulated design. While in hardware-accelerated simulation observability is at best

partial and often comes at a cost of reduced simulation performance. The amount of infor-

mation than can be gathered from these platforms per simulation cycle is limited as it comes

with significant degradation of performance. Observability of internal signals is reduced

to a great extent making debugging a challenge as well. Logic capacity related constraints

on such platforms severely restrict the amount of additional logic dedicated for verification

purposes. Even for acceleration platforms which does not have a strict logic capacity limit,

increasing amount of simulated logic has an adverse effect on simulation performance. As

10

a result effective checking/debugging on these platforms poses a challenge.

Slow

simulation

speed

Excellent

checking/

debugging

support

Poor

checking/

debugging

support

Validation

capability

crippled by

performance

Validation

capability crippled

by lack of checking/

debugging support

Simulation-based

validation gap

Fast

simulation

speed

Hardware-

accelerated

simulation

Software-

based

simulation

Figure 1.3 The simulation-based validation gap. Simulation performance and check-

ing/debugging ease are not achieved together.

1.3.3 The simulation-based validation gap

The fundamental problem plaguing the current state-of-the-art simulation-based validation

is depicted in Figure 1.3. On one hand we have traditional software-based simulation,

which is equipped with high-quality checking and debugging capability. However poor

simulation performance cripples its applicability to real world designs. On the other hand

we have hardware-accelerated simulation platforms such as accelerators and emulators,

where simulation performance is bountiful. However the same level of ease in checking

and debugging is no longer available, and thus it fails to fully leverage the performance

advantage to benefit the process of validation. This problem presents itself as a critical gap

in the current state of simulation-based validation; we do not achieve high-quality checking

and debugging capability along with high-performance simulation. The broad goal of my

dissertation is to bridge this gap.

11

1.4 Overview of my dissertation

Digital designs face increasing complexity and tighter release schedules, challenging the

ability of the current design process to deliver a correctly functioning product in a given

time frame. Simulation-based validation is the primary method deployed in the industry

to ensure design correctness. As explained in the previous section, the effectiveness of

the current state of simulation-based validation is compromised by a critical gap; high-

quality checking and debugging capability is not attained simultaneously with desirable

simulation performance. This dissertation presents novel solutions to deliver low-cost

high-performance software-based simulation as well as solutions to provide checking and

debugging capability on hardware-accelerated simulation platforms, therefore bridging this

gap from both ends. The solutions in this dissertation take on the complexity of modern

designs by accelerating the simulation-based validation process as a whole. These so-

lutions will enable verification practitioners to harness the potential of simulation to full

extent; design checking and debugging will be achieved at much higher simulation perfor-

mance than attainable currently. Ultimately this will enable achieving increased coverage

for short product cycles, thereby decreasing the probability of occurrence of a bug in the

final product, while conforming to tight release schedules.

1.4.1 Bridging the simulation-based validation gap

Figure 1.4 presents an overview of the solution proposed in this dissertation, which bridges

the gap from both directions. One direction is to simply improve the performance of

software-based simulation. This objective is achieved by altering the execution substrate

of software-based simulation, whose performance is limited by serial execution in a gen-

eral purpose processor, to a massively parallel platform such as general purpose graphics

processing unit (GPGPU). Parallel execution can boost the performance of software-based

simulation of digital designs to a great extent, since it possesses an inherently parallel com-

putation pattern. Fortunately, these platforms are fairly inexpensive, thus allowing for a

low-cost simulation acceleration solution. In this case, the simulator is still implemented

as a software application, thus all checking and debugging solutions used in traditional

software-based simulation can still be used with little or no modification.

The other direction is to craft validation schemes that attempt to leverage the per-

formance of existing hardware-accelerated simulation platforms in an efficient fashion.

These schemes attempt to provide high-quality checking and debugging capability under

platform-specific constraints of signal observability and logic capacity. The problem of

12

Improve simulation

speed with GPGPU

Excellent checking/

debugging support

Improved checking/ debugging support

Fast simulation speed

Hardware-

accelerated

simulation

Software-

based

simulation

For general
logic blocks

For µprocessor
designs

State
restoration

Checker
approx.

On-platform
compression

Hybrid
checking

Gate-level
simulation

RTL
simulation

in

rst_l
c0

c1

Figure 1.4 Overview of the dissertation. My solutions bridge the gap in the current state of

simulation-based validation from both ends.

reduced signal observability in these platforms is tackled by reconstructing signal values

from a limited number of observed signals; an approach applicable to general logic blocks,

thus paving the way to better debugging. Checking capability is brought to these platforms

by (i) delegating some of the design checking responsibility to lightweight embedded logic,

(ii) compressing simulation data on-platform and checking the compact log post-simulation

and (iii) a synergistic combination of both. The later set of schemes requires design knowl-

edge and is well suited for validation of micro-processor designs.

1.4.2 Improving performance of software-based simulation

As mentioned earlier, one of the directions is toward delivering high-performance software-

based logic simulation at a low cost. Logic simulation is used to validate designs at the

behavioral level, as well as the structural level, ensuring that a synthesized circuit’s netlist

matches the functionality and timing of the behavioral model. Structural netlists are par-

ticularly cumbersome for simulation because of their low-level specification and the fine

granularity of the structural definition, which consist of large number of gate primitives

from the target technology library. Recent availability of general purpose computing pro-

gramming models for high-performance and massively parallel GPUs led me to explore a

13

new simulation architecture targeting these hardware platforms, with the hope of delivering

a conspicuous performance advantage at a small hardware cost (that of a GPU peripheral).

This effort has resulted in a simulation solution called GCS, which exposes the paral-

lelism available in the simulation problem to the massively parallel processing hardware

of the GPU, by using novel partitioning algorithms. GCS is able to deliver an order-of-

magnitude performance improvement over traditional software-based simulators executing

on general purpose processors. The research presented in this dissertation, further ex-

plores the applicability of such massively parallel processing into behavioral simulation

as well. This reveals that an order of magnitude simulation performance improvement

can be achieved for designs expressed in a behavioral subset of SystemC. These solutions

provide a cost-effective means for simulation acceleration, allowing for higher validation

coverage in an affordable fashion. Thus, they close in on the performance gap between

software-based simulation and hardware-accelerated platforms.

1.4.3 Bringing in validation capability to hardware-accelerated plat-

forms

Hardware-accelerated simulation platforms deployed in the industry offer 3-6 orders of

magnitude simulation performance over software-based simulation, however as mentioned

before these platforms do not provide the same degree of checking/debugging ease as a

software-based simulator. This presents us with another gap in validation capability beyond

traditional design-time software-based simulation. This dissertation bridges this gap by

providing solutions that offer enhanced checking/debugging capability on these platforms

while maintaining the performance advantage.

Observability for debugging beyond software-based simulation

One of the fundamental limitations of these platforms is that observability comes at the cost

of performance loss or logic overhead, hence only a small subset of signals can be observed.

In light of this problem, I focused towards achieving improved debugging capability in the

wake of limited signal observability that is endemic to all hardware-accelerated platforms

and post-silicon validation. Limited observability of internal signals of a design hinders the

ability to diagnose and debug already detected bugs. A solution to address this issue lever-

ages trace buffers: these are buffers embedded into the design with the goal of recording

the value of a number of signals, over a time interval, triggered by a user-specified event.

However, we can only record a small number of such signals due to the constraints of the

14

platform itself. A key observation in this regard is that the information content carried by

those signals can be much larger as many other signal values can be reconstructed from

the recorded information. This can be thought of as a lossless compression of a subset

of signals into a very small number of recorded signals. Ideally, we would like to select

signals enabling the maximum amount of reconstruction of internal signal values i.e. the

most information content. To this end, an accurate restoration capacity metric is developed,

and a novel algorithm striving to select a set of signals obtaining maximal reconstruction is

delineated. This solution does not require any design specific knowledge as it operates on

the structural description of any general logic block. It is able to provide a higher degree

of reconstruction than previous solutions in the same space and thus paves the way towards

better debugging capability beyond software-based simulation.

Checking capability beyond software-based simulation

The rest of my contributions are towards bringing in checking solutions that are cur-

rently only feasible with software-based simulation, to the realm of hardware-accelerated

platforms; however, they require design specific knowledge and are mostly applicable to

microprocessor designs.

The first of them is an attempt to bring in existing software-based checkers that are

used with software-based simulation, into the purview of accelerated simulation. To this

end, checkers must be transformed into synthesizable, compact logic blocks, yet with bug-

detection capabilities similar to that of their software counterparts. The key idea in this

research is named “approximate checkers”, which trade off logic complexity with bug de-

tection accuracy by leveraging novel techniques to approximate complex software checkers

into small synthesizable hardware blocks which can be simulated along with a design on

an hardware-accelerated platform. These approximate checkers are able to maintain a high

degree of checking accuracy with small logic footprint.

In contrast to checker approximation, I also explored a log-and then-check approach

to checking on hardware-accelerated platforms. This approach is useful for adapting

those software-based checkers for hardware-accelerated platforms, which have a check-

ing component that is complex enough that it cannot simply be converted into a hardware

description. As discussed before, only very few signals can be recorded without degrad-

ing simulation performance, hence the checking methodology itself needs to be adapted

to work with compressed and/or partial information. This concept is demonstrated with

an important checking solution for microprocessor verification, namely instruction by in-

struction checking (IBI). This particular checking scheme tracks the architectural events

15

generated by a microprocessor design model when it is executing a test regression and

compares this with a golden architectural model. The checking scheme is adapted to

hardware-accelerated platforms via a novel solution where the data associated with events

are compressed and logged using additional simulated hardware on-platform, and a soft-

ware checker is created to operate on this compressed log of events post-simulation. This

approach results in a solution that is almost as accurate as the entirely software-based so-

lution, yet offers the same performance as the hardware-accelerated simulation platform

provides.

Finally, my dissertation culminates in a unifying solution which brings together dif-

ferent ideas on performing checking beyond traditional software-based simulation for

modern microprocessor designs. Hybrid checking attempts to combine the ideas of using

lightweight embedded logic to perform checks during simulation as well as perform-

ing post-simulation checks on a compressed event log in a synergistic fashion. To this

end, typical checks needed for a modern micro-processor design are separated into cycle-

accurate local embedded assertions (implemented as lightweight embedded logic) and

event-accurate functionality checks requiring a post-simulation checking phase. Embedded

logic is further used to compress the data associated with events relevant to functionality

checks.

Overall these solutions enable comprehensive simulation-based validation at the high-

performance offered by hardware-accelerated simulation platforms, thus bridging the gap

in validation capability beyond software-based simulation.

1.5 Organization of the dissertation

The remainder of the dissertation is organized as follows: Chapter 2 provides a more in-

depth look into simulation-based validation, focusing on the different hardware accelerated

platforms and platform-specific trade-offs. The low cost acceleration solutions for both

structural and behavioral logic simulation are described in Chapter 3. These solutions lever-

age off-the-shelf GPUs to deliver orders-of-magnitude better performance than traditional

software-based simulators executing on general purpose processors. These efforts bridge

the performance gap between very expensive acceleration platforms and slow software-

based simulation.

A signal selection algorithm for maximizing state restoration in general logic blocks,

which attempts to provide increased observability from partial knowledge of signals for de-

bugging purposes, is presented in Chapter 4. Approximate checkers enable bug-detection

16

while preserving acceleration performance; this solution is explained in Chapter 5. Com-

paction of trace data on-platform reduces the volume of data that has to be transferred

off-platform; Chapter 5 also describes such a solution applied to instruction-by-instruction

checking for micro-processor designs. Hybrid checking, which leverages both approaches

presented in chapter 5, is described in Chapter 6. These solutions bridge the gap in val-

idation capability beyond software-based simulation. Finally Chapter 7 summarizes the

conclusions of this dissertation.

17

Chapter 2

The Simulation Spectrum

As discussed in the introduction, simulation is the primary mode of functional valida-

tion during the design process. All major design houses deploy large arrays of servers

for software-based simulation runs of the design under development. Different types of

hardware-accelerated simulation platforms such as acceleration platforms, emulators and

prototyping platforms are becoming increasingly vital in coping with the vast effort de-

mands of design validation.

A full spectrum of simulation-based validation platforms is available today: the differ-

ences among these platforms are primarily in simulation performance and ease of checking

and debugging. When a design is in its initial developmental stages, software-based sim-

ulation is the only validation approach deployed. At later stages, acceleration platforms

and emulators are heavily deployed for performing extensive regression testing. Late in the

design process, FPGA-based prototyping platforms are also utilized to emulate the design

at the full-system level. Finally, at-speed tests are possible on early silicon prototypes and

this phase falls under the domain of post-silicon validation.

In this chapter, I overview the full spectrum of platforms and I identify and discuss

a common set of challenges that must be addressed to attain effective simulation-based

validation beyond traditional software-based simulation. Finally, I introduce the solutions

proposed by this dissertation to overcome the challenges outlined. The chapter is organized

as follows: first, the characteristics of a broad range of platforms are discussed, along with

their associated trade-offs. Second, the existing approaches in the space of simulation-

based validation are described, along with their shortcomings. From this discussion, a set

of key challenges that need to be overcome to enable high-performance simulation-based

validation are identified. Then, I demonstrate how the solutions presented in this disser-

tation promise to solve each of the key challenges and pave the way towards effective,

high-performance simulation-based validation.

18

2.1 Spectrum of validation platforms

Through the various phases of the design process, the fundamental method of simulation-

based validation remains unchanged, while the platforms on which it is applied may vary.

The basic method consists of running a test on a model of the design, while the expected

outputs are provided by a reference model (a.k.a., golden model). Any mismatch be-

tween the outputs of the design and those of the golden model is an indicator of a possible

functional bug. The viable length and complexity of the test depends on the simulation per-

formance of the associated platform. The verification engineer’s responsibility is to debug

the design’s failing tests, (that is, those flagging a mismatch) and identify the root-cause

the problem. Any solution that helps in pinpointing the problem is a debugging aid. The

spectrum of simulation platforms and their associated characteristics are summarized in

Figure 2.1 in order of increasing performance, along with their checking and debugging

capabilities.

Post-silicon
verification

Pre-silicon verification

platform

speed

cost

checking
capability

cost of
observability

Software Acceleration Emulation Silicon

low

observability

high high extreme

very
flexible as

all s/w

limited
embedded

logic

limited
embedded

logic

extremely
limited

all signals any signal limited very limited

negligible performance
drops with
#observed

performance
loss

area
overhead

1-10 Hz 10-100 kHz 10-100 MHz 1GHz

speed

Ease of checking and debugging

Figure 2.1 The simulation spectrum. The key characteristics of each major simulation platforms

are outlined, along with a qualitative evaluation of their checking and debugging capabilities.

19

2.1.1 Software-based simulation

Software-based simulation is by far the most dominant design-aid since it provides the

most matured infrastructure for stimuli generation and associated checking and debugging

of design behavior.

The effectiveness of input stimuli to exercise different execution scenarios in the de-

sign is of paramount importance to simulation-based validation. A metric to estimate the

percentage of useful execution scenarios (according to a user-defined notion of useful) ex-

ercised by simulation vs. the total number of such scenarios is known as coverage metric.

The goal of simulation-based validation is to reach the highest value of coverage possi-

ble in a given timeframe. An effective stimuli generation method is random generation

constrained by design-specific restrictions on input validity, known as constrained random

generation. Such generators are generally implemented in software. Hence, constrained

random generators can be easily interfaced with a software-based simulator to exercise the

design and maintain scoreboards to update the coverage metric.

All internal signals can be recorded during simulation and the verification engineer can

easily debug the design by analyzing the simulation traces. Various software-based check-

ers are developed that can interface with simulator to perform checking, often in lockstep

with the simulation itself. Assertions checking different aspects of correct behavior of the

design are a commonly used verification construct, which are embedded in the design. Not

all assertions can be represented efficiently in digital logic. However, all assertion-based

checkers to detect and localize functional bugs can be co-simulated in behavioral fashion

in software-based simulation. All in all, there is a rich set of verification solutions for this

platform.

Software-based simulation is a fairly low-cost solution compared to hardware-accelerat-

ed simulation platforms, since the only cost is the software license and commodity hard-

ware to execute this software. However, as discussed earlier, the speed of software-based

simulation is not adequate for the growing verification needs of modern designs. A typical

software-based simulator only achieves 1-10 simulation cycles per second when applied to

a full-chip design. Such simulation performance renders any regression test longer than

a few hundreds of thousands of cycles practically infeasible. The industry has already

reached design sizes that are too large to be simulated in full detail at tolerable simulation

performance with software-based simulation. For example, the full-chip simulation of the

recent Intel Larrabee many-core design [84] entailed a memory footprint that was too large

to handle by existing software simulators and as a result hardware-accelerated platforms

were a basic necessity.

Clearly, any improvement in software-based simulation performance, at little additional

20

cost, enhances the ability of the existing methodologies. Hence, there is always a demand

for low-cost and yet high-performance simulation software solutions. Any solution to im-

prove simulation performance at a low cost can have a direct positive impact on verification

performance and cost, while expediting the whole design cycle.

2.1.2 Acceleration platform

Acceleration platforms are composed of large arrays of customized ASIC processors,

specifically designed to simulate logic gates concurrently. To target these platforms, a

DUV must be synthesized into a structural netlist, and then the structural logic primitives

are mapped to the execution substrate. Human effort to map a design to an acceleration

platform is minimal, since essentially a compiler maps the logic for functional execution on

special purpose logic processors and no physical logic is involved to create timing/electrical

issues. Cadence palladium [23], IBM AWAN [30] are examples of such platforms. These

platforms are extremely costly to build or purchase, and often cost upwards of few hun-

dreds of thousands of dollars [23]. Simulation performances of these platforms are in the

order of 10 kHz to 1MHz.

Acceleration platforms may experience performance penalties when increasing design

size. Note that acceleration platforms do not have physical capacity limits similar to

emulation platforms, since arbitrarily large logic descriptions can be simulated in a time-

multiplexed serial fashion (different parts of the design being simulated sequentially for the

same simulation cycle); however, the simulation performance can drop down to the level

of software-based simulators after a certain degree of serialization.

Generally, acceleration platforms are attached to a host computer from which the simu-

lation process is controlled and to which the recorded data is transferred. In current industry

practices, the testbench is stored and executed on the host computer and controls the simu-

lation running remotely on the platform. Selected signals are logged on the platform itself

and periodically off-loaded to the host, where they are checked by a number of host-bound

software checkers to establish the functional correctness of the simulated design. Transfer

bandwidth to and from the host can be much smaller than that to support the transferring

of data generated for the target checking activity. Hence, often, the logging and off-loading

activities become the performance bottleneck of the entire simulation [67, 56].

Acceleration platforms allow the collection and transfer of signal values for debugging

purposes, but the transfer slows down the simulation, eroding the key benefit of acceler-

ation. In general, simulation performance is greatly reduced with increasing number of

recorded signals. Performance losses of as large as 50% are reported for a recording rate of

21

only 100 bits/cycle [27]. Hence, even though these platforms offer a simulation speed in the

kilohertz range, recording a large number of signals can bring it down in the sub-kilohertz

range: the territory of software-based simulators. The method of collecting a subset of sig-

nals for recording is known as “tracing” and those signals are known as “traced signals”.

However, the precise relation between the number of traced signals and their impact to ac-

celeration performance depends on the architecture of the acceleration platform. Reducing

the number of recorded signals per cycle (thus the trace data generation rate) is extremely

important to attain a successful checking solution for acceleration platforms. This is due

to the fact that the underlying architecture of the acceleration platform records the values

of the signals marked for observation in each cycle and stores them in internal memory; it

must stop simulation every time the memory becomes full, transfer the content via a low

bandwidth channel to a connected host machine and then resume simulation. The more

frequently this event takes place, the higher the associated performance penalty. Thus,

the lower the number of traced bits, the longer it takes to exhaust the internal memory

resources, and the longer the intervals of uninterrupted simulation and higher the average

simulation performance.

2.1.3 Emulation platform

Emulation platforms typically consist of programmable look-up tables arranged as a 2-

dimensional array with programmable interconnect, known as field programmable gate

arrays (FPGA) as a whole. Any digital system can be mapped on to such a platform by

mapping the logic into a collection of lookup tables and attached memory modules. Note

that a key difference between acceleration and emulation platforms is that, in the latter

case, the whole system must be mapped and it executes system software in the same fash-

ion as the final chip, instead of just mapping a portion of a system and running testbenches

(which are traditionally on a separate host) to mimic the rest of the system. A design can

be emulated at the clock frequency dictated by the constraints of the mapped logic, and

clock speeds ranging from 10 MHz to 100 MHz can be reached. Although emulation at-

tains higher performance than acceleration, the engineering effort needed to map a design

into the platform is also very high since actual physical issues of timing / driving strength

etc. are involved. For instance, BEE3 is an example of an emulation platform [32] that uses

multiple Xilinx FPGA’s. It is also interesting to note that there are acceleration platforms

which use FPGA’s as logic processors, as well as there are emulation platforms that are

based on ASIC processors as the execution fabric. Emulation platforms may cost tens of

thousands of dollars and this is further exacerbated by the engineering costs of mapping a

22

design to them.

However, from a checking and debugging point of view, the challenges are similar to

that for the acceleration platforms. The number of lookup tables in the FPGA limits the

amount of logic that can be fitted in these platforms, thus establishing strict limits on the

logic capacity. Observability of internal signals is considerably lower compared to that of

the acceleration platforms and requires embedded trace-buffers [95, 6]. Frequent trans-

fer of simulation data to the host platform degrades emulation performance. As a result,

emulation platforms have similar trade-offs from the standpoint of validation effort.

2.1.4 Silicon prototype

Silicon prototypes are early silicon versions of the design under verification. Execution

speeds upwards of a Gigahertz can be obtained on these prototypes. Verification/debugging

on such prototypes are known as post-silicon verification/silicon debug. Each iteration of

fabricating these prototypes (known as a re-spin) is an extremely costly process (millions

of dollars) and can incur delays of several months.

Silicon prototypes offer maximum performance but signal observability is at minimum.

The capabilities of physical probing tools [72] are very limited, and it is infeasible to ob-

serve each and every signal in fabricated silicon. Often design for test (DFT) features, such

as scan chains, are used for providing observability and debugging functional problems

[92]. Though scan chains can capture all, or a subset, of internal state elements, and thus

increase signal observability for silicon debug, it may take several thousand clock cycles

to dump out one observed state snapshot and, in most cases, the circuit’s execution must

be suspended until the completion of this process. Hence, during the design phase, several

dedicated design for debug (DFD) features [3] are also developed, which are utilized during

the post-silicon verification phase. A common DFD feature is an embedded logic analyzer

(ELA), which typically consists of a mix of trigger units and sampling units. Programmable

trigger units are used to specify an event for triggering the logging of internal signal values,

while sampling units are used to log the values of a small set of signals (traced signals) over

a specified number of clock cycles into on-chip buffers known as trace buffers. However,

since these structures provide no benefit to the final customer, the amount of silicon area

that can be invested in them must be extremely small.

23

2.2 State-of-the-art in high-performance simulation-based

validation

In an ideal world, a verification team would have a single platform that offers the strong

checking and debugging capabilities of traditional software-based simulation, while pro-

viding the performance of acceleration and emulation platforms. However, as we move

towards higher performance simulation solutions, the ease of checking and debugging is

lost. One of the reasons behind this is the fact that, with the existing technology beyond

software-based simulation, only structural logic descriptions can be simulated, emulated or

fabricated. Lockstep execution of software-based checkers with hardware-accelerated sim-

ulation can be too detrimental to performance. One possible approach is to design checkers

that can be synthesized as hardware and simulated alongside the design. If that is not possi-

ble – as it is often the case for complex checkers – an alternative viable approach is to trace

and record relevant signal information during simulation, so that the checker can be run in

a decoupled fashion. For example, a checker that validates the memory consistency model

of a multi-core processor design can be too complex to be implemented entirely in hard-

ware and a decoupled software checker that operates on the log of load/store and coherence

messages would be the only feasible solution. Note that such tracing may require some ad-

ditional tracing logic to be simulated alongside the design as well. Both approaches have

been considered by researchers working in this field. We overview them below and discuss

them in depth in Sections 2.2.1 and 2.2.2.

Checker synthesis is prone to run into logic footprint issues. The logic capacity re-

lated constraints associated with hardware-accelerated platforms prohibits the mapping of

any arbitrary checking solution into equivalent hardware. Such translation can result in

large checker logic overhead, which can erode the performance advantage of the platform.

Thus, only checkers that result in low logic overhead can be tolerated.

Log signals and then check approaches have two types of associated overhead. First

type is the performance penalty for tracing logic overhead and second type is the perfor-

mance penalty for recording signal values. Hardware structures dedicated for tracing have

certain logic overhead, which is most costly in the post-silicon phase since these additional

structures do not have any purpose beyond debug, yet occupy valuable chip real estate.

Apart from logic overhead, tracing signals also have detrimental effect on performance in

acceleration and platforms as explained in the earlier section. Due to these effects, only a

very small subset of signals can be traced in these platforms.

However, debugging often requires observing a much larger number of signals, which

is only available during software-based simulation. Scarcity of observability is a common

24

fundamental problem that plagues platforms beyond software-based simulation. Hence re-

searchers have explored ways to leverage partial signal information towards debugging,

often resorting to approaches that attempt to reconstruct non-observed signals. Some of

these approaches are discussed in Section 2.2.3.

Another approach to solving the debugging problem leverages the hardware-accelerated

platform to reach a deep error state, snapshot the state, and then uses software-based sim-

ulation to replay the interval of interest. Debugging is relatively easy in this approach

if the root-cause of the problem is contained within a small number of cycles from the er-

ror state, since we have full visibility into the design for software-based simulation. This

approach is discussed in Section 2.2.4.

The limitations of each approach are discussed and the common set of challenges that

are present today in validation beyond software-based simulation are delineated in Sec-

tion 2.3. The goal of my dissertation is to overcome these challenges through innovative

solutions.

2.2.1 Synthesizing checking constructs

A typical assertion checker constitutes of checking whether a certain sequence of events

take place after the assertion is triggered by a certain type of event. This construct can

simply be represented as a finite state machine (FSM) where state transitions are triggered

by these aforementioned events. Such a FSM representation can then be synthesized into

an equivalent sequential logic description. There has been a body of work by Boule, et al.

[18, 20] to generate assertion checkers in form of synthesized hardware for acceleration

platforms, emulation or silicon debug. Reconfigurable embedded checkers [3, 77] have

been proposed for post-silicon validation as well. Acceleration and emulation platforms

have constraints on logic capacity; hence not all checking solutions can be accommodated

as synthesized hardware. Also the larger the amount of simulated logic, the worse is the

simulation performance. These restrictions severely limit the checking capability on these

platforms. So far only simple assertion checkers has been considered for synthesis, since

the existing techniques do not extend to complex software checkers. As a result low hard-

ware overhead checking solutions have become a necessity.

2.2.2 Tracing signals for off-line checking

A commonly deployed approach is to trace relevant signal data for checking, with the aid

of debugging hardware (e.g. embedded logic analyzers) that is simulated, emulated or

25

fabricated with the design. The traced information is stored in trace buffers as explained

earlier. Embedded logic analyzers have become common place for FPGA platforms [95, 6]

and are used for ASIC as well [7]. Due to high speed of simulation, a large amount of

data can be generated in the hardware in short duration, and since the trace buffers are

small, frequent transfers are necessary. The larger the amount of recorded information per

cycle, the more it degrades the simulation performance. Hence there is a growing need

of recording information in a concise and compact manner during hardware-accelerated

simulation or post-silicon tests, which later can be post-processed to gain deeper debug-

ging insight. IFRA [76] is an example of such a solution implemented for post-silicon

debug. Specifically, this solution records instruction’s footprints while they traverse an

out-of-order pipeline, which can later be utilized to detect a functional bug in the design.

Generally the transfer bandwidths of acceleration and emulation platforms are fairly low

compared to generation rate; hence transfer often becomes the bottleneck in this method-

ology, and the effective validation performance drops sharply. Also, these solutions often

need knowledge of the architecture or micro-architecture of the design under verification.

2.2.3 Observability via reconstruction

As we move towards platforms with higher simulation performance, observing internal sig-

nals becomes more difficult. This is the most fundamental challenge in debugging: how

to debug in presence of only partial knowledge of the design’s behavior. It remains an

active area of research, and only a few solutions have been proposed so far in this space.

An example of a solution targeting post-silicon validation is BackSpace, proposed by De-

Paula, et al. [33]. A snapshot of the design state (which can be obtained via scan chains) is

recorded when the error manifests and a small number of signals are traced for a number of

clock cycles before the error state. From this information and by applying formal backward

reachability analysis, it is possible to fully or partially infer the design state for a number

of clock cycles preceding the error. This information can facilitate diagnosis of functional

bugs.

Another approach to infer non-observed values from a set of observed values is state

restoration, as first proposed by Ko, et al. [58]. In this approach a small number of state

elements are traced over a number of clock cycles using a trace-buffer. Using this informa-

tion and the logic representation of the circuit, a number of other state element values can

be reconstructed, which can in turn facilitate debugging.

26

2.2.4 Replay from state snapshot

Replay from state snapshots is a solution where a design is simulated on a high-

performance simulation platform, while snapshots of the design’s state are taken at regular

intervals and the input vectors are recorded. If the simulation process is deterministic, we

can replay these short intervals of execution in a software-based simulator by loading the

state snapshot into the design’s flip-flops and then replaying the inputs for a particular inter-

val. Since we are using the software-based simulator only for the short intervals, the length

of the execution is well within the performance capacity of the simulator while it also offers

complete observability of internal signals (being a software simulation). Synopsis Total

Recall (TM) technology [89] is based on this approach, which is designed to work with

emulation platforms where state snapshots can be obtained using scan chains and JTAG

ports. However, this solution is only practical for medium-sized designs. In larger designs,

obtaining complete state snapshots of a chip at a fairly high frequency, as needed for debug,

becomes infeasible. Finally, the approach is not viable for non-repeatable simulation runs.

2.3 Key challenges

To summarize the discussion in the previous section, the challenges of simulation-based

validation are:

1. Attaining high-performance in software-based simulation: Low-cost high-performa-

nce software-based simulation solutions are extremely valuable. If we can infuse perfor-

mance into software-based simulation, its value in verification would greatly increase, since

it already benefits from a high quality checking and debugging infrastructure. Thus high-

performance always remains a priority.

2. Providing signal observability in hardware-accelerated simulation platforms: In

general, reduced observability of internal signals hinders any debugging endeavor. Since

we can only afford to trace a small number of signals, their selection becomes a crucial

issue. We want to trace those signals that lead to inferring maximum amount of non-traced

signal values, and thus provide the best possible observability into the DUV.

3. Reducing logic footprint of embedded checkers in hardware-accelerated simulation

platforms: Low logic overhead hardware-embedded checkers are necessary as we transi-

tion more and more effort towards acceleration and emulation platforms. This is due to the

27

fact that these platforms have limited logic capacity and simulation performance degrades

when increasing the logic footprint of the simulation.

4. Compacting traced data: Many checkers available in software-based platforms can be

mapped to a practical embedded checker. In those cases, tracing of on-chip data for post-

processing becomes necessary. However, simulation performance degrades with number

of recorded signals. To retain simulation performance we must compress the relevant in-

formation for checking/debugging so that a small number of signals are traced and yet we

can gain deep insights on the design activity, even when tracing a few signal values.

5. Developing a methodology for effective validation in hardware-based platforms:

The final challenge is to develop a methodology that allows us to adapt the checking so-

lutions available in software-based simulation platforms to hardware-accelerated platforms

in a general fashion.

Post-silicon
verification

Pre-silicon verification

platform

speed

cost

checking
capability

cost of
observability

Software Acceleration Emulation Silicon

low

observability

high high extreme

very
flexible as

all s/w

limited
embedded

logic

limited
embedded

logic

extremely
limited

all signals any signal limited very limited

negligible performance
drops with
#observed

performance
loss

area
overhead

1-10 Hz 10-100 kHz 10-100 MHz 1GHz

speed

Ease of checking and debugging

high-performance
simulation

improve
observability

improve bug detection
with small logic footprint

on-platform
compression

Figure 2.2 Challenges and scope of research to enable effective high-performance simulation-

based validation.

These research challenges are also summarized in Figure 2.2, organized according to

their scope in relation to the characteristics of the platforms. The goal of this dissertation is

to provide solutions to tackle these challenges. The solutions described in the dissertation

28

are targeted towards the common set of challenges; however specific implementations only

target specific platforms.

2.4 Contributions

The rest of this dissertation describes the solutions contributed to tackle the challenges

mentioned above. This section introduces outlines them. The first challenge of attaining

low-cost high-performance software-based simulation is solved by introducing simulation

software that can exploit the massive parallelism available in modern hardware in the form

of graphics processing units (GPU). The challenge of providing signal observability for

platforms beyond software-based simulation is tackled by a signal restoration algorithm

inferring values from traced signals. Section 2.4.2 introduces a solution that provides

improved signal observability by enabling selection of trace signals with high restoration

potential. The next three challenges of reducing logic footprint, compacting traced data,

and providing a general checking methodology for hardware-accelerated simulation are

tackled in the context of microprocessor designs and are outlined in Section 2.4.3. Note that

the key ideas developed in that Section are applicable to other classes of designs as well.

The challenge of logic footprint reduction is countered by a novel technique of checker

approximation; trace data compaction is achieved by performing on-platform compres-

sion and adapting off-line software checkers to operate on compressed data. Finally, a

methodology for adapting checkers developed for software-based simulation to hardware-

accelerated platforms is introduced by combining embedded checkers and off-line checking

on compressed data in a hybrid fashion.

2.4.1 Infusing performance into software-based simulation

One of the major contributions in this dissertation is in delivering high-performance

software-based logic simulation at a low cost. Logic simulation is used to verify designs

at the behavioral level, as well as the structural level, ensuring that a synthesized circuit’s

netlist matches the functionality and timing of the behavioral model. Structural netlists

are particularly cumbersome for simulation because of their low-level specification and the

fine granularity of the structural definition, which consists of large number of gate primi-

tives in the target technology library. The recent availability of general purpose computing

programming models for high-performance and highly parallel GPUs (GP-GPUs) led us to

explore a new simulation architecture targeting these hardware platforms, with the hope of

29

delivering a conspicuous performance advantage at a small hardware cost (that of a GPU

peripheral). The resultant simulation solution, called GCS, exposes the parallelism avail-

able in the simulation problem to the parallel processing hardware of the GPU, by using

novel partitioning algorithms.

Similar partitioning schemes are found to be applicable for simulation of behavioral

descriptions as well. This leads to a high-performance simulation solution called SAGA

for behavioral design descriptions expressed with the synthesizable subset of SystemC.

Since, all these simulation solutions are software-based, existing checking and debugging

solutions can be adapted with minor software engineering effort. Chapter 3 describes these

solutions in detail.

2.4.2 Providing observability through restoration

In this research thrust, the dissertation presents a solution to achieve improved debugging

capability in the wake of limited signal observability that is endemic to acceleration plat-

forms, emulation and post-silicon validation. A solution to address this issue leverages

trace buffers: these are register buffers embedded into the design with the goal of recording

the value of a small number of state elements, over a time interval, triggered by a user-

specified event. Due to the trace buffer’s area overhead, designers can afford to trace only

a very small fraction of a design’s signals. Clearly not all signals are equally useful for de-

bugging and diagnosis. Thus, effective trace signal selection is critical towards the success

of debug.

Recently, researchers have demonstrated that observability can be provided via re-

construction of non-recorded signal values from the recorded signal values [58]. Such

observability is critical for debug. Ideally, we would like to select signals enabling the

maximum amount of reconstruction of internal signal values. A novel selection algorithm,

aided with an accurate restoration capacity metric is presented in this dissertation. This

solution overcomes some of the key shortcomings of previous signal selection algorithms,

and leads to attaining a higher degree of restoration than previous solutions. Since this

methodology does not require any design specific knowledge it is applicable to any logic

block. The details of this solution are described in Chapter 4.

2.4.3 Enabling checking capability in hardware-accelerated platforms

The rest of the contributions are geared towards bringing in checking and debugging so-

lutions, which are currently only feasible within software-based simulation, to the realm

30

of hardware-accelerated simulation. These solutions require a thorough understanding of

the design under verification and have been developed targeting micro-processor designs.

However, the underlying principles apply to other classes of designs as well. Acceleration

platforms were the primary target for these solutions, but the key ideas are equally relevant

to emulation, or even post-silicon platforms.

Embedded low logic footprint approximate checkers

The first approach is an attempt to bring in existing software-based checkers that are used

with software-based simulation, into the purview of accelerated simulation. As discussed

before, these platforms do not provide the rich checking capabilities of software-based sim-

ulation methodologies. As a result, mapping checkers, particularly complex checkers, such

as golden models or checkers making use of complex software data structures, remains a

challenge because (i) embedded checkers can only use synthesizable constructs, (ii) their

logic complexity should not exceed the platform capacity and (iii) the performance im-

pact entailed by the simulation of their logic components should not be such to make the

acceleration performance comparable to that of a traditional software-based simulation.

This dissertation describes a novel solution to bring in those complex checkers, typi-

cal of software-based simulation environments, onto acceleration platforms. To this end,

checkers must be transformed into synthesizable, compact logic blocks; yet, they should

have bug-detection capabilities similar to that of their software counterparts. “Approxi-

mate checkers” trade off logic complexity with bug detection accuracy by leveraging novel

techniques to map complex software checkers into small synthesizable hardware blocks,

which can be simulated along with the design on an acceleration platform. In Chapter 5,

a general checker classification is presented; a range of approximation techniques, based

on the characteristic of the checker, is proposed; and finally, appropriate metrics for their

evaluation are presented.

Using on-platform traced data compression

Checker approximation is followed by another checker adaptation approach. A case-study

is presented for a microprocessor checking component that is complex enough that it can-

not be translated to hardware. As a result a “log-and-then-check” approach is necessary to

map this type of checkers. For this situation, the dissertation proposes event tracing by ad-

ditional simulated logic followed by post-simulation checking. As discussed before since

only very few signals can be recorded without degrading the acceleration performance, the

31

methodology itself needs to be adapted to operate with compressed or partial information.

This concept is demonstrated on a common checking solution for microprocessor

validation: namely instruction by instruction checking (IBI). IBI checking tracks the ar-

chitectural events generated by a microprocessor design model when it is executing a test

regression and compares them against a golden architectural model. However, if all data

associated with these architectural events were traced, it would severely degrade the per-

formance of the acceleration platform. Hence, it is imperative to produce a summary of

the information needed for checking, using only a few bits of information collected per

cycle. In the proposed novel scheme, a summary of the events are produced by addi-

tional simulated hardware, and the checker is adapted to operate on checksums, instead

of actual architectural register values. This approach results in a checker that is almost

as accurate as software-based solution, yet offers the same performance as that of the

hardware-accelerated platform. This solution is also discussed in Chapter 5.

Hybrid checking

Finally, hybrid checking leverages light-weight embedded checkers, on-platform compres-

sion as well as a post-simulation checking component that operates on the compressed sim-

ulation trace. This solution attempts to combine the beneficial effects of both approaches

and suggests a comprehensive methodology for adapting complex checkers into the realm

of hardware-accelerated simulation. The methodology involves classifying typical microar-

chitectural checks needed for a modern microprocessor design into cycle-accurate local

embedded assertions (implemented as lightweight embedded logic) and event-accurate

functionality checks requiring a post-simulation checking phase. Embedded logic is fur-

ther used to compress the data associated with events relevant to functionality checks. This

solution is discussed in Chapter 6.

32

Chapter 3

The Quest for Simulation Speed

As explored in the previous chapters, the majority of validation methodologies in the

industry rely heavily on the use of design simulation platforms. These platforms simu-

late a design’s functional behavior at different levels of abstraction, ranging from high-

level behavioral to low-level structural gate-level descriptions. The primary platforms for

simulation-based validation are software-based simulators executing on general-purpose

computers. The increasing complexity of modern designs has been pushing the scalability

limits of software-based simulation: as of today its poor performance on complex designs

has heavy impact on the development timeline and ultimately on a product’s time-to-market

[36]. Currently, the performance of such software-based simulators are not even close to

adequate to meet the validation demand. The performance limitation is intrinsically tied to

the single threaded nature of such simulators targeted towards conventional general purpose

processors as the execution substrate. However, to its credit software-based simulators offer

excellent checking and debugging support, hence infusing performance into software-based

simulation will be extremely beneficial for validation. This chapter explores the potential

of increasing the performance of software-based simulation by exposing the parallelism

available in the problem to the massive parallelism available in graphics processors.

3.1 High-performance simulation through massive paral-

lel processing

Software-based simulation of a design’s description remains the primary methodology of

validation in the industry. In this methodology, a software simulator application executes

on a general-purpose computing machine (such as a desktop or a server), reads in files de-

scribing the design and the associated testbench, and then simulates the design as intended.

Most of the design checking and debugging tools, such as assertion-based infrastructures

and simulation trace visualization tools, are connected on top of the software-based simula-

33

tor. The deployment of a complex checking and debugging infrastructure comes fairly

easy in this environment, as these components can be connected to the simulator’s software

via simple programming interfaces. Verification engineers in the design houses attempt to

simulate as many simulation cycles as possible before final design tapeout: to attain higher

degree of coverage and to detect and remedy as many functional bugs as possible, with the

assistance of the available checking and debugging infrastructure.

Unfortunately, software-based simulation performance falls short of expectation even

in the face of decades of improvements in the performance of these tools by the EDA in-

dustry. They still lack the horsepower required to tackle today’s complex digital designs. A

full-chip simulation for a moderately sized design, only runs at the speed of 1-10 simula-

tion cycles per second on a software-based simulator, thus severely restricting exploration

of the state space of such a design via software simulation. Moreover, a large design might

not even fit in the memory available in a general-purpose machine. In the industry often

a number of simulations are performed on the same design with different initial condi-

tions and different input stimuli, which can execute in parallel in different servers, and can

explore different portions of the design state space. However, this does not solve the fun-

damental problem of reaching deep into the state space in a feasible amount of simulation

time. Functional bugs can hide deep into the state space where a short depth simulation

run would not be able to reach. In purview of the comprehensive checking and debugging

support available in software simulation, it will be ideal if we could increase the perfor-

mance of the simulation process without perturbing the essential software nature of

the simulator.

An investigation into the performance bottlenecks of current software-based simulators

reveals that the performance limitation is intrinsically tied to the single threaded nature of

the simulator design targeted towards conventional general purpose processors as the exe-

cution substrate. However, the simulation process is inherently parallel in nature, since

at any abstraction level, there are multiple components of the design that can be simulated

in parallel. As a result, traditionally used general purpose processors have a fundamental

limitation due to the fact that simulation is forced to be serialized at some granularity

due to the very nature of the execution substrate. Even though general purpose proces-

sor performance have increased over past few decades due to Moore’s law scaling, it has

reached a point of stagnation where single thread performance has very little improve-

ment over generations of processors, while the number of processor cores available in a

compute unit has increased. Modern general purpose processors can support multiple par-

allel threads, executing in different cores. Clearly simulation can benefit from parallel

execution, and it often possesses a far higher degree of parallelism than a few threads.

34

Naturally, software-based simulation performance can be heavily boosted by leveraging a

massively parallel execution substrate. Graphics processors(GPU) already possessmassive

execution parallelism since they have to maintain a massive rate of pixel throughput for

rendering graphics. Specifically general purpose graphics processing units (GP-GPU)

are a special class of processors where the massively parallel computation capability in

the hardware can be accessed via a high level language for general purpose computation.

Hence, this execution substrate is a perfect fit for the simulation problem. Moreover, GP-

GPUs are a cheap off-the-shelf commodity, thus they are very well suited for accelerating

software-based simulation at nominal additional hardware cost.

3.1.1 Overview of this chapter

Parallel processing can accelerate simulation at different abstraction levels. In the scope of

this chapter, two different design abstraction levels are targeted in particular, i) structural

gate-level representation and ii) a subset of behavioral descriptions expressed in SystemC

language. Gate-level simulation is essential since it is often necessary to validate equiv-

alence of a structural model of the design against a behavioral model. The performance

of software-based simulation on general purpose processors is excruciatingly poor when

simulating gate-level netlists, where the system’s description is fairly detailed, leading to a

large design model. On the other hand SystemC is widely used in the full system design ex-

ploration process in the industry and is vital for hardware software co-development, while

the simulation performance of SystemC is far from adequate. This dissertation explores

the possibility of accelerating software-based simulation performance of digital designs at

these two abstraction levels using GP-GPUs as execution substrate. To this end a logic

simulator called GCS (GPU concurrent simulator) for functional simulation of gate-

level netlist is developed. GCS was able to deliver an order of magnitude performance

improvement over software simulators on general purpose processors. On the other hand

I collaborated in development of a parallel SystemC simulation framework called SAGA

(SystemC Acceleration on GPU Architectures) that leverages GP-GPUs. This simula-

tor was also able to deliver up to an order of magnitude performance improvement over

traditional solutions.

GP-GPUs offer massive parallelism, however they have strict restrictions regarding the

nature of the workload, and offer the best performance when presented with a very regular

execution pattern and a partitioning of the workload into independent groups of worker

threads. Even though both of the simulation problems have a large degree of parallelism,

it was crucial to properly partition each of these problems to best match the parallelism

35

present in the execution substrate and methods to regularize the execution pattern was

critical as well. To this end I developed novel algorithms to perform partitioning of the

computation best suited to GP-GPU paradigm, as well as novel computation morphing

methods to regularize the execution pattern as much as possible under the constraints of the

problem. To fully comprehend the nuances of adopting simulation on the GP-GPU plat-

form, we require a basic understanding of the GP-GPU architecture and the programming

model. Hence, a brief overview of GP-GPU architecture and programming abstraction in

Section 3.2 is presented first, followed by the details of the GCS solution through Sections

3.2 to 3.6, which comes in both oblivious and event-driven flavor. Then, the SAGA solution

is presented in detail through Sections 3.7 to 3.9. An account of prior literature relevant to

this research is presented in Section 3.10 before concluding this chapter.

3.2 Introduction to GP-GPU architecture and program-

ming model

General purpose computing on GPUs enables parallel processing on commodity hard-

ware. Since 2007, NVIDIA has provided a programmer-friendly approach towards GP-

GPU computing, aiming at facilitating parallel programming with a new general purpose

programming interface and architecture known as NVIDIA’s Compute Unified Device Ar-

chitecture (CUDA) [73]. There are other programming interfaces for GP-GPU computing

available as well such as OpenCL [54] from the Khronos initiative. We chose CUDA as an

example programming model since it encompasses the key features of any GP-GPU pro-

gramming interface. In the CUDA execution model, the GPU is a co-processor capable of

executing many threads in parallel, following the single instruction multiple data (SIMT)

model of execution. A data parallel computation process, known as a kernel, can be of-

floaded to the GPU for execution. This model of execution is known as single instruction

multiple thread (SIMT), where thousands of threads execute the same code, each operating

on different portions of data. The collection of threads represented by a kernel is divided

into a grid of thread-blocks, each of which consists of a number of threads. Threads iden-

tify their spatial location within the kernel by thread block ID in the grid and then thread

ID within the thread-block, and can use this information to access a different data location.

The CUDA architecture (Figure 3.1) consists of a number of multiprocessors (up to

16 in the current generation) contained in a single GPU chip. Each multiprocessor is

comprised of multiple stream processors (32 in current generation) which have common in-

struction fetch and support a large number of concurrent threads (up to 1024 in the current

36

���������	

�� �

���������	

�� �

�
�
�
�

���

�
�
�
��
�
�
�
�
�
��

��� !" #!$% & '()*+ ,-

' ./.01 232/

�4 5 �4 6 �4 76

89:;)
:<-

=>88
./.01?
232/

���������	

�� @

ABC
.DEEFGH.2IHDG

JDII01G1.K
LMN LIO12E MOD.1??DO

PQRRQS TSUVWXPVTQS YZVP[

\]^_]`

abO12c 8 abO12c ' abO12c
d

abO12c >'

abO12c
>:

abO12c
>>

abO12c
e

abO12c (>
fghi j

fghi k

Figure 3.1 NVIDIA CUDA GP-GPU architecture. A GPU includes a number of multiproces-

sors, each comprising 8 stream processors. Several threads (up to 512) may execute concurrently

within a multiprocessor and communicate through a small shared memory bank. The larger device

memory has much higher access latency.

generation) all running the same code. Multiprocessors are responsible for the execution

of the thread-blocks that can be mapped to each of them, as dictated by resource limits.

Each multiprocessor has access to low latency (1 clock cycle) scratchpad memory, divided

between local registers and shared memory. A thread-block has exclusive access to a por-

tion of this scratchpad memory, meant for collaborative use between threads of a particular

thread-block, which is not accessible by other thread-blocks. All multiprocessors also have

access to a region of global memory called device memory, which has higher access latency

(300-400 cycles) while the capacity can be 256 MB to 1 GB in current CUDA enabled

GPU’s. While the access latency to global memory is high, it is possible to amortize the

cost by coalescing accesses from multiple threads. Communication with the host CPU’s

main memory is achieved by means of direct memory access (DMA) transfers, which are

most efficiently performed for large blocks. For best performance, it is important to keep

communication between the host and the GPU to the bare minimum, e.g., by copying all

relevant data-structures to the device memory and not communicating with the host mem-

ory during execution at all, and copying back the final results. A thread-block can allocate a

certain amount of shared memory dedicated for co-operative usage by it’s threads and will

also take up a certain number of local registers as dictated by the code in the body of each

37

individual thread. Each multiprocessor will be responsible for the execution of the number

of thread-blocks that can be maximally contained in it, as dictated by resource limits.

Since all resident threads in a multiprocessor execute on the fixed number of stream

processors (32 in the current generation) with a common instruction fetch unit, each thread-

block executes groups of 32 threads at a time (known as a warp) in a time-multiplexed

fashion, with frequent context-switches from one warp to another, happening on regular in-

tervals or long latency global memory accesses. Because of the shared fetch unit, execution

path divergence between threads of a same multiprocessor is detrimental to performance as

only one branch path can be executed at a time. If threads in a same multiprocessors must

execute different code paths, the least penalizing solution is to map them to different warps,

so that the memory accesses originating from different warps can be partially overlapped in

time. Threads belonging to a single thread-block can be synchronized using fast barriers,

while synchronization across multiprocessors can only be achieved via kernel termination.

While designing any software application for GP-GPUs we have to take in to account all

these GPU-specific constraints.

3.3 Towards high-performance logic simulation

In a typical digital design flow, a system is first described in a high-level behavioral fash-

ion with a hardware description language (HDL), then it is automatically synthesized to a

netlist, consisting of structural logic elements such as logic gates and flip-flops. To ensure

that the gate-level design provides the same functionality as the behavioral design, the for-

mer must be validated by thorough simulation and comparison with the behavioral model.

These structural netlists can easily be comprised of tens of millions of gates in modern

digital systems. A logic simulator takes this netlist as input, converting it to internal data

structures: feedback loops are opened by disconnecting the sequential storage elements in

the design, thus allowing to simulate the design one cycle at a time, storing the value of

latches and flip-flops in internal data structures of the simulator software. The remaining

logic, that is, the combinational portion, is then levelized according to the dependencies

implied by the gates input-ouput connections. Simulation proper can now begin: the simu-

lator generated input values and then computes the outputs of the internal logic gates, one

level at a time, until the design’s output values are produced. In subsequent simulation

cycles, the values computed for the design’s storage elements are looped-back and used as

part of the next cycle’s inputs.

Logic simulators comes in two flavors: oblivious and event-driven. In an oblivious sim-

38

ulator, the simpler of the two simulator flavors, all gates in the design are computed at every

cycle. While the program’s control flow for this approach is low-overhead, computing for

every gate at every cycle can be time-consuming and, most importantly, unnecessary for

all those gates whose inputs have not changed from the previous cycle. Event-driven sim-

ulation, on the other hand, takes advantage precisely of this fact: the output of a gate will

not change unless its inputs have changed. Large portions of the design are often quiescent

during a given simulation cycle, thus event-driven simulation can spare a large amount of

redundant computation. Note, however, that the key to a successful event-driven simulation

lies in the effective management of the additional program control overhead, necessary to

track which gates must be re-computed and which are quiescent.

Structural gate-level simulation benefits from inherent parallelism as the logic corre-

sponding to different outputs can be simulated in parallel. However, available commercial

simulators, operate primarily on single threaded processors, thus they do not exploit this

potential for concurrent computation available in the data structure representing the netlist.

In this chapter, we investigate how the parallelism available in the problem structure can be

mapped to that of the execution hardware of GP-GPUs. To this end, we use novel algorith-

mic solutions to address a netlist’s structural irregularity, as well as techniques to exploit

a GPU’s memory locality in an optimal manner. While the parallelism of netlists matches

well with the parallel computational power available in GPUs, there are a number of prob-

lems that must be addressed to enable GPU-based logic simulation. First, a netlist must

be partitioned into portions that can be mapped and simulated concurrently and efficiently

on a GPU. The partitioning must be aware of the GPU architecture and its memory model.

Additionally, we need low-overhead algorithms to efficiently control the simulation of all

design’s portions.

In the following few sections, two novel simulator designs are described that lever-

age the parallel processing capabilities of low-cost general purpose graphics processing

units (GP-GPUs) for gate-level simulation, leading to a major improvement in simulation

performance. The first design is an oblivious simulator which utilizes simple scheduling,

static data structures and better data locality. While the second is an evolved event-driven

design which performs event-driven simulation of the netlist at a coarser granularity than

individual gates, and requires dynamic analysis for scheduling re-evaluation. The recent

availability of general purpose computing programming models for high-performance and

highly parallel GPUs led us to explore a new simulation architecture targeting these hard-

ware platforms, with the hope of delivering a conspicuous performance advantage at a small

hardware cost (that of a GPU peripheral). Specifically, the NVIDIA’s CUDA architecture

provides a programming interface that enables users to develop software applications for

39

balance and levelizeclusterextract combinational netlist

RTL

Source

simulate

...

...

synthesize

Figure 3.2 The GCS compiler considers a gate-level netlist or synthesizes a behavioral netlist.

It then extracts the combinational logic block and partitions it into clusters, that is portions of the

circuit that approximately fit within the resources of a single CUDA multiprocessor. The balancing

step then optimizes each cluster to satisfy CUDA resource constraints. Finally, balanced clusters

are transferred to the GP-GPU device and the simulation commences.

their vastly parallel co-processor GPU. However, CUDA exposes its parallel architecture

directly to the programmer, with the result that applications must be designed specifically

for this architecture in order to derive benefit from it.

3.4 Oblivious simulator overview

The oblivious GCS simulator operates as a compiled-code simulator, first performing a

compilation, where it considers a gate-level netlist as input, compiles it and maps it into

CUDA. A simulation proper follows, where GCS considers a CUDA-mapped design, sim-

ulating over a number of several cycles, possibly reusing the same mapped design while

running with many distinct testbenches. The process of compilation and simulation pro-

gresses in 5 steps (Figure 3.2). First, a behavioral netlist is synthesized to a gate-level netlist

and mapped to GCS’s internal representation. From here, the combinational elements are

extracted, since the design will be simulated in a cycle-based fashion. Next, GCS partitions

the netlist into clusters, that is, logic blocks of appropriate size to fit within the constraints

of the CUDA architecture. In this phase, the compiler prepares rough clusters, based on size

estimates quickly computed on the fly. The following step, balancing, is an optimization

phase, where each cluster is carefully restructured to maximize compute efficiency during

simulation. Finally, all the required data structures are compiled into the CUDA kernel and

transferred to the GP-GPU device. Testbenches can be implemented using many different

solutions; if they are encoded in a CUDA program (possibly with associated stimuli data),

then the simulation can be completely offloaded from the host with direct performance

benefits. If the testbench resides on the host, control alternates between host and GPU to

simulate and generate stimuli.

40

3.4.1 Synthesis and combinational netlist extraction

The GCS compiler requires a gate-level netlist as input. This can either be a synthesized

version of a design under verification, or a behavioral description to which we can apply

a relaxed synthesis step. In our experimental evaluation, we consider a broad range of

designs, including a pool of behavioral descriptions that we synthesized using Synopsys

Design Compiler targeting the GTECH library. Within the GTECH library we excluded

non-clocked latches (but not flip-flops), since a cycle-based simulator cannot properly han-

dle the sub-cycle delays involved in the simulation of a non-clocked latch. Multiple clock

designs can still be handled by using a logical clock that generates all other clock signals.

When the netlist is read into GCS, an internal representation based on GTECH is created.

In GCS we represent each gate’s functionality by a 4-valued (0,1,X,Z) truth table.

During the compilation phase, GCS extracts the combinational portion of the gate-level

netlist and maps it to CUDA, creating data structures to represent the gates, as well as their

input and outputs. During simulation, dedicated data structures store the simulated values

for the storage elements (the input and output buffer vectors) and specialized testbench code

feeds primary input values and extracts primary output values at each simulation cycle.

Because of the memory hierarchy of CUDA, an optimal memory layout can lead to

significant improvements in the performance of a GP-GPU simulator. GCS places the most

frequently accessed data structures in local shared memory (Figure 3.3). Here, we store

intermediate net values (called the value matrix), which are computed for each internal

netlist node during simulation. Also in local shared memory the gate-type truth tables are

stored, which are consulted for the evaluation of each gate.

All other data structures reside in the higher-latency device memory: the input and out-

put buffers and the netlist topology information. Note that the netlist topology information

is required just as often as the data that we store in the local memory. However, the latter is

data that is shared among several threads (gates) and thus its locality can benefit multiple

threads.

3.4.2 Clustering

GCS’s clustering algorithm (Figure 3.4) divides a netlist into clusters, each to be executed

as a distinct thread block on the CUDA hardware. Since CUDA does not allow infor-

mation transfer among thread blocks within a simulation cycle, all thread blocks must be

independent. The central goals of the clustering algorithm are (i) minimizing redundant

computation, (ii) data structure organization and (iii) maximizing data locality.

41

Primary Inputs Previous State

PI0 PS0 PI1 PS4 PI3 PS1

n0 n1 n2

n3 NS3

PO1 NS5

0

1

2

3

0 1 2 3 4 5
NS5NS3

PS0 PS4 PS1

n0 n1 n2

n3

Input Buffer (device)

Primary Outputs Next StateOutput Buffer (device)

Netlist Topology (device)
Output Map

(device)

Value Matrix
(shared memory)

G
at

e-
ty

pe
 tr

ut
h

ta
bl

e
(s

h
ar

ed
 m

em
o

ry
)

PI1 PI3PI0

PO1

Input Map
(device)

Figure 3.3 GCS’s compiled-netlist data structures. The picture shows the data structures re-

quired for the simulation of a small netlist. Thread blocks store and retrieve intermediate net values

from the value matrix in the local shared memory. Note that there is a one-to-one correspondence

between a row of intermediate values and a netlist’s logic level.

The requirement of creating netlist clusters that are self-contained and do not com-

municate to other clusters within a simulation cycle led us to choose a cone partitioning

approach. In cone partitioning, a netlist is viewed as a set of logic cones, one for each of

the netlist’s outputs; each cone includes all the gates that contribute to the evaluation of

that output. Due to the lack of inter-cluster communication capability, each cluster must

include one or more cones of logic, and each cone must be fully contained within a cluster.

Cone overlap necessarily requires that some gates are duplicated, because they belong to

multiple cones. However, the incidence of this extra computation is small in practice.

During the simulation of a cluster, several data blocks must be readily available. Be-

cause each thread block has fast access only to the small local shared memory, the size of

this structure becomes the constraining parameter in our clustering algorithm.

With the goal of minimizing cluster overlap, the clustering algorithm proceeds by as-

signing one cone of logic – we start from the one with the most gates – to a cluster.

Additional cones are subsequently added to this cluster until memory resources have been

exhausted. The criteria for adding a cone is the maximal number of overlapping gates; for

42

example, the second logic cone is the cone that overlaps the most with the first one already

included in the cluster. Upon completion of the clustering algorithm, GCS has mapped all

gates to a set of clusters, minimizing logic overlap while satisfying the constraints of shared

memory resources.

1: sort(out put cones);

2: for each out put cone do

3: new cluster = out put cone;

4: while size(cluster) < MAX SIZE do

5: cluster += max overlap(out put cones, cluster);

6: end while

7: append(cluster, clusters);

8: end for

Figure 3.4 Pseudo-code for the clustering algorithm. Combinational logic cones are grouped

into clusters, netlist blocks that are estimated to fulfill CUDA’s resource constraints, with minimal

logic overlap.

3.4.3 Cluster balancing

The cluster balancing algorithm minimizes the critical execution path of thread blocks

(clusters) on the CUDA hardware. It considers each cluster individually and optimizes the

scheduling of each gate simulation so that the number of logic levels (the limiting factor

for execution speed) is minimized. The simulation latency of a single cycle is limited by

the cluster with the most logic levels, since each additional level requires another access

to device memory 300-400 cycles away. Considering the number of logic levels (cluster

height) and the number of concurrent threads simulating distinct gates (cluster width), the

algorithm balances these within the constraints of the CUDA architecture: a maximum

of 256 concurrent threads. Since this is a functional simulaton, intra-cycle timing can be

safely ignored and thus the transformation is guaranteed to generate equivalent simulation

results.

3.4.4 Simulation

After the balancing step, the GCS compiler has generated a finite number of clusters, op-

timized them and generated all the support data structures necessary for the kernel code

to simulate all gates in a netlist with a high level of parallelism while respecting data de-

pendencies. At this point, cluster data and kernel code can be transferred to the GP-GPU

43

device and simulated cycle by cycle.

PI0 PS0 PI1 PS4

n0 n1 n2

n3 NS3

PO1 NS5

NS5NS3

PS0 PS4 PS1

n0 n1 n2

n3

PI1 PI3PI0

PO1

L
ev

el
 1

L
ev

el
 2

L
ev

el
 0

L
ev

el
 3

Execution threads

Thread 0 Thread 2 Thread 3

Sync
Barrier

Sync
Barrier

Sync
Barrier

Sync
Barrier

...

...

...

...

Thread 1

Figure 3.5 GCS simulation on CUDA. Simulation of the small netlist of Figure 3.3. Each thread

is responsible for computing the output of one gate at a time, vertical waved lines connect the set of

value matrix slots for which a single thread is responsible at subsequent time intervals. Note also

how each level is followed by a synchronization.

Cluster execution on the GPU proceeds in three phases: scattering, logic evaluation

and gathering. During scattering, the cluster’s primary input data is retrieved from the

device memory and copied to the value matrix (Figure 3.3). Next, logic evaluation pro-

gresses when each thread begins execution. The threads, each simulating one gate, retrieve

the relevant portion of the netlist from device memory, as well as gate truth tables and net

matrices from local shared memory. With this information, the threads evaluate their gates

by consulting the truth table. During the gather step, computed results are copied from the

value matrix to the output buffer vectors in device memory. Finally, the threads synchro-

nize after simulating their respective gates and the process is repeated for all the subsequent

logic levels in the cluster. Figure 3.5 shows an example of cluster execution for the sample

netlist of Figure 3.3.

3.5 Event-driven simulator overview

The oblivious simulation solution of the previous section posseses a simple software de-

sign, and can be optimized statically, but simulating all gates in each cycle is redundant and

also limits the performance of this approach. Moreover, the size of the circuits that can be

simulated is severely limited by the size of the shared memory in the GPU platform. To

44

address these issues in order to achieve better performance for the common case, event-

driven simulation is considered. However due to the particular architecture of GP-GPU,

event-driven simulation at the fine granularity of gates would be inefficient, event-driven

design can only be efficient at a much coarser granularity. The steps of logic synthesis

and subsequent extraction of the combinational circuit remain the same as the oblivious

simulator, however the compilation phase in this case is responsible for segmenting a large

monolithic netlist into blocks amenable to simulation by individual execution units within

the GPU. This requires segmenting the netlist into macro-gates: a set of several connected

gates within the netlist of ideal size, optimizing the logic within each macro-gate, and fi-

nally producing the data structures and the CUDA programs necessary to carry out the

simulation. During simulation, both program and data reside on the GPU. The testbenches

are implemented in the same fashion as in the oblivious simulator, reading outputs and

feeding inputs at the end of each clock cycle.

3.5.1 Segmentation into macro-gates

To exploit the advantage of event-driven simulation at a coarser granularity, we must seg-

ment the gate-level netlist into several logic blocks (called macro-gates), and assign the

simulation of each macro-gate to a distinct CUDA multiprocessor. During simulation, we

maintain a sensitivity list of nets at the inputs of each macro-gate: if any net in a sensitivity

list changes value, then the corresponding macro-gate will be affected by the change and

must be simulated (i.e.activated). Otherwise, the macro-gate can be skipped during the

current cycle.

In determining how to partition the netlist into macro-gates, we took into consideration

several factors: (i) the time required to simulate a macro-gate should be greater than over-

head of determining which macro-gates to simulate; (ii) CUDA’s multiprocessors can only

communicate through device memory, thus macro-gates should not share data. To this end,

we occasionally duplicate small portions of logic, so that each macro-gate can compute the

value of its outputs independent of other concurrent macro-gates. Finally, (iii) we want to

avoid cyclic dependencies between macro-gates, so to simulate each macro-gate at most

once per cycle.

To address the list of constraints, we segment the netlist by partitioning the netlist into

layers: each layer encompasses a fixed number of the netlist’s levels. Macro-gates are then

defined by selecting a set of nets at the top boundary of a layer, and including its cone of

influence back to the input nets of the layer. The number of levels within each layer is

called the gap and corresponds to the height of the macro-gate. By using this procedure,

45

primary inputs / register outputs

primary outputs / register inputs macro-gate

g
a
p
 (

le
v
e

ls
)

lid (gates)

overlap

la
y
e
r

1
la

y
e
r

2
la

y
e
r

3

Figure 3.6 Segmentation topology. The levelized netlist is partitioned into layers, each encom-

passing a fixed number of levels (gap). Macro-gates are then carved out by extracting the transitive

fanin from a set of nets (lid) at the output of a layer, back to the layer’s input. If an overlap occurs,

the gates involved are duplicated to all associated macro-gates.

it is possible that a given logic gate is assigned to two or more macro-gates. In this case,

we duplicate it, so that each macro-gate can compute the value of its output nets without

sharing any data with other macro-gates (second requirement). Finally the number of out-

put nets used to generate each macro-gate is a variable parameter (called lid), whose value

is selected so that the number of logic gates in all macro-gates is approximately the same.

Figure 3.6 shows a schematic of the segmentation technique, while figure 3.7 presents the

pseudo-code of the algorithm. The set of nets that cross the boundary between each pair of

layers is monitored during simulation to determine which macro-gates should be activated.

We set the values of gap and lid based on mock simulation performance for a small number

of cycles.

3.5.2 Macro-gate balancing

Each macro-gate is designed to be simulated in a single CUDAmultiprocessor. Because our

lowest-level primitives are basic logic gates, we designed our CUDA simulation program

so that the execution threads simulate all the gates in the same level, then move on to the

next level, and so on, until an entire macro-gate has been simulated. Thus the gap is directly

proportional to layer simulation performance. However, the segmentation procedure tends

46

1: levelized netlist = ALAP schedule(netlist);

2: layers = gap partition(levelized netlist);

3: for each layer in layers do

4: macro−gates = lid partition(layer)

5: macro−gates pool = append(macro−gates);

6: compute monitored nets(layer);

7: end for

Figure 3.7 Macro-gate segmentation algorithm. The levelized netlist is partitioned into lay-

ers: several macro-gates are carved from each layer and appended to the macro-gates pool to be

simulated. The nets to be monitored are also tagged at this stage.

to generate macro-gates with a large base (many gates) and a narrow tip. Correspondingly,

we have many active threads in the lower levels, and just a few in the top levels.

To maximize concurrency throughout the simulation, we optimize each macro-gate in-

dividually with a balancing step, as outlined in the schematic of Figure 3.8. This is the last

step of the compilation phase: it exploits the slack available in the levelization within each

macro-gate and restructures macro-gates to have approximately the same number of logic

gates in each level. As a result, a smaller number of threads will be required to simulate

the base of the macro-gate. Note that it is always possible to “shrink” the size of the base,

at the price of an increased gap.

g
a
p

macro-gate

balancing

lid

...

idleidle

...

width

threads

la
rg

e
r

g
a
p

less width

threads

Figure 3.8 Macro-gate balancing. The balancing algorithm exploits the levelization slack within

a macro-gate to restructure it so that fewer execution threads are required to simulate the lower

levels, and idle threads are minimized at the top levels.

3.5.3 Simulation phase

As mentioned earlier in this section, simulation is carried out directly on the GPU co-

processor. Each multiprocessor is responsible for the simulation of one or more macro-

47

gates. Each macro-gate corresponds to one thread block. In determining the number of

macro-gates that should be simulated concurrently on a multiprocessor, the number of con-

current thread blocks allowed in a multiprocessor (3), was the limiting factor. A single

allocation would enable larger macro-gates, however, mapping several smaller ones concur-

rently allows us to hide the memory latency in retrieving structural netlist data from device

memory. We found experimentally that the latter solution provides better performance.

monitored nets

thread blocks

sync

sync

sync

macro-gate

pool

layer 3

layer 2

layer 1

macro-gate

Figure 3.9 The event-driven simulation operates by layer. Within each layer, it simulates acti-

vated macro-gates and then analyzes the monitored nets to tag additional macro-gates for activation.

Activated macro-gates are transferred by the CUDA scheduler to an available multiprocessor for

simulation.

The overall simulation alternates executing all active macro-gates in a layer, with

analyzing the corresponding monitored nets to determine which macro-gates should be

activated for the next layer. The CUDA scheduler is responsible for assigning activated

macro-gates to individual multiprocessors. Figure 3.9 illustrates the layered structure of

macro-gates and monitored nets. It also shows how activated macro-gates are transferred

from the pool to a multiprocessor for execution. Within a macro-gate simulation, multi-

ple concurrent threads simulate all the gates in same level, then synchronize, and finally

advance to the next level, until completion.

Data placement is organized as follows: primary inputs, outputs, register values and

monitored nets are mapped to device memory, since they must be shared among several

macro-gates (multiprocessors). Truth tables for the gates in the technology library are

mapped to shared memory because of their frequent access. In addition, intermediate net

values generated within a macro-gate are also placed in shared memory. Finally, the netlist

structure is stored in device memory and accessed during each macro-gate simulation.

48

Design Testbench # Gates # Flops

Alpha no pipeline recursive Fibonacci program 17546 2795

Alpha pipeline recursive Fibonacci program 18222 2804

LDPC encoder random stimulus 62515 0

JPEG decompressor 1920x1080 image 93278 20741

3x3 NoC routers random legal traffic 64432 13698

4x4 NoC routers random legal traffic 144098 23875

OpenSPARC core OpenSPARC regression suite 262201 62001

OpenSPARC-2 cores OpenSPARC regression suite 610670 124002

OpenSPARC-4 cores OpenSPARC regression suite 1221340 248004

Table 3.1 Testbench designs for evaluation of the simulator.

3.6 GCS experimental results

We evaluated the performance of our simulator on a broad set of designs ranging from

purely combinational circuits such as an LDPC encoder, to a multicore SPARC design con-

taining over 1 million logic gates. Designs were obtained from OpenCores [75] and from

the Sun OpenSPARC project [88]; the Alpha processors and NoC designs were developed

in advanced digital design courses by student teams at the University of Michigan.

We report in Table 4.1 the key aspects of these designs: number of gates, flip-flops

and type of stimulus that was used during simulation. The first two designs are proces-

sors implementing the Alpha instruction set, the first can execute one instruction at a time,

while the second has a 5-stage pipelined architecture. Both were simulated executing a

binary program that computed Fibonacci series recursively. The LDPC encoder outputs

an encoded version of its input; for this design we developed a random stimulus generator

that run directly on the GPU platform. The JPEG decompressor would decode an input

image. The NoC designs consist of a network of 5-channel routers connected in a torus

network and simulated with a random stimulus generator sending legal packets through the

network. Finally, the OpenSPARC designs use processors from the OpenSPARC T1 multi-

core chip (excluding caches) and run a conglomeration of assembly regressions provided

with Sun’s open source distribution. We built several versions of this processor: single-

core, two cores, and four cores and we simulated local cache activity by using playback of

pre-recorded signal traces from processor-crossbar and processor-cache interactions.

49

3.6.1 Performance of the oblivious simulator

The performance of the oblivious GCS simulator is measured for all testbench designs with

the exception of the multi-core versions of the OpenSPARC, due to circuit size limitation

inherent in the design of this simulator. The results are discussed in Table 3.2.

Seq GCS Speed

design cycles Sim(s) time(s) up

Alpha no pipeline 12,889,495 40,427 9,942 4.07x

Alpha pipeline 13,423,608 67,560 10,688 6.32x

LDPC encoder 100,000 12,014 193 62.25x

1,000,000 120,257 1,993 60.34x

10,000,000 >48h 19,859

JPEG decompressor 2,983,674 14,740 929 15.87x

3x3 NoC router 111,823 386 50 7.72x

1,225,245 2,819 324 8.7x

1,967,155 4,258 504 8.45x

4x4 NoC routers 120,791 561 82 6.84x

1,298,438 3,263 424 7.7x

2,018,450 5,061 659 7.68x

10,000,001 34,503 4,656 7.41x

OpenSPARC core - v9allinst.s 119,017 3,221 756 4.26x

- lsu mbar.s 137,497 3,726 880 4.23x

- lsu stbar.s 101,720 2,762 640 4.32x

Table 3.2 Oblivious GCS performance. Comparison of GCS simulation performance against

a state-of-the-art event-driven simulator. GCS outperforms the sequential simulator by 14.4x on

average.

3.6.2 Performance of the event-driven simulator

Finally, we evaluated the performance of our prototype event-driven GCS simulator against

that of a commercial, event-driven sequential simulator. Our graphics coprocessor was a

CUDA-enabled 8800GT GPU with 14 multiprocessors and 512MB of device memory, op-

erating at 600MHz for the cores and 900MHz for the memory. The current implementation

has 83% occupancy and achieves a bandwidth of 20.4 GB/s. The commercial simulator

was run on a 2.4 GHz Intel Core 2 Quad running RH-EL5, enabling 4 parallel simulation

threads. For each design, Table 3.3 reports the number of cycles simulated, the runtimes

in seconds for both the GPU-based simulator and the commercial simulator (compilation

times are excluded), and the relative speedup. Note that our prototype simulator outper-

forms the commercial simulator by 4 to 44 times. Despite the LDPC encoder having a

50

very high activation rate, we report the best speedup for this design. As mentioned before,

most gates in this design are switching in each cycle: this affects our activation rates, but

hampers the sequential simulator performance. Thus, the speedup obtained is due to sheer

parallelism of our architecture.

sim seq GPU speed

design cycles sim(s) sim(s) up

Alpha no pipeline 12,889,495 31,678 2,567 12.15x

Alpha pipeline 13,423,608 54,789 7,781 7.04x

LDPC encoder 1,000,000 115,671 2,578 44.87x

10,000,000 >48h 25,973 43.49x

JPEG decompressor 2,983,674 12,146 599 20.28x

3x3 NoC routers 1,967,155 3,532 397 8.90x

4x4 NoC routers 10,000,001 28,867 3,935 7.34x

sparc core x1 1,074,702 27,894 6,077 4.59x

sparc core x2 1,074,702 40,378 8,229 4.91x

sparc core x4 1,074,702 61,678 10,983 5.62x

Table 3.3 Event-driven GCS performance. Performance comparison between event-driven

GCS simulator and a commercial event-driven simulator. Our prototype simulator outperforms the

commercial simulator by 13 times on average.

3.7 Towards high-performance behavioral simulation

One of the most common languages for modeling many digital designs, and particularly

embedded systems, is SystemC [74]. SystemC extends C/C++ with libraries to describe

HW constructs. It is widely deployed in early-stage analyses and design-space explo-

rations. Unfortunately, simulation performance of SystemC is fairly slow, typically 10x

slower than other RTL languages simulations [36]. To make things worse, the most

common SystemC simulation kernel (OSCI) uses application-level threading (co-operative

threads), thus it is intrinsically sequential because the operating system cannot dispatch

co-operative threads to different processing elements. When simulating transaction-level

models (TLMs) these limitations do not have a major impact because the scheduler in-

tervenes rarely and does not introduce substantial overhead. In contrast, RTL simulation

requires frequent scheduler operations, leading to heavy performance impact.

Simulation solutions for SystemC use an event-based architecture, where a centralized

scheduler controls the execution of processes based on events (synchronizations, time no-

tifications or signal value changes). Processes are blocks of activities connected to a same

trigger event. Figure 3.10 depicts the execution flow of a typical SystemC simulation ker-

51

lmnnopqr
stuvrwwrwx

yszo{r tmnnopqr
stuvrwwrw

yszo{r oqq w|}noqw

~�rn{w
}rnrto{rzx

yszo{r w|�mqo{|un
{|�r

~nz

yszo{r tmnnopqr
stuvrwwrw

����
������ ����������

�����

�����
�����

����������

������ ���
����� ������

�
�

�

�

�

�

~�rvm{r oqq tmnnopqr
stuvrwwrw

~�rn{w
}rnrto{rzx

Figure 3.10 Traditional SystemC simulator scheduler. The scheduler is the central component

of the simulator and it coordinates all activities, including all SystemC processes execution. Its

inherently sequential structure makes parallelization of the simulator unattainable.

nel. The flow is iterated until no event is left to be processed, indicating the end of the

simulation. A simulation cycle completes at the end of each iteration through the complete

flow. Within each cycle, there is first an evaluation phase during which all runnable pro-

cesses are executed. Signals are updated at the end of execution of each process. If a signal

value change occurs, all processes sensitive to that signal change are added to the runnable

queue (this is called signal and event update phase).

Finally, during the time update phase, the time of the next simulation cycle is deter-

mined by setting it to the earliest of (i) the time at which simulation ends, (ii) the next time

at which an event occurs, or (iii) the next time at which a process is scheduled to resume.

If simulation time is not increased, the next simulation cycle will be a delta cycle. When

no new event is fired, simulation ends. The order of process execution within a delta cycle

does not affect the simulation’s output since the simulator presents the same system’s status

to all those processes.

The scheduler in a SystemC simulator coordinates the activation of all processes and

manages both delta and simulation cycles. Because of this centralized approach, traditional

SystemC simulators cannot take advantage of the concurrency of modern CMPs. Hence to

52

adapt SystemC simulation to a massively parallel platform such as GP-GPUs, we need a

very different approach than the one followed by traditional SystemC simulators. The next

few Sections (3.8 to 3.9) detail a simulation solution for SystemC RTL targeting GP-GPUs,

called SAGA (SystemC Acceleration on GPU Architectures).

3.8 Mapping SystemC to GP-GPU

Exposing parallelism in a SystemC simulator is non trivial, since the simulation is neither

embarrassingly parallel, nor homogeneous. However, some parallelism can be extracted

when treating the active processes in a same delta cycle as concurrent tasks. SAGA exploits

this aspect in three steps:

1. construction of the dependency graph. We build a static schedule for the processes

of the SystemC model under simulation, based upon the signals read and written by

each process. The schedule is designed so to lead to equivalent results as the dynamic

schedule of the traditional simulator (Section 3.8.1);

2. partitioning of the static schedule into parallel dataflows. Dataflows will be exe-

cuted concurrently in different warps on the CUDA architecture (Section 3.8.2). This

step is based on a novel dataflow partitioning mechanism applied to the schedule we

generated in the previous step.

3. levelization of processes within each dataflow based on a sequential order. The re-

sulting process blocks will be executed by concurrent thread-blocks in the GP-GPU

(Section 3.8.3).

The three steps are illustrated in Figure 3.11 and detailed next.

3.8.1 Construction of process dependency graph

In SAGA we pursue a novel approach to SystemC simulation that allows us to simulate

most SystemC designs. The models that cannot use our approach are those that contain cir-

cular dependency loops; however, those cannot be synthesized either, so they do not arise

in practical designs. In our construction, we arrange the processes in producer-consumer

order based on the I/O direction of their connecting signals. To this end, we build a process-

graph PG = (V;E) where each process is represented by a vertexV ; a directed edge E from

V1 to V2 represents a process dependency due to a signal generated by V1 and consumed

by V2. We do not represent synchronous statements in the process-graph, since they create

a dependency between present-state values and next-state values through time, which is

not represented in our graph. PG is a directed acyclic graph (DAG) by construction, and

thus we can apply a topological sort to it. Processes dependent only on delta events at

53

���� �� �� ��

�� ��

�� ��

�� ¡¢£�¤ ¡¢£ ¥¦§¨¦©
ª«¬ª

¥¦§¨¦©
ª«¬ª

­®¯°±®² ¨³´­³´

­®¯°±®² ¯µ­³´¶

·¸ ¹º»º¼½ ¾½¿ÀÁÂÃÀ ÄÅ º¿À
¹Æ¾ºÀÇÈ ÇÄÁÀÃÉ¾
Á»º»ÊÅÃÄË ÌÍ»Î¿

���� ��

��

��

�� �� �� ��

�� ��

��

«±´±Ï§¨Ð Ñ «±´±Ï§¨Ð Ò

Ó¸ Ô»º»ÅÃÄË Î»Íº¼º¼ÄÕ¼ÕÌ
ºÄ ÀÕ¿»Õ½À ½ÄÕ½ÂÍÍÀÕ½Æ

���� ��

��

��

��
��
��
��

��

��
��
��

��

Ö× Ø ÙÚ¡ÛÜ¡ÝÞ

�� �� �� ��

�� ��

��

��
��

��

ßà Ñ ßà Ò«±´±Ï§¨Ð Ñ «±´±Ï§¨Ð Ò

ØáÙØâ ãäÞÝ£¡Ö
å¸ æÍÄ½À¾¾ ÃÀçÀÃ¼è»º¼ÄÕ »ÕÁ

ÁÀº»¼ÃÀÁ ¾½¿ÀÁÂÃ¼ÕÌ

�¤ äÛ¡Ú �� äÛ¡Ú

Figure 3.11 SAGA steps in generating a high performance GPU-based SystemC simulation.

SAGA proceeds in three steps: first it construct a static schedule for the SystemC processes, than

it partitions each dataflow to enhance concurrency, and finally it performs detailed scheduling and

mapping.

54

their primary inputs and synchronous variables occupy the lowest level; the other levels are

established by the edge connections.

Figure 3.11.1 shows an example of a process graph built for a typical SystemC module.

Nodes in grey represent synchronous processes (e.g., P8), while white corresponds to asyn-

chronous processes (e.g., P6). Signals R1 and R2 are written by synchronous statements,

thus they have a current value (R1 prev and R2 prev respectively) and a future value (R1

next and R2 next). Their current value will be updated once the dataflow execution has

completed (as suggested by the dashed arrows). Steady-state values at the primary output

signals and next state values for the synchronous signals can be obtained by executing the

processes level-by-level. Because of how delta cycles operate in a traditional simulator, a

PG-based simulation following the schedule we set for the process graph is guaranteed to

provide the same results as the traditional simulator at stable state.

Moreover, our construction leveraging static scheduling presents an intrinsic advantage

for parallel platforms, since a central event queue structure is no longer needed. Note that

we can still benefit from the advantages of an event-driven simulation: all we need to do is

check for value-change events at the input of each process within the dataflow. If we only

execute a process conditionally to a change at its inputs, then we are basically using an

event-based approach and taking advantage of its benefits. This optimization brings upon

a 10% performance improvement on average over our baseline solution.

3.8.2 Partitioning into concurrent dataflows

There are several ways of partitioning the process graph obtained in the previous section:

we select one based on the constraints of our target GPU platform. A straightforward

approach would map different processes to distinct threads, one thread per process. We

can then execute all processes in a same schedule level concurrently. However, this could

lead to severe thread execution divergence if the processes do not share the same source

code. Thus, to leverage as much parallelism as possible we devise a novel scheme in which

the static schedule of the process graph is partitioned into multiple independent dataflows.

These are then mapped to distinct multiprocessors for concurrent execution since different

multiprocessors have distinct fetch units. The dataflows we create in this step are segments

of the scheduled process graph that can be executed independently. When necessary we

may replicate some portions of the process graph to attain independence among dataflows.

The partitioning algorithm is outlined Figure 3.12. First, we select processes in the

static schedule that do not activate any other process asynchronously, that is, they are root

processes in the PG graph (line 4) (e.g., P8 and P9 in Figure 3.11.1). For each of these

55

nodes, we select their fan-in cone in the PG (line 5–12), as illustrated in the second step in

Figure 3.11. Processes that are common to multiple cones are replicated in each cone (e.g.,

the processes in the dashed circles in the Figure) in order to make the cones independent of

each other and to enable concurrent execution.

1: list queue;

2: for each node n ∈V do

3: list current data f low;

4: if n has no exiting edges then

5: queue.add(n);

6: while queue is not empty do

7: Node current node = queue.pop();

8: current data f low.add(current node);

9: for all incoming edges edge of current node do

10: queue.add(edge.getSource());

11: end for

12: end while

13: end if

14: end for

15: data f low list.add(current data f low);

Figure 3.12 Dataflow partitioning algorithm.

Even though we need to replicate some portions of the process dependency graph, thus

increasing the amount of simulation required, replication ultimately eliminates the need of

communicating values among dataflows, thus leading to an important reduction in commu-

nication cost through device memory.

3.8.3 Parallel execution in CUDA

The cones built in the previous step are process dependency trees, that must be executed

level-by-level to respect the internal dependency constraints. Thus, for each dataflow ob-

tained in the previous step, we now generate a total serial order of processes that satisfies

the level-to-level dependencies.

First of all, we levelize the cones by following the algorithm outlined in Figure 3.13.

In this process, if the current node has no incoming edges (and thus it is not activated by

any other process in the dataflow), then it belongs to the lowest scheduling level (lines 3–

4). Otherwise, the node is scheduled at a level higher than that of all its fan-in processes

(line 6-11). This step strengthens the dependency relation between processes (e.g., in the

example in step 3 of Figure 3.11, not only P3 and P4 execute before P7, but also P5 does).

56

1: for each dataflow data f low in data f low list do

2: for each node n in data f low do

3: if n has no incoming edges then

4: n.setLevel(0);

5: else

6: n.setLevel(-1);

7: end if

8: end for

9: while at least one node has not been assigned a non-negative level do

10: for each node n in data f low do

11: if for each incoming edge edge, the source node edge.getSource() has a non-negative

level then

12: for each incoming edge edge of n do

13: if n.getLevel() < edge.getSource().getLevel() then

14: n.setLevel(edge.getSource().getLevel() + 1);

15: end if

16: end for

17: end if

18: end for

19: end while

20: end for

Figure 3.13 Dataflow levelization algorithm.

Then, processes in each dataflow are serialized by starting from the lower levels up to

the root processes (processes at the same level can be executed in any sequential order).

It is advantageous to create such sequential order for each dataflow, since it eliminates the

need of frequent synchronization after each level. An example timeline obtained from this

process is shown on the right hand side of Figure 3.11.3.

At this point SAGA generates the CUDA code corresponding to the generated process

schedule. We use two kernels: a simulation kernel manages dataflow execution, and it is

constructed by listing all the dataflows and predicating each by a thread-block ID condi-

tion, so that only a specific thread-block is responsible for executing a certain dataflow. The

body of each individual process is replaced by equivalent CUDA code, which might require

translation of SystemC data-types into native data-types, as reported in Section 3.9.1. The

simulation kernel alternates execution with a value-update kernel, responsible for trans-

ferring the next-state values into the corresponding present-state values and performing

testbench actions. A simulation cycle is completed by one execution of the simulation

kernel followed by one execution of the update kernel.

Since device memory accesses are particularly slow, as indicated in Section 3.2, a

57

key improvement is provided by allocating as little data as possible in global memory.

To achieve this, only variables written by synchronous processes are allocated in global

memory, since their value must be persistent among different kernel executions. All other

variables can be declared as local variables, and will consequently be mapped to registers

with much faster access latency.

3.9 SAGA experimental evaluation

In this section we evaluate the performance of SAGA, provide insights on its intermediate

data structure and compare it against other state-of-the art solutions in this space. First

we discuss our experimental setup; then compare SAGA’s performance against that of a

sequential simulator and finally a comparison with other available concurrent solutions is

also provided.

3.9.1 Experimental setup

SAGA considers as input a SystemC design, it transforms it as discussed in Section 3.8,

producing all the CUDA code necessary to run the corresponding simulation on a GPU, as

output. The code can then be off-loaded to a GPU platform and executed. All experiments

discussed below were evaluated on a NVIDIA GTX480 GPU and a Intel quad core i7 op-

erating at 2.8Ghz and running Linux RedHat 5.7. In addition, we leveraged the HIFSuite

framework [37] to parse the SystemC code and generate an intermediate data structure that

is used by SAGA for its internal transformations.

The first task in SAGA consists of considering a SystemC description and translating

it into the HIFSuite’s internal format (HIF) by using the HIFSuite sc2hif tool. The code

generated at this point is a tree-structured XML-like representation of the original code,

where semantic objects are represented with TAGS.

SAGA then applies a number of pre-processing steps to the HIF description. First it

extracts all the processes and builds an initial dependency graph, according to signal de-

pendencies among processes. It then applies the 3-step transformation described in Section

3.8.

At this stage SystemC data types are substituted with native C/C++ data types and

all corresponding data structures are built. This transformation is necessary because the

CUDA language does not support SystemC data types. Finally, SAGA generates the code

for the kernel functions, and outputs the generated HIF description representing the de-

58

tailed scheduled dataflows obtained with our algorithm. As a last step, the resulting HIF

code is converted into C code by means of the HIFSuite hif2c tool. This representation is

ready to be compiled for the target CUDA architecture.

Table 3.4 presents our testbench designs. The designs are part of a complex embed-

ded platform that was developed in the context of a European project together with silicon

vendor industry partners. Specifically:

• ECC is an error correction code device.

• ClockGen, ResGen, Sync and RegCtrl are part of a complex DSPI system. Clock-

Gen is a clock generator, creating multiple clocks for the various components in the

system. ResGen transforms and outputs the computed results in the specified for-

mat. Sync is a specialized synchronization function among a number of components.

RegCtrl is a register controller for a set of registers.

• 8b10b is a module performing encoding and decoding byte-wide data according to

the 8b/10b protocol.

We evaluated SAGA on the individual testbench designs and on two more complex SoC

design assemblies: Half Platform, comprising ECC, ClockGen, ResGen and Sync; and

Plaform integrating all the testbench designs previously discussed. For each design, Table

3.4 reports the number of processes in the original SystemC description (Processes (#)),

the lines of code (SystemC (loc)), the number of dataflows extracted (Dataflows (#)) and

the amount of code replication due to our step 2 (see Section 3.8) measured in number of

processes replicated (Replicated processes (#)).

Design Processes(#) SystemC Dataflows Replicated

Synchr. Asynchr. (loc) (#) processes (#)

ECC 4 7 582 4 4 / 3

ClockGen 6 15 741 12 7 / 3

ResGen 3 6 478 9 0 / 0

Sync 4 22 641 23 0 / 0

RegCtrl 18 32 2677 43 17 / 8

8b10b 7 30 799 7 9 / 3

Half Platform 18 51 2355 48 11 / 3

Platform 42 112 5643 98 37 / 8

Table 3.4 Characteristics of the testbench designs used for SAGA’s evaluation.

59

3.9.2 Performance

Table 3.5 compares SAGA’s performance with that of a SystemC sequential execution as

discussed in Section 3.7. For each design, Table 3.5 reports simulation time of the Sys-

temC simulation (Column SystemC simul. (ms)) and of the SAGA-generated CUDA code

(Column SAGA simul. (ms)). It then reports their comparative performance in terms of

SAGA’s speedup over sequential execution (Column Speedup (x)). The results show that

the SAGA simulation is always faster than its corresponding SystemC sequential simula-

tion. However, the speedup is moderate when comparing the small, individual component

designs, leading to up to a 3.89 times improvement. Note, however, that even in presence

of highly heterogeneous and complex processes SAGA achieves a respectable performance

improvement. In addition the speedup achieved with the two more complex designs is

much higher, ranging from 10 to almost 16x. This result suggests that SAGA is a promis-

ing solution that can extract even more concurrency from the more complex designs where

there are more processes available, leading to a better utilization of the parallel resources

available on the GP-GPU.

The speedup achieved by SAGA is bounded both by the amount of concurrency that

can be extracted from each module, and by the amount of computation they require. When

both these factors are high, the generated code greatly outperforms sequential SystemC

simulation. A low level of parallelism (ECC and ClockGen) or non-intensive computation

(ResGen and Sync) lead to lower speedups, due to a heavier contribution of synchroniza-

tion not balanced by computation, or because the limited concurrency is not offset by its

setup overhead.

Design SystemC SAGA Speedup

simul. (ms) simul. (ms) (x)

ECC 11.99 5.05 2.37

ClockGen 18.00 7.13 2.52

ResGen 8.97 5.22 1.71

Sync 9.98 5.73 1.74

RegCtrl 41.97 13.05 3.21

8b10b 15.99 4.11 3.89

Half Platform 83.98 8.143 10.31

Platform 228.96 14.34 15.97

Table 3.5 Performance improvement of SAGA vs. a sequential simulator.

60

3.9.3 Architecture comparison

In order to show the effectiveness of the proposed methodology, we compared the perfor-

mance of SAGA against that of two other concurrent solutions for SystemC simulation. For

this study we report results on only two designs for sake of brevity. However, these two

designs are representative of typical behavior and we found that the other designs lead to

similar outcomes.

For this study we considered a concurrent SystemC simulator targeting a standard chip

multiprocessor (CMP) and also another GPU-target simulation solution, called SCGPsim

[71], outlined in Section 2. We implemented SCGPsim based on their description and we

developed the CMP solution using the pthread library to map SystemC processes. We

report our findings in Table 3.6, where speedups are normalized to the performance of the

sequential simulator.

The table indicates that SAGA is the fastest solution, providing a speedup of 2 to 4x

over the solution of [71], and even more over the multiprocessor design. Also note that the

other solutions do not provide a performance improvement over the sequential simulation

for ECC. Upon further inspection we found that the CMP solution does not achieve good

concurrency because distinct processes are mapped to co-operative threads, as discussed

in Section 1. SCGPsim’s performance is not high because of the reasons discussed in our

related work section: unless processes share the same code, they are scheduled sequentially

when mapped on a same multiprocessor, since each multiprocessor uses a single fetch unit.

We believe that the authors of [71] experienced much higher speedups because they evalu-

ated their solution on SystemC descriptions where processes had identical code. However,

this is a very rare situation for any practical design.

Implementation ECC ClockGen

Time (ms) Speedup Time (ms) Speedup

SystemC 11.99 1x 18.00 1x

Multiprocessor 94.00 0.13x 20.00 0.9x

SCGPsim 20.08 0.59x 14.77 1.22x

SAGA 5.05 2.37x 7.13 2.52x

Table 3.6 Performance comparison of SAGA vs. other concurrent solutions: Multiprocessor is

a concurrent simulator using pthreads on a CMP; SCGPsim is a parallel simulator targeting GPUs.

3.10 Related work

Research on logic simulators bloomed in the 1980s, when the concepts of circuit netlist

compilation, oblivious and event-driven simulation were first explored [21, 12, 60, 11].

61

In particular, [11] provides a comparative analysis of early attempts to parallelize event-

driven simulation by dividing the processing of individual events across multiple machines

with fine granularity. This fine granularity would generate a high communication overhead

and, depending on the solution, the issue of deadlock avoidance could require specialized

event handling. Parallel logic simulation algorithms were also proposed for distributed

systems [66, 64] and multiprocessors [55]. In these solutions, individual execution threads

would operate on distinct netlist clusters and communicate in an event-driven fashion, with

a thread being activated if switching activity was observed at the inputs of its netlist cluster.

Both conservative [25, 70, 42] and speculative techniques, such as time warp [16, 14], were

proposed to handle synchronization in these discrete event algorithms. Today, several com-

mercial simulators building on these concepts are available: they execute on a single CPU

and adopt aggressive compiled-code optimization techniques to boost their performance.

In addition, specialized hardware solutions (emulation systems) have also been explored

to boost simulation performance. These systems typically consist of several identical hard-

ware units connected together, with units optimized for the simulation of small logic blocks.

To emulate a circuit netlist, a “compiler” partitions the netlist into blocks and then loads

each block into separate units [34, 10, 57]. Modern emulators can deliver 3-4 orders of

magnitude speedup and they can handle very large designs. However, their cost is pro-

hibitively large and the process of successfully mapping a netlist to an emulator can take

up to few months.

Logic simulation has been attempted on vector processors in the past[52, 81]. Most

recently, a few research solutions have been proposed to run simulations on GPUs: a first

attempt by Perinkulam [78] did not provide performance benefits due to lack of general

purpose programming primitives for their platform and the high communication overhead

generated by their solution. Another recent solution in this space [44] introduces par-

allel fault simulation on a CUDA GPU target. It derives its parallelism by simulating

distinct fault patterns on distinct processing units, with no partitioning within individual

simulations or the design. In contrast, we target fast simulation of complex designs, thus

we must explore circuit partitioning and optimizations techniques in order to leverage the

parallelism of the target platform. Moreover, we optimize the performance of individual

simulation runs, in contrast with [44], which optimizes over all faults simulations.

Several works in the literature proposes to take advantage of the inherent parallelism

of SystemC processes to speedup simulation [28, 39, 98, 83]. Most of them exploit the

fact that the order of execution of processes activated within the same simulation cycle

does not affect simulation’s results. Thanks to this characteristic of SystemC scheduling,

processes that are activated within the same delta cycle can be executed in parallel, either

62

by using multiple threads or by designing a distributed scheduler. For instance, in [39]

SystemC processes are executed as threads on multiple CPUs. Each CPU is assigned a

thread and an execution environment and then a set of runnable processes is assigned to

each thread. Unfortunately, simulation relies on a simulation platform (ArchSim) that in-

troduces a lot of overhead, thus making this approach ineffective. In contrast, the approach

of [28] uses a distributed scheduler. Each processing node includes a copy of the scheduler

and it simulates a subset of the application modules. All scheduler’s copies must synchro-

nize after each delta cycle to update the value of shared signals and of simulation time, thus

this approach generates many synchronization events among processes running on separate

processors.

A largely different approach is proposed in [83], which transforms modules’ structure.

The methodology analyzes SystemC modules and it identifies blocks within processes that

can be executed within one phase of the SystemC simulator. Then these blocks are sched-

uled according to their data and control dependencies. The result operates equivalently to

a concurrent scheduler, with the difference that this was achieved via static code analysis.

All these solutions rely on code’s modifications or introduce heavy overhead because they

rely on the existing simulator architecture [98, 28].

A different approach is proposed by the authors of [71], who also target the massive

parallelism offered by today’s GP-GPUs. In their solution, independent SystemC processes

are mapped into parallel threads that synchronize at each iteration of a delta cycle (Figure

3.10) through a barrier synchronization to maintain the correct producer-consumer relation

among threads. Since typical SystemC processes contain few word-level and arithmetic

operations, this can lead to more time spent on synchronization than execution.

3.11 Summary

This chapter demonstrates that the performance of software-based simulation can be im-

proved by using an alternative execution substrate in the form of GP-GPUs. Simulation of

digital designs at different abstraction levels is essentially a parallel computation problem

which can be accelerated via parallel processing. The massive execution parallelism of GP-

GPUs turns out to be a good fit for this problem. The potential of leveraging GP-GPUs for

accelerating simulation is explored at two abstraction levels in particular, gate-level logic

simulation and a subset of SystemC behavioral descriptions.

Towards accelerating structural logic simulation, two novel gate-level simulator archi-

tectures were developed that leverage the high degree of parallelism of GP-GPUs. By

63

extracting parallelism in the simulation of gate-level netlists, we are able to realize a 13

times speedup over traditional sequential simulators, on average. The oblivious simulator

maps complex netlists to the GPU by employing a novel clustering and balancing algo-

rithm. The algorithm cleverly orchestrates the use of GPU resources to convert their high

computing power into simulation performance. While the event-driven simulator carves

out macro-gates from the structural netlist of a design and schedules them for simulation

on the multiprocessors of the NVIDIA CUDA architecture, only if they are activated by

switching events at their inputs.

This chapter also demonstrated the viability of GP-GPUs as an accelerator for software-

based simulation at a much higher level of design description, namely SystemC. This

problem is more challenging as the computation pattern is even more irregular compared to

gate-level simulation. To tackle this challenge, we proposed novel static data-flow partition-

ing algorithms to extract the parallelism present in the problem to map it to the parallelism

available in GP-GPUs. This scheme allows us to forgo frequent synchronizations and de-

liver better simulation performance. We achieved up to an order-of-magnitude speedup

over conventional SystemC simulators.

Overall, The experimental results show that the discussed software-based simulators on

GP-GPU execution substrate are capable of delivering a remarkable performance speedup

on large, industrial-scale designs over existing software-based simulators, thus bringing

about new validation frontiers for the digital design industry. However, referring to the

simulation spectrum as explained in Chapter 2, software-based simulation acceleration so-

lutions as described in this chapter are still slower than dedicated hardware-accelerated

platforms. Unfortunately, the hardware-accelerated platforms do not provide the same de-

gree of checking and debugging capability as possible with software-simulators, hence the

performance advantage is not fully harnessed for validation. Hence, to achieve validation at

the highest performance it is imperative to bring in such capability to those platforms. This

will be the guiding motivation for next few chapters: to achieve checking and debugging

capability on hardware-accelerated simulation platforms.

64

Chapter 4

Providing Observability for

Hardware-accelerated Simulation

All platforms for simulation-based validation beyond software-based simulation are plagued

by the fundamental limitation of lack of observability. As discussed in Chapter 2, we can

only trace a subset of signals in acceleration and emulation platforms for simulation perfor-

mance reasons; while in silicon such tracing capabilities incur chip area overhead. Since

simulation performance deteriorates with the amount of recorded data, it is imperative that

only a small number of signals are selected for tracing. However, in order to debug a design

we often need to know the value of many internal signals. An approach towards solving this

problem involves recording the values of a small number of signals and reconstructing the

values of several non-observed signals from this information, which in turn may facilitate

debugging. This approach necessitates heuristics and algorithms to find a set of signals that

have the potential of reconstructing the maximum number of non-observed signals. This

chapter of the dissertation presents a simulation-based method to evaluate such reconstruc-

tion potential of subsets of signals, leading to selection of a subset which is most beneficial

from this perspective.

4.1 Towards obtaining observability beyond software-bas-

ed simulation

As discussed in Chapter 2, acceleration and emulation platforms incur performance cost for

observation or recording of internal design signals. Hence, only a small group of signals

are usually selected for observation. This problem is even more acute in the post-silicon

validation phase. The capabilities of physical probing tools [72] are very limited, and it

is infeasible to observe each and every signal in fabricated silicon. So far, reusing de-

sign for test (DFT) circuit structures, such as internal scan chains, for silicon debug has

been widely adopted in the industry [92]. Though scan chains can capture all or a subset

65

of internal state elements, and thus increase signal observability for silicon debug, it may

take several thousand clock cycles to dump out one observed state snapshot and, in most

cases, the circuit’s execution must be suspended until the completion of this process. The

common fundamental challenge lies in the very limited visibility of internal design

signals.

To facilitate debugging under acceleration, emulation or the silicon itself, design for

debug (DFD) structures such as embedded logic analyzers (ELAs), have been proposed

[3] and have found widespread use in the industry [6, 95, 7]. An ELA consists of a mix

of trigger units and sampling units. Programmable trigger units are used to specify an

event for triggering the logging of internal signal values. Sampling units are used to log

the values of a small set of signals (trace signals) over a specified number of clock cycles

into trace buffers. The number of signals traced is known as the width of the trace buffer,

while the length of the tracing interval is called depth. Trace buffers are implemented with

on-chip embedded memories [95] and data acquisition can be performed during normal

chip operation by setting up the relevant trigger event. Subsequently, the sampled data is

transferred off-platform via low bandwidth interfaces for post-processing analysis for de-

bug. Note that DFD structures must maintain a low logic/area overhead profile, since

they do not provide added benefits to the design. As a result, only a very small number

of signals can be traced in comparison to those available in the design.

For ELAs to be effective, designers must carefully select for tracing those signals that

yield the most debug information. Through a judicious choice of trace signals, one can

even reconstruct data for state elements that are not traced. As an example, for micro-

processor designs, it is common practice to trace pipeline control signals so that the values

of other data registers can be inferred during post-analysis. This approach cannot be used

for a general circuit, however, because it leverages architectural knowledge of the design.

Indeed, the need for generalized solutions in this domain is growing.

Even though the additional inferred information does not guarantee identification of

design errors, it still increases internal signal visibility and has the potential of providing

valuable debugging information. Because functional bugs tend to occur in unexpected re-

gions and configurations, it is not always possible to predict the most important signals

to trace. Ideally we would like a mechanism which allows reconstructing almost all in-

ternal signals from the tracing of just a handful of signals, so as to offer comparable

quality of observability in hardware accelerated platforms or the silicon itself, as offered

by software-based simulation.

Recent research addressing these challenges [58] has shown that many non-traced sig-

nals and state elements can be inferred from a small number of traced state elements by

66

forward and backward implication, even in arbitrary logic. Ko and Nicolici [58] were

first to propose an automated trace signal selection method that attempts to maximize the

number of non-traced states restored from a given number of traced state elements. The

restoration process can also be considered as a data compression technique in an in-

verse way. The information content of all restored signals is compressed in the traced

signals in a lossless fashion. The quality of the trace signal selection was quantified

by the state restoration ratio (SRR), that is, the ratio of the number of state values

restored over the state values traced, over a given time interval. This measure has been

adopted by subsequent research to compare the quality of other solutions. Further research

[61, 80, 13] has proposed several automated trace signal selection methods based on differ-

ent heuristics for estimating the state restoration capabilities of a group of signals. These

research solutions share a common structure: (i) a metric to estimate the state restoration

capability of a set of state elements and (ii) the use of the metric in a greedy selection

process to evaluate candidate set of signals and converge to a final selection.

4.1.1 Overview of this chapter

In this chapter, first we provide the background of the state restoration process (Section

4.2) and then present the common structure and shortcomings of existing signal selection

algorithms with the objective of maximizing restoration (Section 4.3). In Section 4.4, we

demonstrate that an accurate metric for state restoration capability of a set of signals

can be obtained by actually simulating the restoration process on the circuit over a small

number of cycles, and measuring the corresponding restoration ratio. Then a novel signal

selection method guided by this metric is presented in Section 4.5. This solution over-

comes a key shortcoming of previous greedy approaches to a large degree, namely

that of diminishing returns: when the number of traced signals is increased, additional

restored state elements increases sub-linearly. Effectively this solution is able to provide a

higher degree of observability into the design, which will greatly facilitate debug. This is

demonstrated in the experimental results presented in Section 4.6. Relevant prior work is

presented in Section 4.7 and finally the chapter is concluded with Section 4.8.

4.2 Background of state restoration

An ideal debugging solution for platforms beyond software-based simulation would allow

the same level of observability i.e. every signal value is observable at each cycle, with little

67

design effort and area overhead. A more realistic goal is to attain partial observability by

tracing a small set of signals and use them to find the root cause of the bug. Several pre-

vious solutions have suggested automatic signal selection algorithms to determine which

state elements allow maximum restoration if traced. An intuitive measure for evaluating

restoration quality is the state restoration ratio, defined as SRR = Ntraced+Nrestored

Ntraced
, where

Ntraced is the number of traced state elements and Nrestored is the number of restored ones

during the time window dictated by the trace buffer’s depth. Automated signal selection

strives to maximize SRR.

 0 1 2 3 4
FF0 1 1 X X X
FF1 0 0 X X X
FF2 0 1 1 0 X

FF3 X 1 0 0 1
FF4 X 1 1 1 X

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

FF0

FF1

FF2

FF3

FF4

circuit under debug

state restoration

0
X

0

1
1

1

0
1

0

1
X

1

0
0

0

1
0

1

forward

backward

combined

Figure 4.1 Example of state restoration process. The circuit shown at the top left is the circuit

under debug, with flip-flop FF2 traced for 4 clock cycles (shown in grey). The table below lists the

values of all flip-flops, whether traced, restored or unknown(X). Forward inference and backward

justification through the logic gates (shown with forward and backward arrows in the table) allows

to restore several flip-flop values that were not traced. The elementary rules of forward inference,

backward justification and combined inference are shown for two types of logic gates on the right

side of the figure.

The state restoration process relies on the special Boolean property that if a controlling

value is known for at least one input of a logic gate, the output can be inferred without the

knowledge of other inputs. This property is used for forward inference of signal values in

the case of partial knowledge. Similarly, if a non-controlled value is observed on the output

of a gate, all input values can be inferred to be the non-controlling value for that type of

gate, enabling backward justification. Combined inferences leveraging knowledge of both

inputs and output are also possible. Repeated application of these simple operations for

all gates of a circuit till no new value can be generated at any signal leads to value recon-

struction for state elements beside those traced. This process is used in post-analysis of the

data obtained from trace-buffers to restore other non-traced signals. Figure 4.1 illustrates

this process with an example inspired by [58]. In this example flip-flop FF2 is traced over

68

four clock cycles; additional values at other flip-flops can be inferred as shown in the table

in the lower part of the figure. In this particular example, the state restoration ratio (SRR)

is SRR= 15/4 = 3.75 (Ntraced = 4,Nrestored = 11). Authors of [58] introduce an efficient

bit-parallel algorithm to perform this restoration process, which we extensively use in our

implementation. It is important to note that the forward inference and backward justifica-

tion operations are correct only if the logic functions of the gates in the circuit conform to

the structural netlist, with no stuck-at-faults or other such electrical faults. Timing errors

must also be avoided for correct restoration, a goal that can be attained by reducing the

clock frequency during debug operations for silicon. Hence this technique is only effective

for investigating functional bugs. The key challenge of this process is how to select which

state elements to trace among the thousands of a typical design to achieve the best possible

restoration of internal signals and other state elements.

4.3 Structure of existing signal selection algorithms

The signal selection algorithms presented in the literature so far [59, 61, 80, 13] focus on

delivering maximal restoration ratio and share a common structure. First, a metric is de-

vised to estimate the capacity of state restoration of a given set of signals; second, a greedy

selection process guided by the metric converges to a locally-optimal selection. Figure 4.2

summarizes this general structure.

Input: circuit, width of trace buffer w, restoration capacity metric fC(...)
Output: selected flip-flop set T

1: while |T |< w do

2: maximum observability maxV = 0;

3: for each unselected flip-flop s in circuit do

4: T=T ∪{s};
5: observabilityV= fc(T);
6: T=T −{s};
7: if V > maxV then

8: selected = s;

9: maxV =V ;

10: end if

11: end for

12: T=T ∪{selected};
13: end while

Figure 4.2 Pseudo-code for the general structure of greedy automatic signal selection algo-

rithms.

For the algorithm to be successful the capacity metric should have the following prop-

69

erties: (i) it should be proportional to the actual average SRR that can be obtained with

the given set of signals over many runs, (ii) it should be as computationally inexpensive as

possible, since several such computations will be needed in the final selection process. The

first criterion is especially important for the greedy selection process to be successful, since

it guides the successive greedy choices towards the optimal subset. The greedy selection

process starts off with the signal which promises the maximum capacity and then enlarges

the set one signal at a time by evaluating the restoration capacity of all possible candidate

sets with one more signal. In Section 4.4 we will explore how a better capacity metric can

be obtained by simulated restoration, while a critical shortcoming of the greedy selection

process itself is detailed in next section.

4.3.1 The problem of diminishing return with greedy selection

18.6 18.6 9.8

55.0

3.0 3.0
0

100

200

300

400

500

600

8 16 32 8 16 32

N
u

m
b

e
r

o
f
re

s
to

re
d

 F
lip

-f
lo

p
s

Trace buffer width

average restored FFs per cycle

average gain of restored FFs per extra traced FF

Liu & Xu Basu & Mishra

Figure 4.3 Diminishing return of number of restored flip-flops with increasing trace buffer

size is observed for two previous solutions. The plots are corresponding to circuit s38417.

The greedy selection process adopted in the previous solutions suffer from another crit-

ical problem with regards to the quality of the final set of signals chosen. Figure 4.3 plots

the average number of restored flip-flops per cycle for 3 different width of the trace buffer

(8,16,32) for the ISCAS89 benchmark circuit s38417. Alongside the average number of

restored flip-flops gained by addition of each new traced flip-flop is plotted as well. The

plots correspond to the data reported by Liu and Xu [61] and by Basu and Mishra [13].

Note that in the result obtained by Liu and Xu, growing the number of observed flip-flops

70

from 8 to 16 increases the average number of restored flip-flops per cycle, from 149 to 298,

which is a good rate ((298−149)/(16−8) = 18.62) of gain of information per added new

trace signal, shown in the adjacent dark bar. However when the number of traced signals is

increased from 16 to 32, the rate of gain is much lower. This effect is more pronounced in

the results obtained by Basu and Mishra [13], where a much better initial set of signals is

obtained but as the number of trace signals are doubled, the gain in the average number of

restored flip-flops is very minute. This behavior results from inaccuracy in the estimation

metric and due to the very nature of the greedy selection. The greedy selection algorithm

starts off with the flip-flop promising maximum restoration and attempts to grow the set by

one flip-flop at a time, and the average number of restored flip-flops plateaus off when a

larger number of flip-flops are traced. When choosing 2n flip-flops, the choice is already

constrained by previously chosen n flip-flops: We have to keep the n chosen flip-flops

in the set and find additional flip-flops which when added with the existing set provides

maximum restoration possible under this constraint. However the best possible set of 2n

flip-flops might not have all the n flip-flops, since there might be other n+1 or more flip-

flops which when taken together are able to restore more missing signals, but would not

be able to enter the final selection, since the algorithm only makes greedy choices in the

forward direction trying to grow a pre-decided set of n flip-flops. Hence for choosing a

larger number of traced signals an alternative approach of making greedy decisions from

the backward direction, i.e. starting off with the set of all flip-flops and then constraining

the set slowly to the required width, can be more successful. We outline an algorithm to

perform this elimination process.

4.4 Improving restoration capacity metric

As mentioned earlier, a good restoration capacity metric should possess high degree of

correlation with the actual observed SRR obtained with a set of signals. Since, the more

accurate the metric, the more likely it is to arrive at the optimal subset of signals at the end

of selection process. To evaluate the quality of a restoration capacity metric, we devise the

following experiment. For a design we choose 1000 random sets of 8 flip-flops each and

measure the average SRR per group, for a trace buffer depth of 4096, obtained with 100

simulation runs (using 10 sets of random seeds and 10 different starting point of tracing

i.e. offset from the initial circuit reset state, per seed). It is ensured that the circuit re-

mains in functional mode during the entire tracing process, by asserting appropriate value

at reset and other control signals. We can now plot the average SRR versus the estimated

71

state observability obtained with a restoration capacity estimation metric in a scatter plot to

measure the correlation of the metric with actual measured SRR.

y = 1.1884x - 8.221
R² = 0.1807

0

2

4

6

8

10

12

14

16

18

8 9 10 11 12 13 14 15 16 17

M
e

a
s

u
re

d
 S

ta
te

 R
e

s
to

ra
ti

o
n

 R
a

ti
o

Computed Visibility

Figure 4.4 Correlation of restoration capacity metric described by Liu and Xu with mea-

sured SRR for circuit s35932. The metric has poor yet positive correlation with measured SRR.

Note that data points in the bottom right corner represents selection of flip-flops that have a high

estimated value of state observability but rather poor measured SRR. This behavior can drive the

greedy selection algorithm to sub-optimal selections. A linear regression fit of the data is shown in

the plot, along with square of the correlation coefficient.

We implemented the restoration capacity metric called observability V, described by

Liu and Xu [61]. Figure 4.4 shows the correlation of this metric with observed SRR. As

seen in the figure, though this metric has positive correlation with measured SRR, the extent

of correlation is poor; as indicated by a low value of the correlation coefficient(R). Also

this metric can over-estimate as well as under-estimate the SRR of certain selections lead-

ing to a sub-optimal final selection. The fundamental reason behind this behavior is lossy

information compaction in probability based restorability estimates. Consider the two input

AND gate in Figure 4.5, where the restoration probability of value 1 at the both inputs are

known to be 0.5 and no other knowledge is present. A probability based estimation scheme

will infer the restoration probability of value 1 at the output to be 0.5×0.5= 0.25. However

if the actual restored value in the two signals over 6 successive clock cycles are 1X1X1X

and X1X1X1, both in accordance with the estimated restoration probability, though we can

not restore the output for any of the cycles. This flaw is common to all probability based

estimates and the inaccuracy results from compaction of information that is spread across

several cycles into a single number, and could be avoided if we had a conditional proba-

72

bility distribution of each signal’s restorability given the value of other signals. However

such detailed probabilistic treatment is infeasible. This example shows that the restoration

probability estimates are not reliable, and often do not correlate well with actual restoration

behavior.

restored X1X1X1

a

b c

V1(a)=0.5

V1(b)=0.5
V1(c)=0.25

restored 1X1X1X

restored

XXXXXX

Figure 4.5 Restoration probability estimates can be misleading, as seen in this example.

Keeping the ideal characteristics of a restoration capacity metric in mind, we inves-

tigated whether a metric of restoration capacity can be constructed out of simulation of

restoration itself. The best estimate of SRR for a group of traced signals and trace depth

in a circuit can be obtained by performing a large number of simulations with different

random seeds (for generating inputs) and starting tracing at several random offsets from

the initial reset state, then performing the restoration process for the circuit, finally taking

the average of the SRR values from each individual simulation. This is effectively analo-

gous to performing Monte-Carlo simulations for obtaining an estimate of SRR for a group

of traced signals. However, even though this estimate would be extremely accurate, each

of the individual simulations (also includes the restoration process per simulation) takes

up a considerable amount of execution time when performed for typical trace buffer depth

(∼4K clock cycles) and also several such simulations will be needed to establish a single

estimate. This violates the second criterion of an ideal capacity estimation metric. A selec-

tion algorithm will need a large number of such estimates to converge on to the final set of

signals, hence if each of the individual estimations are computationally intensive the over-

all selection process would demand an inordinate amount of time for any realistic circuit

size.

A key insight to solve this problem is the fact that the estimate of state restoration ca-

pacity does not need to exactly match observed SRR, it only has to be highly correlated

with the actual SRR that can be obtained with the same group of traced signals. A common

method of reducing effort in simulation based estimation is to perform several short simula-

tions and average their results. In this particular case which amounts to performing the state

restoration process but for a smaller length of the trace buffer. This observation lead us to

carry out a study about sensitivity of SRR on varying depth of the trace buffer. The results

73

8

10

12

14

012

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

32 64 128 256 512 1024 2048 4096

S
ta

te

R
e

s
to

ra
ti
o

n

R
a

ti
o

seed(x100)

offset(x6000)

buffer depth

Figure 4.6 Variation of SRR with trace buffer depth (3 random offsets per case, 3 random sim-

ulation seeds per offset for the s35932 circuit). The value of the observed SRR for a group of signals

is fairly insensitive to buffer depth beyond 64.

for a certain selection of 8 flip-flops in s35932 circuit is shown in Figure 4.6. For purpose

of legible representation only 9 random samples per trace buffer depth are displayed: 3

different random offsets and 3 random seeds per offset. The main observation from this

study is that the value of the SRR obtained from a certain group of traced signals is fairly

insensitive to depth of the trace buffer. In fact, there is very little variation beyond the depth

of 64 cycles. Similar behavior is observed for all other circuits, as well as when more ran-

dom samples are obtained. This observation suggests that measured SRR from simulated

restoration for small depths (∼64) can serve as an estimation metric of restoration capacity.

y = 1.028x - 0.2983

R² = 0.9774

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

y = 0.9246x + 0.1263

R² = 0.9782

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

State restoration ratio computed from mock simulation

M
e

a
s

u
re

d
 S

ta
te

 R
e

s
to

ra
ti

o
n

 R
a

ti
o

s38417 s35932

Figure 4.7 Correlation of observed SRR with our proposed restoration capacity metric

namely, SRR obtained from mock simulation with 64 cycle of buffer depth. Correlation is

shown for two circuits: s38417 and s35932. The proposed metric bears strong positive correlation

with the observed SRR indicated by the value of the correlation coefficient.

The hypothesis that SRR obtained frommock simulated restoration for small depths has

good correlation with the observed SRR is further validated by repeating the earlier correla-

74

tion study except for plotting the simulation based metric on the X axis in this case for two

benchmark circuits. The mock simulation uses depth of only 64 cycles with one random

seed and one random offset, a convention used for all estimation purposes described in the

rest of the chapter. The resultant scatter plot for circuits s38417 and s35932 is shown in

Figure 4.7. The simulation based capacity estimation evidently shows an extremely high

degree of linear correlation with the observed SRR. Similar strong correlation was found

for other circuits as well. This observation confirms the viability of using SRR obtained

from mock simulation of restoration for a small depth as an accurate estimate of restorabil-

ity of state elements. Note that, a larger depth and averaging over more random seeds and

offset values will make the estimate even more accurate and should be deployed if more

compute resources are available.

4.5 Proposed signal selection algorithm

Figure 4.8 The flip-flop selection process . The flip-flop whose elimination leads to maximum

retention of restored states according to the estimation metric is decided to be removed in next

round. The blackened out flip-flops has been already eliminated, while we have to try out all elim-

ination possibilities(shown by crossed) before deciding upon the next elimination. In this example

the trace buffer width is 2, so 2 flip-flops are selected out of 5.

The problem of selecting the optimal set of flip-flops can be viewed as a problem of re-

taining the maximum amount of information in the unrolled circuit graph. We start off with

all flip-flops in the circuit (which will restore almost all signals and states), and then we try

to constrain this set by removing flip-flops. This will ensure that we do not get constrained

by our sub-selections when selecting a larger set of trace signals as pointed out in Section

4.3.1. The flip-flops whose knowledge contribute least to restoring others should get elim-

inated earlier. When all but the desired number of flip-flops are eliminated, this process

terminates. We use the previously proposed simulation based metric, as an estimate of the

75

information retained by the remaining set of flip-flops. If elimination of two or more can-

didate flip-flops result in same amount of state restoration in mock simulation, we break

the tie by comparing total number of signals restored. If a tie still exists then it is broken

by considering the number of other flip-flops, that the candidate flip-flop is connected with

via a forward or backward path in the circuit graph. The flip-flop with less connections will

get eliminated, if a tie still remains it will be broken by random choice.

Input: circuit, width of trace buffer w, mock simulation based SRR estimator fSRR(...)
Input: parameters: step-size d, pruning termination parameter PT

Output: selected flip-flop set T

1: The set of all flip-flops in the circuit S;

2: Current observabilityV = fSRR(S)×|S|;
3: Start with all flip-flops T = S;

4: while V > PT do

5: for each flip-flop s in T do

6: T = T −{s};
7: ObservabilityV = fSRR(T)×|T |;
8: Restoration capacity without s RCW [s] =V ;

9: T = T ∪{s};
10: end for

11: T = T −{s|RCW [s] is within top d values };
12: V = fSRR(T)×|T |;
13: end while

14: while |T |> w do

15: Maximum observability maxV = 0;

16: for each s in T do

17: T = T −{s};
18: observabilityV = fSRR(T)×|T |
19: T = T ∪{s}
20: if V > maxV then

21: selected = s;

22: maxV =V ;

23: end if

24: end for

25: T = T −{selected};
26: end while

Figure 4.9 Pseudo-code for the final algorithm.

This method is shown in Figure 4.8. Note that if we start with N flip-flops, it takes

O(N2) steps to converge at the final set. Hence, for large circuits the this might become

very computationally demanding. We noticed that in typical circuits some flip-flops are

always restorable from the knowledge of other flip-flops and hence they do not carry any

information. We take advantage of this by performing a fast pruning on a large number of

76

flip-flops, to reduce this size of the set to an extent that application of an O(N2) algorithm

will be feasible. To perform this pruning, we consider the SRR estimate of each possible

set by removal of one flip-flop, however instead of only removing the flip-flop whose elim-

ination leads to maximum estimated SRR and repeating the process, we remove a set of

flip-flops which have poor information content, in one step. We consider all possible elim-

inations in sorted order of SRR estimate values (as RCW [] in 4.9). The flip-flops whose

elimination lead to the top few SRR estimate values are the candidates to be in the final

elimination set. The size of the set is a parameter called step-size d. For our experiments

this parameter was set as 50. To limit the extent to which this coarse grain pruning is done

on a circuit, we can specify a pruning termination parameter PT such that if the average

number of restored flip-flops in the mock simulation drops below that value, the coarse

grain pruning will stop and the actual elimination algorithm will work on the residual set.

This parameter can create a trade-off between quality of selection and the execution perfor-

mance of the algorithm. It was chosen as 95 percent of the total number of flip-flops in the

circuit to assure good quality of signal selection for our experiments. The final algorithm

is illustrated in Figure 4.9.

4.6 Experimental results

We evaluate the quality of the trace signals selected by the proposed algorithm by com-

paring SRR obtained on six ISCAS89 benchmark circuits, which were used in previous

works that strive to maximize restoration [59, 61, 80, 13]. The number of flip-flops in

the circuits and other circuit characteristics are presented in Table 4.1. The benchmarks

are re-synthesized using Synopsys Design Compiler targeting the GTECH gate library, to

conform with the quality of optimization performed on netlists used in industry currently

(re-synthesis is performed in[86] as well). Note that, some redundant flip-flops in these

designs are removed by the synthesis tool.

Circuit # Flip-flops # Flip-flops # Gates

before synthesis after synthesis after synthesis

s5378 179 164 1,058

s9234 211 145 920

s15850 534 524 3,619

s38584 1,426 1,426 12,560

s38417 1,636 1,564 10,564

s35932 1,728 1,728 4,981

Table 4.1 Benchmark circuits used to evaluate proposed signal selection algorithm

77

The X-simulator which restores the value of non-traced signals and states forms an in-

tegral part of our solution since it is used to compute the estimation metric through mock

simulations, as well as for measuring SRR attained by the algorithm. The 3-input or larger

gates are internally de-composed into elementary 2-input gates in the X-simulator for effi-

cient computation, a transformation that has no other consequence since the trace signals

are only flip-flop values. We implemented our X-simulator using the efficient event-driven

bit-parallel forward and backward propagation technique described in [59]. All the ex-

periments were run on a quad core Intel processor running at 2.4 GHz. The width of the

bit-parallel operations in the restoration process was extended to 64 bits from the 32 bits

described in the original, to utilize the 64 bit word size of the processor, which greatly

increases the performance of individual mock simulations, performed for a depth of 64

cycles.

During the tracing operation each circuit was kept in the functional mode, by keep-

ing global reset signals de-asserted and forcing fixed values at other control inputs while

feeding random values at other primary inputs. This input restriction is referred as “deter-

ministic random” in several previous works [59, 13]. This restriction at the inputs is very

important to evaluate the quality of trace signal selection. If control inputs are allowed to

toggle, the circuit might intermittently enter the reset state and the reset signal itself might

be traced, leading to a large amount of state restoration. However, during debug this sce-

nario is unlikely to happen and the circuit will remain in the functional mode most of the

time, so the state restoration ratio obtained when control signals are allowed to toggle is

not representative of actual restoration capacity of the trace signals. This issue has been

pointed out in [59, 61]. All our experimental results correspond to the circuit operation

in functional mode, and all the mock simulation estimates are also obtained under this

constraint.

4.6.1 Restoration quality

Table 4.2 compares the state restoration ratio obtained by several previous solutions with

our proposed technique on the ISCAS89 benchmarks. As in [61, 13], the trace buffer

widths used in the experiments are 8,16 and 32, while the depth is kept at 4096 cycles

and corresponding SRR for each solution (wherever known) is reported. The percentage

improvement of SRR obtained by the proposed algorithm over the best reported value is

reported in last column. Each reported restoration ratio for the proposed algorithm is the

average over 100 simulations, with 10 different seeds (to generate random values at non-

control primary inputs), and 10 different cycle offsets from the initial reset state, per seed.

78

Circuit trace Ko & Liu & Basu & Proposed Improv.(%)

width Nicolici [59] Xu [61] Mishra [13] Solution over best

s5378 8 - 14.67 - 13.24 -9.75

16 - 8.99 - 7.83 -12.93

32 - 4.72 - 4.89 +3.60

s9234 8 - 4.76 - 10.68 +24.36

16 - 7.18 - 7.16 -0.27

32 - 4.67 - 4.18 -10.49

s15850 8 - 19.93 - 39.54 +98.39

16 - 24.22 - 24.85 +2.60

32 - 13.30 - 13.60 +2.25

s38584 8 19.00 19.23 78.00 84.10 +7.82

16 10.56 13.96 40.00 47.04 +17.60

32 6.32 8.68 20.00 26.97 +34.85

s38417 8 19.62 18.63 55.00 45.21 -17.80

16 11.22 18.62 29.00 30.77 +6.10

32 6.73 14.20 16.00 20.25 +26.56

s35932 8 41.45 64.00 95.00 96.12 +1.17

16 39.31 38.13 60.00 67.45 +12.41

32 24.76 21.06 35.00 43.23 +23.51

Table 4.2 State restoration ratio without input knowledge for ISCAS89 circuits. Only traced

state elements are used for restoration. SRR obtained by previous solutions which only use the

knowledge of traced signals are presented for comparison. The last column represents percentage

change over the best reported in literature.

For certain buffer sizes, especially in the case of smaller sized ISCAS89 circuits the SRR

obtained by our solution is less than that of the best reported. This anomalous behavior

is primarily caused by the fact that the optimized ISCAS89 circuits have a reduced num-

ber of flip-flops. Hence, even though our technique actually restores higher percentage of

flip-flops on average per cycle the reported SRR of previous solutions is often boosted by

restoration of the redundant flip-flops. As an example, for buffer size of 32 in the case of

s9234 circuit, our algorithm restores 4.18x32 = 134(approx.) flip-flops on average per cy-

cle out of 145, which is 92 percent of all flip-flops, where as the best reported solution only

restores 4.67x32=149(approx.) out of 211, which is only about 70 percent. For the larger

circuits, which are better representative of the cases encountered in post-silicon debug, our

solution achieves up to 34.85 percent (for s38584) better state restoration ratio.

79

4.6.2 Effect of pruning

We studied the effect of the pruning optimization (discussed in Section 4.5) on top of our

elimination based algorithm. The effect of pruning is shown in Figure 4.10. This data

corresponds to execution of the proposed algorithm for circuit s15850, when the fSRR()

metric is using a mock simulation of depth 32 (instead of usual 64, for purposes of visible

fine granularity), and the trace buffer width is set at 32. Hence the algorithm terminates at

trace set size of 32. A total of 524x32=16768 flip-flop values are present in the window of

mock simulation (s15850 has 524 flip-flops refer Table 4.1). The y-axis effectively plots

the value of fSRR(T)×|T |×32 during each iteration in the execution of our signal selec-

tion algorithm. Note that the no-pruning line is smooth as only one flip-flop is removed

per iteration, and the total number of restored flip-flops in the mock simulation gradually

decreases. On the other hand, pruning uses a step-size(d) of 50 flip-flops, hence during the

pruning phase total number of restored flip-flops drop as a step function at each 50 inter-

val. In this example pruning termination(PT) was set at 93 percent of all flip-flop values

i.e. 16768x0.93=15594, by which point the whole set of 524 has already been reduced to

around 200. Note that the pruning produces only slightly lesser quality signal selection

than exact version, as the with-pruning line ends slightly lower than the no-pruning line.

Thus pruning sacrifices accuracy to a small degree for faster execution of signal selection

algorithm.

12500

13000

13500

14000

14500

15000

15500

16000

16500

17000

523 473 423 373 323 273 223 173 123 73

T
o

ta
l
n

u
m

b
e

r
o

f
fl
ip

-f
lo

p
s
 r

e
s
to

re
d

Number of flip-flops remaining in trace set T

no pruning

with pruning

Figure 4.10 The effect of pruning during execution of trace signal selection algorithm is

shown for circuit s15850.

80

Circuit cpu (s) gpu (s) speedup

s38584 18,003 6,703 2.69

s38417 24,734 8,021 3.08

s35932 19,801 6,501 3.05

Table 4.3 GPU acceleration of the selection algorithm. Execution times corresponding to trace

buffer width of 32 is reported for all cases.

4.6.3 Algorithm execution performance

We implemented a parallel version of the X-simulation kernel on the GPU, which performs

the |T | independent simulations needed in every step of the elimination algorithm, in a

parallel fashion. We used a NVIDIA GTX 480 GPU as the execution platform and it was

programmed through CUDA [73]. Each distinct thread-block performs the X-simulation

using a different traced flip-flop set. The main restoration algorithm was also modified

in order to fit single instruction multiple thread execution paradigm used by GPUs. The

performance improvement obtained from parallel execution is reported in Table 4.3. Note

that performance of the parallel version is comparable or even better compared to other

solutions.

4.7 Related Work

Automatic trace signal selection algorithms for debug are a fairly new research area. One of

the first solutions in this domain [45] considered only the reconstruction of data at the com-

binational logic nodes of the circuit. Ko and Nicolici [58] defined the term state restoration

and introduced an efficient algorithm to perform state restoration as a post-analysis process

on recorded trace-buffer data. They also introduced the first trace signal selection algo-

rithm striving to maximize the amount of restored state. Further research in this area has

produced several improved solutions for automatic signal selection [61, 80, 13], all sharing

the goal of improving the SRR.

As mentioned earlier, these solutions share a common structure, with a metric to es-

timate the restoration capacity of a certain set of state elements and a greedy selection

algorithm to decide which ones to trace, based on the estimator metric. These previous

solutions primarily differ in the way estimation is performed. Both [58] and [61] leverage

a probabilistic metric: the steady state probability of the value at flip-flop outputs is esti-

mated assuming uniform random distribution of 0 and 1 logic values at the primary inputs.

Given these assumptions and using the knowledge of the traced signal values, a proba-

bilistic model of the visibility of 0 and 1 values at the other circuit nodes can be generated.

81

This probabilistic model leverages the circuit topology and logic functionality of individual

gates, and the estimation process performs forward and backward propagation of probabil-

ity values across logic gates. The final state restoration capacity estimate is then expressed

as a sum of the predicted visibility of 0 and 1 values at the state elements of the circuit.

The probabilistic model presented in [58] lacks theoretical basis and it is then improved on

in [61]. In contrast, [13] considers only the restoration probability along paths connecting

flip-flops. The probability that a flip-flop output value controls the input value of another

flip-flop is computed and called direct restorability of the corresponding path. The selec-

tion algorithm grows a region of flip-flops in a greedy fashion based on this metric, while

an adjustment mechanism accounts for flip-flops that are already selected in the region and

updates the path’s probabilities accordingly. Another solution presented in [80] estimates

the visibility of non-traced nodes by non-trivial logic implications of flip-flop values. How-

ever, [80] assumes that in addition to trace signals, all primary input values for every cycle

are known to the restoration algorithm. Our proposed solution is fundamentally different

from these previous ones as it relies on simulation for estimation instead of a probabilistic

metric.

Another line of research [96, 86] suggests that not all state elements or signals are

equally relevant for debugging purposes. Hence, instead of striving to maximize the state

restoration ratio, the authors of those works focus on maximizing restorability of a spec-

ified subset of signals, while minimizing the impact to other flip-flops. In particular, the

algorithm in [86] uses a probabilistic estimation metric analogous to [61], and follows a

pareto optimal selection process. We show that our solution can be adapted to solve this

problem variant as well, by simply assigning larger weight coefficients to the set of critical

flip-flops.

4.8 Summary

Providing observability for debugging beyond software-based simulation is one of the

biggest challenges. Lack of observability often renders the simulation performance of

hardware-accelerated platforms futile towards debugging. Only a small number of signals

can be recorded in these platforms for various performance reasons. However, observ-

ability can be achieved via reconstruction of signals. State restoration ratio is a measure

of success in terms of restoration. Solutions in this space attempt to devise algorithms that

select signals which will lead to maximum state restoration. We presented a trace signal se-

lection algorithm that strives to achieve this objective and therefore paves the way to better

82

debugging. The selection algorithm is guided by a more accurate simulation based restora-

tion capacity metric and achieves better state restoration ratio than previous solutions. It

also achieves better trends of restoration per additional traced signal while restoring higher

average number of states. Overall, this solution provides a higher degree of observabil-

ity into the design for debugging purposes via restoration, than previous solutions. This

chapter concentrated on efforts to obtain observability for design debugging capabilities on

hardware-accelerated simulation platforms. The next two chapters will explore solutions

to bring in design checking capabilities to these platforms.

83

Chapter 5

Providing Checking Capability for

Hardware-accelerated Simulation

Checking design behavior for functional correctness is one of the most critical components

of simulation-based design validation. To its credit, software-based simulation provides

a feature-rich environment for checking needs, which is critical towards validating and

debugging a design. A plethora of solutions are available for simulation-based valida-

tion of digital designs using software-based simulation [94]. Design behavioral checkers

are almost exclusively crafted in high-level functional languages or special purpose ver-

ification languages, and are an important part of a testbench. In a typical setup, a large

number of complex software checkers are used to validate different components of the

design under verification (DUV); these interface with the design and are executed concur-

rently during the simulation. This powerful checking capability is rather straightforward in

software-based simulation, since both the design and the testbench components (including

the checkers) are seamlessly integrated in the simulation software. However, the perfor-

mance of software-based simulation is far short of adequate in practice, since it is typical

in these setups to execute approximately one to ten clock cycle of the simulated design per

second (1-10Hz): since the final design typically executes at Gigahertz frequencies, it is

evident how that performance does not allow for adequate exploration of the design’s be-

havior. As a result, the industry has started to shift more and more of the validation effort

towards hardware-accelerated simulation platforms.

Unfortunately, as discussed in Chapter 2, as we move towards hardware-accelerated

simulation, checking capability diminishes severely. This problem is primarily due to the

fact that these platforms are only designed to carry out high-performance simulation of

synthesized digital logic, and do not provide capabilities for checking constructs. Hence,

checker-centric validation, although very successful for software-based simulation, fails

to extend to the realm of acceleration or emulation. The advantage of simulation perfor-

mance in hardware-accelerated platforms is often rendered futile for verification purposes

due to the lack of checking capability. Thus, to fully unlock the potential of hardware-

84

accelerated platforms, it is critical to develop solutions that bring checking capabilities to

such platforms and enable high-performance simulation-based validation. This chapter of

my dissertation develops novel solutions to tackle this challenge and brings checking capa-

bilities to hardware accelerated platforms. The approaches described in this chapter should

enable practitioners to perform high quality verification on hardware-accelerated platforms

while enjoying their performance advantage. While these solutions focus on microproces-

sor designs and the case studies target acceleration platforms, the fundamental concepts

are applicable to other types of designs, as well as other types of hardware-accelerated

simulation platforms.

Section 5.1 provides a background study about current solutions for providing checking

capabilities on hardware-accelerated simulation platforms, and highlights the associated

challenges. Section 5.2 presents an overview of the solutions, and the subsequent sections

describe these solutions in detail. Related work is presented in Section 5.12 and finally

Section 5.13 concludes this chapter.

5.1 Background

A simulation-based validation environment commonly involves checkers that are con-

nected to the design. These checkers are written in high-level languages, such as C/C++,

SystemVerilog, and interface with the design via a testbench. Though simulation-based

checking solutions come in several flavors, there are two main fundamental types of check-

ing solutions. We can express the subset of correct behavior of a design as an assertion,

which can then be checked during simulation to detect any incorrect behavior as an as-

sertion failure. This is known as assertion-based verification (ABV). Another approach

entails connecting a golden functional model to the design under verification (DUV). Of-

ten the golden model is developed at a much higher level of abstraction and using a high

level functional language such as C/C++, or special purpose verification languages such

as Vera or Specman’s e. A software checker consists of such a golden model along with

checks that determine whether the DUV and the golden model outputs agree with each

other. Typically, a number of such software checkers are attached to different blocks of

a complex design, such as a microprocessor design. Commonly used hardware descrip-

tion languages (HDL) offer ways to interface the software-checker with a design through

programmable interfaces, for example Verilog VPI, PLI and SystemVerilog DPI. Special

purpose verification languages also provide such capability. The tight coupling between

the checker functions and the simulated design allows for a relatively low-effort checker

85

design. However, such excellent checking capability is crippled by the poor performance

of software-based simulation.

As explained in Chapter 1 and 2, a number of hardware-accelerated simulation plat-

forms are becoming increasingly important for performing simulation-based validation.

These platforms include acceleration, emulation and prototyping platforms. A large class

of acceleration platforms are composed of large arrays of customized ASIC processors

[30, 23], specifically designed to simulate logic gates concurrently. To target these plat-

forms, the design under verification (DUV) must be synthesized into a structural netlist,

and then the corresponding logic gates are mapped to the execution substrate. Field-

programmable gate arrays (FPGA) are the building blocks of emulation and prototyping

platforms [10, 67]. FPGAs consist of lookup tables (LUTs) that can be programmed to em-

ulate finite sized partitions of logic. The design’s logic is mapped to these lookup tables.

Clearly, these platforms are designed for high-performance logic simulation, but are inca-

pable of executing complex checking constructs. The one feature they provide to support

checking capabilities is in allowing the recording of a pre-specified subset of design sig-

nals. Generally, these platforms are attached to a host computer from which the simulation

process is controlled and to which the recorded data is transferred.

In current industry practices, the testbench is stored and executed on the host computer

and controls the simulation running remotely on the platform. Selected signals are logged

on the platform itself and periodically off-loaded to the host where they are checked by

a number of host-bound software checkers to establish the functional correctness of the

simulated design. Transfer bandwidth to and from the host can be much smaller than that

to support the transferring of data generated for the target checking activity. Hence, of-

ten, the logging and off-loading activities become the performance bottleneck of the entire

simulation [67, 56]. The whole process can become very inefficient, failing to leverage

the performance advantage of the platform. Lock-step execution of software checkers in

the host is also not feasible, since it would require stalling the execution and transferring

relevant values from the platform, at each simulation cycle; this would hinder performance

unacceptably. Moreover, any solution that attempts to provide efficient checking capabili-

ties for hardware-accelerated platforms must be aware of the constraints inherent to these

platforms. Two of the most important constraints are discussed below.

Limitations on logic size: ASIC-based acceleration platforms may not have a strict

logic capacity limit; however, they experience a performance penalty when increasing the

amount of simulated logic. FPGA-based emulation / prototyping platforms have strict

logic limits dictated by the amount of lookup tables available on such platforms. This

logic capacity limit prohibits the mapping of any arbitrary checking solution into equiva-

86

lent hardware (even if it were possible to do so) to simulate alongside the design. When

additional logic is used for checking purposes alongside the design, the associated footprint

must be within the bounds imposed by the specific platform.

Limitations on recording signals: All hardware-accelerated simulation platforms allow

for the collection and transfer of design signal values for checking/debugging purposes,

but the transfer slows down the simulation, eroding the key benefit of acceleration. In gen-

eral, the more signals are observed and transferred, the lower the acceleration performance.

However, the precise relation between acceleration performance impact and number of sig-

nals traced depends on the specific architecture of the accelerator. Containing the number

of recorded signals per cycle (thus the traced data generation rate) is extremely important

for a successful checking solution for acceleration platforms. This is due to the fact that

the underlying architecture of the acceleration platform records the values of the signals

marked for observation in each cycle and stores them in internal memory. Every time the

buffers become full, the simulation must be temporarily suspended to transfer the content

via a low bandwidth channel to the connected host machine. The more frequently this event

takes place, the higher the associated performance penalty. Thus, the lower the number of

traced bits, the longer it takes to exhaust the internal buffer resources, and the longer the

intervals of uninterrupted simulation. Emulation platforms have very similar trade-offs as

well.

5.2 Towards providing checking capability

In view of the constraints described in the previous section, providing checking capabil-

ity in hardware-accelerated simulation platforms is a challenging problem. Researchers

have investigated several possible directions to enable such checking capability. One such

direction is to map existing software checkers to hardware descriptions. Indeed, if we

could convert existing software checkers to equivalent synthesizable hardware descriptions,

we could simulate them alongside the design. Prior research has investigated synthesis

of formal temporal logic assertions into synthesizable logic [2, 31], targeting those plat-

forms. Techniques for using reconfigurable structures for assertion checkers, transaction

identifiers, triggers and event counters in silicon have also been explored [3]. However,

synthesizing all checkers to logic is often not viable for multiple reasons. Though these

checkers can be translated into temporal logic assertions and subsequently synthesized with

tools such as those described in [2, 20], the size of the generated logic is often prohibitive.

Indeed, the logic size of a checker implementing a golden model for a microarchitectural

87

block is often as large as the block itself, and such vast overhead is not tolerable.

Approximate checking: This chapter introduces a solution called “approximate check-

ing” to solve the aforementioned problem. An ideal embedded checker should be suffi-

ciently small not to impact significantly the performance of simulation, while it should

be functionally sophisticated enough to contribute to design-level correctness checking (in

contrast with a simple local logic check), and thus would be a good substitute for a soft-

ware checker. Approximate checkers fulfill these requirements by being small enough to

not impact simulation performance, yet capable of detecting a significant fraction, if not

all, manifestations of a bug in the design (indeed, even just one detection of a given bug is

sufficient to expose it). This is achieved by either relaxing or further restricting the check-

ing function of the software checker so that its hardware version becomes deployable with

a tolerable logic footprint. This solution provides guidelines on how to approximate dif-

ferent classes of checkers and enables a large variety of software checkers to be adapted

for hardware-accelerated simulation platforms. As a result of this transformation we are

essentially trading off checking accuracy with logic footprint. Section 5.3 to Section 5.7

details this solution. Our experimental results demonstrate that a large reduction in logic

footprint can be achieved at a minor loss of checking accuracy.

Another direction in this space is a “log and then check” approach. In this approach, a

number of signals relevant to a particular checker is logged during simulation, and this log

is checked offline for correctness by a software checker post-simulation. This approach is

able to tackle those checkers that are too complex to be translated to equivalent hardware.

As mentioned before, hardware-accelerated simulation platforms allow tracing signal val-

ues; however, there is an increasing performance penalty with the number of recorded

signals. Hence, the challenge in this approach is to minimize the volume of logged data

to maintain platform performance and yet not lose checking intent or accuracy. Finally if

additional logic is required to perform tracing, we must ensure that it does not slow down

simulation performance as well.

On-platform compression: An additional solution is presented in this chapter to make the

“log and then check” approach effective within the platform constraints. The fundamental

idea behind this solution is to reduce the volume of the logged data (which ultimately re-

lates to the number of traced signals) for a particular checker by performing on-platform

compression of the associated data. It is important to choose compression schemes that

are sensitive to design behavior discrepancies, to maintain the same level of checking accu-

racy as the original software checker, while the amount of logic necessary to perform such

compression should be minimal. Moreover, we can further reduce the volume of traced

data by not choosing to log design behavior information that can be reconstructed or in-

88

ferred. This solution is demonstrated for an Instruction-By-Instruction (IBI) architectural

behavior checking scheme for an industry-scale microprocessor design on an acceleration

platform. For this particular case study, the register value data necessary for checking is

compressed on-platform using minimal overhead parity-checksum schemes. Sections 5.8

to 5.11 present the details of this solution. This study demonstrates that it is possible to re-

tain the same level of checking accuracy with only minimal loss of simulation performance

due to recording signals.

5.3 Reducing checker logic overhead with approximation

This section delineates an approach to map software checkers, traditionally used in

software-based simulation, directly to the acceleration platform. We envision that check-

ers are synthesized and embedded in the acceleration platform, so that both logging and

off-loading can be eliminated and data transfer between host and acceleration platform are

minimized. However, mapping complex checkers, such as golden models or checkers mak-

ing use of complex software data structures, remains a challenge because (i) embedded

checkers can only use synthesizable constructs, (ii) the logic complexity of their hard-

ware counterparts should not exceed the platform capacity and (iii) the performance impact

incurred in the simulation of the hardware-mapped checkers should not cancel out the per-

formance benefits gained by eliminating software-bound checkers.

In this work, we address the problem of designing checkers for simulation acceleration.

Our primary objective is to capture the design intent of a complex software checker into a

hardware version that can be mapped along with the design to the acceleration platform.

The hardware checker must entail a small logic overhead and provide similar capabilities

than the original one, but may be approximated. Our proposed solutions trade-off checker

accuracy with logic complexity. We provide a classification of common types of checkers

(Section 5.4) and then discuss approximation techniques that can be deployed for each type

(Section 5.5).

The approximation process may lead to the occurrence of false positives, false nega-

tives and/or delays in bug detection. To properly analyze these effects, I provide metrics to

analytically evaluate the quality of an approximation (Section 5.6), and present a case study

to demonstrate these concepts (Section 5.7). Our results indicate that we can achieve a re-

duction of approximately 60% in overall logic complexity at a nominal checker accuracy

cost.

89

5.4 Checker classification

Our experience with various designs seems to suggest that even though there are a myriad

of checks to be performed by a single verification environment, most fall under one or more

of the following main classes, based on the design properties they intend to verify.

Protocol Checkers: verify whether the DUV interfaces adhere to the protocol specifica-

tions. A checker that checks the request-grant behavior for a bus arbiter is an example. It

may check that the arbiter is setting the grant signal no later than a fixed number of cycles

after receiving a request, as per the specification. It may also check that the arbiter never

issues a grant when some other requester has the bus. A protocol checker may keep track

of the expected internal state of the DUV and use it to infer correct behavior.

Control Path Checkers: verify whether the flow of data within the design is proceeding

as intended. An example control path checker is one that monitors input and output ports

of a router to check whether or not a packet that is accepted by the router is eventually

sent out through the correct output port. Control path checkers need to keep track of data

items for extended periods of time as they are transferred, thus requiring significant stor-

age. They must also mimic the DUV actions applied to the data to determine if the correct

transformations are being applied.

Datapath Checkers: verify whether data is being manipulated as expected. A datapath

checker for a processor’s ALU, for example, verifies that the result of an addition operation

is actually the sum of the operands. In a software checker, verifying computation is as easy

as simply describing the computation in a few statements and comparing the result with the

output from the DUV. Implementing a datapath checker in hardware requires a full-fledged

functional unit to compute the desired result. Where possible the unit could be simple,

targeting only functionality rather than also performance or power. For instance, a simple

ripple-carry adder design could be sufficient to check additions.

Persistence Checkers: verify whether or not data stored inside the DUV become cor-

rupted. A checker verifying the contents of a processor’s register file is an example. It

could check that the contents of a register never change unless acted upon by a write com-

mand. Much like the checkers seen before, persistence checkers require some information

to be maintained about the internal state of the DUV – the contents of the register file in

our example. Thus, an embedded hardware version may include a duplicate storage unit.

Priority Checkers: verify whether specified priority rules are being respected. A priority

rule sets the order in which certain operations are to be performed, usually selected from

some type of queue. Consider a unified reservation station in an out-of-order processor

that must give priority to addition operations going to the ALU over shift operations. A

90

priority checker for this unit must verify that no shift operation is issued when there are

additions waiting. Embedded versions of priority checkers typically do not reflect their

software counterpart structure, because of the challenge of mapping it; instead they are

often structured as a combinational logic block monitoring internal design signals.

Occupancy Checkers: verify that buffers in the system do not experience over- or under-

flow. Expanding on the reservation station example, an occupancy checker may verify

whether the processor dispatches instructions into the reservation station as long as there

is space available. Similarly, it should check that no dispatch should be possible when

the reservation station is full. The hardware structure that keeps track of the necessary

information can be as simple as a counter associated with the buffer.

Existence Checkers: verify whether an item is present in a storage unit. In a processor

cache, for example, an existence checker has to verify that a tag actually exists in the tag

array. Existence checkers must track what type of information is written in the storage unit.

A hardware counterpart must store sufficient information to determine the presence and

type of data in the storage.

5.5 Approximation techniques

As we mentioned earlier, to eliminate the performance bottleneck in simulation accel-

eration due to data transfers between host and acceleration platform, checkers must be

embedded in the digital design to be mapped onto the platform. However, a direct transla-

tion of a software checker, whenever possible, often leads to an extremely complex circuit

block, possibly as large or larger than the design itself. Based on the classification in the

previous section, we developed a number of approximation techniques, presented below, to

address the issue of checker complexity.

Boolean Approximation: A Boolean approximation can be used to reduce the complexity

of any combinational logic block. The don’t care set of the Boolean function implemented

by the block can be augmented by simply changing some output combinations from 1 or

0 to don’t care (indicated by X). By selecting appropriately which combinations become

don’t cares it is possible to greatly reduce the number of gates required to implement the

function. An example is shown in Figure 5.1, where two input combinations of the origi-

nal function are modified to don’t care (highlighted by hashing). Because of the change, a

sum-of-product implementation of the function goes from 6 gates to 4 gates.

Boolean approximation often allows great reductions in circuit complexity with a min-

imal amount of don’t care insertions. Note also that the transformation may lead to false

91

T F T T

T T F F

T F T T

T T T F

x0x1 x0x1 x0x1 x0x1

x2x3

x2x3

x2x3

x2x3

T F T T

T T F F

T X T T

T T T X

Original function Approximate function

x0x1 x0x1 x0x1 x0x1

x2x3

x2x3

x2x3

x2x3

Figure 5.1 Boolean approximation for a four input function. Replacing some output combi-

nations with don’t cares reduces SOP logic.

positives or negatives for the checker: a 0 approximated to a 1 would lead to a false pos-

itive, and viceversa. However, it is possible to somewhat control the incidence of false

detections by only transforming input combinations that occur infrequently. Note that for a

general checker implemented in sequential logic, it is still possible to apply the technique

by first unrolling the circuit for a fixed number of times and then applying the technique on

the resulting combinational function. Finally, when the checker (particularly the unrolled

checker) has a large number of input variables, this approach may be difficult to apply, and

even harder to tightly control its false detection rate: we plan to investigate these situations

further in our future work.

State Reduction: Embedded checkers may include storage elements for a wide variety

of purposes. State reduction eliminates some of the non-critical storage to simplify both

the amount of sequential state and the corresponding combinational logic. An example of

non-critical storage are counters to check timing requirements of events – counters may

still be available, but have smaller size and only count at larger granularity. In this case the

approximation may affect delay measurements. For instance, Figure 5.2 shows a portion

of the FSM for a protocol checker that verifies whether or not a signal is set for only one

cycle. The extra delay state can be removed and the check can be performed in all the states

following the NEXT state. Even though the checker can no longer check precisely the one

cycle delay, it can still verify that the signal does not remain high after a bounded number

of cycles.

If the checker is connected to a reference model for the correct protocol behavior, this

approximation technique may be particularly valuable. Indeed, often the reference model’s

response must arrive before the design’s response in order for the check to operate properly.

The approximation would allow the checker to update the reference model and obtain its

response before the design’s response.

State reduction usually weakens the checker’s capabilities and may introduce false de-

tections, either positive or negative.

92

1 cycle passes
WAIT DELAY NEXT

Signal high

Wait for a signal Delay for one cycle Check if signal is

still high.

Figure 5.2 Portion of an FSM for a protocol checker. The delay state is needed only for check-

ing strict timing, which can at times be relaxed.

Sampling and Signatures: The width of a datapath affects many aspects of a design, in-

cluding the width of functional units’ operands and of storage elements. To contain the

amount of combinational logic and storage required to handle wide data, an approximate

checker can operate either with a subset of the data (sampling) or a smaller size repre-

sentation (signature) obtained from the data. Bit-fields, cryptographic hashes, checksums,

and probabilistic data structures as proposed in [17] can be utilized for signature-based ap-

proximations, trading storage size for signature computation. A golden model for an IPv4

router design, for example, does not need to store all the data bytes of packets entering the

system. In most cases, storing just the 16 bit header checksum, source address, and destina-

tion address along with a simple XOR signature of the data field, can suffice for checking

purposes (see schematic in Figure 5.3).

. . . data
byte 0

data
byte 1

data
byte n-1

20 bytes - 65535 bytes

11 bytes

dest source header
checksum header

Figure 5.3 Approximate representation for an IPv4 packet. Only a few bytes can identify a

packet uniquely with high probability.

Depending on how the sampled/signature data is to be used, this approximation may re-

sult in both false positives and false negatives. As we will show in a subsequent section, one

can reasonably estimate the effect of these techniques, given the probability distribution of

the data payloads and the nature of the design.

We considered all the checker types in our collection of checkers from academic and

industrial designs and studied which approximations can be applied to the various types of

checkers. The results of our analysis are shown in Table 5.1. Note that Boolean approxi-

mation and state reduction are general techniques and applicable to all the common types.

However sampling and signatures have more limited scope as they are only appropriate

for situations where checking on a subset of possible events/combinations can lead to a

93

detection.

Boolean State Reduction Sampling Signature

Protocol Y Y

Control Path Y Y Y Y

Datapath Y Y Y Y

Persistence Y Y Y Y

Priority Y Y Y Y

Occupancy Y Y

Existence Y Y Y

Table 5.1 Approximation ideas for the checker classes. Boolean approximation and State re-

duction are generic methods applicable to any type.

5.6 Approximation quality metrics

Approximate checkers may be more relaxed or more restrictive than their original un-

approximated counterpart. Thus, depending on the time and ways of a bug manifestation,

detection may occur as in the original checker (true positive or negative), or the bug may

be missed by the approximate checker only (false negative), the approximate checker may

falsely flag the occurrence of a bug (false positive). In this context, it is important to evalu-

ate the relative detection capability of an approximate checker with respect to the original

checker. A good approximate checker should have a small rate of false positives and nega-

tives. If the post-simulation diagnostic methodology is capable of ruling out false positives,

than a higher false positive rate would not be a critical issue for the approximate checker.

We propose to evaluate the quality of an approximate checker with accuracy and sensitivity:

two common statistical metrics to evaluate binary classification tests [29].

Accuracymeasures how faithful an approximate embedded checker is in mimicking of the

original software checker. A high value of accuracy indicates that the approximate checker

provides accurate detection most of the time (few false positives and negatives). Our accu-

racy model assumes that each testbench stops whenever a bug is detected (whether that is

a correct detection or a false positive) or when the test completes (in case of true or false

negative). Below we provide an equation for the accuracy metric that we will use for our

case studies in the next section.

accuracy=
true positives+ true negatives

total number o f tests

Sensitivity tells us how good is the approximate checker in detecting actual bugs (true pos-

itive rate). A high value of sensitivity indicates that most bugs can not escape detection by

94

the approximate checker.

sensitivity=
true positives

true positives+ f alse negatives

When interpreting accuracy and sensitivity many additional aspects must be taken into

account, including the input test vectors, the type of the design under verification, the type

of checker class being approximated, and the nature of the design bugs must be taken into

account. The next section presents two case studies to illustrate these factors and their

impact.

5.7 Case study: calculator design

I will use a research purpose design to illustrate the concept of checker approximation. It is

a calculator design, similar in principle to a microprocessor with a restricted instruction set.

Even though the design is small than industrial size designs, it contains enough properties

to be verified using checkers that span over the classes discussed earlier.

Calculator 3 aka calc3 is used as an example in [94]. The design accepts commands

to add, subtract, shift-left, shift-right, branch-if-equal, branch-if-zero, load-register and

fetch-register through 4 command ports and responds with results through 4 correspond-

ing response ports. All commands operate using 16 32-bit wide internal registers, shared

among all command ports. The load-register and fetch-register commands, respectively,

write and read 32 bit data values to and from the register file. The arithmetic commands

(add / subtract / shift) take two registers as operands and place the result in a third. The

branch command compares a register for equality, either with another register or with zero,

and sets a branch condition if the test succeeds. A successful branch makes calc3 skip

one following command from the same input port.

According to the specification, the design should support up to 4 pending commands

per port and out-of-order completion of commands as long as there are no data hazards.

Each command is associated with a unique 2-bit tag value, reported when the command

completes, along with 2 status bits indicating a successful completion, a skipped com-

mand, or an overflow from addition/subtraction. Only the fetch-register command creates

an output on the data line for a response port.

The baseline black-box checkers for calc3 were created by manually translating a

high-level C++ software testbench into a Verilog description. Each port has a separate

black-box checker ensemble working on the context of a common shadow register file,

95

which maintains a copy of the values that should be in calc3’s register file. The main

components of the checkers for each port are shown in Figure 5.4 and they fall within four

major classes from Section 5.4:

Protocol checker. Does an issued command have an unused tag? Does a completing com-

mand have a tag used by a pending command? Is the issued command legal? Do pending

commands still remain even after sufficient cycles have passed from the last issue?

Control path checker. This checker should validate the following aspects: are commands

following taken branches correctly skipped? If an error condition is flagged, is the writing

to the result register bypassed?

Datapath checker. Aspects to check are: is the correct condition flagged during com-

pletion of a command? Is the result of a command correctly computed? Does a fetched

register value match its expected value? Is a branch condition correctly recorded?

Priority checker. This checker checks that commands completing out-of-order do not

violate data hazard constraints.

cmd tx tag
request
event

on port n For all pending commands

If age(cmd)>age(resp)

d(cmd)!=r(resp)

& r(cmd)!=r(resp)

& d(resp)!=r(CT)

response event from port n

(B) Priority Checker

To Reg File

(C) Output Checker

Read

Access

branch
status

M
U

X

value

Write

Enable

cmd d1 d2 r1 data age

Command

Transactor

(A) Protocol Checks

tag status dataMUX

cmd d1 d2 r1 data age

+ , << , >=

Execution

units

To Reg File

Write

Access

Approximated

Approximated

destination register

From Reg File

value

Figure 5.4 Calc3 checker ensemble for one port. Tracking is done as follows: Tags by the

command transactor, dependencies by the priority checker, and required computations by the exe-

cution units. Results of execution units are used by the output checkers for verifying the correctness

of the status bits. Note that since calc3 does not output the results of an arithmetic operation, the

only way for the black-box checker to obtain these results for verification is through a fetch-register

command.

The main technique used for approximation in this case study was sampling. The out-

put checker and duplicate execution units were approximated by sampling a subset of the

32 bits for each operand. This reduces the amount of logic in the checkers, while it retains

96

strong checking ability to detect all the control path bugs. The approximated datapath for

the output checker operates on the least significant 8 bits of data, except the comparator,

which uses all 32 bits. This exception was necessary to ensure the branch decisions do

not differ between the checker and the design, which would introduce unnecessary false

positives. However sampling leads to logic savings in arithmetic-heavy execution units.

Note that this scheme cannot detect overflows; hence the approximate checker relies on

the command’s status bits to learn about overflows and could potentially miss related bugs

(false negatives).

The priority checker is also amenable to sampling, where the completing command is

checked for priority violations only with respect to one pending command instead of all

of them. This reduces the logic needed to implement the checker to approximately one

fourth. Even though this is a weaker check, since incoming commands are mapped to dif-

ferent slots in the transactor based on current occupancy, there is a non-zero probability

that a violating command is present in the slot being checked for violation. Hence, with

sufficient simulation runs, a bug causing priority violations will be detected. The com-

mand transactor could not be approximated since the other checkers depend on protocol

adherence and even a slight approximation for this checker would introduce many false

positives.

A significant amount of logic reduction can also be achieved by taking advantage of the

fact that, unlike the software version, the checker implementation resides in hardware, to-

gether with the DUV. Duplication of logic can be limited since additional wire connections

can be made to the DUV’s components. For instance, we can avoid maintaining a shadow

register file by simply checking dynamically that the values to be written are a match with

those computed by the checker. With this optimization, the shadow register file can be

replaced by shared read ports with the design’s internal register file and a register-write

checker that checks the least significant 8 bits of written register values.

5.7.1 Evaluation of the approximate calc3 checkers

In our evaluation of checker approximation for the calculator design, we injected a number

of different bugs into calc3. We created several variants of the design: for each bug, we

created two versions that included only that bug. The two versions differed only in that one

included a complete hardware version of all the checkers described in Section 5.7, and the

other included the approximate checker(s) instead. The bugs varied widely in their com-

plexity and the types of checkers they triggered. Each simulation could terminate either

because a bug was detected or because the test run to completion. Each bug detection (or

97

lack thereof) by an approximate checker was compared to the corresponding detection by

its complete counter-part and then labeled as a true positive, true negative, a false positive

or false negative.

id checker description

adds cmd tx only dispatch adds when shift and add commands can be dispatched

ovr output add or subtract with overflow writes register

stuck output 20th bit in register 13 is stuck

stall cmd tx 11th add/shift/branch command stalled

blk1 output second branch with same tag not blocked

dreg output dispatches an add and shift to same dest. register at same time

blk2 priority command with tag 11 is not blocked by command with tag 00

iraw output an incoming command reads a register being written in same cycle

eraw output an enqueued command reads a register being written in same cycle

skip output branch follower not skipped following branch

Table 5.2 List of bugs for the calc3 design. The checker field shows the unit that detects the

bug. In the approximated version, all the bugs shown to be detected by the output checker are seen

as register write mismatches.

The bugs injected in the calc3 design are described in Table 5.2. We ran a total of

500 tests on each design variant obtained by injecting a different bug. In most cases, ran-

domly generated command sequences were adequate to sensitize the bugs. For the few

hard-to-sensitize bugs, we inserted control command sequence snippets at random times in

the simulation.

0

500

Calc3 bugs

false neg. true pos. false pos. true neg.

Calc3 bugs
Figure 5.5 Distribution of detections for calc3 bugs. Calc3 approximations were designed

to avoid false positives.

Figure 5.5 shows the breakdown of the test outcomes: for each bug, we report how

many tests resulted in each outcome type. Note that for the stuck bug, corresponding to a

stuck bit in register 13, our approximation scheme was not able to detect any occurrence,

since the stuck bit position is not within the range of bits monitored by the approximate

checkers. As it can be noted from the Figure, for half of the bugs our checkers always

98

detect the bugs correctly, either true positive or true negative. For the other half we experi-

ence some false outcomes, however there is still a significant rate of true positive detections,

which allows for proper bug diagnosis. After all the approximations are applied the calc3

design achieves 87.5% accuracy and 74.9% sensitivity.

Finally, we evaluated the logic complexity of the original embedded hardware check-

ers and compared against our approximate checkers. To this end, we synthesized all the

case study designs and checker variants using Synopsys’ Design Complier, targeting the

technology-independent GTECH library. Since the process of mapping a digital design

onto an acceleration platform is very specific to the platform being used, we simply take

the total number of logic blocks generated as an approximate indicator of the size of the

design on the platform. Table 5.3 shows the results of our analysis.

unit technique original approximate reduction

(#blocks) (#blocks) (%)

calc3 output sampling 4,810 1,332 68.1

calc3 priority sampling 2,928 782 73.3

calc3 reg file eliminate 7,945 1,031 87

calc3 checker combined 20,473 8,565 58.2

Table 5.3 Logic reduction for calc3 checker . Overall checker overhead with respect to the

calc3 reduced from 87% to 36%.

The case study suggests that approximation of checkers is a viable solution that reduces

the hardware overhead of complex checkers while still enabling a large fraction of design

bugs to be caught.

5.8 Leveraging on-platform compression for checking

The previous few sections presented a solution to leverage embedded logic to perform

checking on hardware-accelerated platforms. In the following sections, we present an ar-

chitectural checking solution for microprocessor cores on acceleration platforms that uses

the alternate approach of “log-and-then-check”. Our solution performs “instruction-by-

instruction” (IBI) checking, that is, it validates the outcome of each instruction completed

by a processor design in accelerated simulation by comparing it with an architectural

golden model. We achieve our goal by applying a number of major transformations to

a baseline software simulation-based validation methodology. The IBI checker for accel-

eration platforms exhibits one of the key challenges is adapting any software checker to a

hardware-accelerated simulation platform via the “log and then check” approach: namely,

the volume of traced data necessary for checking is too high to retain simulation perfor-

mance. This problem is solved by leveraging low-overhead on-platform logic to compress

99

the relevant data and produce a summary, instead of recording raw signals. The summary

is then checked off-platform for discrepancies. This novel technique reduces the number of

recorded signals heavily, and is able to retain simulation performance. The proposed solu-

tion retains almost all the capabilities of its software counterpart but does not compromise

the performance of acceleration. We successfully deployed and evaluated this solution in

the validation of an upcoming IBM POWER processor design.

5.8.1 IBI background

Instruction by instruction (IBI) checking, or goldenmodel based validation, is a well known

checking technique that has been used in processor verification for many years [62, 93].

IBI compares the architectural events produced by each executed instruction with those re-

quired by the processor specification. This technique provides a simple way to distinguish

deviations from the desired behavior. It does not depend on the internal implementation

of the processor, and can be used with any microarchitecture implementing the same in-

struction set. An additional benefit of this approach is the relative ease of debugging: the

corresponding checker recognizes the exact spot of the deviation in time and thus it enables

the time localization of the problem.

A typical IBI checking methodology works as follows. A test generator (e.g. [41, 4])

produces a test program containing the results expected by the processor specification after

each instruction (the expected results). These results are usually obtained using a software

that can calculate the expected results after each instruction, known as a golden model.

Then the checker environment compares these results to the ones produced by the proces-

sor simulator for the same test program [62, 93]. The checker environment needs to identify

when an instruction execution completes and what resources were modified because of the

instruction execution. It also needs to account for the behavior that cannot be predicted by

the golden model (e.g. external interrupts), or are not fully defined by the specification (e.g.

values of some registers become “undefined” when exceptions occur).

5.8.2 IBI for acceleration platforms

In this section we present our instruction-by-instruction checking solution for acceleration

platforms. Our technique enables this validation methodology on fast accelerated simula-

tions, thus boosting the amount of simulation cycles that can be checked within a given

amount of time. In our solution, we run the same test on the processor model simulated

in the acceleration platform and on the golden model running on the off-platform host,

100

and then compare results. To make the comparison possible, we need to collect relevant

information about the retired instructions and architectural resources modified from the ac-

celeration platform, and transfer it off-platform. The actual comparison is then performed

by a dedicated software checker, capable of running the golden model on the same test

and compares the two sets of results. As mentioned earlier, the acceleration advantage

decreases when increasing the amount of recorded information and the size of simulated

logic. Hence, one of our design goals is to record as little information as possible and

incur as little hardware overhead as possible, all while delivering accurate bug detection

capabilities.

IC 0x1110 { RU G17 0xFF33}

IC 0x1114 { RU G18 0x34}

IC 0x1118 { RU CR 0xFFEDFF}

IC 0x111C { }

Simulated processor

design

tracing logic

Accelerator platform

waveform recording

test regression

Event
type

Reg
id

Data
summary

RU G17 0xCC

IC - 0x10

IC - 0x14

RU CR 0xED

RU G18 0x34

IC - 0x18

RU G19 0xFF

IC - 0x1C

Golden architectural

model

SW checker

No matching Register

Update: probable error!

Compact architectural

event trace

IC: Insruction Completion

RU: Register Update

Expected event list

Advances

the model
Reconstructs

IC-RU relations

0x1110: li G17, 0xFF33

0x1114: addi G18, G17,0x34

0x1118: cmpd G18, G17

0x111C: beq 0x1110

0x1120: /.

Figure 5.6 Overview of our solution to provide IBI checking on acceleration platforms. The

Figure illustrates the test running on the platform (left) and on the off-platform software (right).

The bottom left table shows an example of data transferred off-platform.

Based on the observations above, our solution comprises the following two compo-

nents: i) a dedicated, on-platform, logic block to record a compact summary of architectural

events and ii) an off-platform software checker module that considers the recorded data

and analyzes it in light of a golden model output. This decoupled approach enables us

to get around one of the fundamental challenges discussed previously, minimizing on-

platform logic overhead. However, it also imposes a substantial redesign of the checking

approach. We will check instruction completions and registers only (similar to many other

IBI solutions) because memory behavior is very difficult to trace and predict in modern ar-

chitectures. To achieve this we will record two types of events on the acceleration platform

- instruction retirements and register updates. We do not focus on memory behavior, as it is

101

common for other golden model solutions, since that requires specialized solutions beyond

the scope of this work. We then compress the collected information on-platform to mini-

mize the amount of data transferred. As a result, we must only record and transfer a few

bits per cycle, thus maintaining the acceleration performance advantage. The on-platform

tracing logic is simulated along with the processor in the acceleration platform. To further

minimize data recording, we do not track information that ties registers to a specific instruc-

tion; instead, we rely on the off-platform software, to reconstruct these connections based

on the information recorded. Figure 5.6 presents an overview of our solution showing the

components on the accelerator and on the off-platform software. It also outlines the type

of data that is traced and transferred.

5.9 In depth view of the solution

This section presents an in depth view of the solution delineating the different aspects of

it, namely: (i) which data is relevant for checking (ii) how data is compressed on-platform

and (iii) how the off-platform software checker operates on the collected data.

5.9.1 On-platform data tracing

From a high level standpoint the collection of information for our purposes appears to be

straightforward; however, when applied to an industry processor, many aspects become

challenging. The processor in question is a modern, server class, superscalar out-of-order

processor with simultaneous multi-threading allowing 8 simultaneous threads per core.

Hence, each architectural event is a complex combination of several microarchitectural

events. To correctly identify and log individual architectural events, we need a number

of microarchitectural monitor points, mapped together with the design onto the accelera-

tor. The main architectural events to be collected for our purposes can be grouped into the

following 3 major classes:

Instruction completion: Since the underlying processor is out-of-order, we can only

obtain a finalized instruction retirement event when an instruction is committed. This

information is gathered from the group completion table of the processor design, where

instruction completion events are built from micro-operation completion information.

General purpose register activity: This group of registers includes integer general pur-

pose registers (GPR), floating point registers and vector registers (VR). Accessing update

102

events and values incurs an additional layer of indirection due to register renaming de-

ployed in out-of-order microarchitectures.

Special purpose register activity: Special purpose registers (SPR), such as several status

registers, are easier to handle, since they are directly mapped and have explicit signals that

identify a write to a special purpose register. We chose to collect information on a subset of

special purpose registers that are either part of or closely related to the architectural state.

Note that we record all instruction completion events and all update events on the mon-

itored registers. However, we perform lossy compression on the data associated with each

event, i.e. completed instruction addresses or values written to a register, to reduce the

number of bits recorded on the acceleration platform.

5.9.2 On-platform data compression

As discussed in Section 5.8.2, a central goal of our work is to keep the amount of data

recorded per cycle at a bare minimum, to maintain the performance advantage of acceler-

ation, while still providing acceptable detection accuracy. To this end, we compress the

data associated with each event, such as register update values and addresses of completed

instructions. A lossy compression scheme, such as a checksum is ideal for this purpose,

since we are only interested in identifying value deviations. So, as long as a different value

produces a different checksum with high likelihood, it serves the purpose. Moreover, an-

other important aspect in the development of our solution, is that the additional hardware

required to implement the compression scheme should have minimal logic overhead and

minimal logic depth. Hence, a compression scheme that involves little additional logic and

does not add substantial delay to the critical path is favored over a more complex scheme.

Register update values

Value discrepancies in register updates can often be discerned using a checksum over a

small subset of the bits, without requiring a complete value comparison. We strive to use

only a few (say, less than 8) bits of encoded information for each register value field (32 bit /

64 bit). The basic idea is to compute a checksum from the value generated by the simulated

hardware and perform the same operation on the value generated by the reference model

for each register update in the software checker. For the sake of our checker solution, a

checksum match is considered a valid register update. Since all checksum schemes are a

hash function from a set of size 264 (for 64 bit registers) to a set of size 2c, where c is a

103

small value, some amount of aliasing is unavoidable. However, we found that blocked par-

ity schemes, presented below, provide sufficient accuracy in practice for the typical error

scenarios that we encountered.

Blocked parity schemes partition the data vector into several distinct blocks and then com-

pute single bit checksums for each block. The concatenation of these bits provides the final

checksum. This approach is guaranteed to detect any bit value difference, as long as the

number of single bit errors within each block is odd. A benefit of this approach is that its

computation is extremely low cost in hardware, simply requiring a few XOR gates. How-

ever, this approach is ineffective for scenarios where errors manifest with an even number

of localized bit-flips, which may occur all within one, or a few, blocks. To address this situ-

ation we build blocks on non-contiguous bits, scattering the bits over the checksum blocks.

With this technique, an error affecting a few contiguous bits has a much higher chance of

detection. The experimental evidence supports this intuition.

Retired instruction addresses

The data associated with each retired instruction is the address of the committed instruc-

tion. To compress these values we use a very simple scheme, recording only the last few

bits of the address. Even though this scheme is prone to aliasing, it works very well in

practice. Indeed, it allows us to identify an execution divergence from the golden model

fairly precisely, since the probability of execution starting at an aliased address leading to

the same sequence of register updates as the correct execution is extremely low.

Deciding checksum width:

We want to store a minimal number of bits in the checksum, while still detecting value dis-

crepancies caused by a functional bug. Hence, we investigated the detection accuracies of

several blocked parity schemes, as described in Section 5.9.2, over buggy traces diverging

on a register value update.

To this end, we varied the number of checksum bits from 1 to 7, while the original

register values are 64-bits wide. We studied three different checksum schemes as reported

in Figure 5.7, and estimated the minimum checksum bit width required to detect typical

value discrepancies. The schemes we evaluated are: (i) Simple blocked parity, where a

single parity bit is computed from each portion of register data and appended to the final

checksum. (ii) XOR sum of blocks, where the checksum is obtained by applying bitwise

XOR to all same size sub-blocks of the register value. (iii) Overlapping block parity, sim-

104

0

20

40

60

80

100

%direct %indirect %missed

simple

block

parity

0

20

40

60

80

100

xor

sum of

blocks

0

20

40

60

80

100

1 2 3 4 5 6 7

number of checksum bits

over-

lapping

block

parity

Figure 5.7 Detection accuracy of a range of checksum schemes. Register value discrepancies

can be either detected at register update (direct), or in downstream computation (indirect), or missed.

ilar to (i), but with overlapping partitions. The sample size for this study was 500 traces

with register value corruptions similar to those of actual buggy traces. From Figure 5.7, it

can be gathered that typical discrepancies can be detected with as little as 5 bits of XOR

sum of blocks.

5.9.3 Off-platform software checker

As discussed in previous sections, our instruction-by-instruction checker strives to identify

all discrepancies between the simulated processor behavior and its golden model. A pro-

cessor’s architectural state is defined by the values of the architectural registers (including

general purpose registers, certain special purpose registers that affect execution flow and

program counter) and the contents of memory. We assume that events that are not captured

by the golden model (such as memory updates due to shared memory) do not appear in

the test case. Thus, our single core processor model can be considered to be executing

correctly, as long as program flow and architectural state are identical to that of the golden

model. Hence, tracking the completion of instructions (program flow) and any modification

105

to architectural registers is sufficient to check the correctness of execution. We encountered

two key challenges in developing the off-platform checker, discussed below:

Reconstruction of instruction flow: A significant problem we had to address was the lack

of close time correlation between an instruction retirement and its register events. This

information cannot be reconstructed simply from the acceleration trace. Thus, in our so-

lution we maintain a list of all registers that should have been modified by a completed

instruction. We expect that for each such register, the first modification report that appears

after the completed instruction will contain the correct value, and this report will appear

within a bounded number of cycles. This solution is based on the assumption that registers

are modified only after the corresponding instruction completes, and all associated regis-

ter modifications are reported within a bounded number of cycles. However, we also had

to consider the case where a register update is received before its corresponding instruc-

tion completion: in this case we must search for a matching event from the golden model

over a few instructions downstream. If we do not find the matching event within a few

instructions, we flag an error. We have run experiments to compare the results reported by

a state-of-the-art software-based IBI checker to the results reported by our solution. We

learned that the only difference lies in identifying which instruction is the root of the exe-

cution path deviation from the golden model execution (when such deviation exists). Our

checker may report an instruction that is close to the actual deviating instruction (usually

the next instruction), which we found satisfactory for effective debugging.

Handling interrupts for checking purposes: External interrupts and other non-determini-

stic events are not predictable by the golden architectural model; however, they are still

included in the acceleration traces. External interrupts can still be identified from the

address of the corresponding interrupt handler and specific values of the related control

registers. Our solution mimics the effect of the interrupt routine by modifying the asso-

ciated status registers and other architectural resources in the golden model and then it

resynchronizes the model with the trace.

5.10 On-platform tracing unit

As discussed earlier, there are several types of data collected on the acceleration platform

originating in different regions of the design at a variable rate. To manage this flow of

data, we developed a novel unified scheme to collect and organize it for on-platform stor-

age, before it can be transferred off-platform. To this end, we first need a mechanism to

identify which registers are updated on a particular cycle or which instruction groups have

106

completed, so that we only record new values for the relevant registers/addresses. Second,

we need a mechanism to present this data in a structured fashion, so that it can be recorded

efficiently by the acceleration platform’s data logging mechanism. We note that, although

the maximum number of simultaneous events in a clock cycle can be quite high, the av-

erage number of events per cycle is fairly small. Hence, a recording mechanism that can

handle transient peaks in the number of events and can present data at a constant rate to the

platform’s debug support unit would be ideal. A possible solution to this second require-

ment is a first-in first-out buffer that allows the storing of up to a few entries at a time and

it is drained at a constant rate. This section discusses how we achieved these requirements.

5.10.1 Select and encode logic

The first task of the tracing unit focuses on selecting and encoding different types of events

as they are flagged during a clock cycle. In the platfom there are a number of data lines and

corresponding valid lines coming from different parts of the processor and corresponding

to different special purpose registers or instruction completion events that we want to track.

Our goal is to be able to store the relevant data at each cycle (as signaled by the corre-

sponding valid lines) while also tracking the correct source for the data. By doing so the

off-platform software is able to reconstruct the sequence of events to be checked against

the golden model.

The goal of the select and encode logic unit can be formally expressed as follows: given

a collection of N signal lines, presented as an ordered list, up to any M lines among those

can request data logging on any given clock cycle. The task of this unit is to identify and

encode the position in the list of theM lines in preparation for storing them along with the

data itself. Ultimately, these positions will be used to identify the source of the correspond-

ing data value. This problem is also known as the “detect and encode all ones” problem:

one straightforward solution would be to use a chain of priority encoders: the first encoder

is responsible for the highest order position, which is then masked and the entire vector

of N lines is passed down to the next encoder. While simple, this solution creates a deep

combinational logic block, which could hamper the performance of acceleration.

Our goal in developing this unit is to develop a design that is most suited for acceler-

ation platforms, even if it may entail a non-minimal area footprint in silicon. To this end,

we devised an alternative solution, that has a much smaller logic depth. Our solution uses a

parallel detection scheme, where each detection block is responsible for generating a one-

hot encoded vector corresponding to the line position for which the block is responsible, if

that line has data available. If no logging data is generated from that line during a cycle,

107

incoming request vector

b1b2b3 � bN

Block 1 Block M� �

00..1..00

encoder

Event ID e

Compress

data for

event e

c
o
m

p
re

s
s

Block K

Sub

block 1

Sub

block R

Sub

block N� �

b1b2b3b4�.bR-1bRbR+1...bN

0...0..0

count-ones

K
mux

0
yes no

K

c
K

1 c
K

R c
K

N

c
K

R

K

one-hot vector C
K

C
K
=

010...00C
1
= 000...00C

M
=

o
n

e
-h

o
t

m
u
x

#ones==K?
yes/

no

d
a
ta

Figure 5.8 Detector block to identify the source of data to be logged in a given clock cycle of

simulation acceleration.

the block should simply output a vector of zeros. Figure 5.8 illustrates our solution: we use

M detection blocks, since we have at most M lines generating data within one cycle. Each

block receives in input a value K, and generates a one-hot encoded vector where the 1-bit is

in the position of the K-th line producing data in that cycle. For instance, if during a cycle

lines 4, 7 and 11 produce data to be logged, then block 1 should have a one in position 4,

block 2 should have a one in position 7 and block 3 should have a one in position 11.

5.10.2 Trace buffer

Once the relevant data has been selected and encoded for logging, we need a hardware

block to record the architectural events. To this end we use a trace buffer that must be

capable of handling up toM entries in each clock cycle, while allowing a constant R entries

to be read. Such buffers are typically realized via a circular buffer with read and write

pointers. However, multiplexors are needed to realize these pointers. Unfortunately, they

also increase the logic depth of the design, particularly when the number of buffer entries is

large. Hence, we adopted an alternative design, where the buffer is implemented as a shift-

buffer, so that the constant number of read operations in each simulation cycle corresponds

to a constant number of shifts. A bit is associated with each entry to indicate the first free

entry, and independent write units are associated with each buffer entry. Each write unit

108

ordered

list of

incoming

buffer

entries
buffer entry n-k+1

buffer entry n-k

...

buffer entry n-1

...

event id e1 dataV

event id e2 dataV

... ...V

event id ek dataV

... ...I

event id eM dataI

... ...V

... ...I

buffer entry n

buffer entry n+1

buffer entry n-k-1

...

...

buffer entry n-m
..
.

..
.

..
.

..
.

..
.

If (buf[n-k]==top and entry[k]=valid)

buf[n] <= entry[k]

Figure 5.9 Trace buffer writing unit. Each buffer entry is associated with a writing unit. Each

unit determines which data logged in the cycle should be stored in the position for which it is

responsible.

has access to its corresponding entry and the M preceding ones, and it determines what to

write in its entry based on the number of write operations to be completed in the cycle.

This design is shown in Figure 5.9: the implementation is parallel and logic depth is kept

minimal. We derived a queuing theory-based estimate for our buffer size, which ensures a

very low probability of overflow, while using the lowest possible draining rate.

5.11 Experimental evaluation of the IBI solution

Our solution was implemented for an upcoming POWER processor core design on the

AWAN accelerator [30] platform. We evaluated the capability of our solution to detect

bugs as well as its performance. The IBM SixthSense tool-chain was used to design and

synthesize the hardware blocks for our solution. The processor core netlist consisted of a

few million logic gates, and the resulting logic overhead was within 20%.

5.11.1 Bug detection capability

Any discrepancy of the processor’s behavior from the golden architectural model due to a

probable functional bug is detected as one of the following situations (symptoms) by our

IBI checker:

1. Register value mismatch: Updated value of a register does not match with predicted

109

value from golden model;

2. Unexpected register update: An architectural register update event takes place in the

design but not in the golden model;

3. Unaccounted register update: A register update event takes place in the golden model

but does not occur in the design;

4. Wrong instruction: The instruction address of an executed instruction is in disagree-

ment with the golden model;

We obtained a set of 145 architectural event traces that exposed actual functional bugs.

These 145 constituted the entire set of buggy traces that we had access to. To evaluate the

bug detection capability of our checker, we ran the same traces on our off-platform software

checker to determine if our accelerator-based checker could also detect the occurrence of

the bugs. All 145 testcases exposed a bug in our setup; in addition the symptoms reported

matched those of the software-based golden model solution. We report in Table 5.4 the

distribution of the bugs detected according to the type of symptom flagged by our checker.

As it can be noted, a large portion of the issues are due to unaccounted/unexpected regis-

ter updates. All these problems were detected within 5 instructions from the first point of

golden model/accelerator divergence.

Symptom #occurences

Register value mismatch 21

Unexpected register update 30

Unaccounted register update 89

Wrong instruction 5

Table 5.4 Distribution of bugs detected by our solution.

Since we do not compress the information regarding which architectural register

(among the monitored subset) is updated, we detect all discrepancies that are not affected

by checksum aliasing. However, even in this latter case, often the program flow diverges

substantially due to the bug, and we can still flag the issue a few instructions downstream.

5.11.2 Tracing overhead

The amount of logic added for on-platform tracing purposes may impact the performance

of the simulation. However, this is only the case if the overall logic size mapped to the

platform (design + checkers) exceeds a certain threshold, dependent on the accelerator’s

characteristics. When abiding this threshold, the performance degradation due to the trac-

ing logic comes from two sources (i) additional logic to simulate (ii) signal recording time.

To evaluate these effects, we measured the simulation acceleration performance of the

110

POWER core design in several situations. The stimuli used for this study were regression

tests lasting few million cycles. First, we run a baseline design with no tracing logic. Then

we added the tracing logic, but without observing the trace buffer output. Then we also

enabled tracing for the typical case, that is, 3 buffer entries are read per cycle, amounting

to 50 bits of recorded information per cycle. Finally, we considered an extreme situation

where 10 buffer entries are read per cycle, for a total of 162 bits. Figure 5.10 summa-

rizes our findings, normalized to the simulation performance (between 10-100 kHz) of the

baseline design with no tracing logic.

0

20

40

60

80

100

Baseline No
tracing

50
bits/cycle

162
bits/cycle

s
im

u
la

ti
o

n
 s

p
e
e
d

(n

o
rm

a
li

z
e
d

 t
o

b

a
s
e
li

n
e
)

Figure 5.10 Impact of tracing logic on acceleration performance.

From Figure 5.10 we gather that our solution introduces only a 5% slowdown due to

the tracing logic alone, and another 15% due to data logging. Even the extreme situation

causes no more than a 50% slowdown in acceleration performance, a value still order of

magnitudes better than software-based simulation.

5.12 Related work

A rich body of solutions is available for the validation of high-level behavioral models of

digital designs, both spanning constrained test generation and formal property verification,

enabling designers to specify complex assertions/checkers and expose bugs. Correspond-

ingly, a wide range of languages exists to describe the structure and concepts needed: e,

Vera, SystemVerilog, C++, etc. Unfortunately such rich environment does not carry over

to hardware platforms for validation, such as simulation acceleration, emulation, or sil-

icon debug. The main focus of several research works in the past decade has been the

efficient synthesis of formal assertions into realizable hardware description [2, 31]. These

techniques target specifically acceleration, emulation or in-silicon debug [18, 20]. Recon-

figurable designs for debug architectures, enabling verification engineers to create assertion

111

checkers, transaction identifiers, triggers, and event counters in silicon have also been sug-

gested [3]. However, assertion synthesis is an exact translation of individual properties and

can generate extremely complex logic blocks, which can reduce or eliminate the acceler-

ation advantage. In this work we focus on limiting the logic overhead of the embedded

checkers by leveraging approximation.

The possibility of adopting conventional software testbenches for acceleration and em-

ulation platforms has been considered in prior work as well. The testbench still executes in

software and communicates with the platform over a bus: in this setup the communication

often becomes the bottleneck [67, 56]. Transaction-based acceleration (TBA) [85] attempts

to overcome this bottleneck by bundling several interactions between the testbench and the

platform into larger, yet less frequent transactions.

Approximation of logic functions has been proposed in other related domains. For

example, it has been applied as a method of restricting the size of a binary decision

diagram(BDD)[82]. Our objective with this work is to reduce the size of the circuit rep-

resentation of a Boolean function. The techniques applied in timing speculation [38], and

typical-case optimization [9] can also be viewed as logic approximation, since the active

circuit during a given clock cycle is an approximation of the complete circuit function.

Simulation accelerators and emulation platforms have been traditionally used to boost

the productivity of the microprocessor validation effort [43, 79], and they play an even

more critical role today, in light of the increased complexity of these designs. Existing

acceleration-based flows usually have a coarse checking granularity, that is, they can label a

test as passed or failed after its completion but, in case of failure, no additional information

is available related to the time/location of the bug manifestation. Comparing architectural

state between a purely software-simulated design model and a golden architectural soft-

ware model at instruction boundaries, or at other synchronizing boundaries, has also been

a commonly deployed method for microprocessor validation[97, 26]. The key reason why

this methodology was not considered for acceleration, with the golden model running in

software on a host platform, is that connecting these two components (golden model and

accelerated design) is both difficult (due to lack of debugging support) and detrimental to

performance [26]. Obtaining scan values from a silicon prototype and comparing them

to a RTL golden model to detect divergence analysis during post-silicon debug has been

proposed in [24]; however, this solution is only used to diagnose electrical faults.

More recent silicon-debug solutions, such as IFRA [76], introduce additional logic into

the design to trace the flow of an instruction through various microarchitectural blocks and

use this information with a post-simulation analysis tool to locate the manifestation of a

possible design bug. Though our solution has a similar organization, i.e., decoupled trac-

112

ing and checking components, we are interested in the manifestation of a failure in the

architectural state. Moreover, IFRA cannot detect divergence of the processor execution

from the ideal model on its own, because it solely relies on post-triggers for this informa-

tion. Our solution is focused on detecting the first point of divergence in the architectural

state, hence it solves an orthogonal problem. Certain runtime verification techniques such

as DIVA [8], introduce a lightweight companion processor to check the architectural state

of the main processor, but these solutions operate at runtime, past design debug.

5.13 Summary

In this chapter two key solutions to bring in checking capabilities into acceleration plat-

forms were presented. These solutions enable hardware-accelerated simulation platforms

to become fully effective towards performing simulation-based validation. The first so-

lution, namely checker-approximation enables efficient mapping of software checkers to

hardware-accelerated simulation platforms. The second solution provides a novel scheme

of leveraging on-platform logic to perform compression to reduce the amount of data to be

transferred off-platform for checking.

Approximation trades off logic complexity with bug detection accuracy by leverag-

ing novel techniques to approximate software checkers into small synthesizable hardware

blocks, which can be simulated along with the design on a hardware-accelerated simulation

platform. I presented a generalized checker taxonomy, proposed a range of approximation

techniques based on a checker’s characteristic and provided metrics for evaluating its bug

detection capabilities. The case studies have demonstrated that checker approximation is

a viable solution to reduce hardware overhead of complex checkers while still enabling

detection of a large fraction of bug manifestations.

The second solution was demonstrated with a novel microprocessor design checking

scheme that provides architectural checking against a golden model for simulation accel-

eration. On-platform logic was used to trace and compress necessary data for checking,

reducing the number of signals to be traced, which is key to retaining the performance

advantage of hardware-accelerated platforms. The solution provides the same bug detec-

tion quality as its software-based counterpart. It enables architectural validation of the

design on acceleration platforms with negligible accuracy loss. Thus it makes micropro-

cessor design validation possible at an order-of-magnitude better simulation performance

than software-based simulation.

We discussed two separate solutions to bring in checking capabilities beyond software-

113

based simulation in this chapter. The next chapter will explore how these two solutions can

be leveraged in a combined fashion, each complementing the other.

114

Chapter 6

Hybrid Checking

The previous chapter explored two approaches to introduce checking capabilities into

hardware-accelerated platforms. Checker approximation brings in such capabilities in form

of low overhead logic, which is simulated alongside the design. In contrast, the IBI solu-

tion leverages additional logic to compress simulation logs necessary for checking, while

the actual checking activity is performed off-line on the compressed log. Case studies for

both solutions were performed on microprocessor designs. We note that both solutions

are incapable of harnessing simulation acceleration to the fullest extent due to their inher-

ent limitations. Certain full-fledged software-based checkers with complex functionality

do not have efficient hardware representation. Checker approximation cannot incorpo-

rate those checkers without heavily sacrificing accuracy. On the other hand, if all the

necessary checks for a design block are performed offline, then the volume of recorded

data may become large enough to erode away the performance advantage of the platform.

Hence, although these solutions are very successful for specific kind of checkers, neither

is able to provide the same degree of checking capability as software-based simulation

while maintaining the platform-specific performance advantage in a general setting, when

applied individually. It is interesting to note that a synergistic application of the two key

ideas behind these solutions is likely to be more successful. This chapter investigates this

possibility.

This chapter introduces a solution called “hybrid checking” which synergistically lever-

ages both embedded logic and post-simulation software checkers to provide high quality

checking capabilities with tolerable performance overhead. The key idea involves intelli-

gently dividing checking responsibility between embedded checkers and post-processing

software, such that certain aspects of checking are performed by embedded checking logic,

while certain other aspects that must adopt the “log and then check” approach are per-

formed off-line with software checkers. First of all, Embedded checking logic reduces the

amount of information that needs to be checked off-line. Then, on-platform compression

logic is leveraged to further reduce log size. This methodology is demonstrated by adapting

115

some of the checkers in the software-based verification environment for a modern micro-

processor design for acceleration platforms in a preliminary study. Even though this case

study targets acceleration platforms, the solution can be applied to other types of hardware-

accelerated simulation platforms as well. We provide insights on how the checking activity

for a component design block can be partitioned into the two aforementioned categories.

Finally, we demonstrate novel techniques to reduce the amount of recorded data with the

aid of lightweight supporting logic units, leading to only a marginal checker accuracy loss.

These techniques, when applied in conjunction, are able to realize the final objective of this

dissertation: performing efficient validation with high-performance simulation.

6.1 Towards hybrid checking

As discussed in Chapter 2 software-based simulation provides a feature-rich environment

for verification, which is critical in validating and debugging a design. A number of check-

ers are connected and simulated with the processor design at various phases. The tight

coupling between the checker functions and simulated design allows for a relatively low ef-

fort checker design. Often, these checkers include end-to-end correctness checks for correct

architectural execution and memory access protocols, as well as localized checkers for in-

dividual microarchitectural blocks. Checker-centric validation, although very successful

for software-based simulation, does not extend to acceleration or emulation environ-

ments in a straightforward manner. As pointed out in Chapter 2, hardware-accelerated

simulation platforms can only simulate synthesizable logic; hence, even though the design

can be synthesized and simulated at high performance, the testbench and checking envi-

ronments do not extend into the realm of hardware-accelerated platforms [57]. Moreover,

lockstep execution of software checkers on a host paired with the design simulated on

a hardware-accelerated platform is not tenable, since it degrades overall performance

to an unacceptable level.

It is, therefore, critical to adapt checkers to these platforms to fully leverage high-

performance simulation for validation and debugging. Current methodologies on this front

have focused on limiting the number of synchronization events between the host running

the checkers and the accelerator by: i) accumulating short and frequent interactions be-

tween the design and the testbench into longer and infrequent transactions [57, 85], ii)

recording the values of critical design signals during simulation on-platform, and then

off-loading the log at the end to check for consistency with a software checker [27], iii) syn-

thesizing some of the checkers into hardware for simulation alongside the design [19, 63].

116

None of these approaches provide a definitive and complete solution as they suffer from

simulation slowdown due to large log transfers or large logic overhead. The proposed

solution strives to overcome both of these shortcomings.

Any checking solution adapted for hardware-accelerated platforms must consider sev-

eral trade-offs regarding checking capability and performance. As discussed in Chapter 5,

recording a large number of signals during simulation can incur a performance penalty due

to inherent constraints of the acceleration platforms. Thus, in such an approach, the average

number of recorded bits per simulation cycle must be small enough to introduce only an ac-

ceptable degree of slowdown. Adding extra logic to be simulated on the platform alongside

the design, if there is room, can also cause slowdowns. Hence, if embedded logic (such

as synthesized checkers) is to be simulated with the design for checking purposes, it must

be as small as possible. In an effort to reduce recorded bits and synthesized checker logic,

some of the capabilities of the original software-based checkers may also be lost. In view

of these constraints, a desirable solution towards checking on acceleration platforms

should have minimal logic footprint and record only a small number of bits per cycle,

while providing the same quality of results as the original checker in software-based

simulation.

6.1.1 Overview of this chapter

In this chapter, we propose a novel checker adaptation methodology (see Figure 6.1) for

microarchitectural blocks, which synergistically uses embedded logic and post-simulation

software checkers to provide high quality checking capability with very small performance

overheads. Checkers that have a small logic footprint when synthesized can be em-

bedded and simulated with the design – we call these “local assertion checkers”. On

the other hand, checkers that must adopt the “log and then check” approach because

of their complexity, compress activity logs relevant to the check using on-platform com-

pression logic and then perform the check off-platform – we call these “functionality

checkers”. This concept is explained in-depth in Section 6.2.

We demonstrate our methodology on the software verification environment for a mod-

ern out-of-order superscalar microprocessor design. The simulation-based verification

environment for the processor is equipped with architectural as well as a number of mi-

croarchitectural block checkers designed for software-based simulation. Adapting these

checkers to an acceleration environment provides a challenge that is representative of those

faced by verification engineers working in the field. To give an example, if a checker re-

sponsible for a certain microarchitectural block is adapted for acceleration naively by a “log

117

S/W

testbench

Acceleration platform Host

Design mapped

to logic
S/W

checker

Acceleration platform Host

Design mapped

to logic

record interface

signals
large

log

Operates

post-simulation

Design mapped

to logic

checker

translated to logic

Acceleration platform

S/W

checker

Acceleration platform Host

Design mapped

to logic

local checks +

compress data small

log

Operates

post-simulation

Compressed

recording

Hybrid scheme: use H/W to perform

checks and compress data

OUR HYBRID SCHEME

TRADITIONAL ACCELERATION

TRANSLATE CHECKERS TO H/W

LOG AND THEN CHECK

No post-simulation

phase

Potential large

logic overhead

S/W S/W

S/W

Figure 6.1 Hybrid checker-mapping approach. We use a mix of embedded logic and data-

compression techniques for data that must be logged. For the latter, a software checker analyzes the

logged data after simulation.

and then check” approach then it will necessitate recording all the input and output signals

of the block. Such excessive recording would introduce unacceptable degree of slowdown

and defeat the advantage of acceleration. Moreover, for quality debugging we need to ac-

commodate as many microarchitectural checkers as possible, such naive adaptation would

only allow incorporating a small number of them. Translating all microarchitectural check-

ers into synthesizable logic can also be untenable due to their complexity or the introduced

logic overhead.

We provide insights on how the checking activity for a microarchitectural block can be

partitioned into local assertion checkers and functionality checkers in Section 6.2.1.

Following Section 6.3 explores novel techniques to reduce the amount of recorded data

for functionality checking with the aid of lightweight supporting logic units. The partic-

ular design used as a testbed for hybrid checking is introduced in Section 6.4. The various

trade-offs introduced by our solution are demonstrated in Section 6.5 for a single represen-

tative microarchitectural block. Relevant prior work is presented in Section 6.6 and finally

118

Section 6.7 concludes this chapter.

6.2 Synergistic checking approach

The most common method of checking microarchitectural blocks involves implementing

a software reference model for the block. The design block updates a scoreboard during

simulation, which, in turn, is checked by the software reference model [94]. This approach

is viable in software simulation, but not directly applicable to acceleration platforms. Since

acceleration platforms only allow simulation of synthesizable logic, one option is to imple-

ment the reference model in hardware; however, this option is often impractical. Another

option is to record all signal activity at the microarchitectural blocks’ I/O and cross-validate

it against a reference model maintained in software after the simulation completes. How-

ever, that solution requires recording of a large number of bits in each cycle, leading to

an unacceptable slowdown during simulation. Thus, neither solution outlined scales well

to complex microarchitectural blocks. We propose a two-phase approach that solves this

problem by making synergistic use of these two methods while avoiding the unacceptable

overheads of both.

The first phase performs cycle-by-cycle checking using embedded local assertion

checkers on-platform. It focuses on monitoring the correctness of the target block’s in-

terface activity and local invariants, which can be expressed as local assertions. During this

phase, we also log and compress (with embedded logic) relevant microarchitectural events

to enable off-platform overall functionality checking. In the second phase, the logged data

is transferred off-platform and compared against a software model to validate the functional

activity of the block. This approach is illustrated in Figure 6.2. The main idea behind

this two-phase approach is the separation of local assertion checking from functionality

checking for a design block.

Local assertion checking often requires simple but frequent monitoring. Hence, it

must be performed in a cycle-accurate fashion and can often be achieved via low overhead

embedded logic, with minimal platform performance loss. This is because most local as-

sertions are specified over a handful of local signals and can be validated in an analysis’

windows of a few cycles (e.g., a FIFO queue must flush all of its content upon receiving

a flush signal, FIFO head and tail pointers should never cross over, etc.). These checkers

do not require large storage of intermediate events, rather they must maintain just a few

internal states to track the sequential behavior of relevant signals.

In contrast, functionality checking can be carried out in an event-accurate fashion.

119

Other

block 1

Other block 3

Other

block 2

Target block

Local assertion checks

- implemented in H/W

Data compressing logic

Post-simulation

analysis in S/W

Cycle-

accurate

checking

Event-

accurate

checking

in H/W

Functional

checks

in S/W

Figure 6.2 Two-phase checking. Local assertion checks are performed by embedded logic in

a cycle-accurate fashion, while microarchitectural events are logged and compressed on platform

with additional logic, and then evaluated for correctness by an off-platform functionality checker

after simulation.

From a functionality perspective, most microarchitectural blocks can be abstracted as data

structures accessed and modified through events of read and update operations. The main

goal of functionality checking is then to verify the legality and consistence of opera-

tions on this data structure. In addition to monitoring the data associated with events, an

event-accurate checker also needs to perform bookkeeping of the internal contents of the

microarchitectural block, and thus an embedded logic implementation would be grossly

inefficient. Therefore, for functionality checking, the data associated with events should be

recorded and transferred off-platform for post-simulation analysis in software, where the

validity of the recorded sequence of events is checked. Since events need to be recorded

only as they occur, there is no need to log signal values on every simulation cycle. More-

over, we notice that we can further reduce the amount of data recorded by leveraging

on-platform compression, while still achieving high-quality functionality checking.

6.2.1 Checker partitioning

It is technically possible, though inefficient, to express any collection of checks entirely

as an embedded hardware or entirely as a post-simulation software checker (preserving

cycle-accurateness via tracing cycle numbers, if needed). The partitioning of software-

based checkers into local assertions and functionality checkers requires the involvement

of a verification engineer who can extract the aspects that can be mapped into local asser-

120

tions. However, there are high-level guidelines that we gained from experience and that

can be used to guide and simplify this task. As discussed above, verifying the high-level

functionality of a block is naturally a perfect fit for event-accurate functionality checking,

whereas verifying simple interface behavior and component-specific invariants with cycle

bounds is a better fit for local assertion checking. The primary criterion when making this

distinction should be whether event-accuracy is sufficient or cycle-accuracy is needed to

implement a check. Another governing principle is that the logic footprint of a synthesized

local assertion should be small. Hence, a sufficiently complex interface check that will

result in a large logic overhead upon synthesis should be implemented as a post-simulation

software checker instead. Once a checker is selected for local assertion checking, it can

be coded as a temporal logic assertion and synthesized with tools such as those in [2, 20].

Note, however, that for our initial experimental evaluation, we simply coded the assertions

directly in synthesizable RTL.

6.3 Functionality checking with on-platform compression

We have observed that most microarchitectural blocks can be evaluated as black-boxes that

receive control and data inputs from other microarchitectural blocks or shared buses, and

either output information after some amount of processing, or perform internal bookkeep-

ing. From a checking perspective, microarchitectural blocks can essentially be treated as

data-structures, where data-elements are allocated, updated and deleted on external trig-

ger events. The objective of functionality checking is to ensure that the log of events is

consistent as per the rules of the operation of the microarchitectural block. The role of

on-platform compression is to compress the data associated with the events in a fashion

that allows us to perform checking, while reducing the volume of the data to be transferred

off-platform.

In our solution, functionality checkers gather all the relevant events for each microarchi-

tectural block by logging the associated control and data signals on-platform for later trans-

fer and post-simulation analysis. During the logging process, however, we also compress

the collected event log so as to reduce transfer time. Our goal is to achieve compression

in the recorded information without sacrificing accuracy. From a verification perspective,

control signals are more informative than data signals; hence, the guiding principle is to

preferentially compress data content over control information. Indeed, the control infor-

mation is critical in keeping the post-simulation software checker in sync with the design

block. Since compression is performed using an embedded logic implementation, we want

121

to leverage low-overhead compression schemes, such as parity checksums, which can be

computed with just a few XOR gates.

In Chapter 5 it was shown that blocked parity checksums are generally sufficient to de-

tect value corruptions due to functional bugs in modern complex processor designs. In light

of this, a straightforward technique consists of compressing the data portion of all events

using a blocked parity checksum, while keeping control information intact. Thus post-

simulation software checker is able to follow the same sequence of control states as the

design block to validate its behavior. Moreover, some types of events may undergo addi-

tional compression steps as discussed below. Taking advantage of the relative importance

of control and data signals further, it is sometimes sufficient to record all events with their

corresponding control signals, and simply drop the data components of the event. Thus the

post-simulation software-checker can follow the same sequence of control states while

the associated data is only sampled on a subset of cycles. Another technique consists of

merging checksums across multiple events. Instead of checking individual output events,

we can construct their “checksum digest” spanning multiple events and validate this digest

against the golden model.

6.4 Case-study design

ALU

Register File

(RF)

Map Table

(MT)

Retire

Reorder

Buffer (ROB)

Reservation

Station (RS)D
is

p
a

tc
h

C
o
m

p
le

te

Load-Store

Queue (LSQ)

C
D

B

Fetch

Branch

Predictor

Memory

Subsystem

MULT
BRANCH

MEM

Issue

Figure 6.3 Microarchitectural blocks in our experimental testbed.

A 2-way superscalar RISC out-of-order processor core designed for a subset of the al-

pha ISA serves as the case-study for this work. The microarchitecture of this design is

based upon the intel P6 microarchitecture. The main microarchitectural blocks that hold

122

state information in the core are reservation station (RS), map table (MT), reorder buffer

(ROB), functional units (FU), load-store queue (LSQ) and register file (RF). These along

with the fetch unit, decode unit, dispatch unit, issue unit and a common data bus (CDB)

aided with a bus arbiter forms the out-of-order core. In this microarchitecture each dis-

patched instruction is tagged with its corresponding ROB id during its lifetime of execution.

All dispatched instructions are allocated on the RS, and wait there to be issued till both their

source operands are ready, an entry for the instruction is also created in ROB and and pos-

sibly in LSQ, if its a memory operation. Once issued, the instruction is processed in the

appropriate functional unit and when completed the computed destination register value

along with the instruction’s tag is put on the CDB. The ROB entries update based on the

completion information on the CDB, and retire instructions in-order.

Our verification environment consisted of multiple C/C++ microarchitectural block-

level checkers, one for each of the blocks reported in Figure 6.3, and an architectural golden

model checker (arch-check) connected to the design via a SystemVerilog testbench. The

block-level checkers implement behavioral golden models for each such block and check

whether the output events of the block are consistent with the sequence of input events.

We also equipped our verification environment with a time-out condition on instruction

retirement, indicating whether the processor had hung (µP hang).

Developing acceleration-based checkers for state-heavy blocks such as RS, ROB, LSQ

etc. has been traditionally a challenge as: i) if the checker is entirely implemented in

hardware, the logic overhead becomes unacceptable – comparable in size to their design

counterpart, and ii) these blocks generate many events, thus logging entails lots of storage,

data transfer and analysis. Hence, we believe that the validation of these blocks will benefit

the most from our solution.

6.5 Experimental evaluation of hybrid checking

We performed a preliminary study on the feasibility of our hybrid checking methodology

by analyzing several schemes on the checkers in our testbed. The validation stimulus was

generated using a constrained-random generator that created a test suite of assembly re-

gressions. In evaluating the quality of our solution, we considered the three most relevant

metrics: average number of bits recorded per cycle, logic overhead and checking ac-

curacy. The first metric reflects the amount of data to be recorded on platform and later

transferred; we estimated the second one by using tracing logic similar to our IBI checking

solution described in Chapter 5; the third one is obtained by comparing our hybrid checkers

123

against the bug detection quality of a software-only checker in a simulation solution. Note

that, our industry experience suggests that the average bits/cycle metric is the most critical

for acceleration performance. A recording rate of only 162 bits/cycle is reported to induce

a 50% slowdown for the acceleration platform used in [27].

We injected a number of functional bugs in each microarchitectural block to evaluate

the bug-detection qualities of our solution. To measure the checking accuracy of any com-

pression scheme, the full set of regressions were run with only one bug activated at a time,

and this process was repeated for each bug to create an aggregate checking accuracy mea-

sure. Each microarchitectural checker was only evaluated over the bugs inserted into its

corresponding design block. We present preliminary results of applying hybrid checking

on a single microarchitectural block namely, an arithmetic logic unit (ALU): a functional

unit block.

6.5.1 ALU Checker

All functional unit checkers can be easily adapted into our hybrid checking methodology.

Local assertions for these blocks include checkers validating the time of the completion of

an operation and the corresponding release of the results to the ROB. Functionality check-

ing requires logging operands and corresponding results for validation by the off-platform

architectural checker. In this section we present the results relating to the ALU checker.

We modeled five distinct functional bugs (see Table 6.1) on the ALU block to evaluate the

quality of our checking schemes.

ALU’s functional bugs

- Erroneous handling of the immediate field - Erroneous logical operation

- Erroneous arithmetic operation - Erroneous comparison operation

- Erroneous interaction with CDB

Table 6.1 ALU checker - injected functional bugs

The ALU receives instructions with operand values obtained from the issue buses, and

outputs the result on the CDB after computation. Associated with each instruction are data

signals: two 64-bit operand values on the input side, one 64-bit result on the output side

and a 6 bit-wide control signal (the tag), on both directions. For this block, the only local

assertion checkedwhether an ALU instruction completes within 1 cycle excluding stall

cycles, while functionality checking was used to verify computation performed by the

block. Recording data checksum for each ALU instruction while following the complete

sequence of instructions is a natural choice for compressing events for the functionality

checker; using a checksum scheme on the data output while preserving the whole 6 bits

124

of control. Truncation can also serve as a checksum scheme, though it is generally less

effective than a XOR checksum for the same bit-width. However, to verify the result of

the computation, we still need all operands’ bits for each passing instruction. We can also

merge successive results in one digest and record the digest, still needing all the operand

bits. Finally, sampling can also be used as long as we keep track of all instructions going

through the block but record operands and results in a sampled fashion. Table 6.2 details

the set of compression schemes that we used in evaluating this checker.

Name Compression scheme

csX compress 64-bit output into X parity checksum bits

trunc check only 8 least significant bits of output

merge merge results of 5 consecutive instructions going through the block

samp record data for only 1 out of 5 instructions going through the block

Table 6.2 ALU checker - Compression schemes

Figure 6.4 explores the trade-off between the checking accuracy of different data com-

pression schemes and their average recording rate: the first bar on the left is for the the full

software checker tracing all active signals and leading to an average rate of 25 bits/cycle.

In contrast, the hardware-only checker does not entail any logging. Note that the average

recording rate is much smaller than the total number of interface signals for the block, since

only a fraction of instructions require an ALU. The other bars represent truncation, sam-

pling, merging (low logging rate and low accuracy), and various checksum widths. Note

that our checksum compression scheme provide very high accuracy at minimal logging

cost. We believe this is due to i) the ability of checksums to detect most data errors, and

ii) the fact that some control flow bugs impact data correctness as well. Logic overhead

corresponding to these schemes are reported in Figure 6.5.

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

30

S/W
only

H/W
only

trunc samp merge cs4 cs5 cs6 cs7

a
v
g

.
a

c
c

u
ra

c
y

a
v
g

.
#

b
it

s
/c

y
c

le

data compression scheme

avg. bits/cycle logging

avg. accuracy

Figure 6.4 ALU-checker - Accuracy vs. compression. Note how the ALU-checker exhibits

perfect accuracy even with a low checksum width of 5 bits.

125

0%
5%

10%
15%
20%
25%
30%
35%

S/W
only

H/W
only

trunc samp merge cs4 cs5 cs6 cs7

lo
g

ic
 o

v
e

rh
e

a
d

data compression scheme

compression + tracing local assertions

~102%

Figure 6.5 ALU-checker - Logic overhead relative to the ALU hardware unit for a range of

compression schemes.

6.6 Related work

A plethora of solutions are available for simulation-based validation of digital designs us-

ing software-based simulation [94]. A simulation-based validation environment commonly

involves checkers that are connected to the design. These checkers are written in high-level

languages, such as C/C++, SystemVerilog, and interface with the design via a testbench.

Unfortunately such validation schemes cannot leverage the performance offered by hard-

ware platforms for validation, namely simulation acceleration, emulation, or silicon debug.

Prior research has investigated synthesis of formal temporal logic assertions into synthesiz-

able logic [2, 31], targeting those platforms [18, 20]. Techniques for using reconfigurable

structures for assertion checkers, transaction identifiers, triggers and event counters in sil-

icon have also been explored [3]. However, synthesizing all checkers to logic is often not

viable for multiple reasons. Software checkers are often developed at a higher level of

abstraction for a design block, thus a direct manual translation to logic will run into the

challenge of addressing logic implementation details and can be error prone. Though these

checkers can be translated into temporal logic assertions and subsequently synthesized with

tools such as those described in [2, 20], the size of the resultant logic is often prohibitive for

our context. Indeed, the logic implementation of a checker implementing a golden model

for a microarchitectural block is often as large as the block itself, and such vast overhead is

not tolerable for large blocks. Recent research has focused on reducing logic overhead by

sacrificing checking accuracy [63], but did not consider the benefits of complementing that

approach with signal tracing.

The possibility of adopting conventional software testbenches for acceleration and em-

ulation platforms has been considered in prior work as well. The testbench still executes in

software and communicates with the platform over a bus: in this setup the communication

126

often becomes the bottleneck [67, 56]. Transaction-based acceleration (TBA) [85] attempts

to overcome this bottleneck by bundling several interactions between the testbench and the

platform into larger, yet less frequent, transactions.

On the data logging front, acceleration and emulation platforms permit recording the

values of a pre-specified group of signals [95], which can be later verified for consistency by

a software checker. Recently, a solution was proposed for adapting an architectural checker

for a complex processor design to an acceleration platform [27] using this approach: low

overhead embedded logic produces a compressed log of architectural events, which is later

checked by an off-platform software checker. However, an architectural checker cannot

provide the level of insight on design correctness, which a number of local checkers for mi-

croarchitectural blocks can. At the architectural level, the information gathered is limited

to events modifying the architectural state of the processor; in contrast, microarchitectural

checkers track events occurring in individual microarchitectural blocks, generally entailing

many more signals. Hence, adapting several microarchitectural checkers provides a much

greater challenge, but it is much more rewarding from design debugging perspective.

6.7 Summary

This chapter presented a solution to bring in similar degree of checking capability as avail-

able in software-based simulation to hardware-accelerated platforms. This solution was

demonstrated for a modern microprocessor design. Our solution leverages a combination

of local assertions, data compression hardware and off-platform post-simulation analysis

for checking complex functionality. We found that our solution is effective in delivering

high quality bug detection capabilities at low recording rates (15-25 bits/cycle) and logic

overhead (<25%) on typical micro-architectural blocks. Such low recording rate and logic

overhead will be able to retain the performance advantage of hardware-accelerated sim-

ulation platforms. This chapter presented the final contribution of this dissertation; the

next chapter will provide a conclusion to this dissertation along with the possible future

directions.

127

Chapter 7

Conclusions

The goal of this dissertation was to advance the field of simulation-based verification.

Digital designs face increasing complexity and shorter release schedules, challenging the

ability of the current design process to deliver a correctly functioning product in a given

timeframe. Simulation-based validation is the primary method deployed in the industry to

ensure design correctness. The effectiveness of the current state of simulation-based vali-

dation is compromised by a critical gap; the most predominant mode of simulation, namely

software-based simulation has excellent checking and debugging capabilities but falls short

in performance. In contrast, hardware-accelerated platforms offer excellent simulation per-

formance but are crippled by very limited checking and debugging capabilities.

This dissertation bridges this gap from both ends by presenting novel solutions to de-

liver low-cost high-performance software-based simulation, as well as solutions to provide

checking and debugging capabilities on hardware-accelerated simulation platforms. These

solutions will enable verification practitioners to harness the potential of simulation to

its full extent; design checking and debugging will be achieved at much higher simula-

tion performance than attainable currently. Ultimately this will enable higher validation

coverage for shorter product cycles, thereby delivering high quality integrated circuit de-

signs while conforming to tight release schedules. If we can continue the current trends

in complexity growth without compromising design correctness, attained through effec-

tive high-performance validation, then we can unlock further growth in the semiconductor

industry.

7.1 Summary of the contributions

This dissertation first presented solutions to improve the performance of software-based

simulation at multiple abstraction levels, by leveraging the massive parallelism of GP-

GPUs in Chapter 3. GCS brings in an order of magnitude improvement in the performance

128

of gate-level simulation, while SAGA improves the performance of simulation at the behav-

ioral level, namely SystemC RTL. These solutions bring the performance of software-based

simulation to levels previously offered exclusively by dedicated hardware-accelerated sim-

ulation platforms.

Several solutions are also presented to bridge the gap from the hardware-accelerated

platform’s end, by bringing in checking and debugging capability to these platforms. Sig-

nal observability is crucial for debugging, but observability is scarce in platforms beyond

software simulation. An approach to solve this problem involves reconstruction of non-

observed signals from a small number of observed ones. An automatic signal selection

solution, with the objective of maximizing the restoration of non-recorded state values from

recorded state values was presented in Chapter 4.

Performing design checking on hardware-accelerated platforms while maintaining the

performance advantage is a challenging proposition, since, additional logic dedicated for

checking, as well as tracing signal values for post-simulation checking, come at a per-

formance overhead. Two major directions to bring in checking capability to hardware-

accelerated simulation platforms were explored: i) Checker approximation is a solution

to bring in checking functionality to these platforms with light-weight embedded logic ded-

icated for checking; logic overhead for such checking constructs is reduced by trading off

checking accuracy ii) On-platform compression is a solution used to reduce the volume

of data that needs to be traced to perform checking. Both of these solutions were presented

in Chapter 5.

Finally, this dissertation culminates in a unifying solution which brings together these

two approaches on performing checking on hardware-accelerated platforms for modern mi-

croprocessor designs. Hybrid checking combines the ideas of using lightweight embedded

logic to perform checks during simulation as well as performing post-simulation checks on

a compressed event log in a synergistic fashion. This solution was presented in Chapter 6.

7.1.1 Infusing performance into software-based simulation

Software-based simulation already possesses excellent design checking and debugging in-

frastructure, due to decades of research and development. This infrastructure can be easily

adapted to a new software-simulator offering better performance, without any major change

in methodology. Hence performance improvement of software is extremely beneficial to

verification engineers. This dissertation presented solutions to improve the performance

of software-based simulation at two design abstraction levels by leveraging a massively

parallel execution substrate, namely GP-GPUs.

129

GCS is a gate-level simulator architecture that leverage the high degree of parallelism

of GP-GPUs. By extracting the parallelism available in the simulation of gate-level netlists,

we were able to achieve an order-of-magnitude speedup over traditional sequential simula-

tors, on average. This simulator was developed in two flavors: oblivious and event-driven.

The oblivious version of the simulator maps the parallelism available in netlists to the ex-

ecution parallelism of GPUs by employing a novel clustering and balancing algorithm.

While the event-driven version carves out macro-gates from the structural netlist of a de-

sign and schedules them for simulation on the multiprocessors of the GPU, only if they are

activated by switching events at their inputs.

SAGA is a solution that demonstrates the viability of GP-GPUs as an accelerator for

software-based simulation at a much higher design description level, namely SystemC

RTL. This problem is more challenging as the computation pattern is even more irregular

compared to gate-level simulation. To tackle this challenge, we proposed novel static data-

flow partitioning algorithms to extract the parallelism present in the problem to map it to the

parallelism available in GP-GPUs. This scheme allows us to forgo frequent synchroniza-

tions and deliver better simulation performance. We achieved up to an order-of-magnitude

speedup over conventional SystemC simulators.

7.1.2 Bringing in debug capability

One of the major roadblocks in debugging beyond software-based simulation is the scarcity

of observability. In acceleration and emulation platforms observability often comes with

a prohibitive performance cost, while in post-silicon, this problem is even more acute, as

dedicated hardware structures are necessary to record signal values. As a result, we can

afford to record only a small number of signals; hence, researchers have sought solutions

that reconstruct non-observed signals from observed ones. This has resulted in an effort

toward developing automatic signal selection algorithms that attempt to choose those flip-

flops whose values, if known, lead to the reconstruction of a maximal number of other state

values. The performance of these algorithms is measured by the metric of state restoration

ratio: the ratio of restored state values vs. the number of recorded state values.

A novel automatic signal selection algorithm is presented in this dissertation. This

algorithm is general in the sense that it can be applied to any sequential circuit without any

specific design knowledge. The selection algorithm is guided by an accurate simulation-

based restoration capacity metric and achieves better state restoration ratio than previous

solutions. It also achieves better trends of restoration per additional traced signal while

restoring higher average number of states. Overall, this solution provides a higher de-

130

gree of observability into the design for debugging purposes via restoration, than previous

solutions in that space.

7.1.3 Bringing in checking capability

The rest of the contributions are towards bringing in checking capability in hardware-

accelerated platforms while maintaining simulation performance. These platforms are

designed to carry out high-performance simulation of synthesized digital logic and do not

provide capabilities for checking constructs. Hence, checker-centric validation, although

very successful for software-based simulation, currently does not extend to the realm of

acceleration or emulation. This dissertation presented two different approaches and fi-

nally a unifying methodology to adapt checker-centric validation to these platforms. These

approaches were demonstrated on microprocessor designs and the methodology was also

developed for microprocessor designs. However, these solutions can be applicable to other

classes of designs as well.

Checker approximation trades off logic complexity with bug detection accuracy by

leveraging novel techniques to approximate software checkers into small synthesizable

hardware blocks, which can be simulated along with the design on a hardware-accelerated

simulation platform. A generalized checker taxonomy was presented, which proposes a

range of approximation techniques based on a checker’s characteristic and provides metrics

for evaluating its bug detection capabilities. The case study on a microprocessor-like design

demonstrated that checker approximation is a viable solution to reduce hardware overhead

of complex checkers while still enabling detection of a large fraction of bug manifestations.

On-platform compression was demonstrated with a novel microprocessor design

checking scheme on acceleration platforms that provides architectural checking against

a golden model. On-platform logic was used to trace and compress necessary data for

checking, reducing the number of signals to be traced, which is key to retaining the perfor-

mance advantage of hardware-accelerated platforms. The solution provides the same bug

detection quality as its software-based counterpart. It enables architectural validation of the

design on acceleration platforms with negligible accuracy loss. Thus it makes micropro-

cessor design validation possible at an order-of-magnitude better simulation performance

than software-based simulation.

Hybrid checking strives to bring to hardware-accelerated platforms a degree of check-

ing capabilities similar to those available in software-based simulation. This solution

leverages a combination of local assertions, data compression hardware and off-platform

post-simulation analysis for checking complex functionality. We found that the solution

131

is effective in delivering high quality bug detection capabilities at low recording rates and

permissible logic overhead over a broad range of micro-architectural blocks. Such low

recording rate and logic overhead will be able to retain the performance advantage of

hardware-accelerated simulation platforms, and yet provide checking capabilities compa-

rable to that of software-based simulation.

7.2 Directions of future research

The dissertation opens the door to several future research directions. Design simulation

will continue to be the primary mode of validation in the foreseeable future, and simulation

performance will continue to be valued among verification engineers. While processors

continue to show the trend of integrating many general-purpose processor cores, as well as

different types of accelerators (such as GPUs) on the same chip. As the GCS and SAGA

solutions have already demonstrated, the simulation algorithm can be mapped to fit the

execution parallelism of non-conventional processors. Further research is needed to target

the heterogeneous concurrent architecture of the future – finding the right balance on where

to map each of the various components of the simulation process, based on their inherent

concurrency.

The use of acceleration and emulation platforms is projected to increase in future and

this will necessitate the deployment of checking and debugging solutions similar to the

ones described in this dissertation. This dissertation demonstrated that a combination

of low logic footprint embedded checkers and off-line checkers that operate on compact

simulation trace are capable to bring in checking and debugging capability comparable

to software-based simulation, on hardware-accelerated platforms. However, the solutions

were achieved through manual partitioning and checker re-design and no standard EDA

tool flow for this purpose currently exists. Hence, future research will need to devise a

standard tool flow for developing checkers for design simulation on hardware-accelerated

platforms. Also the checking solutions discussed in this dissertation focused mostly on

microprocessor designs, but as System-on-Chip (SoC) designs are becoming predominant,

future research will need to bring these solutions to the system level.

132

Bibliography

[1] Intel(R) Pentium(R) Processor Invalid Instruction Erratum Overview, July 2004.

www.intel.com/support/processors/pentium/sb/cs-013151.

htm.

[2] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal. FoCs: Automatic

generation of simulation checkers from formal specifications. In Proc. CAV, pages

538–542, 2000.

[3] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D. Miller. A

reconfigurable design-for-debug infrastructure for SoCs. In Proc. DAC, pages 7–12,

2006.

[4] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, and A. Ziv.

Genesys-Pro: Innovations in test program generation for functional processor veri-

fication. IEEE Design and Test of Computers, 21(2):84–93, 2004.

[5] Advanced Micro Devices, Inc. Revision Guide for AMD Athlon(TM) 64 and AMD

Opteron(TM) Processors, Aug. 2005.

[6] Altera Verification Tool. SignalTap II Embedded Logic Analyzer, 2006. http://

www.altera.com/products/software/products/quartus2/

verification/signaltap2/sig-index.html.

[7] ARM limited. Embedded Trace Macrocells, 2007. http://www.arm.com/

products/solutions/ETM.html.

[8] T. Austin. DIVA: a reliable substrate for deep submicron microarchitecture design. In

Proc. MICRO, pages 196–207, 1999.

[9] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge. Opportunities and challenges for

better than worst-case design. In Proc. ASPDAC, 2005.

[10] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agarwal. Logic emulation

with virtual wires. IEEE Trans. Computer-Aided Design of Integrated Circuits and

Systems, 1997.

133

www.intel.com/support/ processors/pentium/sb/cs-013151.htm
www.intel.com/support/ processors/pentium/sb/cs-013151.htm
http://www.altera.com/products/software/products/quartus2/verification/signaltap2/sig-index.html
http://www.altera.com/products/software/products/quartus2/verification/signaltap2/sig-index.html
http://www.altera.com/products/software/products/quartus2/verification/signaltap2/sig-index.html
http://www.arm.com/products/solutions/ETM.html
http://www.arm.com/products/solutions/ETM.html

[11] W. Baker, A. Mahmood, and B. Carlson. Parallel event-driven logic simulation algo-

rithms: Tutorial and comparative evaluation. IEEE Journal on Circuits, Devices and

Systems, 1996.

[12] Z. Barzilai, J. Carter, B. Rosen, and J. Rutledge. HSS–a high-speed simulator. IEEE

Trans. Computer-Aided Design of Integrated Circuits and Systems, 1987.

[13] K. Basu and P. Mishra. Efficient trace signal selection for post silicon validation and

debug. In Proc. VLSI design, pages 352–357, 2011.

[14] H. Bauer and C. Sporrer. Reducing rollback overhead in time-warp based distributed

simulation with optimized incremental state saving. Proc. ANSS, 1993.

[15] B. Bentley. Validating the intel pentium 4 microprocessor. In Proc. DAC, pages

244–248, 2001.

[16] O. Berry and G. Lomow. Speeding up distributed simulation using the time warp

mechanism. In Proc. of workshop on Making distributed systems work, 1986.

[17] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-

cations of The ACM, 13:422–426, 1970.

[18] M. Boulé, J.-S. Chenard, and Z. Zilic. Adding debug enhancements to assertion

checkers for hardware emulation and silicon debug. In Proc. ICCD, pages 294 –299,

2006.

[19] M. Boulé and Z. Zilic. Incorporating efficient assertion checkers into hardware emu-

lation. In Proc. ICCD, 2005.

[20] M. Boulé and Z. Zilic. Automata-based assertion-checker synthesis of psl properties.

ACM Trans. Des. Autom. Electron. Syst., 13:4:1–4:21, February 2008.

[21] R. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler. COSMOS: a compiled

simulator for MOS circuits. In Proc. DAC, 1987.

[22] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Trans. Computers, 35:677–691, 1986.

[23] Cadence. Palladium. http://www.cadence.com/products/sd/

palladium_series.

[24] O. Caty, P. Dahlgren, and I. Bayraktaroglu. Microprocessor silicon debug based on

failure propagation tracing. In IEEE Transactions on Computers, pages 10 pp. –293,

2005.

[25] K. Chandy and J. Misra. Asynchronous distributed simulation via a sequence of

parallel computations. Communications of the ACM, 1981.

[26] Y.-S. Chang, S. Lee, I.-C. Park, and C.-M. Kyung. Verification of a microprocessor

using real world applications. In Proc. DAC, pages 181–184, 1999.

134

http://www.cadence.com/products/sd/palladium_series
http://www.cadence.com/products/sd/palladium_series

[27] D. Chatterjee, A. Koyfman, R. Morad, A. Ziv, and V. Bertacco. Checking architectural

outputs instruction-by-instruction on acceleration platforms. In Proc. DAC, 2012.

[28] P. Combes, E. Caron, F. Desprez, B.Chopard, and J. Zory. Relaxing synchronization

in a parallel SystemC kernel. In Proc. Of ISPA, 2008.

[29] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and

Other Kernel-based Learning Methods. Cambridge University Press, March 2000.

[30] J. Darringer, E. Davidson, D. Hathaway, B. Koenemann, M. Lavin, J. Morrell, K. Rah-

mat, W. Roesner, E. Schanzenbach, G. Tellez, and L. Trevillyan. EDA in IBM: past,

present, and future. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 19(12):1476–1497, 2000.

[31] S. Das, R. Mohanty, P. Dasgupta, and P. P. Chakrabarti. Synthesis of system verilog

assertions. In Proc. DATE, pages 70–75, 2006.

[32] J. Davis, C. Thacker, and C. C. BEE3: Revitalizing computer architecture research.

Technical report, April 2009.

[33] F. M. De Paula, M. Gort, A. J. Hu, S. J. E. Wilton, and J. Yang. BackSpace: formal

analysis for post-silicon debug. In Proc. FMCAD, pages 1–10, November 2008.

[34] M. Denneau. The Yorktown simulation engine. Proc. DAC, 1982.

[35] D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification as a hardware design

aid. In Proc. ICCD, pages 522–525, 1992.

[36] W. Ecker, V. Esen, L. Schonberg, T. Steininger, M. Velten, and M. Hull. Impact of

description language, abstraction layer, and value representation on simulation per-

formance. In Proc. of DATE, 2007.

[37] EDALab. HIFSuite, 2011. http://www.hifsuite.com/.

[38] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,

T. Austin, K. Flautner, and T. Mudge. Razor: A low-power pipeline based on circuit-

level timing speculation. In Proc. MICRO, 2003.

[39] P. Ezudheen, P. Chandran, J. Chandra, B. Simon, and D. Ravi. Parallelizing SystemC

kernel for fast hardware simulation on SMP machines. In Proc. of PADS, 2009.

[40] H. Foster. DAC 2012 Post-silicon Workshop. https://

www.research.ibm.com/haifa/images/dac/Harry_

2012-DAC-Post-Silicon-Workshop.pdf.

[41] L. Fournier, Y. Arbetman, and M. Levinger. Functional verification methodology for

microprocessors using the Genesys test-program generator. In Proc. DATE, pages

434–441, March 1999.

[42] R. Fujimoto. Parallel discrete event simulation. Communications of the ACM, 1990.

135

http://www.hifsuite.com/
https://www.research.ibm.com/haifa/images/dac/Harry_2012-DAC-Post-Silicon-Workshop.pdf
https://www.research.ibm.com/haifa/images/dac/Harry_2012-DAC-Post-Silicon-Workshop.pdf
https://www.research.ibm.com/haifa/images/dac/Harry_2012-DAC-Post-Silicon-Workshop.pdf

[43] G. Ganapathy, R. Narayan, C. Jorden, M. Wang, and J. Nishimura. Hardware emula-

tion for functional verification of K5. In Proc. DAC, pages 315 –318, 1996.

[44] K. Gulati and S. Khatri. Towards acceleration of fault simulation using graphics

processing units. Proc. DAC, 2008.

[45] Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang. Visibility enhancement for silicon

debug. In Proc. DAC, pages 13–18, 2006.

[46] Intel. Nehalem-EX, 2009. http://download.intel.com/pressroom/

pdf/nehalem-ex.pdf.

[47] Intel. Intel 82574L Ethernet controller bug, 2013. http://www.theregister.

co.uk/2013/02/06/packet_of_death_intel_ethernet/.

[48] Intel Corporation. Intel(R) StrongARM(R) SA-1100 Microprocessor Specification Up-

date, Feb. 2000.

[49] Intel Corporation. Intel Core 2 Duo and Intel Core 2 Solo Processor for Intel Centrino

Duo Processor Technology Specification Update, September 2007.

[50] Intel Corporation. Intel Core i7-900 Desktop Processor Series Specification Update,

July 2010.

[51] International Business Machines Corporation. IBM PowerPC 750GX and 750GL

RISC Microprocessor Errata Notice, July 2005.

[52] N. Ishiura, H. Yasuura, and S. Yajima. High-speed logic simulation on vector proces-

sors. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 6(3):305–321, May 1987.

[53] D. Josephson. The manic depression of microprocessor debug. In IEEE Transactions

on Computers, pages 657 – 663, 2002.

[54] Khronos Group. "http://www.khronos.org/opencl/".

[55] H. Kim and S. Chung. Parallel logic simulation using time warp on shared-memory

multiprocessors. Proc. IPPS, 1994.

[56] Y.-I. Kim and C.-M. Kyung. Tpartition: Testbench partitioning for hardware -

accelerated functional verification. IEEE Design & Test, 21:484–493, 2004.

[57] Y.-I. Kim, W. Yang, Y.-S. Kwon, and C.-M. Kyung. Communication-efficient hard-

ware acceleration for fast functional simulation. Proc. DAC, 2004.

[58] H. F. Ko and N. Nicolici. Automated trace signals identification and state restora-

tion for improving observability in post-silicon validation. In Proc. DATE, pages

1298–1303, 2008.

136

http://download.intel.com/pressroom/pdf/nehalem-ex.pdf
http://download.intel.com/pressroom/pdf/nehalem-ex.pdf
http://www.theregister.co.uk/2013/02/06/packet_of_death_intel_ethernet/
http://www.theregister.co.uk/2013/02/06/packet_of_death_intel_ethernet/
"http://www.khronos.org/opencl/"

[59] H. F. Ko and N. Nicolici. Algorithms for state restoration and trace-signal selec-

tion for data acquisition in silicon debug. IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, 28(2):285–297, 2009.

[60] D. Lewis. A hierarchical compiled code event-driven logic simulator. IEEE Trans.

Computer-Aided Design of Integrated Circuits and Systems, 1991.

[61] X. Liu and Q. Xu. Trace signal selection for visibility enhancement in post-silicon

validation. In Proc. DATE, pages 1338–1343, 2009.

[62] J. M. Ludden et al. Functional verification of the POWER4 microprocessor and

POWER4 multiprocessor systems. IBM Journal of Research and Development,

46(1):53–76, 2002.

[63] B. Mammo, D. Chatterjee, D. Pidan, A. Nahir, A. Ziv, R. Morad, and V. Bertacco.

Approximating checkers for simulation acceleration. In Proc. DATE, 2012.

[64] N. Manjikian and W. Loucks. High performance parallel logic simulations on a net-

work of workstations. Proc. of workshop on Parallel and distributed simulation, 1993.

[65] J. Markoff. Burned once, Intel prepares new chip fortified by constant tests. New York

Times, Nov. 2008.

[66] Y. Matsumoto and K. Taki. Parallel logic simulation on a distributed memory ma-

chine. Proc. EDAC, 1992.

[67] I. Mavroidis and I. Papaefstathiou. Efficient testbench code synthesis for a hardware

emulator system. In Proc. DATE, pages 888–893, 2007.

[68] Microsoft. http://www.xbox.com/kinect.

[69] MiniSat. www.minisat.se.

[70] J. Misra. Distributed discrete-event simulation. ACM Computer Survey, 1986.

[71] M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla. SCGPSim: A fast Sys-

temC simulator on GPUs. Proc. of ASP-DAC, 2010.

[72] N. Nataraj, T. Lundquist, and K. Shah. Fault localization using time resolved photon

emission and STIL waveforms. In IEEE Transactions on Computers, pages 254 –

263, 2003.

[73] NVIDIA. CUDA Compute Unified Device Architecture, 2007.

[74] Open SystemC Initiative. SystemC Language Reference, 2011.

http://www.systemc.org/downloads/standards.

[75] Opencores. "http://www.opencores.org/".

137

http://www.xbox.com/kinect
www.minisat.se
"http://www.opencores.org/"

[76] S.-B. Park, T. Hong, and S. Mitra. Post-silicon bug localization in processors using

instruction footprint recording and analysis (IFRA). IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, 28(10):1545 –1558, oct. 2009.

[77] P. Patra. On the cusp of a validation wall. IEEE Design & Test, 24(2):193–196, 2007.

[78] A. Perinkulam and S. Kundu. Logic simulation using graphics processors. In Proc.

ITSW, 2007.

[79] V. Popescu and B. McNamara. Innovative verification strategy reduces design cycle

time for high-end sparc processor. In Proc. DAC, pages 311–314, 1996.

[80] S. Prabhakar andM. Hsiao. Using non-trivial logic implications for trace buffer-based

silicon debug. In Proc. ATS, pages 131–136, 2009.

[81] R. Raghavan, J. Hayes, and W. Martin. Logic simulation on vector processors. In

Proc. ICCAD, pages 268–271, Nov 1988.

[82] K. Ravi, K. L. McMillan, T. R. Shiple, and F. Somenzi. Approximation and decom-

position of binary decision diagrams. In Proc. DAC, pages 445–450, 1998.

[83] N. Saviou, S. Shukla, and R. Gupta. Design for Synthesis, Transform for Simulation:

Automatic Transformation of Threading Structures in High Level SystemModels. Uni-

versity of California at Irvine, 2008. Technical Report TR-01-58.

[84] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,

A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.

Larrabee: a many-core x86 architecture for visual computing. ACM Trans. Graph.,

27(3):18:1–18:15, Aug. 2008.

[85] M. Shabtay, D. Leonard, B. Maya, and S. Michael. Building transaction-based ac-

celeration regression environment using plan-driven verification approach. In Design

and Verification Conference and Exhibition, 2007.

[86] H. Shojaei and A. Davoodi. Trace signal selection to enhance timing and logic visi-

bility in post-silicon validation. In Proc. ICCAD, pages 168–172, 2010.

[87] G. Spirakis. Opportunities and challenges in building silicon products in 65nm and

beyond. In Proc. DATE, 2004.

[88] Sun microsystems OpenSPARC. "http://opensparc.net/".

[89] Synopsys. Identify Pro. http://www.synopsys.com/Tools/

Implementation/FPGAImplementation/FPGASynthesis/Pages/

Identify.aspx.

[90] Synopsys. Synopsys Magellan. "http://www.synopsys.com".

[91] B. Turumella and M. Sharma. Assertion-based verification of a 32 thread SPARC

CMT microprocessor. In Proc. DAC, 2008.

138

"http://opensparc.net/"
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/Pages/Identify.aspx
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/Pages/Identify.aspx
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/Pages/Identify.aspx
"http://www.synopsys.com"

[92] B. Vermeulen, T. Waayers, and S. Bakker. IEEE 1149.1-compliant access architecture

for multiple core debug on digital system chips. In IEEE Transactions on Computers,

pages 55 – 63, 2002.

[93] D. W. Victor et al. Functional verification of the POWER5 microprocessor and

POWER5 multiprocessor systems. IBM Journal of Research and Development,

49(4):541–554, 2005.

[94] B. Wile, J. Goss, and W. Roesner. Comprehensive Functional Verification. Morgan

Kaufmann Publishers Inc., 2005.

[95] Xilinx Verification Tool. ChipScope Pro, 2006. http://www.xilinx.com/

ise/optional_prod/cspro.html.

[96] J.-S. Yang and N. A. Touba. Automated selection of signals to observe for efficient

silicon debug. In Proc. VTS, pages 79–84, 2009.

[97] J.-S. Yim, Y.-H. Hwang, C.-J. Park, H. Choi, W.-S. Yang, H.-S. Oh, I.-C. Park, and

C.-M. Kyung. A C-based RTL design verification methodology for complex micro-

processor. In Proc. DAC, 1997.

[98] H. Ziyu, Q. Lei, L. Hongliang, X. Xianghui, and Z. Kun. A parallel SystemC envi-

ronment: ArchSC. In Proc. of ICPADS, 2009.

139

http://www.xilinx.com/ise/optional_prod/cspro.html
http://www.xilinx.com/ise/optional_prod/cspro.html

	Title
	Dedication
	Acknowledgments
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Importance of verification in the design flow
	1.2 Phases of functional verification
	1.2.1 Pre-silicon verification
	1.2.2 Post-silicon validation

	1.3 Factors crippling simulation-based validation
	1.3.1 Limited performance of software-based simulation
	1.3.2 Limited validation capability for hardware-accelerated simulation
	1.3.3 The simulation-based validation gap

	1.4 Overview of my dissertation
	1.4.1 Bridging the simulation-based validation gap
	1.4.2 Improving performance of software-based simulation
	1.4.3 Bringing in validation capability to hardware-accelerated platforms

	1.5 Organization of the dissertation

	Chapter 2 The Simulation Spectrum
	2.1 Spectrum of validation platforms
	2.1.1 Software-based simulation
	2.1.2 Acceleration platform
	2.1.3 Emulation platform
	2.1.4 Silicon prototype

	2.2 State-of-the-art in high-performance simulation-based validation
	2.2.1 Synthesizing checking constructs
	2.2.2 Tracing signals for off-line checking
	2.2.3 Observability via reconstruction
	2.2.4 Replay from state snapshot

	2.3 Key challenges
	2.4 Contributions
	2.4.1 Infusing performance into software-based simulation
	2.4.2 Providing observability through restoration
	2.4.3 Enabling checking capability in hardware-accelerated platforms

	Chapter 3 The Quest for Simulation Speed
	3.1 High-performance simulation through massive parallel processing
	3.1.1 Overview of this chapter

	3.2 Introduction to GP-GPU architecture and programming model
	3.3 Towards high-performance logic simulation
	3.4 Oblivious simulator overview
	3.4.1 Synthesis and combinational netlist extraction
	3.4.2 Clustering
	3.4.3 Cluster balancing
	3.4.4 Simulation

	3.5 Event-driven simulator overview
	3.5.1 Segmentation into macro-gates
	3.5.2 Macro-gate balancing
	3.5.3 Simulation phase

	3.6 GCS experimental results
	3.6.1 Performance of the oblivious simulator
	3.6.2 Performance of the event-driven simulator

	3.7 Towards high-performance behavioral simulation
	3.8 Mapping SystemC to GP-GPU
	3.8.1 Construction of process dependency graph
	3.8.2 Partitioning into concurrent dataflows
	3.8.3 Parallel execution in CUDA

	3.9 SAGA experimental evaluation
	3.9.1 Experimental setup
	3.9.2 Performance
	3.9.3 Architecture comparison

	3.10 Related work
	3.11 Summary

	Chapter 4 Providing Observability for Hardware-accelerated Simulation
	4.1 Towards obtaining observability beyond software-based simulation
	4.1.1 Overview of this chapter

	4.2 Background of state restoration
	4.3 Structure of existing signal selection algorithms
	4.3.1 The problem of diminishing return with greedy selection

	4.4 Improving restoration capacity metric
	4.5 Proposed signal selection algorithm
	4.6 Experimental results
	4.6.1 Restoration quality
	4.6.2 Effect of pruning
	4.6.3 Algorithm execution performance

	4.7 Related Work
	4.8 Summary

	Chapter 5 Providing Checking Capability for Hardware-accelerated Simulation
	5.1 Background
	5.2 Towards providing checking capability
	5.3 Reducing checker logic overhead with approximation
	5.4 Checker classification
	5.5 Approximation techniques
	5.6 Approximation quality metrics
	5.7 Case study: calculator design
	5.7.1 Evaluation of the approximate calc3 checkers

	5.8 Leveraging on-platform compression for checking
	5.8.1 IBI background
	5.8.2 IBI for acceleration platforms

	5.9 In depth view of the solution
	5.9.1 On-platform data tracing
	5.9.2 On-platform data compression
	5.9.3 Off-platform software checker

	5.10 On-platform tracing unit
	5.10.1 Select and encode logic
	5.10.2 Trace buffer

	5.11 Experimental evaluation of the IBI solution
	5.11.1 Bug detection capability
	5.11.2 Tracing overhead

	5.12 Related work
	5.13 Summary

	Chapter 6 Hybrid Checking
	6.1 Towards hybrid checking
	6.1.1 Overview of this chapter

	6.2 Synergistic checking approach
	6.2.1 Checker partitioning

	6.3 Functionality checking with on-platform compression
	6.4 Case-study design
	6.5 Experimental evaluation of hybrid checking
	6.5.1 ALU Checker

	6.6 Related work
	6.7 Summary

	Chapter 7 Conclusions
	7.1 Summary of the contributions
	7.1.1 Infusing performance into software-based simulation
	7.1.2 Bringing in debug capability
	7.1.3 Bringing in checking capability

	7.2 Directions of future research

	Bibliography

