
Functional Design Error Diagnosis, Correction
and Layout Repair of Digital Circuits

by

Kai-hui Chang

A dissertation subm itted in partial fulfillm ent
o f the requirem ents for the degree of

D octor o f Philosophy
(Com puter Science and Engineering)

in The University o f M ichigan
2007

D octoral Com m ittee:

A ssociate Professor Igor L. M arkov, Co-Chair
A ssistant Professor Valeria M. Bertacco, Co-Chair
Professor John P. Hayes
A ssocia te P rofessor Todd M. Austin
Associate Professor M ingy an Liu

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

UMI Number: 3287474

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3287474

Copyright 2008 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Kai-hui Chang 2007
All Rights Reserved

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To my fam ily and friends

ii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ACKNOWLEDGEMENTS

I would like to thank my advisers Professor Igor M arkov and Professor Valeria Bertacco.

They offered valuable guidance and taught me how to conduct solid research. In addition,

they provided endless com m ents and advice on every paper we worked together. W ithout

them, I would not have been able to learn so m uch in graduate school. I am also grateful for

the advice from m y com m ittee m em bers: P rofessor John Hayes, Professor Todd Austin,

Professor M ingyan Liu, and Professor David Blaauw. Being an international student, I

would also like to thank my academ ic writing teacher, Professor Christine Feak; as well

as my academ ic speaking teacher, Professor Susan Reinhart. They taught me how to write

high-quality research papers and deliver good presentations. Their guidance is essential to

the final com pletion o f this dissertation and my Ph. D. training. I also want to thank Dr.

Chilai H uang from Avery Design System s for allowing me to use the com pany’s products

in my research and supporting me to attend DAC every year.

I always feel lucky to m eet so many wonderful people in my labs. I deeply thank Jarrod

Roy, George Viamontes, and Jin Hu for answering my countless research and English

questions. I want to thank Stephen Plaza; we spent a lot o f tim e together in our m eetings

and discussed many interesting ideas. I also w ant to thank David Papa and Ilya W agner

for working with me on different projects. In no particular order, I would like to thank

Sm ita Krishnaswam y, H ector Garcia, Aaron Ng, Jam es Lu, Jeff Hao, Sm itha Shyam, Beth

Isaksen, Andrew DeOrio, Joseph Greathouse, and all my friends from Taiwan.

W ithout the support o f my family, I would not be able to study overseas wholeheart-

iii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

edly. I want to thank my father for buying me a com puter when I was a child, while

com puters were rare and expensive. The com puter allowed me to explore the beauty of

program m ing and gave me the enthusiasm to becom e a com puter scientist. I want to thank

my m other and my brother for listening to me when I was sad. I also want to thank my

sister, who lived with me for the past three years, for proofreading this dissertation and

enduring my w orking in the living room.

Last but certainly not the least, I would like to thank my fiancee, Jun-tsui Fan. W ithout

her encouragem ent, I would not have come to the US to pursue my Ph. D. degree. I really

cherish the tim e we spent in M ichigan, and I cannot im agine how dull and colorless my

life would be w ithout her.

iv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

PREFACE

The dram atic increase in design com plexity of modern circuits challenges our ability to

verify their functional correctness. Therefore, circuits are often taped-out with functional

errors, which may cause critical system failures and huge financial loss. W hile im prove­

ments in verification allow engineers to find m ore errors, fixing these errors rem ains a m an­

ual and challenging task, consum ing valuable engineering resources that could have other­

wise been used to im prove verification and design quality. In this dissertation we solve this

problem by proposing innovative m ethods to autom ate the debugging process throughout

the design flow. We first observe that existing verification tools often focus exclusively

on error detection, w ithout considering the effort required by error repair. Therefore, they

tend to generate trem endously long bug traces, m aking the debugging process extremely

challenging. Hence, our first innovation is a bug trace m inim izer that can rem ove most

redundant inform ation from a trace, thus facilitating debugging. To autom ate the error-

repair process itself, we develop a novel fram ew ork that uses sim ulation to abstract the

functionality o f the circuit, and then rely on bug traces to guide the refinem ent o f the ab­

straction. To strengthen the fram ework, we also propose a com pact abstraction encoding

using sim ulated values. This innovation not only integrates verification and debugging

but also scales m uch further than existing solutions. We apply this fram ework to fix bugs

both in gate-level and register-transfer-level circuits. However, we note that this solution is

not directly applicable to post-silicon debugging because o f the highly-restrictive physical

constraints at this design stage which allow only m inim al perturbations o f the silicon die.

v

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To address this challenge, we propose a set o f com prehensive physically-aw are algorithm s

to generate a range o f viable netlist and layout transform ations. We then select the m ost

prom ising transform ations according to the physical constraints. Finally, we integrate all

these scalable error-repair techniques into a fram ew ork called FogClear. Our empirical

evaluation shows that FogC lear can repair errors in a broad range o f designs, dem onstrat­

ing its ability to greatly reduce debugging effort, enhance design quality, and ultim ately

enable the design and m anufacture of m ore reliable electronic devices.

vi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE OF CONTENTS

D E D IC A T IO N ... ii

ACKNOWLEDGEMENTS .. iii

PR E FA C E .. v

LIST OF FIGURES ...xii

LIST OF T A B L E S ... xix

CHAPTER

PART I Background and Prior Art

I. In tro d u ctio n ... 1

1.1 Design Trends and C h a l le n g e s ... 2
1.2 State of the Art ... 6
1.3 O ur A p p ro a c h ... 10
1.4 Key Contributions and Thesis O u t l i n e .. 12

II. Current Landscape in Design and Verification.. 17

2.1 Front-End D e s i g n ... 17
2.2 Back-End Logic D e s ig n ... 21
2.3 Back-End Physical D e s i g n .. 26
2.4 Post-Silicon D e b u g g in g ... 27

III. Traditional Techniques for Finding and Fixing B u g s 33

3.1 Sim ulation-B ased Verification ... 34
3.1.1 Logic Sim ulation A lg o r ith m s .. 35
3.1.2 Im proving Test Generation and V e r if ic a t io n 36

3.2 Formal V e r if ic a t io n .. 37
3.2.1 Satisfiability P r o b le m .. 38
3.2.2 Bounded M odel Checking ... 39

vii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2.3 Sym bolic S im u la t io n ... 40
3.2.4 Reachability A n a ly s is ... 41
3.2.5 Equivalence Checking ... 42

3.3 Design for Debugging and Post-Silicon M etal F i x 43
3.3.1 Scan C h a in s ... 43
3.3.2 Post-Silicon M etal Fix via Focused Ion B e a m 44

PA R T I I F o g C lea r M ethodolog ies an d T h eo re tica l A dvances in E r ro r R e p a ir

IV. F ogC lear: C ircu it D esign a n d V erification M e th o d o lo g ie s 46

4.1 Front-End D e s i g n .. 46
4.2 Back-End Logic D e s ig n ... 47
4.3 Back-End Physical D e s i g n .. 48
4.4 Post-Silicon D e b u g g in g ... 50

V. C o u n te rex am p le -G u id ed E r ro r-R e p a ir F r a m e w o r k 52

5.1 B a c k g ro u n d .. 52
5.1.1 S ig n a tu re s .. 53
5.1.2 D on’t - C a r e s ... 53
5.1.3 SAT-Based Error D ia g n o s is .. 54
5.1.4 Error M o d e l ... 55

5.2 Error-Correction Fram ework for Com binational Circuits 56
5.2.1 The CoRe F ram ew o rk ... 57
5.2.2 A nalysis o f C o R e .. 59
5.2.3 D is c u s s io n s .. 60
5.2.4 A p p lica tio n s .. 61

VI. S igna tu re-B ased R esynthesis T e c h n iq u e s ... 62

6.1 Pairs of Bits to be D istinguished (P B D s) ... 62
6.1.1 PBDs and D istinguishing P o w e r ... 63
6.1.2 Related W o r k ... 64

6.2 Resynthesis Using D istinguishing-Pow er S e a rc h .. 65
6.2.1 Absolute D istinguishing Pow er o f a S ig n a tu r e 65
6.2.2 D istinguishing-Pow er S e a r c h .. 66

6.3 Resynthesis Using Goal-D irected S e a r c h ... 68

V II. F u n c tio n a l S ym m etries an d A pp lica tions to R ew iring 71

7.1 B a c k g ro u n d .. 72
7.1.1 Sym m etries in Boolean F u n c t i o n s .. 73
7.1.2 Sem antic and Syntactic Sym m etry D e te c tio n 75
7.1.3 G raph-A utom orphism A lg o r i th m s .. 78

viii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7.1.4 Post-Placem ent R e w ir in g .. 78
7.2 Exhaustive Search for Functional S y m m e tr ie s .. 79

7.2.1 Problem M a p p in g .. 80
7.2.2 Proof of Correctness ... 82
7.2.3 Generating Sym m etries from Sym metry G e n e ra to rs 84
7.2.4 D isc u ss io n .. 85

7.3 Post-Placem ent R e w ir in g ... 86
7.3.1 Perm utative R e w ir in g ... 86
7.3.2 Im plem entation Insights .. 88
7.3.3 D isc u ss io n .. 88

7.4 Experim ental R e s u l t s .. 90
7.4.1 Sym m etries D e te c te d ... 91
7.4.2 R e w irin g .. 91

7.5 Sum m ary .. 94

PA R T I I I F o g C lea r C om ponen ts

V III. B ug T race M i n i m iz a t i o n .. 96

8.1 Background and Previous W o rk .. 97
8.1.1 Anatom y of a Bug T r a c e ... 97
8.1.2 Known Techniques in H ardw are V erifica tion 99
8.1.3 Techniques in Software Verification .. 102

8.2 Analysis of Bug T r a c e s .. 102
8.2.1 M aking Traces S h o r t e r ... 103
8.2.2 M aking Traces S im p le r ... 105

8.3 Proposed T e c h n iq u e s .. 106
8.3.1 Single-Cycle E lim in a t io n ... 107
8.3.2 Input-Event E lim ination ... 109
8.3.3 A lternative Path to B u g ... 109
8.3.4 State S k i p .. 110
8.3.5 Essential Variable Identification ... I l l
8.3.6 BM C-Based R e f in e m e n t ... 112

8.4 Im plem entation In s ig h ts ... 114
8.4.1 System A rch itec tu re .. 115
8.4.2 A lgorithm ic Analysis and Perform ance O p tim iza tio n s 115
8.4.3 Use M o d e l .. 117

8.5 Experim ental R e s u l t s .. 119
8.5.1 Sim ulation-Based E x p e r im e n ts ... 120
8.5.2 Perform ance A n a ly s is ... 123
8.5.3 Essential Variable Identification ... 125
8.5.4 G eneration o f H igh-Coverage T r a c e s .. 126
8.5.5 BM C-Based E x p e r im e n ts .. 127
8.5.6 Evaluation of Experim ental Results .. 128

8.6 Sum mary .. 130

ix

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IX . F u n c tio n a l E r ro r D iagnosis a n d C o r r e c t io n .. 132

9.1 Gate-Level Error Repair for Sequential C i r c u i t s 132
9.2 Register-Transfer-Level Error R e p a i r ... 134

9.2.1 B a c k g ro u n d ... 135
9.2.2 RTL Error D ia g n o s i s .. 137
9.2.3 RTL Error C o rre c t io n ... 146

9.3 Experim ental R e s u l t s .. 150
9.3.1 Gate-Level Error Repair ... 150
9.3.2 RTL Error R e p a i r .. 158

9.4 Sum m ary ... 169

X. In c re m e n ta l V erification fo r Physical S y n t h e s i s ... 171

10.1 B a c k g ro u n d .. 171
10.1.1 The Current Physical Synthesis F lo w .. 172
10.1.2 Retim ing .. 173

10.2 Increm ental V erifica tion .. 174
10.2.1 New M etric: Sim ilarity F a c t o r ... 174
10.2.2 Verification o f Retim ing .. 175
10.2.3 Overall Verification M ethodology .. 177

10.3 Experim ental R e s u l t s .. 180
10.3.1 Verification o f Com binational O p tim iza tio n s 180
10.3.2 Sequential Verification of R e tim in g .. 185

10.4 Sum m ary ... 187

X I. Post-S ilicon D ebugging a n d L ay o u t R e p a i r .. 188

11.1 Physical Safeness and Logical Soundness .. 189
11.1.1 Physically Safe T e c h n iq u e s .. 190
11.1.2 Physically Unsafe Techniques ... 191

11.2 New Resynthesis Technique — S a fe R e sy n th ... 194
11.2.1 T erm in o lo g y ... 195
11.2.2 SafeResynth F r a m e w o r k .. 196
11.2.3 Search-Space Pruning T e c h n iq u e s .. 196

11.3 Physically-Aware Functional E rror R e p a i r .. 199
11.3.1 The PAFER F ram ew o rk ...200
11.3.2 The PARSyn A lg o rith m ... 201

11.4 A utom ating Electrical Error R e p a i r ...204
11.4.1 The Sym W ire Rew iring T e c h n iq u e ..205
11.4.2 A dapting SafeResynth to Perform M etal F i x206
11.4.3 Case S tu d ie s ... 207

11.5 Experim ental R e s u l t s .. 208

x

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11.5.1 Functional Error R e p a i r ..209
11.5.2 Electrical Error R e p a i r ..212

11.6 Sum m ary .. 214

XII. C o n c lu s io n s ... 215

12.1 Sum mary o f C o n tr ib u t io n s .. 216
12.2 Directions for Future R e s e a r c h ...218

BIBLIOGRAPHY .. 222

xi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF FIGURES

Figure

1.1 The gap betw een the ability to fabricate, design and verify integrated
circu its... 3

1.2 Relative delay due to gate and interconnect at different technology nodes.
Delay due to interconnect becom es larger than the gate delay at the 90nm
technology node... 5

1.3 Estim ated m ask costs at different technology nodes. Source: IT R S’05
[130].. 6

2.1 The current front-end design flow.. 18

2.2 The current back-end logic design flow... 22

2.3 The current back-end physical design flow... 27

2.4 The current post-silicon debugging flow.. 28

2.5 Post-silicon error-repair example, (a) The original buggy layout with a
weak driver (INV). (b) A traditional resynthesis technique finds a “sim ­
p le” fix that sizes up the driving gate, but it requires expensive rem an­
ufacturing of the silicon die to change the transistors, (c) O ur physically-
aware techniques find a m ore “com plex” fix using sym m etry-based rewiring,
and the fix can be im plem ented sim ply with a metal fix and has sm aller
physical im pact... 30

3.1 L ew is’ event-driven sim ulation algorithm ... 36

3.2 Pseudo-code for Bounded M odel C hecking... 39

3.3 The algorithm ic flow o f reachability analysis... 41

3.4 The BILBO general-purpose scan-chain elem ent................................. 44

xii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.5 Schem atic showing the process to connect to a lower-level wire through
an upper-level wire: (a) a large hole is m illed through the upper level; (b)
the hole is filled with SiC>2 ; (c) a sm aller hole is m illed to the lower-level
wire; and (d) the hole is filled with new metal. In the figure, whitespace
is filled with S i02 , and the dark blocks are metal w ires................................. 45

4.1 The FogClear front-end design flow.. 47

4.2 The FogC lear back-end logic design flow... 48

4.3 The FogClear back-end physical design flow... 50

4.4 The FogClear post-silicon debugging flow.. 51

5.1 Error diagnosis. In (a) a m ultiplexer is added to model the correction of
an error, while (b) shows the error cardinality constraints that lim it the
num ber of asserted select lines to N ... 54

5.2 Errors m odeled by A badir et al. [1].. 56

5.3 The algorithm ic flow of C oR e.. 58

5.4 Execution exam ple o f CoRe. Signatures are shown above the wires,
where underlined bits correspond to error-sensitizing vectors. (1) The
gate was m eant to be AND but is erroneously an OR. Error diagnosis
finds that the output o f the 2nd pattern should be 0 instead o f 1; (2) the
first resynthesized netlist fixes the 2nd pattern, but fails further verifica­
tion (the output o f the 3rd pattern should be 1); (3) the counterexam ple
from step 2 refines the signatures, and a resynthesized netlist that fixes
all the test patterns is found ... 58

6.1 The truth table on the right is constructed from the signatures on the
left. Signature a, is the target signature, while signatures A] to ,94 are
candidate signatures. The m inim ized truth table suggests that s t can be
resynthesized by an INVERTER with its input set to a 1 68

6.2 Given a constraint im posed on a gate’s output and the gate type, this
table calculates the constraint o f the gate’s inputs. The output constraints
are given in the first row, the gate types are given in the first colum n,
and their intersection is the input constraint. “S.C.” m eans “signature
com plem ented.” .. 69

6.3 The GDS algorithm ... 70

xiii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7.1 Rewiring examples: (a) m ultiple inputs and outputs are rewired sim ul­
taneously using pin-perm utation symmetry, (b) inputs to a m ultiplexer
are rew ired by inverting one o f the select signals. Bold lines represent
changes m ade in the circuit... 72

7.2 Representing the 2-input XO R function by (a) the truth table, (b) the full
graph, and (c) the sim plified graph for faster sym m etry detection.............. 81

7.3 O ur sym m etry generation algorithm ... 85

7.4 Rewiring opportunities for p and q cannot be detected by only consider­
ing the subcircuit shown in this figure. To rewire p and q, a subcircuit
with p and q as inputs m ust be extracted.. 87

7.5 Flow chart o f our symm etry detection and rewiring experim ents................ 90

8.1 An illustration o f two types of bugs, based on whether one or many states
expose a given bug. The x-axis represents FSM -X and the y-axis repre­
sents FSM-Y. A specific bug configuration contains only one state, while
a general bug configuration contains many states.. 98

8.2 A bug trace example. The boxes represent input variable assignm ents to
the circuit at each cycle, shaded boxes represent input events. This trace
has three cycles, four input events and twelve input variable assignm ents. 99

8.3 A nother view of a bug trace. Three bug states are shown. Formal
m ethods often find the m inim al length bug trace, while sem i-form al and
constrained-random techniques often generate longer traces....................... 99

8.4 A bug trace may contain sequential loops, which can be elim inated to
obtain an equivalent but m ore com pact trace... 104

8.5 Arrow 1 shows a shortcut between two states on the bug trace. Arrows
m arked “2” show paths to easier-to-reach bug states in the sam e bug
configuration (that violates the same property)... 104

8.6 Single-cycle elim ination attempts to rem ove individual trace cycles, gen­
erating reduced traces which still expose the bug. This exam ple shows a
reduced trace where cycle 1 has been rem oved.. 108

8.7 Input-event elim ination rem oves pairs of events. In the exam ple, the
input events on signal c at cycle 1 and 2 are rem oved.................................... 109

xiv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8.8 A lternative path to bug: the variant trace at the bottom hits the bug at
step t2 - The new trace replaces the old one, and sim ulation is stopped. . 110

8.9 State skip: if state s j2 = si4, cycles u and u can be rem oved, obtaining a
new trace which includes the sequence “ ... Sj], sj2, s,5, ...” 110

8.10 BM C-based shortcut detection algorithm .. 112

8.11 BM C-based refinem ent finds a shortcut between states S\ and 5 4 , reduc­
ing the overall trace length by one cycle... 113

8.12 A shortest-path algorithm is used to find the shortest sequence from the
initial state to the bug state. The edges are labeled by the num ber of
cycles needed to go from the source vertex to the sink. The shortest path
from state 0 to state 4 in the figure uses 2 cycles.. 114

8.13 Butram in system architecture.. 115

8.14 Early exit. If the current state s j2 m atches a state from the original
trace, we can guarantee that the bug will eventually be hit. Therefore,
sim ulation can be term inated earlier... 117

8.15 Percentage o f cycles rem oved using different sim ulation-based techniques.
For benchm arks like B 15 and ICU, state skip is the m ost effective tech­
nique because they contain small num bers o f state variables and state
repetition is m ore likely to occur. For large benchm arks with long traces
like FPU and picoJava, cycle elim ination is the m ost effective technique. 122

8.16 N um ber o f input events elim inated with sim ulation-based techniques.
The distributions are sim ilar to cycle elim ination because rem oving cy­
cles also rem oves input events. However, input-event elim ination works
the m ost effectively for some benchm arks like S38584 and DES, show ­
ing that some redundant input events can only be rem oved by this tech­
n ique.. 123

8.17 Com parison of B utram in’s im pact when applied to traces generated in
three different modes. The graph shows the fraction o f cycles and input
events elim inated and the average runtim e... 125

9.1 Sequential signature construction example. The signature o f a node is
built by concatenating the sim ulated values o f each cycle for all the bug
traces. In this example, tracel is 4 cycles and trace2 is 3 cycles long.
The final signature is then 0110101.. 133

xv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9.2 REDIR framework. Inputs to the tool are an RTL design (which includes
one or more errors), test vectors exposing the bug(s), and correct output
responses for those vectors obtained from a high-level sim ulation. O ut­
puts o f the tool include REDIR symptom core (a m inim um cardinality set
o f RTL signals which need to be modified in order to correct the design),
as well as suggestions to fix the errors... 135

9.3 An RTL error-m odeling code example: m odule half_adder shows the
original code, where c is erroneously driven by “a | b” instead of “a
& b”\ and m odule half_adderJM UX_enriched shows the M UX -enriched
version. The differences are m arked in boldface.. 139

9.4 Procedure to insert a conditional assignm ent for a signal in an RTL de­
scription for error m odeling.. 139

9.5 Procedure to perform error diagnosis using synthesis and circuit unrolling. 140

9.6 Procedure to perform error diagnosis using sym bolic sim ulation. The
boldfaced variables are sym bolic variables or expressions, while all o th­
ers are scalar values... 142

9.7 Design for the example. W ire g l should be driven by “r l & r2” , but
it is erroneously driven by “r l | r2” . The changes m ade during M UX-
enrichm ent are m arked in boldface... 143

9.8 Signature-construction example. Sim ulation values o f variables created
from the same RTL variable at all cycles should be concatenated for error
correction.. 148

10.1 The current post-layout optim ization flow. Verification is perform ed af­
ter the layout has undergone a large num ber of optim izations, which
makes debugging difficult... 173

10.2 Sim ilarity factor example. N ote that the signatures in the fanout cone of
the corrupted signal are different... 175

10.3 Resynthesis examples: (a) the gates in the rectangle are resynthesized
correctly, and their signatures may be different from the original netlist;
(b) an error is introduced during resynthesis, and the signatures in the
output cone o f the resynthesized region are also different, causing a sig­
nificant drop in sim ilarity factor.. 176

xvi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10.4 A retim ing example: (a) is the original circuit, and (b) is its retimed
version. The tables above the wires show their signatures, where the
nth row is for the nth cycle. Four traces are used to generate the sig­
natures, producing four bits per signature. Registers are represented by
black rectangles, and their initial states are 0. As wire w shows, retim ing
m ay change the cycle that signatures appear, but it does not change the
signatures (signatures shown in boldface are identical)................................. 177

10.5 Circuits in Figure 10.4 unrolled three times. The cycle in which a sig­
nal appears is denoted using subscript “ @” . Retim ing affects gates in
the first and the last cycles (m arked in dark gray), while the rest o f the
gates are structurally identical (m arked in light gray). Therefore, only
the signatures o f the dark-gray gates will be different.................................... 178

10.6 Our InVerS verification m ethodology. It m onitors every layout m odifi­
cation to identify potential errors and calls equivalence checking when
necessary. Our functional error repair techniques can be used to correct
the errors when verification fails ... 179

10.7 The relationship between cell count and the difference factor. The linear
regression lines of the datapoints are also show n... 183

10.8 The relationship betw een the num ber of levels o f logic and the difference
factor in benchm ark DES_perf. The x-axis is the level of logic that the
circuit is modified. The logarithm ic regression line for the error-injection
tests is also show n.. 184

11.1 Several distinct physical synthesis techniques. N ew ly-introduced over­
laps are rem oved by legalizers after the optim ization phase has com pleted. 192

11.2 The SafeResynth fram ew ork... 197

11.3 A restructuring example. Input vectors to the circuit are shown on the
left. Each wire is annotated with its signature com puted by sim ulation on
those test vectors. We seek to com pute signal w i by a different gate, e.g.,
in term s o f signals W2 and W3 . Two such restructuring options (with new
gates) are shown as gn\ and gn2 . Since gn\ produces the required signa­
ture, equivalence checking is perform ed between wn\ and w 1 to verify
the correctness o f this restructuring. A nother option, g„2 , is abandoned
because it fails our com patibility test... 198

11.4 Conditions to determ ine com patibility: wiret is the target wire, and w ire 1

is the potential new input o f the resynthesized gate... 198

xvii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11.5 The pruned.search algorithm ... 199

11.6 A lgorithm for function get.potential .w ires. XO R and XN O R are consid­
ered separately because the required signature can be calculated uniquely
from wiret and w ire \ ... 199

11.7 The algorithm ic flow of the PAFER fram ew ork...200

11.8 The PARSyn algorithm .. 202

11.9 The exhaustiveSearch function..203

11.10 The Sym W ire algorithm .. 206

11.11 Case studies: (a) gi has insufficient driving strength, and SafeResynth
uses a new cell, gnew, to drive a fraction o f g i ’s fanouts; (b) SymW ire
reduces coupling between parallel long wires by changing their connec­
tions using sym m etries, which also changes metal layers and can allevi­
ate the antenna effect (electric charge accum ulated in partially-connected
wire segm ents during the m anufacturing process)..207

xviii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF TABLES

Table

2.1 Distribution o f design errors (in %) in seven m icroprocessor projects. . 20

2.2 A com parison o f gate-level error diagnosis and correction techniques. . 26

7.1 A com parison o f different sym m etry-detection m ethods................................ 77

7.2 N um ber o f sym m etries found in benchm ark circuits....................................... 92

7.3 W irelength reduction and runtim e com parisons betw een rewiring, de­
tailed placem ent and global placem ent.. 93

7.4 The impact o f rewiring before and after detailed placem ent......................... 94

7.5 The im pact o f the num ber of inputs allowed in symm etry detection on
perform ance and runtim e... 94

8.1 Characteristics of benchm arks.. 119

8.2 Bugs injected and assertions for trace generation... 120

8.3 Cycles and input events rem oved by sim ulation-based techniques of Bu-
tram in on traces generated by sem i-form al verification................................. 121

8.4 Cycles and input events rem oved by sim ulation-based techniques of Bu-
tram in on traces generated by a com pact-m ode sem i-form al verification
tool... 122

8.5 Cycles and input events rem oved by sim ulation-based m ethods of Bu-
tram in on traces generated by constrained-random sim ulation....................124

8.6 Im pact of the various sim ulation-based techniques on B utram in’s run­
tim e.. 125

8.7 Essential variable assignm ents identified in X -m ode....................................... 126

xix

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8.8 Cycles and input events rem oved by sim ulation-based m ethods of Bu-
tram in on traces that violate m ultiple properties.. 127

8.9 Cycles rem oved by the BM C-based m ethod... 128

8.10 A nalysis of a pure BM C-based m inim ization technique................................. 129

8.11 A nalysis o f the im pact of a bug radius on Butram in effectiveness 130

9.1 Error-correction experim ent for com binational gate-level netlists 152

9.2 Error-correction experim ent for com binational gate-level netlists with
reduced num ber o f initial patterns.. 153

9.3 A com parison o f our work with another state-of-the-art technique [122]. 153

9.4 M ultiple error experim ent for com binational gate-level netlists................... 155

9.5 Error correction for com binational gate-level netlists in the context of
sim ulation-based verification... 156

9.6 Error-repair results for sequential circuits... 158

9.7 Description o f bugs in benchm arks... 160

9.8 Characteristics of benchm arks.. 161

9.9 RTL synthesis-based error-diagnosis resu lts.. 162

9.10 Gate-level error-diagnosis results ... 163

9.11 Error-correction results for RTL d e s i g n s .. 166

10.1 Characteristics of benchm arks.. 180

10.2 Statistics of sim ilarity factors for different types of circuit modifications. 182

10.3 The accuracy of our incremental verification m ethodology........................... 185

10.4 Statistics o f sequential sim ilarity factors for retim ing with and w ithout
errors.. 186

xx

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10.5 Runtim e o f sequential sim ilarity factor calculation (SSF) and sequential
equivalence checking (SEC)... 187

11.1 Com parison o f a range of physical synthesis techniques in term s of phys­
ical safeness and optim ization potential 194

11.2 Characteristics of benchm arks.. 210

11.3 Post-silicon functional error repair results...211

11.4 Results o f post-silicon electrical error repair.. 213

xxi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

PARTI

Background and Prior Art

CHAPTER I

Introduction

M ost electronic devices that we use today are driven by Integrated Circuits (ICs) —

these circuits are inside com puters, cellphones, A nti-lock Braking System s (ABS) in cars,

and are som etim es even used to regulate a person’s heartbeat. To guarantee that these elec­

tronic devices will work properly, it is critical to ensure the functional correctness of their

internal ICs. However, experience shows that many IC designs still have functional errors.

Tor instance, a m edical device to treat cancer, called Therac-25, contained a fatal design

error which overexposed patients to radiation, seriously injuring or killing six people be­

tween 1985 and 1987 [76]. The infam ous FDIV bug in the Intel Pentium processors not

only hurt In te l’s reputation but also cost Intel 475 m illion dollars to replace the products

[125]. A m ore subtle design error may alter financial inform ation in a bank’s com puter

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

or cause a serious accident by starting a car’s ABS unexpectedly. To address these prob­

lems, enorm ous resources have been devoted to finding and fixing such design errors. The

process to find the design errors is called verification, and the process to repair the errors

is often called debugging. Error repair involves diagnosing the causes of the errors and

correcting them.

Due to the im portance of ensuring a circuit’s functional correctness, extensive research

on verification has been conducted, which allows engineers to find bugs m ore easily. H ow ­

ever, once a bug is found, the debugging process rem ains m ostly m anual and ad hoc. The

lack of autom atic debugging tools and m ethodologies greatly lim its engineers’ productiv­

ity and makes thorough verification m ore difficult. To autom ate the debugging process,

we propose innovative m ethodologies, tools and algorithm s in this dissertation. In this

chapter, we first describe the current circuit design trends and challenges. Next, we briefly

review existing solutions that address the challenges and point out the deficiency in current

solutions. We then provide an outline of our approach and sum m arize the key contribu­

tions of this work.

1.1 Design Trends and Challenges

M odem circuit designs strive to provide m ore functionalities with each product gener­

ation. To achieve this goal, circuits becom e larger and more com plicated with each gen­

eration, and designing them cori'ectly becom es m ore and m ore difficult. O ne exam ple that

shows this trend is In te l’s m icroprocessors. The 80386 processor released in 1985 barely

allows the execution of the W indows operating system and contains only 28 thousand

transistors. On the other hand, the Core 2 Duo processor released in 2006 supports very

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

com plicated com putations and is several hundred tim es m ore powerful than the 80386

processor. In order to provide this power, 167 m illion transistors are used. Needless to

say, designing a circuit o f this size and m aking sure that it works properly are extremely

challenging tasks.

No m atter how fast and powerful a circuit is, it may becom e useless if its behavior

differs from what is expected. To ensure the functional correctness of a circuit, trem en­

dous resources have been devoted to verification. As a result, verification already accounts

for two thirds of the circuit design cycle and the overall design/verification effort [12, 95].

However, many ICs are still released with latent errors, dem onstrating how poor the current

techniques are in ensuring functional correctness. To this end, various estim ates indicate

that functional errors are currently responsible for 40% of failures at the first circuit pro­

duction [12, 95]. As Figure 1.1 shows, the growth in design size and overall com plexity

increase the gap betw een engineers’ design and verification capabilities. Therefore, veri­

fication begins to lim it the features that can be im plem ented in a design [42], essentially

becom ing the bottleneck that hampers the im provem ent o f m odern electronic devices.

® 30N

D e s ig n
gap

V e r if ic a t io n
gap

Ability to fabricate
Ability to d e s ig n

Ability to verify

S EET irnes 03 /18 /2004

Figure 1.1: The gap betw een the ability to fabricate, design and verify integrated circuits.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To address this problem , the current trend is to autom ate testbench generation and ver­

ification in order to find design bugs more thoroughly. Once a bug is found, however,

fixing the bug is still m ostly manual and ad hoc. Therefore, engineers often need to spend

a great am ount of tim e analyzing and fixing the design errors. A lthough waveform view ­

ers and sim ulators are great aids to this end, there are currently no good m ethodologies

and algorithm s that can autom ate the debugging process. The lack o f autom atic debug­

ging m ethodologies not only slows down the verification process but also makes thorough

design verification m ore difficult. To this end, In te l’s latest Core 2 Duo processor can

serve as an exam ple [137]: a detailed analysis o f published errata perform ed by Theo

de Raadt in mid 2007 identified 20-30 bugs that cannot be m asked by changes in Basic

Input/O utput System (BIOS) and operating system s, while some may be exploited by m a­

licious software. De Raadt estim ates that Intel will take a year to fix these bugs in Core

2 processors. It is particularly alarm ing that these bugs escaped In te l’s verification and

validation m ethodologies, which are considered among the m ost advanced and effective

in the industry.

A nother challenge comes from the im provem ent in IC m anufacturing technology that

allows sm aller transistors to be created on a silicon die. This im provem ent enables the

transistors to switch faster and consum e less power. However, the delay due to intercon­

nect is also becom ing more significant because o f the m iniaturization in transistor size. As

Figure 1.2 shows, delay due to interconnect already becom es larger than the gate delay at

the 90nm technology node. To m itigate this effect, various physical synthesis techniques

and even m ore powerful optim izations such as retim ing are used [102]. These optim iza-

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

j Interconnect
✓ Al, Si02

Total Delay
Cu, Lowk
Interconnect
Cu, Lowk

0.65 0.5 0.35 0.25 0.18 0.13 0.09

Technology Node, pm

Source: IBM

Figure 1.2: Relative delay due to gate and interconnect at different technology nodes. De­
lay due to interconnect becom es larger than the gate delay at the 90nm tech­
nology node.

tions further exacerbate the verification problem in several ways. First, since Electronic

Design Automation (EDA) tools may still contain unexpected bugs [9], it is im portant to

verify the functional correctness of the optim ized circuit. However, once a bug is found, it

is very difficult to pinpoint the optim ization step that caused the bug because a large num ­

ber of circuit m odifications may have been perform ed, which makes repairing the error

very challenging. Second, to preserve the invested physical synthesis effort, bugs found in

late design stages m ust be repaired carefully so as to preserve previous optim ization effort.

This is significantly different from traditional design approaches, which restrict bug-fixing

to the original high-level description of the circuit and resynthesize it from scratch after

every such fix. In sum m ary, the increase in circuit com plexity and m iniaturization in tran ­

sistor size m ake verification and debugging m uch m ore difficult than they were ju st ten

years ago.

To support the m iniaturization o f CM OS circuits, the required m asks also becom e

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

much m ore sophisticated and expensive. As Figure 1.3 shows [130], m ask cost already

approaches 3 m illion dollars per set at the 65nm technology node. This cost makes any

functional m istakes after circuit production very expensive to fix, not to mention the loss

in revenue caused by delayed m arket entry may be even higher than the m ask cost. In

addition, due to the lack of autom atic post-silicon debugging m ethodologies, repairing

design errors post-silicon is much m ore challenging than repairing them pre-silicon. As a

result, it is im portant to detect and repair design errors as early in the circuit design flow as

possible. On the other hand, any post-silicon error-repair technique that allows the reuse

of lithography m asks can also alleviate this problem .

30

25

20

15

10

5

0
80 70 65 57 50 45 40 36 32

Technology node (nm)

Figure 1.3: Estim ated m ask costs at different technology nodes. Source: ITR S’05 [130],

1.2 State of the Art

To ensure the functional correctness o f a circuit, the current trend is to im prove its ver­

ification. Am ong the techniques and m ethodologies available for functional verification,

sim ulation-based verification is prevalent in industry because o f its linear and predictable

com plexity and its flexibility to be applied, in some form , to any design. The sim plest

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

verification m ethod, called direct test, is to m anually develop suites of input stim uli to test

the circuit. Since developing the test suites can be tedious and tim e consum ing, a more

flexible m ethodology called random simulation is often used. Random sim ulation involves

connecting a logic sim ulator with stimuli com ing from a constraint-based random gener­

ator, that is, an engine that can autom atically produce random legal inputs for the design

at a very high rate, based on a set of rules (or constraints) derived from the specification

document. In order to detect bugs, assertion statem ents, or checkers, are em bedded in the

design and continuously m onitor the sim ulated activity for anomalies. W hen a bug is de­

tected, the sim ulation trace leading to it is stored and can be replayed later to analyze the

conditions that led to the failure. This trace is called a bug trace.

A lthough sim ulation is scalable and easy to use, it cannot guarantee the correctness

o f a circuit unless all possible test vectors can be exhaustively tried. Therefore, another

verification approach called form al verification began to attract increasing attention from

industry. Formal verification tools use m athem atical m ethods to prove or disprove the cor­

rectness of a design with respect to a certain form al specification or property. In this way,

com plete verification can be achieved. For example, symbolic simulation, Bounded Model

Checking (BMC) and reachability analysis [15, 61] all belong to this genre. However,

form ally verifying the correctness of a design tends to becom e more difficult when design

gets larger. Therefore, currently it is often applied to small and critical com ponents within

large designs only.

To leverage the advantages o f both sim ulation and form al approaches, a hybrid veri­

fication m ethodology, called semi-formal verification, has recently becom e m ore popular

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[59]. Sem i-form al techniques strive to provide better scalability with m inim al loss in their

verification power. To achieve these goals, semi-formal techniques often use heuristics to

intelligently select the verification m ethods to apply, either sim ulation or formal m ethods.

W hen the current m ethods run out o f steam, they switch to other m ethods and continue

verification based on previous results. In this way, sem i-form al techniques are able to

provide a good balance between scalability and verification power.

The verification techniques described so far focus on detecting design errors. A fter er­

rors are found, the causes o f the errors m ust be identified so that the errors can be corrected.

Autom atic error diagnosis and correction at the gate level have been studied for decades

because this is the level at which the circuits were traditionally designed. To sim plify error

diagnosis and correction, A badir et al. [1] proposed an error model to capture the bugs that

occur frequently, which has been used in many subsequent studies [74, 112]. W hile early

work in this dom ain often relies on heuristics and special error m odels [1, 45, 74, 84, 112],

recent im provem ents in error-repair theories and Boolean-m anipulation technologies have

allowed m ore robust techniques to be developed [5, 6, 107, 108, 122]. These techniques

are not lim ited by specific error m odels and have m ore com prehensive error diagnosis or

correction pow er than previous solutions.

After autom atic logic-synthesis tools becam e widely available, design tasks shifted

from developing gate-level netlists to describing the circuit’s functions at a higher-level

abstraction, called the Register-Transfer Level (RTL). RTL provides a software-like ab­

straction that allows designers to concentrate on the functions o f the circuit instead o f its

detailed im plem entations. Due to this abstraction, gate-level error diagnosis and corrcc-

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

tion techniques cannot be applied to the RTL easily. However, this is problem atic because

m ost design activity takes place at the RTL nowadays. To address this problem , Shi et al.

[104] and Rau et al. [96] em ployed a software-analysis approach to identify statem ents in

the RTL code that m ay be responsible for the design errors. However, these techniques can

return large num bers of potentially erroneous sites. To narrow down the errors, Jiang et

al. [64] proposed a metric to prioritize the errors. A lthough their techniques can facilitate

error diagnosis, error correction rem ains manual. A nother approach proposed by Bloem

et al. [16] form ally analyzes the RTL code and the failed properties, and it is able to diag­

nose and repair design errors. However, their approach is not scalable due to the heavy use

of form al-analysis m ethods. Since m ore com prehensive RTL debugging m ethodologies

are still currently unavailable, autom atic RTL error repair rem ains a difficult problem and

requires m ore research.

Another dom ain that began to attract peop le’s attention is that of post-silicon debug­

ging. Due to the unparalleled com plexity o f m odern circuits, more and m ore bugs escaped

pre-silicon verification and were found post-silicon. Post-silicon debugging is consider­

ably m ore difficult than pre-silicon debugging due to its lim ited observability: w ithout

special constructs, only signals at the prim ary inputs and outputs can be observed. Even if

the bug can be diagnosed and a fix is found, changing the circuit on a silicon die to verify

the fix is also difficult if at all possible. To address the first problem , scan chains [20]

have been used to observe the values in registers. To address the second problem , Focused

Ion Beam (FIB) has been introduced to physically change the metal connections between

transistors on a silicon die. Alternatively, techniques that use program m able logic have

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

been proposed [80] for this purpose. A recent start-up company called DAFCA [136] pro­

posed a more com prehensive approach that addresses both problem s by inserting special

constructs before the circuit is taped out. A lthough these techniques can facilitate post­

silicon debugging, the debugging process itself rem ains manual and ad hoc. Therefore,

post-silicon debugging is still mostly an art, not a science [56],

1.3 Our Approach

Despite the vast am ount o f verification and debugging effort invested in m odern cir­

cuits, these circuits are still often released with latent bugs, showing the deficiency of

current m ethodologies. One m ajor reason is that existing error diagnosis and correction

techniques typically lack the power and scalability to handle the com plexity of today’s

designs. A nother reason is that existing verification techniques often focus on finding de­

sign errors without considering how the errors should be fixed. Therefore, the bug traces

produced by verification can be prohibitively long, m aking hum an analysis extrem ely dif­

ficult and further ham pering the deploym ent o f autom atic error-repair tools. As a result,

error repair rem ains a dem anding, sem i-m anual process that often introduces new errors

and consum es valuable resources, essentially underm ining thorough verification.

To address these problem s, we propose a fram ew ork called FogClear that autom ates

the error-repair processes at various design stages, including front-end design, back-end

logic design, back-end physical design and post-silicon debugging. We observe that major

weakness exists in several key com ponents required by autom atic error repair, and this

deficiency may lim it the power and scalability of our framework. To ensure the success of

our m ethodologies, we also develop innovative data structures, theories and algorithm s to

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

strengthen these com ponents. O ur enhanced com ponents are briefly described below.

• Butramin reduces the com plexity o f bug traces produced by verification for easier

error diagnosis.

• REDIR utilizes bug traces to autom atically correct design errors at the RTL.

• CoRe utilizes bug traces to autom atically correct design errors at the gate level.

• InVerS m onitors physical synthesis optim izations to identify potential errors and

facilitates debugging.

• To repair post-silicon electrical errors, we propose SymWire, a sym m etry-based

rew iring technique, to perturb the layout and change the electrical characteristics

of the erroneous wires. In addition, we devise a SafeResynth technique to identify

alternative signal sources that can generate the sam e signal, and use the identified

sources to change the wiring topology in order to repair electrical errors.

• To repair post-silicon functional errors, we propose PAFER and PARSyn that can

change a circuit’s functionality via wire reconnections. In this way, transistor masks

can be reused and respin cost can be reduced.

The strength of our com ponents stem s from the intelligent com bination of sim ulation

and formal verification techniques. In particular, recent im provem ents in SATisfiabiliiy

(SAT) solvers provide the pow er and scalability to handle m odern circuits. By enhancing

the pow er o f key com ponents, as well as unifying verification and debugging into the same

framework, our FogClear fram ework prom ises to facilitate the debugging processes at var­

ious design stages, thus im proving the quality o f electronic devices in several categories.

1 1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.4 Key Contributions and Thesis Outline

In this dissertation we present advanced theories and m ethodologies that address the

error diagnosis and correction problem of digital circuits. In addition, we propose scal­

able and powerful algorithm s to m atch the error-repair requirem ents at different design

stages. On the m ethodological front, we prom ote interoperability between verification and

debugging by devising new design flows that autom ate the error-repair processes in front-

end design, back-end logic design, back-end physical design and post-silicon debugging.

On the theoretical front, we propose a counterexam ple-guided error-repair fram ew ork that

perform s abstraction using signatures, which is refined by counterexam ples that fail fur­

ther verification. This fram ework integrates verification into debugging and scales much

further than existing solutions due to its innovative abstraction m echanism . To support

the error-correction needs in the fram ework, we design two novel resynthesis algorithm s,

which are based on a com pact encoding o f resynthesis inform ation called Pairs o f Bits

to be Distinguished (PBDs). These resynthesis techniques allow us to repair design er­

rors effectively. We also develop a com prehensive functional sym m etry detector that can

identify perm utational, phase-shift, higher-level, as well as com posite input and output

sym m etries. We apply this sym m etry-detection technique to rewiring and use it to repair

post-silicon electrical errors.

To enhance the robustness and power o f FogClear, it is im portant to make sure that

each com ponent used in our fram ework is scalable and effective. We observe that exist­

ing solutions exhibit m ajor weakness when we im plem ent several com ponents critical to

our fram ework. Therefore, we develop new techniques to strengthen these components.

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In particular, we observe that verification tools often strive to find many errors without

considering how these errors should be resolved. As a result, the returned bug traces can

be trem endously long. Existing solutions to reduce the com plexity of the traces, however,

rely heavily on form al m ethods and are not scalable [44, 55, 57, 66, 98, 100, 103]. To this

end, we propose a bug trace m inim izer called Butram in using several sim ulation-based

methods. This m inim izer scales much further than existing solutions and can handle more

realistic designs. A nother com ponent that receives little attention is RTL error diagnosis

and correction. Although techniques that address this problem began to em erge in the past

few years [16, 64, 96, 104, 108], they are not accurate or scalable enough to handle to­

day’s circuits. To design an effective autom atic RTL debugger, we extend state-of-the-art

gate-level solutions to the RTL. Our em pirical evaluation shows that our debugger is pow ­

erful and accurate, yet it m anages to avoid drawbacks com m on in gate-level error analysis

and is highly scalable. On the other end o f the design flow, we observe that post-silicon

debugging is often ad hoc and manual. To solve this problem , we propose the concept of

physical safeness to identify physical synthesis techniques that are suitable for this design

stage. In addition, we propose several new algorithm s that can repair both functional and

electrical errors on a silicon die.

The rest o f the thesis is organized as follows. Part I, which includes Chapters II and III,

provides necessary background and illustrates prior art. In particular, Chapter II outlines

the current design and verification landscapes. In this chapter, we discuss the front-end

design flow, followed by back-end design flows and the post-silicon debugging process.

Chapter III introduces several traditional techniques for finding and fixing bugs, including

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

sim ulation-based verification, form al-verification methods, design-for-debug constructs

and post-silicon metal fix.

Part II, which includes Chapters IV to VII, illustrates our FogC lear m ethodologies and

presents our theoretical advances in error repair. We start from our proposed FogClear

design and verification m ethodologies in Chapter IV. In this chapter, we describe how our

m ethodologies address the error-repair problem s at different design stages. Chapter V then

illustrates our gate-level functional error correction framework, CoRe, that uses counter­

examples reported by verification to autom atically repair design errors at the gate level

135, 361. It scales further than existing techniques due to its intelligent use of signature-

based abstraction and refinement. To support the error-correction requirem ents in CoRe,

we propose two innovative resynthesis techniques, Distinguishing-Power Search (DPS)

and Goal-Directed Search (GDS) [35, 36], in Chapter VI. These techniques can be used

to find resynthesized netlists that change the functionality of the circuit to match a given

specification. To allow efficient m anipulation o f logic for resynthesis, we also describe a

com pact encoding o f required resynthesis inform ation in the chapter, called Pairs o f Bits

to he Distinguished (PBDs). Finally, Chapter VII presents our com prehensive symm etry-

detection algorithm based on graph-autom orphism , and we applied the detected sym m e­

tries to rewiring in order to optim ize w irelength [32, 33]. This rewiring technique is also

used to repair electrical errors as shown in Section 11.4.1.

Part III, which includes Chapters VIII to XI, discusses specific FogC lear com ponents

that are vital to the effectiveness of our m ethodologies. We start from our proposed bug

trace m inim ization technique, Butramin [30, 31], in Chapter VIII. Butram in considers a

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

bug trace produced by a random sim ulator or sem i-form al verification software and gen­

erates an equivalent trace of shorter length. By reducing the com plexity of the bug trace,

error diagnosis will becom e much easier. Next, we observe that functional m istakes con­

tribute to a large portion o f design errors, especially at the RTL and the gate level. Our

solutions to this end are discussed in Chapter IX, which includes gate-level error repair

for sequential circuits and RTL error repair [39], O ur techniques can diagnose and repair

errors at these design stages, thus greatly saving engineers’ tim e and effort. Since intercon­

nect begins to dom inate delay and pow er consum ption at the latest technology nodes, more

aggressive physical synthesis techniques are used, which exacerbates the already difficult

verification problem . In Chapter X we describe an increm ental verification framework,

called InVerS, that can identify potentially erroneous netlist transform ations produced by

physical synthesis [38]. InVerS allows early detection of bugs and prom ises to reduce the

debugging effort.

A fter a design has been taped-out, bugs m ay be found on a silicon die. We notice that

due to the special physical constraints in post-silicon debugging, m ost existing pre-silicon

error-repair techniques cannot be applied to this design stage. In Chapter XI we first pro­

pose the concept o f physical safeness to m easure the im pact o f physical optim izations on

the layout [34], and then use it to identify physical synthesis techniques that can be ap­

plied post-silicon. To this end, we observe that safe techniques are particularly suitable for

post-silicon debugging; therefore, we propose a SafeResynih technique based on sim ula­

tion and on-line verification. We then illustrate how functional errors can be repaired by

our PAFER fram ew ork and PARSyn algorithm [37]. In addition, we describe how to adapt

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

sym m etry-based rewiring and SafeResynth for electrical error repair. Finally, Chapter X ll

concludes this dissertation by providing a sum m ary o f our contributions and pointing out

future research directions.

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER II

Current Landscape in Design and Verification

Before delving into our error-repair techniques, we are going to review how digital

circuits are developed and verified. In this chapter we describe current flows for front-

end design, back-end logic design, back-end physical design and post-silicon debugging.

We also discuss the bugs that may appear at each design stage, as well as the current

verification and debugging m ethodologies that attack them.

2.1 Front-End Design

Figure 2.1 illustrates the current front-end design flow. Given a specification, typically

three groups o f engineers will work on the same design, including architecture design,

testbench creation and RTL developm ent1. The flow shown in Figure 2.1 uses sim ulation-

based verification; however, flows using form al verification are similar. Chapter III pro­

vides more detailed discussions on these verification methods.

In this design flow, the architecture group first designs a high-level initial model using

high-level languages such as C, C++, System C, Vera [141], e [128] or SystemVerilog. At

'A l tho ug h there may be o ther groups o f engineers w orking on o ther design aspects, such as power, wc
do not consider them in this design How.

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Specification

Architecture Verification RTL

High level
initial model

Testbench

*
C++, SystemC...

development

i
Testbench

development

i
* i t
l RTL

developmenti i 4 ;

Verification

Fail

P a s s / Golden ~7_
/ testbench, m o d e /

RTL initial
model

Testbench,
model correction Verification

(simulation, emulation)

Pass

Fail

/ Repaired /
/ RTL m o d e /

,

Error diagnosis
and correction ' /

Bug trace

~~1
Bug trace

minimization

Minimized
bug trace

RTL golden
model

Manual functional error correction

Figure 2.1: The current front-end design flow.

the same time, the verification group develops a testbench to verify the initial model. If

verification fails, the testbench and/or model need to be corrected, after which their cor­

rectness is verified again. This process keeps repeating until the high-level model passes

verification. At this time, a golden high-level m odel and testbench will be produced. They

will be used to verify the RTL initial model developed by the RTL group. If verification

passes, an RTL golden model will be produced. If verification fails, the RTL model con­

tains bugs and m ust be fixed. Usually, a bug trace that exposes the bugs in the RTL model

will be returned by the verification tool.

To address the debugging problem , existing error-repair techniques often partition the

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

problem into two steps. In the first step, the circuit is diagnosed to identify potential

changes that can alter the incorrect output responses. In the second step, the changes

are im plem ented. The first step is called error diagnosis, and the second step is called

error correction. Currently, functional error diagnosis and correction are often performed

m anually using the steps described below. This manual error-repair procedure is also

shown in the “M anual functional error correction” block in Figure 2.1.

1. The bug trace is m inim ized to reduce its com plexity for easier error diagnosis.

2. The m inim ized bug trace is diagnosed to find the cause o f the bugs. Debugging

expertise and design knowledge are usually required to find the cause of the bugs.

3. A fter the cause o f the bugs is found, the RTL code m ust be repaired to rem ove the

bugs. The engineer who designed the erroneous block is usually responsible for

fixing the bugs.

4. The repaired RTL m odel needs to be verified again to ensure the correctness of the

fix and prevent new bugs from being introduced by the fix.

Errors in sem iconductor products have different origins, ranging from poor specifi­

cations, m iscom m unication among designers, and designer’s m istakes — conceptual or

minor. Table 2.1 lists 15 m ost com m on error categories in m icroprocessor designs speci­

fied at the Register-Transfer Level (RTL), collected from student projects at the University

o f M ichigan between 1996 and 1997 [24], M ost students participating in this study are

currently w orking for IC design com panies, therefore the bugs are representative of errors

in industry designs.

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 2.1: Distribution of design errors (in %) in seven m icroprocessor projects.
Error category M icroprocessor project Average

LC2 DLX1 D LX 2 DLX3 X86 FPU FXU
W rong signal source 27.3 31.4 25.7 46.2 32.8 23.5 25.7 30.4
M issing instance 0.0 28.6 20.0 23.1 14.8 5.9 15.9 15.5
M issing inversion 0.0 8.6 0.0 0.0 0.0 47.1 16.8 10.3
New category
(Sophisticated errors)

9.1 8.6 0.0 7.7 6.6 11.8 4.4 6.9

U nconnected input(s) 0.0 8.6 14.3 7.7 8.2 5.9 0.9 6.5
M issing input(s) 9.1 8.6 5.7 7.7 11.5 0.0 0.0 6.1
W rong gate/m odule type 13.6 0.0 11.4 0.0 9.8 0.0 0.0 5.0
M issing item /factor 9.1 2.9 5.7 0.0 0.0 0.0 4.4 3.2
W rong constant 9.1 0.0 2.9 0.0 0.0 0.0 9.7 3.1

A lways statem ent 9.1 0.0 2.9 0.0 0.0 0.0 2.7 2.1
M issing latch/flip-flop 0.0 0.0 0.0 0.0 4.9 5.9 0.9 1.7
W rong bus width 4.5 0.0 0.0 0.0 0.0 0.0 7.1 1.7
M issing state 9.1 0.0 0.0 0.0 0.0 0.0 0.0 1.3
Conflicting outputs 0.0 0.0 0.0 7.7 0.0 0.0 0.0 1.1
Conceptual error 0.0 0.0 2.9 0.0 3.3 0.0 0.9 1.0

R eproduced from [24, Table4], where the top 15 m ost-com m on errors are shown. “New category”
includes tim ing errors and sophisticated, difficult-to-fix errors.

Since the purpose o f RTL developm ent is to describe the logic function o f the circuit,

the errors occurring at the RTL are m ostly functional. We observe from Table 2.1 that most

errors are sim ple in that they only require the change of a few lines of code, while complex

errors only contribute to 6.9% of the total errors. This is not surprising since com petent

designers should be able to write code that is close to the correct one [50]. However,

finding and fixing those bugs are still challenging and tim e-consum ing. Since fixing errors

at later design stages will be much m ore difficult and expensive, it is especially important

to make sure that the RTL code describes the function of the circuit correctly.

To address this problem , techniques that focus on RTL debugging have been developed

recently. The first group o f techniques [96, 104] em ploy a software-analysis approach

that im plicitly uses m ultiplexers (M UXes) to identify statem ents in the RTL code that

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

are responsible for the errors. However, these techniques can return large num bers of

potentially erroneous sites. To address this problem , Jiang et al. [64] proposed a m etric

to prioritize the errors. Their techniques greatly improve the quality o f error diagnosis,

but error correction rem ains manual. The second group of techniques, such as those in

[16], uses formal analysis of an H D L description and failed properties; because of that

these techniques can only be deployed in a form al verification framework, and cannot be

applied in a sim ulation-based verification flow com m on in the industry today. In addition,

these techniques cannot repair identified errors autom atically. Finally, the work by Stabcr

et al. [108] can diagnose and correct RTL design errors autom atically, but it relies on state-

transition analysis and hence, it does not scale beyond tens o f state bits. In addition, this

algorithm requires a correct formal specification of the design, which is rarely available in

today’s design environm ents because its developm ent is often as challenging as the design

process itself. In contrast, the m ost com m on type o f specification available is a high-level

model, often written in a high-level language, which produces the correct I/O behavior

of the system. As we show in Section 4.1, our FogC lear m ethodology is scalable and

can autom ate both error diagnosis and repair at the RTL. In addition, it only requires the

correct I/O behavior to be known.

2.2 Back-End Logic Design

F ro n t-e n d d e s ig n flow p ro d u c e s an R T L m o d e l th a t sh o u ld b e fu n c tio n a lly co rrec t. T h e

next step is to produce a gate-level netlist that has the same functionality by perform ing

back-end logic design, followed by back-end physical design that generates the layout.

This section discusses the logic design flow, and the next section describes the physical

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

RTL golden
model

Gate level
netlist

Pass Golden
netlist

Fail

Repaired
netlist

Counterexample

Manual functional e rro r correction

Error diagnosis
and correction

Synthesis and
optimization

Verification
(Equivalence checking)

Figure 2.2: The current back-end logic design flow.

design flow.

Figure 2.2 shows the current back-end logic design flow. Given an RTL golden model,

this flow produces a gate-level netlist that efficiently im plem ents the logic functions of

the RTL model. This goal is achieved by perform ing logic synthesis and various optim iza­

tions, which are already highly autom ated. However, since logic synthesis may not capture

all the behavior o f the RTL code faithfully [17], it is possible that the produced netlist docs

not match the RTL model. In addition, unexpected bugs may still exist in synthesis tools

[9]. Therefore, verification is still required to ensure the correctness o f the netlist.

A nother reason to fix functional errors at the gate-level instead o f the RTL is to preserve

previous design effort, which is especially im portant when the errors are discovered at a

late stage of the design flow. In the current design m ethodology, functional errors discov-

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ered at an early stage o f the design flow are often conceivable to be fixed by changing the

RTL code and synthesizing the entire netlist from scratch. However, such a design strat­

egy is typically inefficient when the errors are discovered at a late stage of the design flow

because previously perform ed optim izations will be invalidated. Additionally, gate-level

bug-fixing offers possibilities not available when working with higher-level specifications,

such as reconnecting individual wires, changing individual gate types, etc.

One way to verify the correctness of the netlist is to rerun the testbench developed

for the RTL model, while Figure 2.2 shows another approach where the netlist is verified

against the RTL model using equivalence checking. In either approach, when verification

fails, a counterexam ple (or a bug trace for the sim ulation-based approach) will be produced

to expose the m ism atch. This counterexam ple will be used to debug the netlist.

Before logic synthesis was autom ated, engineers designed digital circuits at the gate

level or had to perform synthesis them selves. In this context, A badir et al. [1J proposed

an error m odel to capture the bugs that occur frequently at this level (see Section 5.1.4).

In the current design m ethodology, however, gate-level netlists are often generated via

synthesis tools. As a result, many bugs that exist in a netlist are caused by the erroneous

RTL code and may not be captured by this model. On the other hand, bugs introduced by

Engineering Change Order (ECO) m odifications or EDA tools can often be categorized

into the errors in this model.

Sim ilar to RTL debugging, existing gate-level error-repair techniques also partition the

debugging problem into Error Diagnosis (ED) and Error Correction (EC). The solutions

that address these two problem s are described below.

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Error diagnosis has been extensively studied in the past few decades. For example,

early work by M adre et al. [84] used sym bolic sim ulation and Boolean equation solv­

ing to identify error locations, while Kuo [74] used Automatic Test Pattern Generation

(ATPG) and don’t-care propagation. Both o f these techniques are lim ited to single errors

only. Recently, Smith et al. [107] and Ali et al. [6] used Boolean satisfiability (SAT)

to diagnose design errors. Their techniques can handle m ultiple errors and are not lim ­

ited to specific error models. We adopt these techniques in our work for error diagnosis

because of their flexibility, which will be described in detail in Section 5.1.3. To further

improve the scalability of SAT-based error diagnosis, Safarpour et al. [101] proposed an

abstraction-refinem ent schem e for sequential circuits by replacing registers with prim ary

inputs, while Ali et al. [5] proposed the use o f Quantified Boolean Formulas (QBF) for

com binational circuits.

Error correction im plem ents new logic functions found by diagnosis to fix the erro­

neous behavior of the circuit. M adre et al. [84] pointed out that the search space of

this problem is exponential and, in the worst case, is sim ilar to that o f synthesis. As

a result, heuristics have been used in m ost publications. Chung et al. [45] proposed

a Single-Logic-Design-Error (SLDE) m odel in their ACCORD system , and were able to

detect and correct errors that comply with the model. To further reduce the search space,

they also proposed screen tests to prune the search. The AutoFix system from Huang et

al. [62] assum ed that the specification is given as a netlist and equivalence points can be

identified betw een the specification and the circuit. The error region in the circuit can then

be reduced by replacing the equivalent points with pseudo-prim ary inputs and outputs,

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and the errors are corrected by resynthesizing the new functions using the pseudo-prim ary

inputs. Lin et al. [79] first synthesized and m inim ized the candidate functions using

BDDs, and then replaced the inputs to the BDDs by signals in the circuit to reuse the

existing netlist. Swamy et al. [110] synthesized the required functions by using the signals

in minimal regions. W ork by Veneris et al. [112] handled this problem by trying possible

fixes according to the error m odel proposed by A badir et al. [1], Staber et al. [108]

proposed a theoretically sound approach that fixes design errors by preventing the reach

of bug states, which can also be applied to RTL debugging and software error correction.

Although these techniques have been successful to some degree, their correction power is

often lim ited by the heuristics employed or the logic representations used. For example,

either the error m ust com ply with a specific error model [45, 112] or the specification must

be given [45, 62, 108]. A lthough the work by Lin el al. [79] and Swamy et al. [110] has

fewer restrictions, their techniques require longer runtim e and do not scale well due to the

use of BDDs. The work by Staber et al. [108] also does not scale well because of the heavy

use of state-transition analysis. A recent approach proposed by Yang et al. [122] m anaged

to avoid m ost drawbacks in current solutions. However, their techniques are based on Sets

o f Pairs o f Functions to be Distinguished (SPFDs), which are m ore difficult to calculate

and represent than our signature-based solutions, as we show in Section 6.1.2.

A com parison of our work with previous error diagnosis and correction techniques

is given in Table 2.2. In the table, “No. o f errors” is the num ber o f errors that can be

detected or corrected by the technique. Our gate-level error-repair framework, CoRe, will

be described in detail in Chapter V.

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 2.2: A com parison o f gate-level error diagnosis and correction techniques.

Technique ED /
EC

No. of
errors

Error
model

Scalability Requirem ent

A CCO RD
[45]

Both Single SLD E M oderate
(BDDs)

Functional
specification

A utoFix
[62]

Both M ultiple None M oderate
(BDDs)

Golden
netlist

Kuo [74] ED Single A badir Good
(ATPG)

Test
vectors

Lin [79[Both M ultiple None M oderate
(BDDs)

Golden
netlist

M adre [84] Both Single PR IA M M oderate Functional
specification

Smith
[107]

ED M ultiple None Good
(SAT)

Test
vectors

Staber [108] Both M ultiple N one M oderate
(State analysis)

Functional
specification

Veneris
[112]

Both M ultiple A badir Good
(ATPG)

Test
vectors

CoRe
(C hapter V)

Both M ultiple N one Good (SAT,
signatures)

Test
vectors

2.3 Back-End Physical Design

The current back-end physical design flow is shown in Figure 2.3. Starting from the

golden netlist, place and route is first perform ed to produce the layout. Som etim es clock

or scan synthesis also needs to be performed, as well as physical synthesis that optim izes

tim ing or power of the circuit. Post-layout verification is then carried out to ensure the

correctness of the layout. If verification fails, the cause of the error m ust be diagnosed.

If the error is due to tim ing violations, layout tim ing repair needs to be perform ed to fix

the error, usually via m ore iterations of physical synthesis. Since bugs are still com m on in

today’s logic and physical synthesis tools [9], logic errors may still be introduced. W hen

this happens, the manual functional error correction process shown in Figure 2.2 needs to

be performed, and this process will produce a repaired netlist. The layout is then modified

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Golden
netlist

Layout

Physical synthesis

Optimized layout

Fail

Pass

Final layout

Optimization 2

Optimization 1

Optimization N

Post-layout
verification

Layout repair

Place, route, clock
and scan synthesis

Figure 2.3: The current back-end physical design flow,

to reflect the change in the netlist, after which its correctness is verified again.

2.4 Post-Silicon Debugging

Figure 2.4 shows the current post-silicon debugging flow. To verify the correctness of

a silicon die, engineers apply num erous test vectors to the die and then check their output

responses. If the responses are correct for all the applied test vectors, then the die passes

verification. If not, then the test vectors that expose the design errors becom e the bug trace

that can be used to diagnose and correct the errors. The trace will then be diagnosed to

identify the root causes o f the errors. Typically, there are three types o f errors: functional,

electrical and m anufacturing/yield. In this work we only focus on the first two types.

A fter errors are diagnosed, the layout is modified to correct them, and the repaired

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

f Final ayout y /
’ '

Manufacture

' ’

Layout repair

Logic error repair
Repaired

netlist

Repaired

Silicon die Testbench

Electrical error repair
Post-Silicon
verification

Electrical
error

Functional
error

Error
diagnosis

Done Bug trace

Logic error diagnosis
and correction

Figure 2.4: The current post-silicon debugging flow.

layout m ust be verified again. This process is repeated until no m ore errors are exposed.

In post-silicon debugging, however, it is often unnecessary to fix all the errors because

repairing a fraction of the errors may be sufficient to enable further verification. For exam ­

ple, a processor m ay contain a bug in its A LU and another one in its branch predictor. If

fixing the bug in the ALU is sufficient to enable further testing, then the fix in the branch

predictor can be postponed to the next respin. On the other hand, all the bugs should be

fixed before the chip is shipped to the custom ers.

Joscphson docum ented the m ajor silicon failure m echanism s in m icroprocessors [67],

where the m ost com m on failures (excluding dynam ic logic) are drive strength (9%), logic

errors (9%), race conditions (8%), unexpected capacitive coupling (7%), and drive fights

(7%). Another im portant problem at the latest technology nodes are antenna effects, which

can damage a circuit during its m anufacturing or reduce its reliability. These problem s

often can only be identified in post-silicon debugging.

Pre-silicon and post-silicon debugging differ in several significant ways. First, con-

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ceptual bugs that require deep understanding of the ch ip ’s functionality are predom inantly

introduced when the chip is being designed and well before the first silicon is available,

and such bugs may not be fixable by autom atic tools. As Table 2.1 shows, however, com ­

plex and conceptual errors only contribute to 7.9% of the errors at early design stages,

and such errors can often be caught by pre-silicon verification. As a result, post-silicon

functional bugs are m ostly subtle errors that only affect the output responses of a few input

vectors, and their fixes can usually be im plem ented with very few gates. As an analysis

o f com m ercial m icroprocessors suggests [114], faults in control logic contribute to 52%

o f the total errors, which are typically subtle and only appear in rare corner-cases. H ow ­

ever, repairing such errors requires the analysis o f detailed layout inform ation, m aking it

a highly tedious and error-prone task. As we show in Chapter XI, our work can autom ate

this process. Second, errors found post-silicon typically include functional and electrical

problem s, as well as those related to m anufacturability and yield. However, issues identi­

fied pre-silicon are predom inantly related to functional and tim ing errors.2 Problem s that

m anage to evade pre-silicon validation are often difficult to sim ulate, analyze and even

duplicate. Third, the observability o f the internal signals on a silicon die is extrem ely lim ­

ited. M ost internal signals cannot be directly observed, even in designs with built-in scan

chains (see Section 3.3.1) that enable access to sequential elem ents. Fourth, verifying the

correctness o f a fix is challenging because it is difficult to physically im plem ent a fix in a

chip that has already been m anufactured. A lthough techniques such as FIB exist (see Sec­

tion 3.3.2), they typically can only change metal layers o f the chip and cannot create any

2Post-silicon timing violations are often caused by electrical problems and are only their symptoms.

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

new transistor (this process is often called metal f ix)? Finally, it is especially im portant

to m inim ize the layout area affected by each change in post-silicon debugging because

sm aller changes are easier to im plem ent with good FIB techniques, and there is a sm aller

risk of unexpected side effects. Due to these unusual circum stances and constraints, most

debugging techniques prevalent in early design stages cannot be applied to post-silicon

debugging. In particular, conventional physical synthesis and ECO techniques affect too

many cells or wire segm ents to be useful in post-silicon debugging. As illustrated in F ig­

ure 2.5(b), a small m odification in the layout that sizes up a gate requires changes in all

transistor m asks and refabrication o f the chip. On the other hand, our techniques are aware

o f the physical constraints and can repair errors with m inim al physical changes, as shown

in Figure 2.5(c).

FT"; R

d t f 1' I n I ;V O R]
(b)
,1 I MW

An d !'

AND Oi
(c)

figure 2.5: Post-silicon error-repair example, (a) The original buggy layout with a weak
driver (INV). (b) A traditional resynthesis technique finds a “sim ple” fix that
sizes up the driving gate, but it requires expensive rem anufacturing of the sil­
icon die to change the transistors, (c) O ur physically-aw are techniques find a
more “com plex” fix using sym m etry-based rewiring, and the fix can be im ple­
m ented simply with a metal fix and has sm aller physical impact.

To repair post-silicon functional errors, the current trend is to provide more visibil­

3Despite the impressive success o f the FIB technique at recent fabrication technology nodes, the use o f
FIB is projected to b ecom e m ore problematic at future nodes, limiting how extensive changes can be and
further com plica ting post-silicon debugging.

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ity and controllability of the silicon die. For example, most m odern designs incoiporatc

a technique, called scan test [20], into their chips. This technique allows engineers to

observe the values of internal registers and can greatly improve the design signals’ ob­

servability. In order to change the logic on a silicon die, spare cells are often scattered

throughout a design to enable metal fix [68]. The num ber of spare cells depends on the

m ethodology, as well as the expectation for respins and future steppings, and this num ber

can reach 1% of all cells in m ass-produced m icroprocessor designs. Alternatively, Lin et

al. [80] proposed the use o f program m able logic for this purpose. DAFCA provides a

m ore com prehensive solution that further improves the observability o f silicon dies and

enables logic changes on the dies [2, 136], A success story can be found in [65],

Debugging electrical errors is often m ore challenging than debugging functional errors

because it does not allow the deploym ent of logic debugging tools that designers are fa­

m iliar with. In addition, there are various reasons for electrical errors [67], and analyzing

them requires profound design and physical knowledge. A lthough techniques to debug

electrical errors exist (e.g., voltage-frequency Shmoo plots [10]), they are often heuristic

in nature and require abundant expertise and experience. As a result, post-silicon debug­

ging is currently an art, not a science. Even if the causes of the errors can be identified,

finding valid fixes is still challenging because m ost existing resynthesis techniques require

changes in transistor cells and do not allow metal fix. To address this problem , techniques

that allow post-silicon metal fix have been developed recently, such as ECO routing [120].

However, ECO routing can only repair a fraction o f electrical errors because it cannot find

layout transform ations involving logic changes. To repair m ore difficult bugs, transfor-

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

m ations that also utilize logic inform ation are required. For exam ple, one way to repair a

driving strength error is to identify alternative signal sources that also generate the same

signal, and this can only be achieved by considering logic inform ation. All these issues

will be addressed and solved by our FogClear post-silicon debugging m ethodology that

we present in Chapter XI.

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER III

Traditional Techniques for Finding and Fixing Bugs

In the previous chapter we described the current design and verification m ethodolo­

gies at different design stages. In this chapter we take a closer look at the verification

techniques used in these m ethodologies. Am ong the techniques available for functional

verification, sim ulation-based verification is prevalent in the industry because of its lin­

ear and predictable com plexity as well as its flexibility in being applied, in some form,

to any design. However, sim ulation can only find bugs that can be exposed by the given

stimuli. Therefore, unless all possible input scenarios can be covered by the stim uli, the

correctness o f the design cannot be guaranteed. To address this problem , formal m ethods

have been developed to prove the correctness of the design under certain pre-defined prop­

erties. Nonetheless, their scalability is often lim ited because the proving process can be

very complicated. In addition, developing properties may be as difficult as developing the

design itself. Therefore, form al techniques are applied to only a small portion o f the cur­

rent designs. To overcom e this problem , hybrid techniques that utilize both sim ulation and

formal m ethods have been proposed. One of the contributions in our work is to leverage

the strength of both m ethods in an intelligent way to achieve the scalability and accu-

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

racy required in autom atic error repair. In this chapter, we first review sim ulation-based

verification techniques. Next, we describe com m only used form al m ethods. Finally, we

introduce the scan chain Design-for-D ebugging (DFD) construct and the metal fix tech­

nique that facilitate post-silicon debugging.

3.1 Simulation-Based Verification

Simulation is the m ost com m only used technique for verifying the correctness o f a

design. In its sim plest form, called direct test, engineers m anually develop the test vectors

that are applied to the design and then inspect their output responses. Developing the test

suites, however, can be costly and tim e-consum ing. In addition, scenarios not considered

by the designers may be overlooked by the test developers as well. Therefore, techniques

that autom ate testbench generation have been proposed to avoid the bias from human

engineers. A com m on m ethodology to this context is constrained-random simulation. It

involves connecting a logic sim ulator with stimuli com ing from a constraint-based random

generator, i.e., an engine that can autom atically produce random legal inputs for the design

at a very high rate based on a set o f rules (or constraints) derived from the specification.

A fast sim ulator is the core of sim ulation-based verification m ethodologies; therefore,

in this section we review two com m only used sim ulation algorithm s. Since the quality of

test vectors generated in constrained-random sim ulation greatly affects the thoroughness

o f v e rifica tio n , w e a lso rev iew sev e ra l so lu tio n s th a t im p ro v e th is qua lity .

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.1.1 Logic Simulation Algorithms

Logic sim ulation m im ics the operation o f a digital circuit by calculating the outputs of

the circuit using given input stimuli. For exam ple, if a 0 is applied to the input o f an in­

verter, logic sim ulation will produce a 1 on its output. A lgorithm s that perform sim ulation

can be categorized into two m ajor types: oblivious and event-driven [11]. In the oblivious

algorithm , all gates are sim ulated at each tim e point. In event-driven sim ulation, value

changes in the netlist are recorded, and only the gates that m ight cause further changes

are sim ulated. Event-driven algorithm s are potentially more efficient than oblivious al­

gorithm s because they only sim ulate the part o f the netlist that had their values changed;

however, the overhead to keep track o f the gates that should be sim ulated is also a concern.

A typical oblivious sim ulation algorithm works as follows:

1. A linear list o f gates is produced by levelizing the netlist. Gates closer to the prim ary

inputs (i.e., those at lower levels of logic) are placed on the front of the list.

2. A t each tim e point, all the gates in the list are sim ulated. Since gates with sm aller

levels of logic are sim ulated first, the sim ulation values at the inputs o f the gate

currently being sim ulated are always valid. As a result, the sim ulation value at the

gate’s output is also correct.

Event-driven algorithm s are more com plicated than oblivious ones because the algo­

rithms m ust keep track of the gates that need to be resimulated. One such algorithm ,

proposed by Lewis [77], is shown in Figure 3.1. Two phases are used in L ew is’ algorithm ,

including the node phase (also called the event phase) and the gate phase (also called the

evaluation phase).

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 fanout:
2 foreach n ode G a c t ive .n o d es

3 n o d e .v a l - node.next.val',
4 active .g a te s = active .g a te s U n o d e 1s fa n o u t gates',
5 ac t ive .n o d es . c lear{) \
6 simulate:
7 foreach g a te G a c t iv e .g a te s
8 simulate gate',
9 foreach n ode G g a te 1s output

10 if {node.va l != node .n ex t .va l)
1 1 act iv e .n o d e s= a c t i v e . n odes U node',
12 act ive .g a te s .c le a r () \ t

Figure 3 .1: Lew is’ event-driven simulation algorithm.

The node phase corresponds to the code labeled “fanout:” , and the gate phase corre­

sponds to the code labeled “simulate:” . There are two lists that represent the state of the

netlist: the first one is for the active nodes, while the other one is for the active gates. At

each time point, nodes in active-nodes list are scanned and their fanout gates are added

to the active.gates list. The logic value of each node is also updated from its next.val,

and the active Modes list is cleared. The active.gates list is then scanned, and each active

gate is simulated. The simulation results will be used to update the next.val of the gate’s

output nodes. If the node’s new value (in node.next.val) is different from its current value

(in node.val), the node will be added to the active Modes list. The active.gates list is then

cleared. Since gates will be simulated only if their input values change, Lew is’ simulation

algorithm can avoid redundant computation that simulates gates whose output values will

not change.

3.1.2 Improving Test Generation and Verification

One major obstacle in adopting constrained-random simulation into the verification

flow is that writing the constraints may be difficult: the constraints need to model the

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

environment for the design under verification, and describing the environment using con­

straints can be challenging. To address this problem, Yuan etal. [123] proposed techniques

to generate the constraints using rules specified by designers. In this way, test develop­

ers can focus on describing the high-level behavior of the environment and let the tool

automatically generate the constraints. Alternatively, commercial Verification Intellectual

Properties (VIPs) and Bus Functional Models (BFMs) are also available for modeling the

test environment [126, 129].

The quality of a test suite is determined by the input scenarios that can be explored by

its tests. Test vectors that cover corner-case scenarios are often considered as of high qual­

ity. Since random simulation tends to cover scenarios that occur frequently, techniques that

try to generate tests with higher quality have been proposed. For example, the StressTcst

technique [113] monitors circuit activities at key signals and uses a Markov-model-driven

test generator to cover the corner-case scenarios. Shimizu et al. [106] took another ap­

proach by deriving an input generator and a coverage metric from a formal specification

first, and then they used the measured coverage to bias the input generator. Recent work

by Plaza et al. [93] measures signal activities based on Shannon entropy and uses the

measured activities to guide a pattern generator to produce high-quality test vectors.

3.2 Formal Verification

Simulation-based verification uses a large number of input vectors to check a design's

responses. Due to the scalability of modern simulators, whole-chip simulation can often

be performed. However, it is usually infeasible to simulate all possible input sequences

because the num ber of the sequences is typically large and can even be infinite. As a result,

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

it is difficult to judge whether all possible scenarios have been covered, making complete

verification difficult.

Formal verification is a totally different approach. It uses mathematical methods to

prove or disprove the correctness of the design with respect to a certain formal specifi­

cations or properties. In this way, complete verification can be achieved to the extent

described by the specification or properties. However, the complexity of formally veri­

fying a design grows considerably with the size of the circuit, making formal techniques

applicable to smaller designs only. As a result, currently it is often used to verify small

and critical components within a large design.

In this section we first describe a commonly used problem formulation, the SATis/i-

ability (SAT) problem. Next, we briefly introduce several formal verification techniques,

including Bounded Model Checking (BMC), symbolic simulation, reachability analysis

and equivalence checking.

3.2,1 Satisfiability Problem

A SATisfiability (SAT) problem can be formulated as follows. Given a Boolean ex­

pression composed of AND, OR, NOT, variables and parentheses, determine if there is an

assignment of true and false values to the variables that makes the expression evaluate to

true. If no such assignment exists, then the expression is said to be unsatisfiable. Other­

wise, the expression is satisfiable, and the assignment is a solution to the SAT problem. If

the Boolean expression is a conjunction (AND) of clauses, then we call it a Conjunctive

Normal Form (CNF). Since netlists composed of logic gates can be converted into CNF

easily, SAT has been used extensively to solve circuit design and verification problems.

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

SAT is the first known NP-complete problem [47]. Fortunately, many practical SAT

problems can be solved by modern solvers such as MiniSat [51], GRASP [85] and zChaff

[90]. However, these solvers still cannot handle many important problems, and more

research on this problem is being conducted.

3.2.2 Bounded Model Checking

Bounded Model Checking (BMC) [15] is a formal method which can prove or dis­

prove properties of bounded length in a design, frequently using SAT solving techniques

to achieve this goal. A high-level flow of the algorithm is given in Figure 3.2. The central

idea of BM C is to “unroll” a given sequential circuit k times to generate a combinational

circuit that has behavior equivalent to k clock cycles of the original circuit. In the process

of unrolling, the circuit’s memory elements are eliminated, and the signals that feed them

at cycle i are connected directly to the memory elem ents’ output signals at cycle / - l .

In CNF-based SAT, the resulting combinational circuit is converted to a CNF formula C.

The property to be proved is also complemented and converted to CNF form (p). These

two formulas are conjoined and the resulting SAT instance I is fed into a SAT solver. If a

satisfiable assignment is found for / , then the assignment describes a counterexample that

falsifies the (bounded) property, otherwise the property holds true.

1 S AT-BMC (c ircu it , p r o p e r ty , m a x K)
2 p = C N F (\p ro p e r ty) \
3 for k- 1 to m axK do
4 C = C N F (u n ro l l (c ir c u i t , k))',
5 I - C A p; //SAT instance
6 if (/ is satisfiable)
7 return (SAT solution);

Figure 3.2: Pseudo-code for Bounded Model Checking.

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2.3 Symbolic Simulation

The basic idea behind symbolic simulation is similar to that of logic simulation [13].

Unlike logic simulation, however, Boolean variables are simulated instead of constant

scalar values. For example, simulating “A AND B” will produce a Boolean expression

representing “A AND B” instead of a Boolean value.

In symbolic simulation, a new symbol is injected to each primary input at each cycle.

Symbolic simulation then produces Boolean expressions at the outputs of the circuit using

the injected symbols. Since each symbol implicitly represents both the values 1 and 0,

the generated Boolean expressions represent all possible input sequences. As a result, if

the design has n inputs, symbolic simulation can produce outputs representing all 2” input

patterns in one single step. Traditionally, Binary Decision Diagrams (BDDs) [18] have

been used to represent the Boolean expressions due to their flexibility in Boolean manip­

ulations. Recently, symbolic simulators using CN F to represent the Boolean expressions

have also been developed [126].

The verification power of symbolic simulation is similar to that of BMC: it can be used

to prove properties within a bounded number of cycles or disprove a property; however,

it cannot prove a property that considers an indefinite num ber of cycles. For example,

symbolic simulation can falsify a property like “c l is always equal to 0” , or it can prove

a property like “cl always becomes 1 three cycles after al is set to 0” . Nonetheless, it

cannot prove a property that says “c l is always equal to 0” .

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2.4 Reachability Analysis

Reachability analysis is also called symbolic traversal or least fix-point computation.

It tries to solve the following problem: given a Finite State Machine (FSM) description

of a sequential digital circuit, find all the reachable states from a set of initial states. Its

algorithmic flow is shown in Figure 3.3. In the algorithm, R is a set o f reached states, I

is the set o f initial states, and A is the transition function for the FSM (i.e., it maps each

(state, input) to a next state). We use subscript t to represent the cycle at which the current

computation takes place. The Img function used in the algorithm calculates the forward

image of the given states and transition functions. To this end, Coudert et al. [48] provide

an efficient algorithm for forward-image computation.

"1
2 / ? , = / ; // Start from initial state
3 repeat
4 R l + 1 = Rt U Im g (R t , A); // Compute forward image
5 until (Rt+i = = Rt); II Repeat until a fix point is reached

Figure 3.3: The algorithmic flow of reachability analysis.

Reachability analysis possesses greater verification power than BMC and symbolic

simulation in that it can prove properties that consider an infinite number of cycles. To

prove properties using reachability analysis, we first identify the set of states P' that do

not satisfy the property. Next, we compute the reachable set R. If we found that R n p' is

empty, then the property holds; o therw ise, the property can be violated and there is a bug.

Although reachability analysis is powerful, representing the states is challenging be­

cause the num ber of possible states grows exponentially with the number of state bits.

Although BDDs have been shown to be effective in encoding the states, their scalability

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

is still limited. To address this problem, several different approaches have been proposed,

including abstraction, parameterization and mixed traversal algorithms [97].

3.2.5 Equivalence Checking

The purpose of equivalence checking is to prove that two circuits exhibit exactly the

same behavior. There are two types of equivalency between two circuits: combinational

and sequential. Given identical input vectors, combinational equivalency requires both

circuits to produce exactly the same responses at their primary outputs and register bound­

aries. On the other hand, sequential equivalency only requires the responses at primary

outputs to be identical.

The basic procedure to perform combinational equivalence checking between two cir­

cuits works as follows. First, the inputs/outputs to the registers are broken into primary

outputs/inputs of the circuits. Next, a miter is added between each pair of correspond­

ing outputs, where a miter is a circuit consisting of an XOR gate combining the pair of

outputs. Third, the corresponding inputs between two circuits are connected to the same

signal sources. After inserting these constructs, the equivalence checker then tries to find

an input pattern that makes the output of any of the inserted miters 1. If no such pattern can

be found, then the two circuits are equivalent; otherwise they are not equivalent and the

pattern is a counterexample. The equivalence checker can be implemented using BDDs

or CNF-SAT. Techniques that improve this basic procedure have also been proposed, for

example [73].

BM C can be used to perform sequential equivalence checking up to a certain number

of cycles C, and it works as follows. Given two circuits, they are first unrolled C times.

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Next, the primary inputs of both circuits for each unrolled copy are connected, and the

circuits are constrained using their initial states. Miters are then added to the unrolled

primary outputs between both circuits. BDDs or CNF-SAT can then be used to perform

the checking. If a sequence of patterns exists that can make the output of any miter 1, then

the circuits are not sequentially equivalent, and the sequence becomes a counterexample.

3.3 Design for Debugging and Post-Silicon Metal Fix

Post-silicon debugging is considerably different from pre-silicon debugging because of

its special physical constraints. In particular, observing, controlling and changing any cir­

cuit component post-silicon is very difficult. To address this problem, existing techniques

focus on improving the observability and controllability of the silicon die. In this section

we describe the most commonly-used DFD construct, scan chains. Next, we introduce the

Focused Ion Beam (FIB) technique that supports post-silicon metal fix.

3.3.1 Scan Chains

Without special constructs, only the values o f a circuit’s primary inputs and outputs can

be observed and controlled. Therefore, modern chips often use scan chains [20] to improve

the design’s observability and controllability. The basic idea behind scan chains is to

employ sequential elements that have a serial shift capability so that they can be connected

to form long shift registers. The scan-chain elements, as shown in Figure 3.4, can then

operate like primary inputs or outputs during debugging, which can greatly improve the

controllability and observability of the circuit’s internal signals.

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

B1 0

B2 CbL

SI MUX
0
1

3 V
•■DO
f t . .

r v j r r v ,J l -DQJrv Li-DO-,
rkC-TClock

- . . . t t K I C
Q1 Q2 Qn-1 Qn

SO

Figure 3.4: The BILBO general-purpose scan-chain element.

3.3.2 Post-Silicon Metal Fix via Focused Ion Beam

FIB is a technique that uses a focused beam of gallium ions [86]. Gallium is chosen

because it is easy to liquefy and ionize. After gallium is liquefied, a huge electric field

causes ionization and field emission of the gallium atoms, and the ions are focused onto

the target by electrostatic lens. When the high-energy gallium ions strike their target,

atoms will be sputtered from the surface of the target. Because of this, FIB is often used as

a micro-machining tool to modify materials at the nanoscale level. In the semiconductor

industry, FIB can be applied to modify an existing silicon die. For example, it can cut

a wire or deposit conductive material in order to make a connection. However, it cannot

create new transistors on a silicon die.

To remove unwanted materials from a silicon die, ion milling is used. When an ac­

celerated ion hits the silicon die, the ion loses its energy by scattering the electrons and

the lattice atoms. If the energy is higher than the binding energy of the atoms, the atoms

will be sputtered from the surface of the silicon die. To complement material removal,

ion-induced deposition is used to add new materials to a silicon die. In the process, a pre­

cursor gas, often an organometallic, is directed to and absorbed by the surface of the die.

W hen the incident ion beam hits the gas molecule, the molecule dissociates and leaves the

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

metal constituent as a deposit. Similarly, insulator can also be deposited on the die. Since

impurities such as gallium ions may be trapped by the deposited materials, the conductiv­

ity/resistivity of the deposited metal/insulator tends to be worse than that produced using

the regular manufacturing process. Fortunately, this phenomenon does not pose serious

challenges in post-silicon debugging because the changes made are typically small.

FIB can either cut or reconnect top-level wires. Changing metallic wires at lower

levels, however, is a much more elaborate process. To achieve this, a large hole is first

milled through the upper-level wires to expose the lower-level wire, then the hole is filled

with oxide for insulation. Next, a new smaller hole is milled through the refilled oxide,

and metal is deposited down to the lower level. The affected upper-level wires may need

to be reconnected in a similar way. An illustration o f the process is shown in Figure 3.5.

m p ■ p pH [p
m

(i) (2) (3) (4)

Figure 3.5: Schematic showing the process to connect to a lower-level wire through an
upper-level wire: (a) a large hole is milled through the upper level; (b) the hole
is filled with Si0 2 ; (c) a smaller hole is milled to the lower-level wire; and (d)
the hole is filled with new metal. In the figure, whitespace is filled with SiC)2 ,
and the dark blocks are metal wires.

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

PART II

FogClear Methodologies and
Theoretical Advances in Error Repair

CHAPTER IV

FogClear: Circuit Design and Verification Methodologies

In this chapter we describe our FogClear methodologies that automate the IC verifi­

cation and debugging flows, including front-end design, back-end logic design, back-end

physical design and post-silicon debugging.

4.1 Front-End Design

Our FogClear front-end methodology automates the functional error correction pro­

cess, and it works as follows. Given a bug trace and the RTL model that fails verification,

Butramin (see Chapter VIII) is used to minimize the bug trace, and then the minimized bug

trace is analyzed by the REDIR framework (see Section 9.2) to produce a repaired RTL

model. The repaired RTL model is verified again to make sure no new bugs are introduced

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

by the fix. This process keeps repeating until the model passes verification. The FogClear

front-end design flow is shown in Figure 4.1, where the “Automatic functional error cor­

rection” block replaces the “Manual functional error correction” block in Figure 2.1. By

automating the error diagnosis and correction process, engineers’ time can be saved, and

design quality can be improved.

Specification

Architecture Verification RTL

C++, SystemC...
development RTL

development
High level

initial model
Testbench

RTL initial
modelPass Golden

testbench, model.Verification

Fail

Testbench,
model correction

PassVerification
(simulation, emulation)

Fail

RTL golden
modelBug trace

Repaired
RTL model

Automatic bug trace minimization

Automatic error diagnosis
and correction

;REDIR)
Minimized
bug trace

Automatic functional error correctionL

Figure 4.1: The FogClear front-end design flow.

4.2 Back-End Logic Design

Fixing errors at the gate level is more difficult than at the RTL because engineers

are unfamiliar with the synthesized netlists. In order to address this problem, our Fog-

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Clear design flow automatically repairs the gate-level netlist. As shown in Figure 4.2, it

is achieved by analyzing the counterexamples returned by the verification engine using

the CoRe framework (see Chapter V and Section 9.1). This framework automates the

gate-level error-correction process and thus saves engineers’ time and effort.

RTL golden
model

Gate level
netlist

Pass Golden
netlist

Fail

Repaired
netlist Counterexample

Automatic functional error correction

Synthesis and
optimization

Verification
(Equivalence checking)

Automatic error diagnosi:
and correction

(CoRe)

Figure 4.2: The FogClear back-end logic design flow.

4.3 Back-End Physical Design

Due to the growing dominance of interconnect in delay and power of modern designs,

tremendous physical synthesis effort and even more powerful optimizations such as retim­

ing are required. Given that bugs still appear in many EDA tools today [9], it is important

to verify the correctness of the performed optimizations. Traditional techniques address

this verification problem by checking the equivalence between the original design and the

optimized version. This approach, however, only verifies the equivalence of two versions

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of the design after a number, or possibly all, of the transformations and optimizations

have been completed. Unfortunately, such an approach is not sustainable in the long term

because it makes the identification, isolation, and correction of errors introduced by the

transformations extremely difficult and time-consuming. On the other hand, performing

traditional equivalence checking after each circuit transformation is too demanding. Since

functional correctness is the most important aspect of high-quality designs, a large amount

of effort is currently devoted to verification and debugging, expending resources that could

have otherwise been dedicated to improve other aspects of performance. To this end, ver­

ification has become the bottleneck that limits achievable optimizations and the features

that can be included in a design [42], slowing down the evolution of the overall quality of

electronic designs.

The FogClear back-end physical design flow shown in Figure 4.3 addresses this prob­

lem using an incremental verification system called InVerS, which will be described in

detail in Chapter X. InVerS relies on a metric called similarity factor to point out the

changes that might have corrupted the circuit. Since this metric is calculated by fast sim u­

lation, it can be applied after every circuit modification, allowing engineers to know when

a bug might have been introduced and traditional verification should be performed. When

the similarity factor indicates a potential problem, traditional verification should be per­

formed to check the correctness of the executed circuit modification. If verification fails,

the CoRe framework can be used to repair the errors. Alternatively, the errors can also be

fixed by reversing the performed modification.

As Section 10.3 shows, the InVerS system has high accuracy and can catch most errors.

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Golden
netlist

Place, route, clock
and scan synthesis

T
/ Layout /& -

ri Incremental
Physica I ̂ synthesis , \ verification

Optim ization 1

3 .
Optim ization 2

Optim ization N

" r
'O ptim ized layout

(InVerS)

Similarity
(actor

P(utential I error

Formal equivalence
checking

Autom atic error
diagnosis

and correction
(CoRe)

Fail

Post-layout
verification

Fail

,, Pass

Automatic
layout repair

(see post-silicon
debugging).

Final layout

Figure 4.3: The FogClear back-end physical design flow.

However, it is still possible that a few errors may escape incremental verification and be

found in the full-fledged post-layout verification. W hen this happens, the post-silicon

error-repair techniques that we describe in the next section can be used to repair the layout

and fix the errors.

4.4 Post-Silicon Debugging

Figure 4.4 shows our FogClear methodology which automates post-silicon debugging.

When post-silicon verification fails, a bug trace is produced. Since silicon dies offer sim u­

lation speed orders of magnitude faster than that provided by logic simulators, constrained-

random testing is used extensively, generating extremely long bug traces. To simplify error

diagnosis, we also apply bug trace minimization in our methodology to reduce the com-

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

plexity of traces using the Butramin technique.

After a bug trace is simplified, we simulate the trace with a logic simulator using the

source netlist for the design layout. If simulation exposes the error, then the error is func­

tional, and PAFER is used to generate a repaired layout; otherwise, the error is electrical.

Currently, we still require manual error diagnosis to find the cause of an electrical error.

After the cause of the error is identified, we check if the error can be repaired by ECO

routing. If so, we apply existing ECO routing tools such as those in [120]; otherwise, wc

use SymWire or SafeResynth to change the logic and wire connections around the error

spot in order to fix the problem. The layout generated by SymWire or SafeResynth is then

routed by an ECO router to produce the final repaired layout. This layout can be used to

fix the silicon die for further verification. A more detailed description on the components

used in our flow is given in Chapter XI.

Automatic layout repairFinal layout/

Final
layout

Repaired
netlist

Silicon die Testbench

~}Fail

Repairable by
ECO routing

Pass Bug trace

Done

Error not exposed:
e lec trica l e rro r

Error exposed:
functional errorMinimized

bug trace
Error diagnosis

(logic simulation)

ECO
routingManufacture

error diagnosis

Post-Silicon
verification

Bug trace
minimization
(Butramini

Electrical error repair
(SymWire,

SafeResynth)

Physically aware
logic error diagnosis

and correction
(PAFER, PARSyn)

Figure 4.4: The FogClear post-silicon debugging flow.

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER V

Counterexample-Guided Error-Repair Framework

In this chapter we present a resynthesis framework, called CoRe, that automatically

corrects errors in combinational gate-level designs. The framework is based on a novel

simulation-based abstraction technique and utilizes resynthesis to modify the functional­

ity of a circuit’s internal nodes to match the correct behavior. Compared with previous

solutions, CoRe is more powerful in that: (1) it can fix a broader range of error types

because it is not bounded by specific error models; (2) it derives the correct functional­

ity from simulation vectors, without requiring golden netlists; and (3) it can be applied

with a broad range of verification flows, including formal and simulation-based. In this

chapter, we first provide required background. Next, we present our CoRe framework that

addresses the gate-level error-repair problem.

5.1 Background

In CoRe we assume that an input design, with one or more bugs, is provided as a

Boolean network. We strive to correct its erroneous behavior by regenerating the func­

tionality of incorrect nodes. This section starts by defining some terminology and then

overviews relevant background.

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.1.1 Signatures

Definition 1 Given a node t in a Boolean network, whose function is f , as well as input

vectors x\, X2 ... xic We define the signature o f node t, sh as (f (x \), ■••,f(xk))> where

f { x j) E {0, 1} represents the output o f f given an input vector Xj .

Our goal is to modify the functions o f the nodes responsible for the erroneous behavior

of a circuit via resynthesis. In this context, we call a node to be resynthcsized the target

node, and we call the nodes that we can use as inputs to the newly synthesized node (func­

tion) the candidate nodes. Their corresponding signatures are called the target signature

and the candidate signatures, respectively.

Given a target signature st and a collection o f candidate signatures xC|, sC2,...,sCll, we say

that s, can be resynthesized by .?C |, sC2,...,sc„ if st can be expressed as s,= f (s Cl ,sc?, . . . , s Cii) ,

where f (s Cl,s C2, . . . , s Cll) is a vector Boolean function called the resynthesis function. We

also call a netlist that implements the resynthesis function the resynthesized netlisl.

5.1.2 D o n ’t-C ares

When considering a subnetwork within a large Boolean network, Don't-Cares (DCs)

are exploited by many synthesis techniques because they provide additional freedom for

optimizations. Satisfiability Don ’t-Cares (SDCs) occur when certain combinations of input

values do not occur for the subnetwork, while Observability D o n ’t-Cares (ODCs) occur

when the output values of the subnetwork do not affect any primary output. As we show

in Section 5.2.1, our CoRe framework is able to utilize both SDCs and ODCs.

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.1.3 SAT-Based E r r o r D iagnosis

The error-diagnosis technique used in our CoRe framework is based on the work by

Smith et al. [107], Given a logic netlist, a set o f test vectors and a set of correct output

responses, this technique will return a set of wires, also called error sites, along with their

values for each test vector that can correct the erroneous output responses. Our CoRe

framework then corrects design errors by resynthesizing the error sites using the corrected

values as the target signatures. In Sm ith’s error-diagnosis technique, three components

are added to the netlist, including (1) multiplexers, (2) test-vector constraints, and (3)

cardinality constraints. The whole circuit is then converted to CNF, and a SAT solver

is used to perform error diagnosis. These components are added temporarily for error

diagnosis only and will not appear in the netlist produced by CoRe. They are described in

detail below.

s,—

Adder

> Comparatoi

Si

(b)

Figure 5.1: Error diagnosis. In (a) a multiplexer is added to model the correction of an
eiTor, while (b) shows the error cardinality constraints that limit the number of
asserted select lines to N.

A multiplexer is added to every wire to model the correction of the erroneous netlist.

When the select line is 0, the original driver of the wire is used. W hen the select line

is 1, the multiplexer chooses a new signal source instead, and the values applied by the

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

cycles apart in the trace and attempts to find the shortest path connecting them. This path

can then be found by unrolling the circuit from 1 to A: — 1 times, asserting ,v; and s/ as the

initial and final states, and attempting to satisfy the corresponding Boolean formula. If we

refer to the CNF formula of the unrolled circuit as CNFc, then CNFc A CNFSj A CNFSj is the

Boolean formula to be satisfied. If a SAT solver can find a solution, then wc have a shortcut

connecting s-t to sj. Note that the SAT instances generated by our algorithm are simplified

by the fact that CNFS. and CNFSj are equivalent to a partial satisfying assignment for the

instance. An example is given in Figure 8.11.

shortcut
shortcut

Figure 8.11: BMC-based refinement finds a shortcut between states S| and 5 4 , reducing
the overall trace length by one cycle.

The algorithm described in Figure 8.10 is applied iteratively on each pair of states that

are k steps apart in the bug trace, and using varying values for k from 2 to m, where m is

selected experimentally so that the SAT instance can be solved efficiently. Wc then build

an explicit directed graph using the shortcuts found by the BMC-based refinement and

co n s t ru c t the final sh o r te r pa th f ro m th e in it ia l s ta te to th e b u g sta te . F ig u re 8 .12 sh o w s

an example of such graph. Each vertex in the graph represents a state in the starting trace,

edges between vertices represent the existence of a path between the corresponding states,

and the edge’s weight is the number of cycles needed to go from the source state to the

113

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

new source will correct the erroneous output responses. An example of the multiplexer is

given in Figure 5.1 (a). A variable, vt-, is introduced for every multiplexer to model the new

source to the wire.

Test-vector constraints are used to force the erroneous netlist to produce correct output

responses for the test vectors. Obviously, the netlist can produce correct output responses

only if a subset of the select lines of the added multiplexers are set to 1, allowing the cor­

responding new signal sources to generate logic values that agree with the signal sources

which produce the correct responses. These constraints are implemented by duplicating

one copy of the multiplexer-enriched netlist for each test vector. The inputs of the copy

are controlled by the test vector, and its outputs are constrained by the correct responses.

Cardinality constraints restrict the number of select lines that can be set to 1 simultane­

ously. This number also represents the num ber of error sites in the netlist. The cardinality

constraints are implemented by an adder which performs a bitwise addition of the select

lines, and a comparator which forces the sum of the adder to be N, as shown in Figure

5.1(b). Initially, N is set to 1, and error diagnosis is performed by incrementing N until a

solution is found.

5.1.4 E r r o r M odel

To tame the enormous complexity of error diagnosis and correction, several error m od­

els have been introduced. These models classify common design errors in order to reduce

the difficulty of repairing them. Here we describe a frequently used model formulated by

D. Nayak [91], which is based on Abadir’s model [1],

In the model, type “a” (wrong gate) mistakenly replaces one gate type by another one

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

_ G1

I G1_ G1

G 2G2

G2

G1 G2

02

02

G2
Type “c”

M issing wire

Type “f ’

Missing gate

Type “a”

Wrong gate

Type “e”

Extra gate

irror Incorrect Correct

Figure 5.2: Errors modeled by Abadir et al. [1].

with the same number of inputs; types “b” and “c” (extra/missing wire) use a gate with

more or fewer inputs than required; type “d” (wrong input) connects a gate input to a

wrong signal; and types “e” and “f ” (extra/missing gate) incorrectly add or remove a gate.

An illustration of the model is given in Figure 5.2.

5.2 Error-Correction Framework for Combinational Circuits

For the discussion in this section we restrict our analysis to combinational designs.

In this context, the correctness of a circuit is simply determined by the output responses

under all possible input vectors. We will show in Section 9.1 how to extend the framework

to sequential designs.

CoRe, our error-correction framework, relies on simulation to generate signatures,

which constitute our abstract model of the design and are the starting point for the er­

ror diagnosis and resynthesis algorithms. After the netlist is repaired, it is checked by

a verification engine. If verification fails, possibly due to new errors introduced by the

correction process, new counterexamples are generated and used to further refine the ab-

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

straction. Although in our implementation we adopted Sm ith’s error-diagnosis technique

[107] due to its scalability, alternative diagnosis techniques can be used as well.

5.2.1 The CoRe Framework

In CoRe, an input test vector is called a. functionality-preserving vector if its output

responses comply with the specification, and the vector is called an error-sensitizing vector

if its output responses differ. Error-sensitizing vectors are often called counterexamples.

The algorithmic flow of CoRe is outlined in Figure 5.3. The inputs to the frame­

work are the original buggy netlist (CKTerr), the initial functionality-preserving vectors

(vectorsp) and the initial error-sensitizing vectors (vectors,,). The output is the recti­

fied netlist CKTnew. The framework first performs error diagnosis to identify error lo­

cations and the correct values that should be generated for those locations so that the

error-sensitizing vectors could produce the correct output responses. Those error locations

constitute the target nodes for resynthesis. The bits in the target nodes’ signatures that

correspond to the error-sensitizing vectors must be corrected according to the diagnosis

results, while the bits that correspond to the functionality-preserving vectors must remain

unchanged. If we could somehow create new combinational netlist blocks that gener­

ate the required signatures at the target nodes using other nodes in the Boolean network,

we would be able to correct the circuit’s errors, at least those that have been exposed

by the error-sensitizing vectors. Let us assume for now that we can create such netlists

(techniques to this end will be discussed in the next chapter), producing the new circuit

CKTnew (line 4). CKTnew is checked at line 5 using the verification engine. When verifi­

cation fails, new error-sensitizing vectors for CKTnew will be returned in counterexample.

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

If no such vector exists, the circuit has been successfully corrected and CKTnew is re­

turned. Otherwise, CKTnew is abandoned, while counterexample is classified either as

error-sensitizing or functionality-preserving with respect to the original design (CKTen).

If counterexample is error-sensitizing, it will be added to vectorse and be used to rc-

diagnose the design. CKTerr's signatures are then updated using counterexample. By

accumulating both functionality-preserving and error-sensitizing vectors, CoRe will avoid

reproposing the same wrong correction; hence guaranteeing that the algorithm will even­

tually complete. Figure 5.4 illustrates a possible execution scenario with the flow that we

just described.

CoRe(CKTerr,vectors p , vectorse,CKTnew)
1 compute s ignatures(C K Terr, vectorsp, vectorse) ;
2 f ixes= diagnose(CKTerr,vectorse)\
3 foreach f ix € f ixes
4 CKTnew= resynthesiz.e(CKTerr, f ix) \
5 counterexam ple-verify(CKTnew);
6 if (counterexample is empty) return CKTmw\
7 else if (counterexample is error-sensitizing for CKTerr)
8 vectorse — vectorse U counterexample',
9 f ix e s - rediagnose(CKTernvectorse)\

10 update Jiignatures(CKTerr,counterexample)',

Figure 5.4: Execution example of CoRe. Signatures are shown above the wires, where
u n d e r l in e d b its c o r re s p o n d to e r r o r - s e n s i t i z in g v e c to r s . (1) T h e ga te w as m e a n t
to be AND but is erroneously an OR. Error diagnosis finds that the output of
the 2nd pattern should be 0 instead of 1; (2) the first resynthesized netlist
fixes the 2nd pattern, but fails further verification (the output of the 3rd pattern
should be 1); (3) the counterexample from step 2 refines the signatures, and a
resynthesized netlist that fixes all the test patterns is found.

Figure 5.3: The algorithmic flow of CoRe.

(2)

001
O il

— = K

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

SDCs are exploited in CoRe by construction because simulation can only produce legal

signatures. To utilize ODCs, we simulate the complement signature of the target node and

mark the bit positions whose changes do not propagate to any primary output as ODCs:

those positions are not considered during resynthesis. Note that if a diagnosis contains

multiple error sites, the sites that are closer to primary outputs should be resynthcsized

first so that the downstream logic of a node is always known when ODCs are calculated.

5.2.2 Analysis of C oR e

CoRe is more effective than many previous solutions because it supports the use of

SDCs and ODCs, including external DCs. External SDCs can be exploited by providing

only legal input patterns when generating signatures, while external ODCs are utilized by

marking uninterested output vectors don’t-cares.

To achieve the required scalability to support the global implications of error correc­

tion, CoRe uses an abstraction-refinement scheme: signatures provide an abstraction of

the Boolean network for resynthesis because they are the nodes’ partial truth tables (all

unseen input vectors are considered as DCs), and the abstraction is refined by means of

the counterexamples that fail verification. The following proposition shows that in theory,

CoRe can eventually always produce a netlist which passes verification. However, as it

is the case for most techniques based on abstraction and refinement, the framework may

time-out before a valid correction is found in practice. The use of high-quality test vectors

[112] is effective in alleviating this potential problem.

P roposit ion 1 Given a buggy combinational design and a specification that defines the

output responses o f each input vector, the CoRe algorithm can always generate a netlist

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

that produces the correct output responses.

Proof: Given a set of required ’’fixes” , the resynthesis function of CoRe can always

generate a correct set of signatures, which in turn produce correct responses at primary

outputs. Observe that each signature represents a fragment of a signal’s truth table. There­

fore, when all possible input patterns are applied to our CoRe framework, the signatures

essentially become complete truth tables, and hence define all the terms required to gen­

erate correct output responses for any possible input stimulus. In CoRe, all the counterex­

amples that fail verification are used to expand and enhance the set of signatures. Each

correction step of CoRe guarantees that the output responses of the input patterns seen

so far are correct, thus any counterexample must be new. However, since the number of

distinct input patterns is finite (at most 2” for an n-input circuit), eventually no new vec­

tor can be generated, guaranteeing that the algorithm will complete in a finite number of

iterations. In practice, we find that a correct design can often be found in a few iterations.

■

5.2.3 Discussions

Several existing techniques, such as those in [112], also use simulation to identify

potential error-correction options and rely on further simulation to prune unpromising

candidates. Compared with these techniques, our framework is more flexible because

it performs abstraction and refinement on the design itself. As a result, this framework

can easily adopt new error diagnosis or correction techniques. For example, our error-

correction engine can be easily replaced by any synthesis tool that can handle truth tables

or cubes. M ost existing techniques, however, do not have this flexibility. On the other

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

hand, recent work by Safarpour et al. [101] provides another abstraction-refinement error-

repair methodology for sequential circuits by replacing a fraction of the registers with

primary inputs. Their methodology can be used to accelerate the diagnosis process in our

error-repair method for sequential circuits, which is described in Section 9.1.

5.2.4 Applications

CoRe can be used whenever the output responses of a netlist need to be changed. We

now develop applications of our techniques in three different verification contexts.

A pplica tion 1: com bina tiona l equivalence checking an d enforcem ent. This appli­

cation fixes an erroneous netlist so that it becomes equivalent to a golden netlist. In this

application, the verification engine is an equivalence checker. Test vectors on which the

erroneous circuit and the golden model agree are functionality-preserving vectors, and the

remaining test vectors are error-sensitizing. Initial vectors can be obtained by random

simulation or equivalence checking.

A pplica tion 2: fixing e r ro r s found by sim ulation . This application corrects design

errors that break a regression test. In this application, the verification engine is the sim u­

lator and the regression suite. Test vectors that break the regression are error-sensitizing

vectors, and all other vectors are functionality-preserving vectors. Initial vectors can be

obtained by collecting the inputs applied to the netlist while running the regression.

A pplica tion 3: fixing e r ro r s found by fo rm al verification. This application assumes

that a formal tool proves that a property can be violated, and the goal is to fix the netlist

to prevent the property from being violated. In this application, counterexamples returned

by the tool are error-sensitizing vectors.

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER VI

Signature-Based Resynthesis Techniques

he basis for C oR e’s resynthesis solution is the signature available at each internal cir­

cuit node, where the signature of a node is essentially its partial truth table. The resynthesis

problem is formulated as follows: given a target signature, find a resynthesized netlist that

generates the target signature using the signatures of other nodes in the Boolean network

as inputs. In this Chapter, we first describe the concept of Pairs o f Bits to be Distin­

guished (PBDs), which compactly encode resynthesis information. Next, we describe our

Distinguishing-Power Search (DPS) and Goal-Directed Search (GDS) resynthesis tech­

niques that are based on signatures.

6.1 Pairs of Bits to be Distinguished (PBDs)

In this section we propose the concepts of Pairs o f Bits to be Distinguished (PBDs) and

distinguishing power. PBDs can be derived easily using signatures and compactly encode

the information required for resynthesis. A similar concept, Sets o f Pairs o f Functions to

be Distinguished (SPFDs) [105, 121, 122], is also described.

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6.1.1 PBDs an d Distinguishing Pow er

Recall that a signature s is a collection of the corresponding node’s simulation values.

In this chapter, we use s\i] to denote the i-th bit o f signature s. The goal of error correction

is to modify the functions of the nodes responsible for the erroneous behavior of a circuit

via resynthesis. In this context, we call a node to be resynthesized the target node, and

we call the nodes that we can use as inputs to the newly synthesized node (function) the

candidate nodes. Their corresponding signatures are called the target signature and the

candidate signatures, respectively.

The proposition below states that a sufficient and necessary condition for a resynthesis

function to exist is that, whenever two bits in the target signature are distinct, then such

bits need to be distinct in at least one of the candidate signatures. This proposition is a

special case of Theorem 5.1 in [88], where the minterms appearing in signatures represent

the care-terms and all other minterms are D o n ’t-Cares (DCs).

P roposit ion 2 Consider a collection o f candidate signatures, sC], s c ? , . . . , s Cii, and a target

signature, st. Then a resynthesis function f , where st = f (s C], sC2,...,sCn), exists if and only

if no bit pa ir { i , j } exists such that st [«] f st [j] but sCk [i] = sCk [j] fo r all 1 < k < n.

In this work we call a pair of bits { i , j } in s,, where st [i] f .v,[/], a Pair o f Bits to be

Distinguished (PBD). Based on Prop. 2, we say that the PBD {/,./} can be distinguished

by signature sCk if .vcJ /] f We define the Required Distinguishing Power (RDP)

of the target signature st , RDP(s t), as the set o f PBDs that need to be distinguished. Wc

also define the Distinguishing Power (DP) of a candidate signature s Ck with respect to the

target signature s t , DP(s Ck,st), as the set o f PBDs in st that can be distinguished by sCk.

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

With this definition, Prop. 2 can be restated as “a resynthesis function, / , exists if and only

i fR D P (s t) C U nk=lD P (Sck,s t y \

6.1.2 Related Work

SPFD [105, 121, 122] is a relatively new data structure that encodes resynthesis infor­

mation and allows the use of DCs. An SPFD [121] Rt for a target node t, represented as

{(g]ci-,g]b),{g2a,g2h),--’,(gna,gnb)}, denotes a set of pairs of functions that must be dis­

tinguished. In other words, for each pair (gia,gib) £ Rt* the minterms in gu, must produce

a different value from the minterms in at the output of t. Assume that node / has m

fanins, c i , . .c m, and their SPFDs are RC] ...RCm, then according to [122]:

(6 . 1)

In other words, the SPFD of node t is a subset of the union of all the SPFDs of its

fanins c\ Since a function / satisfies an SPFD Rt if and only if for each (gicngib) £

R tJ ig ia) 7̂ f (gib) [121], This criterion, combined with Equation 6.1, essentially states

that a resynthesis function / exists if and only if all the minterms that need to be distin­

guished in Rt must be distinguished by at least one of its fanins, which is consistent with

Prop. 2. As a result, our use of PBDs is equivalent to SPFDs. Flowever, our approach has

the following advantages over SPFD-based techniques:

1. P B D s p rovide a m uch m ore com pac t logic representa tion than SPFD s. Traditionally,

SPFDs are calculated using BDDs and suffer memory explosion problems. Recent

work represent SPFDs as graphs [105] and SAT/simulation can be used to calculate

SPFDs [88], This approach is more memory efficient but may become computation-

64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ally expensive. On the other hand, our approach only uses signatures of nodes. Since

each minterm needs only one bit in a signature, our representation is very compact.

2. Calculating PBDs is significantly easier than calculating SPFDs: signatures are gen­

erated by simulation, and DCs are calculated by simulating the complement of the

target signature. PBDs can then be derived easily by considering only the care-terms

in the target signature.

6.2 Resynthesis Using Distinguishing-Power Search

In this section, we first define the absolute distinguishing p o w e r |DP(.v)| of a signature

.v, and then we propose a Distinguishing-Power Search (DPS) technique that uses |DP| to

select candidate signatures and generates the required resynthesized netlist.

6.2.1 Absolute Distinguishing Power of a Signature

Absolu te distinguishing p o w e r provides search guiding and pruning criteria for our

resynthesis techniques. To simplify bookkeeping, we reorder bits in every signature so

that in the target signature all the bits with value 0 precede the ones with value 1, as in

“00 .. .0011 .. .H ” .

Definition 2 Assum e a target signature s t is com posed o f x Os fo l lo w e d by y Is, we define

the absolute required distinguishing power o f s t, deno ted by |/?D/, (^) | , as the num ber o f

PB D s in st and equals to xy. Moreover, i f a candidate signature s c has p Os and q Is in

its first x bit positions, and r Os and s Is in the remaining y positions, then we define the

absolute distinguish power o f sc with respect to s t, deno ted by |DP(.vr ,sy)|, as the number

o f P B D s in s t that can be d istinguished by sc and equals to p s + qr.

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The following corollary states a necessary but not sufficient condition to determine

whether the target signature can be generated from a collection of candidate signatures.

Corollary 1 C onsider a target signature s t and a collection o f candidate signatures .sy,sy((

I f s t can be genera ted by sy, .. .sCn, then \R D P(st)\ < £"=] \D P(sCj,s,)\.

Proof: By contradiction. Suppose that a resynthesis function exists and it can gen­

erate s, using a collection of signatures (denoted as SC), where the total absolute distin­

guishing power of SC with respect to s t (denoted as \D P (S C ,s t) |) is smaller than \RDP(s'i)\.

Since \R D P(st) \ represents the number of PBDs in s t and |DP(SC,s’,)| represents the num ­

ber of PBDs distinguishable by SC, the fact that |D/3(S C ,^) | is smaller than |PDP(.v,)j

means certain PBDs in s, can not be distinguished by signatures in SC. However, Prop. 2

states that for a valid resynthesis function to exist, all the PBDs in s t must be distinguished.

Therefore the resynthesis function cannot exist — a contradiction. ■

6.2.2 Distinguishing-Power Search

Distinguishing-Power Search (DPS) is based on Prop. 2, which states that a resynthesis

function can be generated when a collection of candidate signatures covers all the PBDs

in the target signature. However, the number of collections satisfying this criterion may

be exponential in the number of total signatures. To identify possible candidate signatures

effectively, w c first select s ignatures that cover the least-covered PB D s, second those that

have high absolute distinguishing power (i.e., signatures that cover the most number of

PBDs), and third those that cover any remaining uncovered PBD. For efficiency, wc limit

the search pool to the 200 nodes which are topologically closest to the target node; how-

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ever, we may go past this limit when those are not sufficient to cover all the PBDs in the

target signature. Finally, we exclude from the pool those nodes that are in the fanout cone

of the target node, so that we avoid creating a combinational loop inadvertently.

After the candidate signatures are selected, a truth table for the resynthesis function is

built from the signatures, and it is constructed as follows. Note that although we may select

more signatures than needed for resynthesis, the logic optimizer wc use in the next step is

usually able to identify the redundant signatures and use only those which are essential.

1. Each signature is an input to the truth table. The i-th input produces the i-th column

in the table, and the y-th bit in the signature determines the value of the y-th row.

2. If the y-th bit of the target signature is 1, then the y-th row is a minterm; otherwise

it is a max term.

3. All other terms are don ’t-cares.

Figure 6.1 shows an example of the constructed truth table. The truth table can be

synthesized and optimized using existing software, such as Espresso [99] or MVS1S [54],

Note that our resynthesis technique does not require that the support of the target function

is known a prior i , since the correct support will be automatically selected when DPS

searches for a set of candidate signatures that distinguish all the PBDs. This is in contrast

with other previous solutions which require that the support o f the target node to be known

before attempting to synthesize the function.

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Signature Truth table

li o o S l s2 S 3 s4 St
.*, = 1010 1 0 1 0 0

N
J II o o 0 1 1 0 1

a’3=1 110 1 0 1 0 0
j 4=0001 0 1 0 1 1
Minimized 0 - - - 1

Figure 6.1: The truth table on the right is constructed from the signatures on the left. Sig­
nature s, is the target signature, while signatures .sq to s4 are candidate signa­
tures. The minimized truth table suggests that s, can be resynthesized by an
INVERTER with its input set to s \ .

6.3 Resynthesis Using Goal-Directed Search

CDS performs an exhaustive search for resynthesized netlists. To reduce the search

space, we propose two pruning techniques: the absolute-distinguishing-power test and the

compatibility test. Currently, BUFFERS, INVERTERs, and 2-input AND, OR and XOR

gates are supported.

The absolute-distinguishing-power test relies on Corollary 1 to reject resynthesis op­

portunities when the selected candidate signatures do not have sufficient absolute distin­

guishing power. In other words, a collection of candidate signatures whose total absolute

distinguishing power is less than the absolute required distinguishing power of the target

signature is not considered for resynthesis.

The compatibility test is based on the controlling values of logic gates. To utilize this

feature, we propose three rules, called compatibility constraints, to prune the selection

o f inputs according to the output constraint and the gate being tried. Each constraint

is accompanied with a signature. In particular, an identity constraint requires the input

signature to be identical to the constraint’s signature; and a need-one constraint requires

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

that specific bits in the input signatures must be 1 whenever the corresponding bits in

the constraint’s signature are 1. Identity constraints are used to encode the constraints

imposed by BUFFERS and INVERTERS, while need-one constraints are used by AND

gates. Similarly, need-zero constraints are used by OR gates. For example, if the target

signature is 0011, and the gate being tried is AND, then the need-one constraint will be

used. This constraint will reject signature 0000 as the gate’s input because its last two

bits are not 1, but it will accept 0111 because its last two bits are 1. These constraints,

which propagate from the outputs of gates to their inputs during resynthesis, need to be

recalculated for each gate being tried. For example, an identity constraint will become

a need-one constraint when it propagates through an AND gate, and it will become a

need-zero constraint when it propagates through an OR gate. The rules for calculating the

constraints are shown in Figure 6.2.

Identity N eed-one N eed-zero
IN V ERTER S.C. S .C .+N eed-zero S.C .+N eed-one

B U FFER C onstraint unchanged
AND N eed-one N eed-one None
OR Need-zero N one N eed-zero

Figure 6.2: Given a constraint imposed on a ga te’s output and the gate type, this table cal­
culates the constraint of the gate’s inputs. The output constraints arc given in
the first row, the gate types are given in the first column, and their intersection
is the input constraint. “S.C.” means “signature complemented.”

The GDS algorithm is given in Figure 6.3. In the algorithm, level is the level of logic-

being explored, constr is the constraint, and C returns a set of candidate resynthcsized

netlists. Initially, level is set to 1, and constr is identity constraint with signature equal to

the target signature s t . Function u p d a te -co n s tr is used to update constraints.

69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Function G D S(lev e l , co n s t r ,C)
1 if (level —= m a x J e v e l)
2 C - candidate nodes w hose signatures com ply with constr ,
3 return;
4 foreach ga te e l i brary
5 c o n s t r , u p d a t e - C o n s t r (g a t e , con s t r);
6 G D S (/ eve I + 1, const rn , Cn);
7 foreach cp ,C2 £ Cn
8 i t (level > 1 or \ D P (c \ , s t) \+ \D P {c 2, s ,) \> \R D P { s ,) \)
9 sn - c a l c u la te s ig n a tu r e (g a te , c \ , c 2)\

10 if (s„ com plies with constr)
11 C — C U g a t e (c) , q) ;

Figure 6.3: The GDS algorithm.

GDS can be used to find a resynthesized netlist with minimal logic depth. This is

achieved by calling GDS iteratively, with an increasing value of the level parameter, until

a resynthesized netlist is found. However, the pruning constraints weaken with each ad­

ditional level of logic in GDS. Therefore, the maximum logic depth for GDS is typically

small, and we rely on DPS to find more complex resynthesis functions.

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER YII

Functional Symmetries and Applications to Rewiring

Rewiring is a post-placement optimization that reconnects wires in a given netlist with­

out changing its logic function. To this end, symmetry-based rewiring is especially suitable

for post-silicon error repair because no transistors will be affected. In light of this, we pro­

pose a rewiring algorithm based on functional symmetries in this chapter. In the algorithm,

we extract small subcircuits consisting of several gates from the design and reconnect pins

according to the symmetries of the subcircuits. We observe that the power of rewiring is

determined by the underlying symmetry detector. For example, the rewiring opportunity

in Figure 7.1(a) cannot be discovered unless both input and output symmetries can be de­

tected. In addition, a rewiring opportunity such as the one shown in Figure 7.1(b) can

only be found if ph.ase-sh.ift symmetries [72] can be detected, where a phasc-shift sym m e­

try is a symmetry involving negation of inputs and/or outputs. To enhance the power of

symmetry detection, we also propose a graph-based symmetry detector that can identify

permutational and phase-shift symmetries on multiple input and output wires, as well as

their combinations, creating abundant opportunities for rewiring. In this chapter, we apply

our techniques for wirelength optimization and observe that it provides wirelength reduc-

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

tion comparable to that achieved by detailed placement. In Chapter XI, wc describe how

this technique can be applied to repair post-silicon electrical errors.

On

O—1

(a)

M U XM U X
On

O O O o
(b)

Figure 7.1: Rewiring examples: (a) multiple inputs and outputs are rewired simultaneously
using pin-permutation symmetry, (b) inputs to a multiplexer are rewired by
inverting one of the select signals. Bold lines represent changes made in the
circuit.

The remainder of the chapter is organized as follows. Section 7.1 introduces basic

principles of symmetry and describes relevant previous work on symmetry detection and

circuit rewiring. In Section 7.2 we describe our symmetry-detection algorithm. Section

7.3 discusses the post-placement rewiring algorithm. Finally, we provide experimental

results in Section 7.4 and summarize in Section 7.5.

7.1 Background

The rewiring technique described in this chapter is based on symmetry detection.

Therefore, in this section, we present background ideas and related work about symmetry

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

detection. Previous work on post-placement rewiring is also discussed.

7.1.1 Symmetries in Boolean Functions

One can distinguish semantic (functional) symmetries of Boolean functions from the

symmetries of specific representations (syntactic symmetries). All syntactic symmetries

are also semantic, but not vice versa. For example, in function “o = (x + y) + z ” , x < > z

is a semantic symmetry because the function will not be changed after the permutation of

variables; however, it is not a syntactic symmetry because the structure of the function will

be changed. On the other hand, x <-> y is both a semantic and syntactic symmetry. In this

work we exploit functional symmetries, whose definition is provided below.

Definition 3 Consider a multi-output Boolean function F ; —> tB m, where

(7.1) F (i [. . . in) = < f i (i \ . . . i n), f i { i \ . . . i n) . . . f m{ i \ > .

A f u n c t i o n a l s y m m e t r y is a one-to-one m apping s : qfnr-m) s u c j l p u l t ;

(7.2) < / | (/].. .in) , fl(l\■■■In)" ’f n i h ■■ df) > =

< s (f \) (s { i \) - - - s { i n)) , s { f 2)(ys { i]) . . . s (i n)) . . . s (f m) (s (i]) . . . s (i n)) > .

In other w ords , afu n ctiona l (semantic) sym m etry is a transformation o f inputs and outputs

which does not change the functional relation between them.

Example 1 Consider the multi-output function z = x \ X O R y \ an d w = X2 X O R y 2 - The

variable-perm utation sym m etries include: (1) x \ yi, (2) X2 y 2 , (3) x\ <-* X2 , y\ <—> yi,

and z ^ w (all sw aps are perform ed simultaneously). In fact, a ll the sym m etries o f this

function can be genera ted from com binations o f the sym m etries listed above. A set o f

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

symmetries with this property are called symmetry generators. For example, the symmetry

“x\ <-> V2. y l X2 , and z <-> w ” can be generated by applying the symmetries (1), (2) and

{3) consecutively.

While most previous work on symmetry detection focuses on permutations of two

variables, Pomeranz [94) and Kravets [72] consider swaps of groups of ordered variables.

These swaps are called higher-order symmetries in [72], For example, if variables a, b , c

and d in the support of function / satisfy the condition:

F (. . , a , . . , b , . . , c , . . , d , . .) = F (. . , c , . . , d , . . , a , . . , b , . .)

then we say that / has a second-order symmetry between ordered variable groups (a.b)

and (c,d) . Such higher-order symmetries are common in realistic designs. For example,

in a 4-bit adder, all bits of the two input numbers can be swapped as groups (preserv­

ing the order of the bits), but no two input bits in different bit positions are symmetric

by themselves. Kravets also introduced phase-shift symmetry as a function-preserving

transformation involving the inversion of one or more inputs that do not permute any of

the inputs. Our work generalizes this concept by including output symmetries involving

inversion in the class of phase-shift symmetries. We also define composite phase-shift

symmetry as a symmetry which consists of phase-shift and permutational symmetries. In

this chapter we commonly refer to composite phase-shift symmetries as just phase-shift

symmetries, except for pure phase-shift symmetries which do not include permutations.

Example 2 Consider again the multi-output function z — x\ XOR yi and vv = X2 XOR \>2

given in Example 1. Aside from the pin-swap symmetries discussed in Example 1, the

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

following phase-shift symmetries also exist in the circuit: (1) X2 y'2, (2) x\ <-> y\, (3)

X2 <-» and w <-> vi/, (4) ;q <-> Xj anc/ z z'- Among these symmetries, (1) and (2) are

composite phase-shift symmetries because they involve both inversion and permutation of

inputs, while (3) and (4) are pure phase-shift symmetries because only inversions o f inputs

and outputs are used. Note that due to Boolean consistency, a symmetry composed of

complement o f variables in another symmetry is the same symmetry. For example, y 2 <-> xf

is the same as x2 y2.

7.1.2 Semantic and Syntactic Symmetry Detection

Symmetry detection in Boolean functions has several applications, including technol­

ogy mapping, logic synthesis, BDD minimization [92] and circuit rewiring [28]. Methods

for symmetry detection can be classified into four categories: BDD-based, graph-based,

circuit-based and Boolean-matching-based. However, it is relatively difficult to find all

symmetries of a Boolean function regardless of the representation used.

BDDs are particularly convenient for semantic symmetry detection because they sup­

port abstract functional operations. One naive way to find two-variable symmetries is to

compute the cofactors for every pair of variables, say they are vi and V2 , and check if

FyrV2 = Fv or F\f\ v̂ -FV]V2. Recent research [87] indicates that symmetries can be found

or disproved without computing all the cofactors and thus significantly speeds up sym m e­

try detection. However, work on BDD-based symmetry detection has been limited to input

permutations only.

In this dissertation, symmetry-detection methods that rely on efficient algorithms for

the graph-automorphism problem (i.e., finding all symmetries of a given graph) arc clas-

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

sified as graph-based. They construct a graph whose symmetries faithfully capture the

symmetries of the original object, find its automorphisms (symmetries), and map them

back to the original object. Aloul et al. [7] proposed a way to find symmetries for SAT

clauses using this approach. The symmetry-detection approach proposed in this disserta­

tion is inspired by their work.

Circuit-based symmetry-detection methods often convert a circuit representing the

function in question to a more regular form, where symmetry detection is more practi­

cal and efficient. For example, Wang et al. [116] transform the circuit to NO R gates.

C.-W. Chang et al. [28] use a more elaborate approach by converting the circuit to XOR,

AND, OR, INVERTER and BUFFER first, and then partition the circuit so that each sub­

circuit is fanout free. Next, they form supergates from the gates and detect symmetries for

those supergates. Wallace et al. [115] use concepts from Boolean decomposition [14] and

convert the circuit to quasi-canonical forms, and then input symmetries are recognized

from these forms. This technique is capable of finding higher-order symmetries. A n­

other type of circuit-bascd symmetry detector relies on ATPG and simulation, such as the

work by Pomeranz et al. [94], Although their technique was developed to find both first

and higher-order symmetries, they reported experimental results for first-order symmetries

only. Therefore, its capability to detect higher-order symmetries is unclear.

Boolean matching is a problem related to symmetry detection. Its purpose is to com ­

pute a canonical representation for Boolean functions that are equivalent under negation

and permutation of inputs and outputs. Symmetries are implicitly processed by Boolean

matching in that all functions symmetric to each other will have the same canonical rep-

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

reservation. However, enumerating symmetries from Boolean matching is not straight

forward and requires extra work. This topic has been studied by Wu et al. [119] and Chai

el al. [25].

Table 7.1: A comparison of different symmetry-detection methods.

D ata structure
used

Target Sym m etries detected M ain applica­
tions

Tim e
com ­
plexity

BDD [87] Boolean
functions

All F ' order input sym m etries Synthesis 0(7lJ)

Circuit - Super­
gate [28]

Gate-level
circuits

I s' order input sym m etries in
supergates, opportunistically

Rew iring, tech­
nology m apping

0(777.)

Circuit - Boolean
decom position
[115]

Gate-level
circuits

Input and output perm utational
sym m etries, higher-order

Rew iring, phys­
ical design

£2(777.)

Circuit - sim ula­
tion, ATPG [94]

Gate-level
circuits

Input, output and phase-shift
sym m etries, higher-order

Error diagnosis,
technology
m apping

£2(2'-')

Boolean m atch­
ing [25]

Boolean
functions

Input, output and phase-shift
sym m etries, higher-order

Technology
m apping

£2(2")

Graph autom or­
phism (our work)

Both (with
small num ­
ber of in­
puts)

All input, output, phase-shift
sym m etries and all orders, ex­
haustively

Exhaustive
small group
rewiring

h£2(2")

In the table, n is the num ber of inputs to the circuit and m is the num ber of gates. Currently
known BD D -based and m ost circuit-based m ethods can detect only a fraction of all sym m etries
in some cases, w hile the m ethod based on graph autom orphism (this w ork) can detect all sym m e­
tries exhaustively. Additionally, the sym m etry-detection techniques in this work find all phase-shift
sym m etries as well as com posite (hybrid) sym m etries that sim ultaneously involve both perm uta­
tions and phase-shifts. In contrast, existing literature on functional sym m etries does not consider
such com posite sym m etries.

A comparison of BDD-based symmetry detection [87], circuit-based symmetry de­

tection [28, 94, 115], Boolean-matching-based symmetry detection [25] and the method

proposed in this paper is summarized in Table 7.1.

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7.1.3 Graph-Automorphism Algorithms

Our symmetry-detection method is based on efficient graph-automorphism algorithms,

which have recently been improved by Darga et al. [49]. Their symmetry detector Saucy

finds all symmetries of a given colored undirected graph. To this end, consider an undi­

rected graph G with n vertices, and let V = { 0 , — 1}. Each vertex in G is labeled with

a unique value in V. A permutation on 1/ is a bijection tc : V —> V. An automorphism of

G is a permutation 7t of the labels assigned to vertices in G such that 7c(G) = G; we say

that % is a structure-preserving mapping or symmetry. The set of all such valid relabellings

is called the automorphism group of G. A coloring is a restriction on the permutation of

vertices - only vertices in the same color can map to each other. Given G, possibly with

colored vertices, Saucy produces symmetry generators that form a compact description of

all symmetries. Saucy is available online at [133].

7.1.4 Post-Placement Rewiring

Rewiring based on symmetries can be used to optimize circuit characteristics. Some

rewiring examples are illustrated in Figure 7.1(a) and 7.1(b). For the discussion in this

chapter the goal is to reduce wirelength, and swapping symmetric input and output pins

accomplishes this.

C.-W. Chang et al. [28] use the symmetry-detection technique described in Section

7.1.2 to op tim ize delay, pow er and reliability. In general, sym m etry detection in their work

is done opportunistically rather than exhaustively. Experimental results show that their

approach can achieve these goals effectively using the symmetries detected. However, they

cannot find the rewiring opportunities in Figure 7.1(a) and 7.1(b) because their symmetry-

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

detection technique lacks the ability to detect output and phase-shift symmetries.

Another type of rewiring is based on the addition and removal of wires. Three major

techniques are used to determine the wires that can be reconnected. The first one uses

reasoning based on ATPG such as REW IRE [40], RAM FIRE [29] and the work by Jiang

et al. [65], which tries to add a redundant wire that makes the target wire redundant so that

it can be removed. The second class of techniques is graph-based; one example is GBAW

[118], which uses pre-defined graph representation of subcircuits and relies on pattern

matching to replace wires. The third technique uses SPFDs [46] and is based on don ’t-

cares. Although these techniques are potentially more powerful than symmetry-based

rewiring because they allow more aggressive layout changes, they are also less stable and

do not support post-silicon metal fix.

7.2 Exhaustive Search for Functional Symmetries

The symmetry-detection method presented in our work can find all input, output, multi-

variable and phase-shift symmetries including composite (hybrid) symmetries. It relies on

symmetry detection of graphs, thus the original Boolean function must be converted to a

graph first. After that, it solves the graph-automorphism (symmetry detection) problem

on this graph, and then the symmetries found are converted to symmetries of the original

Boolean function. Our main contribution is the mapping from a Boolean function to a

graph, and show ing how lo use it to find sym m etries o f the B oolean function. T hese

techniques are described in detail in this section.

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7.2.1 Problem Mapping

To reduce functional symmetry detection to the graph-automorphism problem, we rep­

resent Boolean functions by graphs as described below:

1. Each input and its complement are represented by two vertices in the graph, and

there is an edge between them to maintain Boolean consistency (i.e., x «-> y and x! < ->

y' must happen simultaneously). These vertices are called input vertices. Outputs

are handled similarly, and the vertices are called output vertices.

2. Each minterm and maxterm of the Boolean function is represented by a term vertex.

We introduce an edge connecting every minterm vertex to the output and an edge

connecting every maxterm vertex to the complement of the output. We also intro­

duce an edge between every term vertex and every input vertex or its complement,

depending on whether that input is 1 or 0 in the term.

3. Since inputs and outputs are bipartite-permutable, all input vertices have one color,

and all outputs vertices have another color. All term vertices use yet another color.

The idea behind this construction is that if an input vertex gets permuted with another

input vertex, the term vertices connected to them will also need to be permuted. How­

ever, the edges between term vertices and output vertices restrict such permutations to the

following cases: (1) the permutation of term vertices does not affect the connections to

output vertices, which means the outputs are unchanged; and (2) permuting term vertices

may also require permuting output vertices, thus capturing output symmetries. A proof of

correctness is given in Section 7.2.2.

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

xy z
00 0
01 1
10 1
11 0

(a) (b) (c)

Figure 7.2: Representing the 2-input XOR function by (a) the truth table, (b) the full graph,

Figure 7.2(a) shows the truth table of function z = x © y , and Figure 7.2(b) illustrates

our construction for the function. In general, vertex indices are assigned as follows. For

n inputs and m outputs, the ith input is represented by vertex 2/, while the complementary

vertex has index 2i + 1. There are 2n terms, and the ith term is indexed by 2n + i. Similarly,

the ith output is indexed by 2n + 2n + 2 i, while its complement is indexed by 2n + 2" T

2 / + 1.

The symmetry detector Saucy [49] used in this work typically runs faster when the

graph is smaller and contains more colors. Therefore if output symmetries do not need

to be detected, a simplified graph with reduced number of vertices can be used. It is

constructed similarly to the full graph, but without output vertices and potentially with

more vertex colors. We define an output pattern as a set o f output vertices in the full graph

that are connected to a given term vertex. Further, term vertices with d ifferent output

patterns shall be colored differently. Figure 7.2(c) illustrates the simplified graph for the

two-input XOR function.

and (c) the simplified graph for faster symmetry detection.

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

All the minterms and maxterms of the Boolean function are used in the graph because

we focus on fully-specified Boolean functions. Since all the terms arc used, and there are

2'7 terms for an n-input function, the time and space complexity of our algorithm is £2(2n).

7 .2 .2 P roof o f C orrectness

We first prove the correctness of the simplified graph construction proposed in the

previous section. Our proofs below are presented as a series of numbered steps.

1. First, we need to prove that there is a one-to-one mapping between the function and

its graph. This mapping can be defined following the graph construction in Section

7.2.1. The inverse mapping (from a graph to a function) is also given in the section.

2. Second, we need to prove that there is a one-to-one mapping between symmetries

of the function and automorphisms of the graph.

(a) First, we want to show that a symmetry of the function is an automorphism

of the graph. A symmetry of the function is a permutation of the function’s

inputs that do not change the function’s outputs, and permutation in inputs

corresponds to reevaluation o f the outputs of that the term. Since the inputs arc

symmetric, no output will be changed by the permutation, and the color of the

term vertices in the corresponding graph will remain the same. Therefore it is

also an automorphism of the graph.

(b) Next we want to show that an automorphism of the graph is a symmetry of

the function. Since there is an edge between the input and its complement,

mapping one input vertex, say x, to another vertex, say y, will cause x ’s com-

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

plement map to y's complement, so Boolean consistency is preserved. Since

an input vertex connect to all the term vertices that contain it, swaps between

two input vertices will cause all the term vertices that connect to them being

swapped according to the following rule: suppose that input vertex x swaps

with input vertex y, then all term vertices that connect to both x and y will also

be swapped because there is an edge between the term vertex and both x and y.

Since a swap between term vertices is legal only if they have the same color, it

means all automorphisms detected in the graph will not map a term vertex to

another color. And since the color of the term represents an output pattern in

the Boolean function, it means the outputs of the Boolean function will not be

changed. Therefore an automorphism of the graph maps to an input symmetry

of the Boolean function.

3. From Step 1 and Step 2, there is a one-to-one mapping between the function and

its graph, and a one-to-one mapping between the symmetries of the function and

the automorphisms of the graph. Therefore the symmetry-detection method for the

simplified graph is correct.

Next, the correctness of the original graph is proved below. The relationship between

terms and inputs are described in the previous proof. Therefore the proof here focuses

on the re la tio n sh ip b e tw e e n te rm s and o u tp u ts . T h e re are th ree p o s s ib le s itu a tio n s : inpu t

symmetries that do not affect the outputs, input symmetries that affect the outputs, and

output symmetries that are independent of the inputs.

1. Input symmetries that do not affect the output: the way term vertices connect to

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

output vertices represent an output pattern. If two term vertices have exactly the

same outputs, then they will connect to the same output vertices; otherwise they will

connect to at least one different output vertex. Mapping a term vertex to another term

vertex which has different output pattern is invalid (except for the situation described

in 2) because at least one output vertex they connect to is different, therefore the

connections to output vertices behave the same as coloring in the previous proof.

2. Input symmetries that affect the output: if all terms that connect to an output pattern

can be mapped to all terms connecting to another output pattern, then the output

vertices corresponding to the two patterns can also be swapped because the terms

that the outputs connect to will not change after the mapping. In the mean time, the

input vertices that connect to the swapped minterms will also be swapped, which

represent a symmetry involving both inputs and outputs.

3. Output symmetries that are independent of the inputs: if two sets of output vertices

connect to exactly the same term vertices, then the output vertices in the two sets

can be swapped, which represent output symmetries. In this case, no term swapping

is involved, so the inputs are unaffected.

7.2 .3 G en eratin g S ym m etries from S ym m etry G en erators

The symmetry detector Saucy returns symmetry generators. To produce symmetries

that can be used for rewiring, we design a symmetry .generation algorithm, which is shown

in Figure 7.3. In the algorithm, generators is a set which contains all the symmetry gener­

ators returned by Saucy, and three sets of symmetries are used. They are oldasym, cur j> ym

and new_sym. Initially, cur ̂ y in contains the identity symmetry (i.e., a symmetry that maps

84

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

to itself), and both o l d s y m and n e w s y m are empty. The algorithm loops until c u r s y m is

empty, meaning that all the symmetries have been generated; or count is larger than 1000,

meaning that 1000 symmetries have been generated. As a result, at most 1000 symmetries

will be tried for a set of symmetry generators to limit the complexity of rewiring. When

the loop finishes, o l d s y m will contain all the symmetries generated using the generators.

F u n c t i o n symmetry^generat ion(generat ors)
1 do

2 (breach sym £ c u r s y m
3 forcach gen £ generators
4 for i = 1 to 2 do
5 nsrym = (; = = 1)1 gen x sym : sym x gem,
6 if (\nsym £ (o l d s y m U curs ym . U n e w s y m))
7 n e w s y m — n e w s y m U nsyiw,
8 count — c o u n t + 1 ;
9 o l d s y m = o l d s y m U c u r s y m ;

10 cur s y m = n e w s y m ;
11 n e w s y m . c l e a r () ;
12 while (\ c u r s y m . e m p t y {) and count < 1000);
13 return o l d s y m ;

Figure 7.3: Our symmetry generation algorithm.

7 .2 .4 D iscu ssion

Compared with other symmetry-detection methods, the symmetry detector proposed

in our work has the following advantages: (1) it can detect all possible input and output

symmetries of a function, including multi-variable, higher-order and phase-shift sym m e­

tries; and (2) symmetry generators are used to represent the symmetries, which make the

relationship between input and output symmetries very clear. These characteristics make

the use of the symmetries easier than other methods that enumerate all symmetry pairs.

While evaluating our algorithm, we observed that Saucy is more efficient when there

are few or no symmetries in the graph; in contrast, it takes more time when there are many

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

symmetries. For example, the runtime of a randomly chosen 16-input function is 0.1 1 sec

because random functions typically have no symmetries. However, it takes 9.42 sec to

detect all symmetries of the 16-input XOR function. Runtimes for 18 inputs are 0.59 sec

and 92.39 sec, respectively.

7.3 Post-Placement Rewiring

This section describes a permutative rewiring technique that uses symmetries of ex­

tracted subcircuits to reduce wirelength. Implementation insights and further discussions

are also given.

7.3.1 P erm u tative R ew irin g

After placement, symmetries can be used to rewire the netlist to reduce the wirelength.

This is achieved by reconnecting pins according to the symmetries found in subcircuits,

and these subcircuits are extracted as follows.

1. We represent the netlist by a hypergraph, where cells are represented by nodes and

nets are represented by hyper-edges.

2. For each node in the hypergraph, we perform Breadth-First Search (BPS) starting

from the node, and use the first n nodes traversed as subcircuits.

3. Similarly, we perform Depth-First Search (DFS) and extract subcircuits using the

first m nodes.

In our implementation, we perform BFS extraction 4 times with n from 1 to 4, and

DFS twice with m from 3 to 4. This process is capable of extracting various subcircuits

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

suitable for rewiring. In addition to logically connected cells, min-cut placers such as

Capo [3, 21] produce a hierarchical collection of placement bins (buckets) that contain

physically adjacent cells, and these bins are also suitable for rewiring. Currently, we also

use subcircuits composed of cells in every half-bin and full-bin in our rewiring. After

subcircuits are extracted, we perform symmetry detection on these subcircuits. Next, we

reconnect the wires to the inputs and outputs of these subcircuits according to the detected

symmetries in order to optimize wirelength.

The reason why multiple passes with different sizes of subcircuits are used is that some

symmetries in small subcircuits cannot be detected in larger subcircuits. For example, in

Figure 7.4, if the subcircuit contains all the gates, only symmetries between x, y, z and w

can be detected, and the rewiring opportunity for p and q will be lost. By using multiple

passes for symmetry detection, more symmetries can be extracted from the circuit.

a —

o—
o —1

Figure 7.4: Rewiring opportunities for p and q cannot be detected by only considering the
subcircuit shown in this figure. To rewire p and q, a subcircuit with p and q as
inputs must be extracted.

The rewiring algorithm can be easily extended to utilize phase-shift symmetry: if the

wirelength is shorter after the necessary inverters are inserted or removed, then the circuit

is rewired. It can also be used to reduce the delay on critical paths.

87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7.3 .2 Im p lem en ta tion In sigh ts

During implementation, we observed that for subcircuits with a small number o f inputs

and outputs, it is more efficient to detect symmetries by enumerating all possible permu­

tations using bit operations on the truth table. That is because the required permutations

can be implemented with just a few lines of C++ code, making this technique much faster

than building the graph for Saucy. We call this algorithm naive symmetry detection, l o

further reduce its runtime, we limit the algorithm to detect first-order symmetries only.

In our implementation, naive symmetry detection is used on subcircuits with number of

inputs less than 11 and number of outputs less than 3. Experimental results show that the

runtime can be reduced by more than half with almost no loss in quality, which is because

the lost rewiring opportunities can be recovered in larger subcircuits where Saucy-based

symmetry detection is used.

7 .3 .3 D iscu ssion

Our rewiring techniques described so far use permutational symmetries. Here we de­

scribe two applications of phase-shift symmetries.

1. The ability to handle phase-shift symmetries may reduce interconnect by enabling

permutational symmetries, as the M U X example in Figure 7 . 1(b) shows.

2. Phase-shift symmetries support metal fix of logic errors involving only inversions of

signals: by reconnecting certain wires, signals may be inverted.

C o m p a re d w ith o th e r re w irin g te c h n iq u e s , th e a d v a n ta g e s o f o u r te c h n iq u e s in c lu d e

th e fo llo w in g :

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1. Our rewiring techniques preserve placement, therefore the effects of any change

are immediately measurable. As a result, our methods are safe and can be applied

with every flow. In other words, their application can only improve the optimization

objective and never worsens it. This characteristic is especially desirable in highly-

optimized circuits because changes in placements may create cell overlaps, and the

legalization process to remove these overlaps may affect multiple gates, leading to a

deterioration of the optimization goal.

2. Our techniques support post-silicon metal fix, which allows reuse of transistor masks

and can significantly reduce respin cost.

3. The correctness of our optimizations can be verified easily using combinational

equivalence checking.

4. Our techniques can optimize a broad variety of objectives, as long as the objectives

can be evaluated incrementally.

The limitations of our rewiring techniques include:

1. The performance varies with each benchmark, depending on the number of sym m e­

tries that exist in a design. Therefore improvement is not guaranteed.

2. W hen optimizing wirelength, the ratio of improvement tends to reduce when de­

signs get larger. Since permutative rewiring is a local optimization, it cannot shorten

global nets.

89

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7.4 Experimental Results

Our implementation was written in C++, and the testcases were selected from ITC99,

ISCAS and M CNC benchmarks. To better reflect modern VLSI circuits, we chose the

largest testcases from each benchmark suite, and added several small and medium ones

for completeness. Our experiments used the min-cut placer Capo. The platform used was

Fedora 2 Linux on a Pentium-4 workstation running at 2.26GHz with 5 12M RAM.

We converted every testcase from BLIF to the Bookshelf placement format (.nodes

and .nets files) using the converter provided in [22, 132], We report two different types

of experimental results in this section, including the number of symmetries detected and

rewiring. A flow chart of our experiments on symmetry detection and rewiring is given in

Figure 7.5.

Nodes,
nets

Global
jjlacer^ Global

placement

Detailed
placer

Permutative
rewiring

Rewired
netlist

Detailed
placement

Permutative
rewiring

""■’Y ®xP f: Number of
\sy m m e tr ie s found

Rewired
netlist

(Exp2: Comparison A
of rewiring and 1

detailed p lacem ent/

Exp3: Trade-off
between runtime

and quality

7igure 7.5: Flow chart of our symmetry detection and rewiring experiments.

90

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7.4 .1 S ym m etries D etected

The first experiment evaluates the symmetries found in the benchmarks, and the re­

sults are summarized in Table 7.2. In the table, “number of subcircuits” is the number of

subcircuits extracted from the benchmark for symmetry detection. “Input” is the number

of subcircuits which contain input symmetries, and “phase-shift input” is the number of

subcircuits that contain phase-shift input symmetries. “Output” and “phase-shift output”

are used in a similar way. “Input and output” are subcircuits that contain symmetries in­

volving both inputs and outputs. The number of symmetries found in the circuits can be

used to predict the probability of finding rewiring opportunities: at least 66% of the sub­

circuits contain permutational input symmetries and are suitable for rewiring. It can also

be observed that although output symmetries do not happen as often as input symmetries,

their number is not negligible and rewiring techniques should also take output symmetries

into consideration.

7.4 .2 R ew iring

In the rewiring experiments, wirelength reduction was calculated against the origi­

nal wirelength after placement using half-perimeter wirelength. The second experiment

compares the wirelength reduction gained from rewiring and detailed placement. It also

compares the wirelength reduction of rewiring before and after detailed placement. These

re su lts a re su m m a riz e d in T ab le 7 .3 an d T ab ic 7 .4 , re sp ec tiv e ly . T h e m a x im u m n u m b e r

of inputs allowed for symmetry detection was 16 in this experiment. From Table 7.3, it is

found that our method can effectively reduce wirelength by approximately 3.7%, which is

comparable to the improvement due to detailed-placement.

91

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 7.2: Num ber of symmetries found in benchmark circuits.
B enchm ark N um ber

of
subcircuits

Sym m etries
Input Phase-

shift
input

Output Phase-
shift

output

Input
and

output
A LU 2 876 855 120 249 126 211
A LU 4 15933 15924 242 1245 243 1244

B02 143 130 18 22 15 21
BIO 1117 1015 160 201 137 170
B17 198544 190814 23789 32388 17559 24474

C5315 20498 19331 9114 5196 4490 4145
C7552 28866 26626 12243 7540 6477 5895
DALU 16665 15506 6632 3272 2550 2852

110 14670 14165 4298 3710 2929 2516
S38417 141241 126508 75642 64973 59319 61504
S38584 122110 117084 55966 35632 29661 33655

Average 100% 94% 28% 23% 18% 20%
Row “Average” shows the average percentages of subcircuits that contain a specific sym m etry type.
For exam ple, the num ber in the last row o f the third colum n means 94% o f the subcircuits contain
at least one input symmetry.

Table 7.4 shows that the wirelength reduction is a little bit smaller when rewiring is

used after detailed placement, suggesting that some rewiring opportunities interfere with

optimization from detailed placement. For example, detailed p lacement performs Hipping

of cells, which may interfere with permutative rewiring if the inputs of the cell are sym ­

metric. However, the difference is very small, showing that wirelength reduction from

rewiring is mostly independent of detailed placement.

The third experiment evaluates the relationship between the number of inputs allowed

in symmetry detection, wirelength reduction and runtime. In order to show the true per­

fo rm a n c e o f S a u c y -b a sc d sy m m e try d e te c tio n , th e u se o f n a iv e sy m m e try d e te c tio n w as

turned off in this experiment. Since our symmetry-detection method is most efficient with

small number of inputs, this relationship represents the trade-off between performance

and runtime. Empirical results are shown in Table 7.5, where the numbers are averages

92

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Tabic 7.3: Wirelength reduction and runtime comparisons between rewiring, detailed
placement and global placement.

B enchm ark W irelength W irelength reduction Runtim e (seconds)
Rewiring Detailed

placem ent
Rewiring Detailed

placem ent
Global

placem ent
A LU 2 5403.29 3.21% 8.98% 2.6 0.2 3.6
A LU 4 35491.38 9.02% 3.54% 15.2 3.0 27.2

B02 142.90 8.29% 0.00% 2.8 0.4 0.1
BIO 1548.28 5.04% 3.89% 7.2 0.1 1.0
B 17 367223.20 2.92% 2.28% 350.6 32.6 206.2

C5315 30894.06 1.76% 1.52% 17.39 3.0 3.2
C7552 39226.30 1.71% 1.57% 23.8 4.0 2.8
DALU 20488.84 2.79% 3.46% 13.2 2.6 2.6

110 50613.84 2 . 1 1 % 2.05% 15.6 2.6 29.0
S38417 129313.20 2.01% 2.05% 180.8 22.2 17.2
S38584 174232.80 2.51% 2.27% 157.8 20.6 46.0

Average 77689 3.70% 2.87% 30.8 O
O 71.5

of all the benchmarks. These results indicate that the longer the rewiring program runs,

the better the reduction will be. However, most improvement occurs with small number

of inputs and can be achieved quickly. In addition, recent follow-up work by Chai et al.

[27] showed how to simplify the graphs that represent logic functions in order to speed up

symmetry detection. Their techniques can make our symmetry detector run faster and thus

further improve the rewiring quality given the same amount of time.

We also applied our rewiring techniques to the OpenCores suite [131] in the IW L S’05

benchmarks [138], and we performed routing to measure the wirelength reduction for

routed wires. The results show that our pre-routing optimizations transform into post­

routing wire length reduction effectively. Furtherm ore , we observe that via counts can also

be reduced by our optimizations. These results show that our rewiring techniques are ef­

fective in reducing wirelength and number of vias, and they can both reduce manufacturing

defects and improve yield. Reducing via count is especially important in deep submicron

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 7.4: The im pact of rewiring before and after detailed placem ent.
Benchm ark W irelength reduction R untim e (seconds)

Before A fter Before After
detailed detailed detailed detailed

placem ent placem ent placem ent placem ent
A LU 2 3.49% 3.21% 3.4 3.6
A LU 4 9.38% 9.02% 27.2 27.2
B02 8.29% 8.29% 0.2 0.2
BIO 4.78% 5.04% 0.8 1.0
B17 3.00% 2.92% 199.6 206.2

C5315 1.71% 1.76% 3.6 3.2
C7552 1.82% 1.71% 2.6 2.8
DALU 2.90% 2.19% 2.8 2.6

110 2.05% 2.11% 29.2 29.0
S38417 2.04% 2.01% 18.0 17.2
S38584 2.50% 2.51% 46.2 46.0

Average 3.82% 3.70% 30.3 30.8

era because vias are a major cause of manufacturing faults. Detailed results are reported

in [33],

7.5 Summary

In this chapter we presented a new symmetry-detection methodology and applied it

to post-placement rewiring. Compared with other symmetry-detection techniques, our

Table 7.5: The impact of the number of inputs allowed in symmetry detection on perfor­
mance and runtime.

N um ber of Runtim e W irelength
inputs allowed (seconds) reduction

2 2.90 1.06%
4 4.30 2.58%
6 7.07 3.12%
8 14.98 3.50%
10 28.03 3.63%
12 41.34 3.72%
14 59.85 3.66%
16 82.30 3.68%

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

method identifies more symmetries, including multi-variable permutational and phase-

shift symmetries for both inputs and outputs. This is important in circuit rewiring because

more detected symmetries create more rewiring opportunities.

Our experimental results on common circuit benchmarks show that the wirelength re­

duction is comparable and orthogonal to the reduction provided by detailed placement —

the reduction achieved by our method performed before and after detailed placement is

similar. This shows that our rewiring method is very effective, and it should be performed

after detailed placement for the best results. W hen applied, we observe an average of 3.7%

wirelength reduction for the experimental benchmarks evalauted.

In summary, the rewiring technique we presented has the following advantages: (1) it

does not alter the placement of any standard cells, therefore no cell overlaps are created

and improvements from changes can be evaluated reliably; (2) it can be applied to a variety

of existing design flows; (3) it can optimize a broad variety of objectives, such as delay

and power, as long as they can be evaluated incrementally; and (4) it can easily adapt to

other symmetry detectors, such as the detectors proposed by Chai et al. [26, 27], On

the other hand, our technique has some limitations: (1) its performance depends on the

specific design being optimized and there is no guarantee of wirelength reduction; and (2)

the improvement tends to decrease with larger designs, similar to what has been observed

from detailed placement.

95

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

PART III

FogClear Components

CHAPTER VIII

Bug Trace Minimization

Finding the cause of a bug can be one of the most time-consuming activities in de­

sign verification. This is particularly true in the case of bugs discovered in the context of

a random simulation-based methodology, where bug traces, or counterexamples, may be

several hundred thousand cycles long. In this chapter we describe Butramin, a bug trace

minimizer, Butramin considers a bug trace produced by a random simulator or a semi-

formal verification software and produces an equivalent trace of shorter length. Butramin

applies a range of minimization techniques, deploying both simulation-based and formal

methods, with the objective of producing highly reduced traces that still expose the orig­

inal bug. We evaluated Butramin on a range of designs, including the publicly available

picoJava microprocessor, and bug traces up to one million cycles long. Our experiments

show that in most cases Butramin is able to reduce traces to a small fraction of their initial

96

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

sizes, in terms of cycle length and signals involved. The minimized traces can greatly

facilitate bug analysis. In addition, they can also be used to reduce regression runtime.

8.1 Background and Previous Work

Research on minimizing property counterexamples or, more generally, bug traces, has

been pursued both in the context of hardware and software verification. Before discussing

these techniques, we first give some preliminary background.

8.1.1 A n atom y o f a B u g T race

A bug state is an undesirable state that exposes a bug in the design. Depending on

the nature of the bug, it can be exposed by a unique state (a specific bug configuration)

or any one of several states (a general bug configuration), as shown in Figure 8.1. In the

figure, suppose that the x-axis represents one state machine called FSM-X and the y-axis

represents another machine called FSM-Y. If a bug occurs only when a specific state in

FSM-X and a specific state in FSM -Y appear simultaneously, then the bug configuration

will be a very specific single point. On the other hand, if the bug is only related to a

specific state in FSM -X but it is independent of FSM-Y, then the bug configuration will

be all states on the vertical line intersecting the one state in FSM-X. In this case, the bug

configuration is very broad.

Given a sequential circuit and an initial state, a bug trace is a sequence of test vectors

that exposes a bug, i.e., causes the circuit to assume one of the bug states. The length of

the trace is the number of cycles from the initial state to the bug state, and an input event is

a change of an input signal at a specific clock cycle of the trace. One input event is consid-

97

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

><I
s
C/3
tu

A specific

J L
general

FSM-^

Figure 8.1: An illustration of two types of bugs, based on whether one or many states
expose a given bug. The x-axis represents FSM-X and the y-axis represents
FSM-Y. A specific bug configuration contains only one state, while a general
bug configuration contains many states.

ered to affect only a single input bit. An input variable assignment is a value assignment

to an input signal at a specific cycle. The term input variable assignm ent is used in the

literature when traces are modeled as sequences of symbolic variable assignments at the

design’s inputs. The number of input variable assignments in a trace is the product of the

number of cycles and the number of inputs. A checker signal is a signal used to detect a

violation of a property. In other words, if the signal changes to a specific value, then the

property monitored by the checker is violated, and a bug is found. The objective of bug

trace minimization is to reduce the number of input events and cycles in a trace, while still

detecting the checker violation.

Example 3 Consider a circuit with three inputs a, b and c, initially set to zero. Suppose

that a bug trace is available where a an d c are assigned to 1 at cycle 1. At cycle 2, c

is changed to 0 and it is changed back to 1 at cycle 3, after which a checker detects a

violation. In this situation we count fo u r input events, twelve input variable assignments,

and three cycles f o r our bug trace. The example trace is illustrated in Figure 8.2.

Another view of a bug trace is a path in the state space from the initial state to the bug

98

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

a=0 a=l a = l a=l

b=0 b=0 b=0 b=0

c=0 C=1 c=0 c=l

cycle 0 cycle 1 cycle 2 cycle 3

Figure 8.2: A bug trace example. The boxes represent input variable assignments to the
circuit at each cycle, shaded boxes represent input events. This trace has three
cycles, four input events and twelve input variable assignments.

state, as shown in Figure 8.3. By construction, formal methods can often find the minimal

length bug trace as shown in the dotted line. Therefore we focus our minimization on

semi-formal and constrained-random traces only. However, if Butramin is applied to a

trace obtained with a formal technique, it may still be possible to reduce the number of

input events and variable assignments.

o Initial state

(B^g) Bug state

— > Bug trace

^ M inimal
bug trace

Figure 8.3: Another view of a bug trace. Three bug states are shown. Formal methods
often find the minimal length bug trace, while semi-formal and constrained-
random techniques often generate longer traces.

8.1 .2 K now n T echn iques in H ard w are V erification

Traditionally, a counterexample generated by BM C reports the input variable assign­

ments for each clock cycle and for each input of the design. However, it is possible, and

common, that only a portion of these assignments are required to falsify the property. Sev­

eral techniques that attempt to minimize the trace complexity have been recently proposed,

99

Bug

Bug

Bug

State space

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

for instance, Ravi et al. [98]. To this end they propose two techniques: brute-force lifting

(BFL), which attempts to eliminate one variable assignment at a time, and an improved

variant that eliminates variables in such a way so as to highlight the primary events that

led to the property falsification. The basic idea of BFL is to consider the free variables of

the bug trace, that is, all input variable assignments in every cycle. For each free variable v,

BFL constructs a SAT instance SAT(v), to determine if v can prevent the counterexample.

If that is not the case, then v is irrelevant to the counterexample and can be eliminated.

Because this technique minimizes BMC-derived traces, its focus is only on reducing the

number of assignments to the circuit’s input signals. Moreover, each single assignment

elimination requires solving a distinct SAT problem, which may be computationally diffi­

cult. M ore recent work in [103] further improves the performance of BFL by attempting

the elimination of sets of variables simultaneously. Our technique for removing individual

variable assignments is similar to BFL as it seeks to remove an assignment by evaluating a

trace obtained with the opposite assignment. However, we apply this technique to longer

traces obtained with semi-formal methods and we perform testing via resimulation.

Another technique applied to model checking solutions is by Gastin et al. [55], Here

the counterexample is converted to a Biichi automaton and a depth-first search algorithm

is used to find a minimal bug trace. Minimization of counterexamples is also addressed in

[66], where the distinction between control and data signals is exploited in attempting to

eliminate data signals first from the counterexample.

All o f these techniques focus on reducing the number of input variable assignments to

disprove the property. Because the counterexample is obtained through a formal model

100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

checker, the number of cycles in the bug trace is minimal by construction. Butram in’s ap­

proach considers a more general context where bug traces can be generated by simulation

or semi-formal verification software, attacking much more complex designs than BMC-

based techniques. Therefore, (1) traces are in general orders of magnitude longer than the

ones generated by BMC; and (2) there is much potential for reducing the trace in terms of

number of clock cycles, as our experimental results indicate. On the downside, the use of

simulation-based techniques does not guarantee that the results obtained are of minimal

length. As the experimental results in Section 8.5 indicate, however, our heuristics provide

in practice optimal results for most benchmarks.

Aside from minimization of bug traces generated using formal methods, techniques

that generate traces by random simulation have also been explored in the context of hard­

ware verification. One such technique is by Chen el al. [43] and proceeds in two phases.

The first phase identifies all the distinct states of the counterexample trace. The second

phase represents the trace as a state graph: it applies one step of forward state traversal

[48] to each of the individual states and adds transition edges to the graph based on it. Di-

jkstra’s shortest path algorithm is applied to the final graph obtained. This approach, while

very effective in minimizing the trace length (the number of clock cycles in the trace),

(1) docs not consider elimination of input variable assignments, and (2) makes heavy use

of formal state-traversal techniques, which are notoriously expensive computationally and

can usually be applied only to small-size designs, as indicated also by the experimental

results in [43].

101

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8.1 .3 T echn iques in S oftw are V erification

The problem of trace minimization has been a focus of research also in the software

verification domain. Software bug traces are characterized by involving a very large num ­

ber of variables and very long sequences of instructions. The delta debugging algorithm

[58] is fairly popular in the software world. It simplifies a complex software trace by ex­

tracting the portion of the trace that is relevant to exposing the bug. Their approach is

based exclusively on resimulation-based exploration and it attacks the problem by parti­

tioning the trace (which in this case is a sequence of instructions) and checking if any of

the components can still expose the bug. The algorithm was able to greatly reduce bug

traces in Mozilla, a popular web browser. A recent contribution that draws upon counter­

examples found by model checking is by Groce et al. [57]. Their solution focuses on

minimizing a trace with respect to the primitive constructs available in the language used

to describe the hardware or software system and on trying to highlight the causes of the

error in the counterexample, so as to produce a simplified trace that is more understandable

by a software designer.

8.2 Analysis of Bug Traces

In this section, we analyze the characteristics of bug traces generated using random

simulation, pointing out the origins of redundancy in these traces and propose how redun­

dancy can be removed. In general, redundancy exists because some portions of the bug

trace may be unrelated to the bug, there may be loops or shortcuts in the bug trace, or

there may be an alternative and shorter path to the bug. Two examples arc given below to

102

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

illustrate the idea, while the following subsections provide a detailed analysis.

E xam ple 4 Intel’s first-generation Pentium, processor included a bug in the floating-point

unit which affected the FDIV instruction. This bug occurred when FDIV was used with a

specific set o f operands. If there had been a checker testing fo r the correctness o f the FDIV

operation during the simulation-based verification o f the processor, it is very probable that

a bug trace exposing this problem may be many cycles long. However, only a small portion

o f the random program would have been useful to expose the FDIV bug, while the majority

o f other instructions can be eliminated. The redundancy o f the bug trace comes from the

cycles spent testing other portions o f the design, which are unrelated to the flawed unit

and can thus be removed.

E xam ple 5 Suppose that the design under test is a FIFO unit, and a bug occurs every

time the FIFO is full. Also assume that there is a pseudo-random bug trace containing

both read and write operations until the trace reaches the “FIFO f u l l ’’ state. Obviously,

cycles that read data from the FIFO can be removed because they create state transitions

that bring the trace away from the bug configuration instead o f closer to it.

8.2.1 M a k ing Traces S h o r te r

In general, a trace can be made shorter if any of the following situations arise: (a) it

contains loops; (b) there are alternative paths (shortcuts) between two design states; or (c)

there is another state which exposes the same bug and can be reached earlier.

The first situation is depicted schematically in Figure 8.4. In random simulation, a

state may be visited more than once, and such repetitive states will form loops in the bug

trace. Identifying such loops and removing them can reduce the length of the bug trace.

103

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 8.4: A bug trace may contain sequential loops, which can be eliminated to obtain
an equivalent but more compact trace.

Bug

State space

Figure 8.5: Arrow 1 shows a shortcut between two states on the bug trace. Arrows marked
“2” show paths to easier-to-reach bug states in the same bug configuration (that
violates the same property).

In the second case, there may be a shortcut between two states as indicated by arrow 1

in Figure 8.5, which means an alternative path may exist from a state to another state using

fewer cycles. Such situations may arise in random traces frequently because constrained-

random simulation often selects transitions arbitrarily and it is possible that longer paths

are generated in place of shorter ones.

The third condition occurs when multiple design states exist that expose the same bug,

and som e o f them can be reached in few er steps com pared to the original one, as shown

by arrows marked “2” in Figure 8.5. If a path to those states can be found, it is possible to

replace the original one.

A heuristic approach that can be easily devised to search for alternative shorter traces

104

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

is based on generating perturbations on a given trace. A bug trace can be perturbed locally

or globally to find shortcuts or a path to an alternative bug state. In a local perturbation ,

cycles or input events are added or removed from an original trace. As mentioned previ­

ously, random simulation selects state transitions in a pseudo-random fashion. By local

perturbation, alternative transitions can be explored and shorter paths to a trace state or

to another state exposing the bug may be found. In a global perturbation, a completely

new trace is generated, and the trace can be used to replace the original one if it is shorter.

One reason why perturbation has the potential to work effectively on random traces is that

a pseudo-random search tends to do a large amount of local exploration, compared to a

formal trace that progresses directly to a bug. Because of this, opportunities of shortcuts

within a trace abound.

8 .2 .2 M ak in g T races S im pler

After all redundant cycles are removed, many input events may still be left. For exam ­

ple, if a circuit has 100 inputs and a bug trace is 100 cycles long, there are 10,000 input

variable assignments in the trace. However, not all assignments are relevant to expose the

bug. Moreover, redundant events increase the complexity of interpreting the trace in the

debugging phase. Therefore it is important to identify and remove such redundancy.

We envision two ways of simplifying the input assignments in a trace: by removing

input events and by eliminating assignments that are not essential to reach our goal. In this

latter approach, input assignments can be marked as essential or not, based on their impact

in exposing the bug. By removing nonessential input variable assignments, the analysis of

the bug trace during debugging can be made much simpler. For example, a trace with two

105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

input events will be much easier to analyze than a trace with 10,000 input events.

8.3 Proposed Techniques

Based on our analysis, we propose several techniques to minimize a bug trace. In

this section we first provide an overview of these techniques, and then we discuss each

technique in detail.

1. Single-cycle elimination shortens a bug trace by resimulating a variant of the trace

which includes fewer simulation cycles.

2. Alternative pa th to bug is exploited by detecting when changes made on a trace

produce an alternative, shorter path to the bug.

3. State skip identifies all the unique state configurations in a trace. If the same state

occurs more than once, it indicates the presence of a loop between two states, and

the trace can be reduced.

4. B M C -based refinement attempts to further reduce the trace length by searching lo­

cally for shorter paths between two trace states.

In addition, we propose the following techniques to simplify traces:

1. Inpul-evenl elimination attempts to eliminate input events, by resimulating trace

variants which involve fewer input events.

2. Essential variable identification uses three-value simulation to distinguish essential

variable assignments from nonessential ones, and marks the nonessentials wiili “X ” .

3. Indirectly, all cycle removal techniques may also remove redundant input events.

A bug trace can be perturbed by either adding or removing cycles or input events.

However, trying all possibilities is unfeasible. Since the purpose of minimization is to

106

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

reduce the number of cycles and input events, we only use removal in the hope to find

shorter and simpler traces. Our techniques are applied in the following order: Butramin

first tries to shorten a trace by removing certain clock cycles and simulating such trace

variants, after which it tries to reduce the num ber of input events. While analyzing each

perturbed trace, the two techniques of alternative path to bug and state skip monitor for

loops and shorter paths. Once these techniques run out of steam, Butramin applies a series

of BM C refinements. The BM C search is localized so that we never generate complex SAT

instances for SAT solving, which could become the bottleneck of Butramin. If our SAT

solver times out on some BMC instances, we simply ignore such instances and potential

trace reductions since we do not necessarily aim for the shortest traces.

8.3.1 Single-Cycle Elimination

Single-cycle elimination is an aggressive but efficient way to reduce the length and the

number of input events in a bug trace. It tentatively removes a whole cycle from the bug

trace and checks if the bug is still exposed by the new trace through resimulation, in which

case the new shorter trace replaces the old one. This procedure is applied iteratively on

each cycle in the trace, starting from cycle 1 and progressing to the end of the trace. The

reason we start from the first simulation cycle is that perturbing early stages of a trace has

a better chance to explore states far away from the original trace. The later a removal the

less the opportunity to visit states far away from the original trace.

Example 6 Consider the trace o f Example 3. During the first step, s ingle-cycle e lim ina­

tion attempts to remove cycle 1. If the new trace still exposes the bug, we obtain a shorter

bug trace which is only two cycles long and has two input events, as shown in Figure 8.6.

107

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Note that it is possible that some input events become redundant because o f cycle elimina­

tion, as it is the case in this example fo r the event on signal c at cycle 2. This is because

the previous transition on c was at cycle 1, which has now been removed. After events

which have become redundant are eliminated, single-cycle elimination can be applied to

cycle 2 and 3, iteratively.

a=0 a = l a= l

b=0 i—i) b=0 b=0

c=0 c=0 C=1

cycle 0 cycle 2 cycle 3

Figure 8.6: Single-cycle elimination attempts to remove individual trace cycles, generat­
ing reduced traces which still expose the bug. This example shows a reduced
trace where cycle 1 has been removed.

To reduce Butram in’s runtime, we extend single-cycle elimination to work with several

cycles at once. When three consecutive cycles are eliminated one by one, Butramin will

try to eliminate pairs of consecutive cycles. If that succeeds, the next attempt will consider

twice as many cycles. If it fails, the number of cycles considered at once will be halved.

This adaptive cycle elimination technique can dynamically extend its “window size” to

quickly eliminate large sequences of cycles when this is likely, but will roll back to single­

cycle removal otherwise.

Note that, when dependency exists between blocks of cycles, removing a single cycle

at a time may invalidate the bug trace. For example, removing any cycle within a PCl-

X transaction will almost always corrupt the transaction, rendering the bug trace useless.

This problem can be addressed by removing whole transactions instead of cycles. With

some extra inputs from the user to help identify transaction boundaries, Butramin can be

108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

easily adapted to handle transaction-based traces.

8.3.2 Input-Event Elimination

Input-event elimination is the basic technique to remove input events from a trace.

It tentatively generates a variant trace where one input event is replaced by the comple­

mentary value assignment. If the variant trace still exposes the bug, the input event can

be removed. In addition, the event immediately following on the same signal becomes

redundant and can be removed as well.

Example 7 Consider once again lhe trace o f Example 3. The result after elimination o f

input event c at cycle 1 is shown in Figure 8.7. Note that the input event on signal c at

cycle 2 becom es redundant and it is also eliminated.

II o a=l a=l a=l

b=0 r~A b=0 c^> b=0 b=0

o II o c=0 c=0 C=1

cycle 0 cycle 1 cycle 2 cycle 3
Figure 8.7: Input-event elimination removes pairs of events. In the example, the input

events on signal c at cycle 1 and 2 are removed.

8.3.3 Alternative Path to Bug

An alternative path to bug occurs when a variant trace reaches a state that is different

from the final s ta te o f the trace , but it a lso exposes the same bug. The alternative sta te

must obviously be reached in fewer simulation steps than in the original trace. As shown

in Figure 8.8, if state s j 2, reached at time t2 by the variant trace (shown at the bottom)

exposes the bug, the new variant trace replaces the original one.

109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

S ' l S >2 S ‘3 S '4 S

A lte rn a tiv e path to bu g ̂ (B u g)

t , t„ t<t , 1.2 <-3 1.4 u 5

Figure 8.8: Alternative path to bug: the variant trace at the bottom hits the bug at step t~
The new trace replaces the old one, and simulation is stopped.

8.3.4 State Skip

The state skip rule is useful when two identical states exist in a bug trace. This happens

when there is a sequential loop in the trace or when, during the simulation of a tentative

variant trace, an alternative (and shorter) path to a state in the original trace is found.

Consider the example shown in Figure 8.9: if states .y/2 and .y,4 are identical, then a new,

more compact trace can be generated by appending the portion from step t$ and on of

the original trace, to the prefix extracted from the variant trace up to and including step

12 . This technique identifies all reoccurring states in a trace and removes cycles between

them, guaranteeing that all the states in the final minimized trace are unique. States arc

hashed for fast look-up so that state skip does not become a bottleneck in execution.

State skip

t j t 2

Removed
simulation steps

X V
Figure 8.9: State skip: if state Sj2 = sg, cycles tj and to, can be removed, obtaining a new

trace which includes the sequence “ ... xy,, Sj2, Si5, ...” .

110

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8.3.5 Essential Variable Identification

We found that, after applying our minimization techniques, bug traces are usually

much shorter. However, many input variable assignments may still be part of the trace,

and their relevance in exposing the bug may vary - some may be essential, while others

are not. Butramin includes an “X-m ode” feature for filtering out irrelevant input variable

assignments, where input variable assignments are classified as essential or not, based on

a 3-value (0/1/X) simulation analysis. To implement this technique, two bits are used to

encode each signal value, and each input assignment at each cycle is assigned in turn the

value X: if the X input propagates to the checker’s output and an X is sampled on the

checker’s output signal, then the input is marked essential, and the original input assign­

ment is kept. Otherwise, the input assignment is deemed irrelevant for the purpose of

exposing the bug. The set of input assignments that are marked irrelevant contribute to

simplify the debugging activity, since a verification engineer does not need to take them

into consideration when studying the cause o f the system ’s incorrect behavior. We present

experimental results indicating that this analysis is capable of providing substantial sim­

plifications to the signals involved in an already reduced bug trace.

Note, finally, that our simplification technique, which relies on 3-value simulation,

is over-conservative, flagging irrelevant input assignments as essential. Consider, for in­

stance, the simulation of a multiplexer where we propagated an X value to the select input

and a 1 value to both data inputs. A 3-valued logic simulator would generate X at the

output of the simulator; however, for our purposes, the correct value should have been 1,

since we consider X to mean “don’t-care” . If more accuracy is desired for this analysis, a

111

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

hybrid logic/symbolic simulator can be used instead [70, 117].

Alternatively, essential variable identification could be performed using a BMC-based

technique with a pseudo-Boolean SAT solver, for instance [51, 144], Such solvers satisfy

a given SAT formula with the smallest possible number of assigned variables (maximal

number of don’t-cares). Aside from these solvers, even mainstream Boolean SAT solvers

can be specialized to do this, as suggested in [98]. Since assignments in the SAT solution

correspond to input variable assignments in the bug trace, those input variable assignments

are obviously essential. Essential variable identification naturally follows by marking all

other input variable assignments as irrelevant. A similar idea has been deployed also by

Lu el a!. [82] to find a three-valued solution which minimizes the number of assignments

to state variables.

8.3.6 BMC-Based Refinement

This technique can be used after simulation-based minimization to further reduce the

length of a bug trace. Because of state skip, after applying simulation-based minimization,

no two states in a trace will be the same. However, shorter paths between any pair of states

may still exist. We propose here an approach based on model checking to find such paths.

The algorithm, also outlined in Figure 8.10, considers two states, say Si and Sj, which are k

1 S e le c t tw o s ta te s s; an d sj , k c y c le s ap a rt;

2 o
' ll ??
- 1 Q- O

3 C = c irc u it u n ro l le d I tim e s ;
4 T ra n s fo rm C in to a B o o le a n fo rm u la C N F c\
5 I=CN Fc / \ C N F SiA C N F , f\
6 if (/ is s a t ish a b le)

7 re tu rn (s h o r t c u t —> s/, I s tep s);

Figure 8.10: BMC-based shortcut detection algorithm.

112

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

sink. Initially, there is an edge between each two consecutive vertices, and the weight

labels are 1. Edges are added between vertices when shortcuts are found between the

corresponding states, and they are labeled with the number of cycles used in the shortcut.

A single-source shortest path algorithm for directed acyclic graphs is then used to find

a shorter path from the initial to the bug state. While some of the shortcuts discovered

by BM C may be incompatible because of the partial constraints in CNFSj and CNFSj, the

algorithm we describe selects an optimal set of compatible shortcuts within the selected

window size in.

Although simulation-based techniques are effective, they are heuristic in nature and

may miss local optimization opportunities. BMC-based refinement has the potential to

improve on local optimizations by performing short-range optimal cycle elimination.

Figure 8.12: A shortest-path algorithm is used to find the shortest sequence from the initial

8.4 Implementation Insights

We built a prototype implementation of the techniques described in the previous sec­

tion to evaluate Butram in’s performance and trace reduction capability on a range of digital

designs. Our implementation strives to simplify a trace as much as possible, while pro­

viding good performance at the same time. This section discusses some of the insights we

gained while constructing a Butramin’s prototype.

2

state to the bug state. The edges are labeled by the number of cycles needed
to go from the source vertex to the sink. The shortest path from state 0 to
state 4 in the figure uses 2 cycles.

114

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8.4.1 System Architecture

The architecture of Butramin consists of three primary components: a driver program,

commercial logic simulation software, and a SAT solver. The driver program is respon­

sible for (1) reading the bug trace, (2) interfacing to the simulation tool and SAT solver

for the evaluation of the compressed variant traces, and (3) finding simplifications intro­

duced in the previous sections. The logic simulation software is responsible for simulating

test vectors from the driver program, notifying the system if the trace reaches the bug un­

der study, and communicating back to the driver each visited state during the simulation.

BMC-based minimization was implemented using MiniSat [51] that analyzes the SAT in­

stances generated by converting the unrolled circuits to CN F form using a CNF generator.

The system architecture is shown in Figure 8.13.

Design
under

verification

Minimized
bug trace

(VCD)

Bug trace
(VCD)

Checker
and

constraints

Butramin
com ponents

SAT solver

Bug trace
generator

Logic
simulator

Butramin
driver

program

Figure 8.13: Butramin system architecture.

8.4.2 Algorithmic Analysis and Performance Optimizations

In the worst case scenario, the complexity of our simulation-based techniques is quadratic

in the length of the trace under evaluation, and linear in the size of the primary input sig-

115

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

nals of the design. In fact, consider an m-cycle long bug trace driving an n-input design.

The worst case complexity for our cycle-elimination technique is 0 (m2), where the one of

the input-event elimination technique is O (n x m2). All the other simulation-based tech­

niques have simpler complexity or are independent of the size of the trace or design. In

order to improve the runtime of Butramin, we developed an extra optimization as described

below. Experimental results show that the worst case situation did not occur due to our

optimization, adaptive cycle elimination and the nature of practical benchmarks.

The optimization focuses on identifying all multiple occurrences of a state so that we

can identify when the simulation of a variant trace falls into the original trace, and then

we can avoid simulating the last portion of the variant. To achieve this, we hash all states

visited by a trace and tag them with the clock cycle in which they occur. During the

simulation of variant traces we noted that, in some special conditions, we can improve

the performance of Butramin by reducing the simulation required: after the time when

the original and the variant traces differ, if a variant state matches a state in the original

trace tagged by the same clock cycle, then we can terminate the variant simulation and

still guarantee that the variant trace will hit the bug. In other words, simulation can be

terminated early because the result of applying the same test vectors after the matched

state will not change. We call this an early exit. As illustrated in Figure 8.14, early

exit points allow the simulation to terminate immediately. Often simulations can also be

terminated early by state skip optimization because the destination state is already in the

trace database. Experimental results show that this optimization is crucial to the efficiency

of simulation-based minimization techniques.

116

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

F t2 t3 t4 t5

Figure 8.14: Early exit. If the current state Sj2 matches a state x,2 from the original trace,
we can guarantee that the bug will eventually be hit. Therefore, simulation
can be terminated earlier.

8.4.3 Use Model

To run Butramin, the user must supply four inputs: (1) the design under test, (2) a bug

trace, (3) the property that was falsified by the trace, and (4) an optional set of constraints

on the design’s input signals. Traces are represented as Value Change Dump (VCD) files, a

common compact format that includes all top-level input events. Similarly, the minimized

bug traces are output as VCD files.

Removing input events from the bug trace during trace minimization may generate

illegal input sequences, which in turn could erroneously falsify a property or make the

trace useless. For example, removing the reset event from a bug trace may lead the design

into an erroneous state, generating a spurious trace which does not reflect a possible legal

activity of the design under verification, even if the simulation of such trace does expose

the original design flaw. Consequently, when testing sub-components of a design with

constrained inputs, it becomes necessary to validate the input sequences generated during

trace minimization. There are several ways to achieve this goal. One technique is to mark

required inputs so that Butramin does not attempt to remove the corresponding events from

the trace. This approach is a viable solution to handle, for instance, reset and the clock

117

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

signals. For complex sets of constraints, it is possible to convert them into an equivalent

circuit block connected to the original design, such as the techniques described in the work

by Yuan et al. [123]. This extra circuit block takes random input assignments and converts

them into a set of legal assignments which satisfy all the required environment constraints.

We deployed the former approach for simple situations, and we adapted the latter to the

context of our solution for benchmarks with more complex environments. Specifically,

since Butramin starts already with a valid input trace which it attempts to simplify, we

wrote our constraints as a set of monitors which observe each input sequence to the de­

sign. If the monitors flag an illegal transition during simulation, the entire “candidate

trace” is deemed invalid and removed from consideration. For BMC-based refinement,

these environmental constraints are synthesized and included as additional constraints to

the problem instance. Note, however, that this limits BMC-based techniques to be ap­

plied to designs whose environmental constraints are synthesizable. On the other hand,

this requirement is lifted for the simulation-based minimization techniques. From our ex­

perimental results, we observe that most minimization is contributed by simulation-based

techniques, which renders this requirement optional for most practical benchmarks.

We also developed an alternative use model to apply Butramin to reducing regression

runtime. In this context, the approach is slightly different since the goal now is to obtain

shorter traces that achieve the same functional coverage as their longer counterpart. To

support this, coverage points are encoded by properties: each of them is “violated” only

when the corresponding point is covered by the trace. Butramin can then be configured to

generate traces that violate all of the properties so that the same coverage is maintained.

118

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8.5 Experimental Results

We evaluated Butramin by minimizing traces generated by a range of commercial ver­

ification tools: a constrained-random simulator, semi-formal verification software, and

again a semi-formal tool where we specified to use extra effort in generating compact

traces. We considered nine benchmark designs from OpenCores (FPU), ISCAS89 (S 15850,

S38584), ITC99 (B15), IWLS2005 (VGALCD), picoJava (picoJava, ICU), as well as two

internally developed benchmarks (MULT, DES), whose characteristics arc reported in 'Fa­

ble 8.1. We developed assertions to be falsified when not already available with the design,

and we inserted bugs in the design that falsify the assertions. Table 8.2 describes asser­

tions and bugs inserted. For ICU and picoJava, no bugs were injected but the constraints

for random simulation were relaxed. The checker for VGALCD is a correct duplicate

of the original design (which we modified to contain one design error), hence the circuit

size we worked with is twice as the one reported in Table 8.1. Finally, experiments were

conducted on a Sun Blade 1500 (1 GHz UltraSPARC M i) workstation running Solaris 9.

Table 8.1: Characteristics of benchmarks.
Benchm ark Inputs Flip-flops Gates Description
S38584 41 1426 20681 U nknown
S 15850 77 534 10306 U nknow n
M ULT 257 1280 130164 W allace tree m ultiplier
DES 97 13248 49183 DES algorithm
B15 38 449 8886 Portion of 80386
FPU 72 761 7247 Floating point unit
ICU 30 62 506 PicoJava instruction cache unit
picoJava 53 14637 24773 PicoJava full design
V G A LCD 56 17505 106547 V G A /LC D controller

The benchm ark setup for V G A LC D involves duplicating this design and m odifying one connection
in one of the copies. Butram in then m inim izes the trace exposing the difference. It follows that the
size of the benchm ark we work with is actually tw ice as the one reported for this design.

119

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 8.2: Bugs injected and assertions for trace generation.
Circuit Bug injected A ssertion used
S38584 None O utput signals forced to a specific value

SI 5850 None O utput signals forced to a specific value

M ULT AND gate changed w ith XO R Com pute the correct output value

DES C om plem ented output Tim ing between receive_valid, oul-
put_ready and transm it.valid

B 15 None Coverage o f a partial design state
FPU divide_on_zero conditionally

com plem ented
A ssert divide_on_zero when divisor=()

ICU Constraints relaxed Buffer-full condition
picoJava C onstraints relaxed A ssert S M U ’s spill and fill
V G A LC D Circuit duplicated with one

wire changed in one copy
O utputs m ism atch condition

8.5.1 Simulation-Based Experiments

Our first set of experiments attempts to minimize traces generated by running a semi-

formal commercial verification tool with the checkers specified, and subsequently apply­

ing only the simulation-based minimization techniques of Butramin, described in Sections

8.3.1 to 8.3.4. We were not able to complete the generation of traces with the semi-formal

verification tool for VGALCD, therefore we only report results related to constrained-

random traces for this benchmark. Table 8.3 shows the absolute values o f cycles and input

events left in each trace and the overall runtime of Butramin using only simulation-based

techniques. Figures 8.15 and 8.16 show the percentages of cycles and input events re­

moved from the original bug trace using different techniques. Note that for all benchmarks

we are able to remove the majority of cycles and input events.

With reference to Figure 8.15 and Figure 8.16, we observe that the contribution of

different minimization techniques varies among benchmarks. For example, almost all the

cycles and input events are removed by cycle elimination in FPU and picoJava. On the

120

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 8.3: Cycles and input events removed by simulation-based techniques of Butramin
on traces generated by semi-formal verification.

Circuit Cycles
Original Remaining Removed

Input events
Original Remaining Removed

Runtime
(seconds)

19

35"
154"

 "57"
9 7 -

- -

3359"

S38584
S 15850

13
59

38.46% 255
98.31% 2300

99.22%
99.87%

M ULT
DES
B 15
FPU
ICU
picoJava

345
198

25015
53711

6994
30016

98.84% 43843
154 22.22% 3293

99.96% 450026
99.99% 1756431
99.96% 62740

10 99.97% 675485

99.99%
99.91%

15 99.99%
17 99.99%

99.99%
11 99.99%

other hand, state skip removes more than half of the cycles and input events in B 15 and

ICU. This difference can be attributed to the nature of the benchmark: if there are fewer

state variables in the design, state skip is more likely to occur. In general, state skip has

more opportunities to provide trace reductions in designs that are control-heavy, such as

ICU, compared to designs that are datapath-heavy, such as FPU and picoJava. Although

input-event elimination does not remove cycles, it has great impact in eliminating input

events for some benchmarks, such as S38584. Overall, we found that all these techniques

are important to compact different types of bug traces.

Our second set of experiments applies Butramin to a new set of traces, also generated

by a semi-formal tool, but this time we configured the software to dedicate extra effort in

generating short traces, by allowing more time to be spent on the formal analysis of the

checker. Similar to Table 8.3 discussed earlier, Table 8.4 reports the results obtained by

applying the simulation-based minimization techniques of Butramin to these traces. Wc

still find that Butramin has a high impact in compacting these traces, even if, generally

speaking, they present less redundancy, since they are closer to be minimal. Note in par-

121

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

100%

90%

80%

70%

60%

P 50%

40%

30%

20%

10%

0%

M State skip

□ Alternative
path to bug

® Input event
elimination

M Cycle
elimination

S38584 S 15850 MULT DES B15 FPU ICU picoJava

Figure 8.15: Percentage of cycles removed using different simulation-based techniques.
For benchmarks like B15 and ICU, state skip is the most effective technique
because they contain small numbers of state variables and state repetition is
more likely to occur. For large benchmarks with long traces like FPU and
picoJava, cycle elimination is the most effective technique.

ticular, that the longer the traces, the greater the benefit from the application of Butramin.

Even if the overall impact is reduced, we still observe a 61% reduction in the number of

cycles and 91% in input events, on average.

Table 8.4: Cycles and input events removed by simulation-based techniques of Butramin
on traces generated by a compact-mode semi-formal verification tool.

Circuit Cycles Input events R
(scOriginal Remaining Removed Original Remaining Removed

S38584 13 8 38.46% 255 2 99.22%
SI 5850 17 1 94.12% 559 56 89.98%
MULT 6 4 33.33% 660 2 99.70%
DES 296 17 94.26% 3425 3 99.91%
B15 27 11 59.26% 546 5 99.08%

—

FPU 23 5 78.26% 800 17 97.88%
ICU 19 14 26.32% 142 80 43.66%
picoJava 26 10 61.54% 681 11 98.38%

21

_34
~17
~ 6
” f
“ 1
“39"

The third set of experiments evaluated traces generated by constrained-random simu­

lation. Results are summarized in Table 8.5. As expected, Butramin produced the most

122

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

100% r

90% -

80% -

70% -

„ 60% -
" c
CD

(3 50% -
rs
Q _

“ 40% -

30% -

20% -

10% -

0% -

S38584 SI 5850 MULT DES B15 FPU ICU picoJava

Figure 8.16: Number of input events eliminated with simulation-based techniques. The
distributions are similar to cycle elimination because removing cycles also
removes input events. However, input-event elimination works the most ef­
fectively for some benchmarks like S38584 and DES, showing that some
redundant input events can only be removed by this technique.

impact on this set of traces, since they tend to include a large amount of redundant behav­

ior. The average reduction is 99% in terms of cycles and input events.

8.5.2 Performance Analysis

Table 8.6 compares Butram in’s runtime with and without different optimization tech­

niques. The traces are generated using semi-formal methods in this comparison. The exe­

cution runs that exceeded 40,000 seconds were timed-out (T/O in the table). The runtime

comparison shows that early exit and state skip have great impacts on the execution time:

early exit can stop resimulation early, and state skip may reduce the length of a trace by

many cycles at a time. Although these two techniques require extra memory, the reduction

in runtime shows they are worthwhile. In ICU, state skip occurred 4 times, removing 6977

cycles, which resulted in a very short runtime. The comparison also shows that adaptive

123

I I State skip

□ Alternative
path to bug

IH Input event
elimination

M Cycle
elimination

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 8.5: Cycles and input events removed by simulation-based methods of Butramin on
traces generated by constrained-random simulation.

Circuit Cycles Input events Runtim e
(seconds)Original Rem aining Removed Original Rem aining Rem oved

S38584 1003 8 99.20% 19047 2 99.99% 16
SI 5850 2001 1 99.95% 77344 3 99.99% 2
M ULT 1003 4 99.60% 128199 2 99.99% 34

DES 25196 154 99.39% 666098 3 99.99% 255
B 15 148510 10 99.99% 2675459 9 99.99% 395
FPU 1046188 5 99.99% 36125365 17 99.99% 723
ICU 31992 3 99.99% 287729 3 99.99% 5
picoJava 99026 10 99.99% 2227599 16 99.99% 5125
V G A LCD 36595 4 99.99% 1554616 19 99.99% 28027

cycle elimination is capable of reducing minimization time significantly. This technique

is especially beneficial for long bug traces, such as FPU and picoJava.

A comparison of Butram in’s impact and runtime on the three sets of traces is sum m a­

rized in Figure 8.17. The result shows that Butramin can effectively reduce all three types

of bug traces in a reasonable amount of time. Note, in addition, that in some cases the

minimization of a trace generated by random simulation takes similar or less time than

applying Butramin to a trace generated by a compact-mode semi-formal tool, even if the

initial trace is much longer. That is the case for S38584 or S I 5850. We explain this effect

by the nature of the bug traces: traces generated by random simulation tend to visit states

that are easily reachable, therefore states are likely to be repetitive, and state skip occurs

more frequently, leading to a shorter minimization time. On the other hand, states visited

in a com pac t-m ode generated trace arc m ore frequently produced by formal engines and

can be highly specific, making state skip a rare event. The cases of FPU and picoJava

are relevant in this context: here state skips do not occur, and the minimization time is

highly related to the original trace length. They also demonstrate the benefits o f Butramin

124

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 8.6: Impact of the various simulation-based techniques on Butram in’s runtime.
B enchm ark Runtim e(seconds)

[1]: cycle clim ination+ [2]: [1 J+state skip+ [3]: |2]+adaptive
input-event elim ination early exit cycle elim ination

S38584 21 19 19
S15850 11 5 5
M ULT 48 43 35

DES 274 256 254
B15 T/O 58 57
FPU T/O 235 27
ICU 8129 5 5

picoJava T/O T/O 3359

Average 1697 66 64

Benchm arks that exceeded the tim e lim it (40,000s) are not included in the average. Each of the
runtim e colum ns reports the runtim e using only a subset o f our techniques: the first cycle e lim ina­
tion and input-event elim ination. The second includes in addition early exit and state skip, and the
third adds also adaptive cycle elim ination.

in various verification methodologies.

co
t33■o
CD
i _

<DO
CO

100 900
90 800
80
70
60

700

600

500
50

400
40
30 300

20020

10

0

100

0
Semi-formal Com pact Random

W& Cycles removed

□ □ In p u t events
removed

-□-Runtime

Figure 8.17: Comparison of Butram in’s impact when applied to traces generated in three
different modes. The graph shows the fraction of cycles and input events
eliminated and the average runtime.

8.5.3 Essential Variable Identification

We also applied the technique from Section 8.3.5 to identify essential variables from

the minimized traces we generated. Table 8.7 shows that after this technique is applied,

125

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

many input variable assignments are marked nonessential, further simplifying the trace.

Note that the comparison is now between input variable assignments, not input events.

Since all nonessential input variable assignments are simulated with X, the simulation

will propagate X values to many internal signals as well. As a result, it will be easier to

understand the impact of essential variable assignments on violated properties.

Table 8.7: Essential variable assignments identified in X-mode.

Circuit Input variables Essential variables
S38584 320 2
S 15850 76 2
MULT 1024 1019
DES 14748 2
B 15 407 45
FPU 355 94
ICU 87 21
picoJava 520 374

The table compares the number of input variable assignments in the minimized traces with the
number of assignments classified essential. All the remaining assignments are nonessential and
can be replaced by X values in simulation. The initial traces were generated by a semi-formal
verification tool.

8.5.4 Generation of High-Coverage Traces

In order to evaluate the effectiveness of Butramin on reducing regression runtime, wc

selected three benchmarks, DES, FPU and VGALCD, as our multi-property benchmarks.

The original properties in the previous experiments were preserved, and the same traces

generated by constrained-random simulation were used. In addition, we included a few

extra properties, so that our original traces would expose them before reaching their last

simulation step, which still exposes the original property we used, as described in Table

2. Those extra properties specify a certain partial states to be visited or a certain output

signals to be asserted. Butramin is then configured to produce minimized traces that violate

126

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 8.8: Cycles and input events removed by simulation-based methods of Butramin on
traces that violate multiple properties.

Circuit #Pro- Cycles Input events Runtime
perties Original R emaining R em oved Original R em aining R em oved (seconds)

DES 2 2 5 1 % 184 99.27% 666098 17 99.99% 549
FPU 3 1046188 9 99.99% 36125365 264 99.99% 580
V G A L C D 3 36595 5 99.98% 1554616 22 99.99% 25660

all properties. The results are summarized in Table 8.8. Compared with Table 8.5, it can

be observed that in order to cover extra properties, the length of the minimized traces

are now longer. However, Butramin continues to be effective for these multi-property

traces. We also found that the order of property violations is preserved before and after

minimization, suggesting that Butramin minimizes segments of bug traces individually.

From an algorithmic complexity point of view, minimizing a multi-property trace is similar

to minimizing many single-property traces with different initial states.

While the original traces of FPU and VGALCD require 20-30 minutes to be simulated,

post-Butramin traces are short enough to be simulated in just a few seconds. The benefits

o f adding the minimized trace to a regression suite, instead of the original one, are obvious.

8.5.5 BMC-Based Experiments

We applied our BMC-based technique to traces already minimized by simulation-

based methods to evaluate the potential for further minimization. For VGALCD, we re­

port only data related to the minimization of random trace since semi-formal traces arc

not available. The results are summarized in Table 8.9, where Ori% is die original num ber

of cycles in the trace, and Removed is the number of cycles removed by this method. We

used a maximum window of 10 cycles (m = 10). The main observation that can be made is

that simulation-based techniques are very effective in minimizing bug traces. In fact, only

127

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

in two cases, ICU and B 15, our BMC-based technique was able to extract additional m in­

imization opportunities. Potentially, we could repeat the application of simulation-based

techniques and BMC-based methods until convergence, when no additional minimization

can be extracted.

Table 8.9: Cycles removed by the BMC-based method.

Circuit Semi-formal Compact-trace Constrained-random
Orig Removed Time Orig Removed Time Orig Removed Time

S38584 8 0 55s 8 0 55s 8 0 55s
S15850 1 0 2s 1 0 2s 1 0 2s
MULT 4 0 20s 4 0 20s 4 0 20s
DBS 154 0 23h3m 17 0 357s 154 0 23h3m
B15 11 1 121s 11 1 121s 10 0 97 s
FPU 5 0 5s 5 0 5s 5 0 5s
ICU 3 1 Is 14 2 Is 3 1 Is
picoJava 10 0 70s 10 0 70s 10 0 104s
VGALCD N/A N/A N/A N/A N/A N/A 4 0 985s

In order to compare the performance of the BM C-based technique with our simulation-

based methods, we applied the former directly, to minimize the original bug traces gen­

erated by semi-formal verification and by constrained-random simulation. For this ex­

periment, the time-out limit was set to 40,000 seconds. Results are summarized in Table

8.10, where benchmarks that timed-out are marked by “T /O ” . The findings reported in

the table confirm that our BMC-based method should only be applied, if at all, after the

simulation-based techniques have already greatly reduced the trace complexity.

8.5.6 Evaluation of Experimental Results

We attempted to gain more insights into the experimental results by evaluating two

additional aspects of the minimized traces. We first checked how close the minimized

traces are to optimal-length traces such as those generated by formal verification. To do so.

128

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 8.10: Analysis of a pure BMC-based minimization technique.
Circuit Original Remained Runtime (s)
S38584 13 9 403
SI 5850 59 59 338
MULT 345 T/O T/O
DES 198 T/O T/O
B15 25015 T/O T/O
FPU 53711 T/O T/O
ICU 6994 700 856
picoJava 30016 T/O T/O
FPU 1046188 T/O T/O
picoJava 99026 T/O T/O
VGALCD 36595 T/O T/O

This table shows the potential for minimizing traces using our BMC-based technique alone. Col­
umn '‘Original” shows the length, in cycles of the original trace, and column “Remained” shows
the length of the minimized trace obtained after applying the BMC-based method. Traces in the
top-half were generated by semi-formal verification, and the ones in the bottom-half were gener­
ated by constrained-random simulation. Experiments are timed-out at 40,000 seconds. The results
of this table should be compared with Table 8.3 and 8.5.

we run full-fledged SAT-based BMC on our minimized traces. The results show that our

techniques found minimal-length bug traces for all benchmarks except DES (both traces

generated by random simulation and semi-formal verification). For those two traces, the

SAT solver ran out of memory after we unrolled the design by 118 cycles, and we could

not finish the experiment. No shorter traces were found between 1 and 118 cycles long.

We also tried to evaluate if the potential for simulation-based trace reduction was

mostly due to a large number of bug states, that is, a high number of design configura­

tions that expose a given bug (an example of this situation is provided in Figure 8.1). To

evaluate this aspect, we considered the original non-minimized traces in our experimen­

tal results. We first sampled the final state of the design after simulating the traces, and

then we fixed the goal of Butramin to generate a minimized trace that reaches that exact

same final state. The results of this experiment are summarized in Table 8.11. The table

129

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

shows that, for most benchmarks, the difference in the number of input events and cycles

removed is small, showing that the size of the bug configuration has a minimal impact on

the ability of Butramin to reduce and simplify a given bug trace, and our proposed solution

remains effective even when the bug configuration is very specific.

Table 8.11: Analysis of the impact of a bug radius on Butramin effectiveness.
Circuit Cycles Input events

Original
trace

Same
bug

Same
state

Original
trace

Same
bug

Same
state

S38584 13 8 9 255 2 41
S 15850 59 1 1 2300 3 3
MULT 345 4 4 43843 2 380
DES 198 154 193 3293 3 1022
B15 25015 11 11 450026 15 40
FPU 53711 5 5 1756431 17 112
ICU 6994 3 5 62740 3 6
picoJava 30016 10 75 675485 11 1575
FPU 1046188 5 6 36125365 17 120
picoJava 99026 10 22 2227599 16 42
VGALCD 36595 4 199 1554616 19 2068

The table compares number of cycles and input events in the original traces to the same values
from minimized traces that hit the same bug, and to minimized traces that reach the same bug
configuration. Traces in the top-half were generated by semi-formal software and traces in the
bottom-half were generated by constrained-random simulation.

8.6 Summary

In this chapter we presented Butramin, a bug trace minimizer that combines simulation-

based techniques with formal methods. Butramin applies simple but powerful simulation-

based bug trace reductions, such as cycle elimination, input-event elimination, alternative

path to bug, state skip and essential variable identification. An additional BMC-based

refinement method is used after these techniques to exploit the potential for further mini­

mizations. Compared to purely formal methods, Butramin has the following advantages:

130

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(1) it can reduce both the length of a bug trace and the number of its input events; (2)

it leverages fast logic-simulation engines for bug trace minimization and it can scale to

industrial size designs; and (3) it leverages existing simulation-based infrastructure, which

is currently prevalent in the industry. This significantly lowers the barriers for industrial

adoption of automatic design verification techniques.

Our experimental results show that Butramin can reduce a bug trace to just a small

fraction of its original length and complexity (estimated as the number of input events in

the trace) by using only simulation-based techniques. In fact, for most of the benchmarks

considered, we found that Butramin found an alternative trace of minimum length. In

addition we showed that these results are largely independent of the verification method­

ology used to generate the trace, whether based on simulation or semi-formal verification

techniques. The impact of Butramin appears to be uncorrelated with the size of the bug

configuration targeted by the trace, that is, the number of distinct design states that expose

the bug.

Recent follow-up work by Pan et al. [44] and Safarpour et al. [100] focuses on improv­

ing the formal analysis techniques for bug trace minimization, and their approaches can be

used to augment our BMC-based technique. As their experimental results suggest, how­

ever, formal analysis still cannot achieve the scalability provided by our simulation-based

minimization methods, making Butramin more suitable for practical designs.

131

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER IX

Functional Error Diagnosis and Correction

Recent improvements in design verification strive to automate the error-detection pro­

cess and greatly enhance engineers’ ability in detecting the presence of functional errors.

However, the process of diagnosing the cause of these errors and fixing them remains

difficult and requires significant manual effort. Our work proposes improvements to this

aspect of verification by presenting novel constructs and algorithms to automate the error-

repair process at both the gate level and the Register-Transfer Level (RTL). In this chapter,

we first extend the CoRe framework (see Chapter V) to handle sequential circuits. Next,

we present an innovative RTL error diagnosis and correction methodology. Finally, we

show the empirical evaluation of our functional error repair techniques and summarize

this chapter.

9.1 Gate-Level Error Repair for Sequential Circuits

The CoRe framework described in Chapter V only addresses the error-repair problem

for combinational circuits. CoRe is easily adaptable to correct errors in sequential circuits,

as described in this section. First of all, when operating on sequential circuits the user will

provide CoRe with input traces, instead of input patterns. A trace is a sequence of input

132

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

patterns, where a new pattern is applied to the design’s inputs at each simulation cycle, and

the trace can be either error-sensitizing ox functionality-preserving. To address sequential

circuits, we adopt the diagnosis techniques from Ali et al. [6] relating to sequential cir­

cuits. The idea is to first unroll the circuit by connecting the outputs of the state registers

to the inputs of the registers in the previous cycle, and then use the test vectors to constrain

the unrolled circuit. Given an initial state and a set o f test vectors with corresponding

correct output responses, A li’s error-diagnosis technique is able to produce a collection of

error sites, along with their correct values, that rectify the incorrect output responses.

To correct errors in sequential designs we apply the same algorithm described in Sec­

tion 5.2.1 with two changes: the diagnosis procedure should be as described in [6], and

the signature generation function is modified so that it can be used in a sequential design.

Specifically, the new sequential signature generation procedure should record one bit of

signature for each cycle of each sequential trace that we simulate. For instance, if we have

two traces available, a 4-cyclc trace and a 3-cycle trace, we will obtain a 7-bit signature

at each internal circuit node. An example of the modified signature is shown in Figure

9.1. In our current implementation, we only use combinational Observability D o n ’t-Cares

(ODCs). In other words, we still treat inputs of state registers as primary outputs when

calculating ODCs. Although it is possible to exploit sequential ODCs for rcsynthcsis, we

do not pursue this optimization, yet.

Tracel Trace2
Cycle 1 2 3 4 1 2 3
Signature 0 1 1 0 1 0 1

Figure 9.1: Sequential signature construction example. The signature of a node is built by
concatenating the simulated values of each cycle for all the bug traces. In this
example, tracel is 4 cycles and trace2 is 3 cycles long. The final signature is
then 0110101.

133

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9.2 Register-Transfer-Level Error Repair

To develop a scalable and powerful RTL error diagnosis and correction system, we

extend our gate-level techniques to the RTL. This approach is significantly more accurate

than previous software-based RTL solutions [64, 96, 104] (see Section 2.1) in that wc can

analyze designs rigorously using formal hardware verification techniques. At the same

time, it is considerably faster and more scalable than gate-level diagnosis because errors

are modeled at a higher level. Moreover, it only requires test vectors and output responses,

making it more practical than existing formal analysis solutions [16]. Finally, the novel

error model and increased accuracy of our approach allow our technique to provide in­

sightful suggestions for correcting diagnosed errors. Our main contributions include: (1) a

new RTL error model that explicitly inserts M UXes into RTL code for error diagnosis, as

opposed to previous solutions that use M UXes implicitly; (2) innovative error-diagnosis

algorithms using synthesis or symbolic simulation; and (3) a novel error-correction tech­

nique using signal behaviors (signatures) that are especially suitable for the RTL. Our

empirical results show that these techniques allow us to provide highly accurate diagnoses

very quickly.

We implemented our techniques in a framework called RED1R (RTL Error Diagnosis

and Repair), highlighted in Figure 9.2. The inputs to the framework include a design con­

taining one or more bugs, a set of test vectors exposing them, and the correct responses for

the primary outputs over the given test vectors (usually generated by a high-level behav­

ioral model written in C, C++, SystemC, etc.). Note that we only require the correct re­

sponses at the primary outputs of the high-level model and no internal values are required.

134

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

High Level Model
(G o l d e n M o d e l ,

B e h a v i o r a l M o d e l , Cl
C + + / S y s t e m C . . .)

i t

A
V

Correct output
responses

Test vectors
exposing bug A

V

Buggy RTL
Design =0

REDIR
MUX- :

enrichment

RTL Synthesis::
Symbolic & Circuit:

Simulation unrolling

Figure 9.2: REDIR framework. Inputs to the tool are an RTL design (which includes one
or more errors), test vectors exposing the bug(s), and correct output responses
for those vectors obtained from a high-level simulation. Outputs of the tool in­
clude REDIR symptom core (a minimum cardinality set o f RTL signals which
need to be modified in order to correct the design), as well as suggestions to
fix the errors.

The output of the framework is a minimum cardinality set of RTL signals that should be

corrected in order to eliminate the erroneous behavior. We call this set the symptom core.

When multiple cores exist, REDIR provides all o f the possible minimal cardinality sets.

In addition, the framework suggests several possible fixes of the signals in the symptom

core to help a designer correct those signals.

The rest of the section is organized as follows. In Section 9.2.1, we provide the nec­

essary background. Section 9.2.2 describes our error-diagnosis techniques, while Section

9.2.3 explains our error-correction method.

9.2.1 Background

Our error-diagnosis algorithm converts the error-diagnosis problem into a Pseudo-

Boolean (PB) problem, and then uses a PB solver to perform the diagnosis and infer which

135

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

design signals are responsible for incorrect output behavior. In this subsection, we first de­

fine Pseudo-Boolean problems, which are an extension of SATisifiability problems. Next,

we review the basic idea behind symbolic simulation, which we use as an alternative,

compact way to formulate the PB problem.

Pseudo-Boolean Problems

PB problems, also called 0-1 integer linear programming problems, are an extension of

SATisfiability problems. A Pseudo-Boolean Constraint (PBC) is specified as an inequality

with a linear combination o f Boolean variables: Cop0 + C \p \ + ...-) -Cn- \ p n- \ > Cn, where

the variables p t are defined over the Boolean set {0, 1}. A PB problem allows the use of

an additional objective function, which is a linear expression that should be minimized

or maximized under the given constraints. A number of PB solvers have been developed

recently by extending existing SAT solvers (for instance, MiniSat+ [52]).

Logic vs. Symbolic Simulation

Logic simulation models the behavior of a digital circuit by propagating scalar Boolean

values (0 and 1) from primary inputs to primary outputs. For example, when simulating 2-

input AND with both inputs set to 1, the output 1 is produced. On the other hand, symbolic

simulation uses symbols instead of scalar values and produces Boolean expressions at the

outputs [14, 19]. As a result, simulating a 2-input XO R with inputs a and b generates an

expression “a XOR b" instead of a scalar value. To improve scalability, modern symbolic

simulators employ several techniques, including approximation, parameterization and on-

the-lly logic simplification [13], For example, with on-the-fiy logic simplification, “0 XOR

b” is simplified to b thus reducing the complexity of the expression. Traditional symbolic

136

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

simulators operate on a gate-level model of a design; however, in recent years simulators

operating on RTL descriptions have been proposed [70, 71J. Symbolic simulation is an

alternative way to generate an instance of the PB constraint problem that we use in our

error-diagnosis framework.

9.2.2 RTL Error Diagnosis

In this subsection, we describe our error-diagnosis techniques. First, we explain our

RTL error model, and then propose two diagnosis methods that use either synthesis or

symbolic simulation. Finally, we outline how hierarchical designs should be handled.

Error Modeling

In our framework the error-diagnosis problem is represented with (1) an RTL descrip­

tion containing one or more bugs that is composed of variables (wires, registers, I/O) and

operations on those variables; (2) a set of test vectors exposing the bugs; and (3) the correct

output responses for the given test vectors, usually generated by a high-level behavioral

model. The objective of the error diagnosis is to identify a minimal number of variables

in the RTL description that are responsible for the design’s erroneous behavior. Moreover,

by modifying the logic of those variables, the design errors can be corrected. Each signal

found to affect the correctness of the design is called a symptom variable. Without m in­

imization, the set of symptom variables reported would include the root cause of the bug

an d the co n e o f lo g ic e m a n a tin g from it: c o rre c tin g all th e sy m p to m v a ria b le s on any cut

across this cone of logic would eliminate the bug. Therefore, by forcing the PB solver to

minimize the num ber of symptom variables, we return a solution as close to the root cause

of the erroneous behavior as possible.

137

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To model errors in a design, we introduce a conditional assignment for each RTL

variable, as shown in the example in Figure 9.3. Note that these conditional assignments

are used for error diagnosis only and should not appear in the final synthesized design.

However, they allow the REDIR framework to locate sites of erroneous behavior in RTL,

as we illustrate using a half judder design shown in Figure 9.3. Suppose that the output

responses of the design are incorrect because c should be driven by “a & b” instead of ua

| b". Obviously, to produce the correct output that we obtain from a high-level model, the

behavior of c must be changed. To model this situation, we insert a conditional assignment,

“assign cn = csei ? Cf : c” , into the code. Next, we replace all occurrences of c in the code

with cn, except when c is used on the left-hand-side of an assignment. We call cse/ a select

variable and Cf a free variable. Then, by asserting csei and using an alternative signal

source, modeled by c/-, we can force the circuit to behave as desired. If we can identify

the select variables that should be asserted and the correct signals that should drive the

corresponding free variables to produce correct circuit behavior, we can diagnose and fix

the errors in the design.

The procedure to introduce a conditional assignment for a design variable v is called

M UX-enrichment (since conditional assignments are conceptually multiplexers), and its

pseudo-code is shown in Figure 9.4. It should be performed on each internal signal, defined

in the circuit, including registers. The primary inputs, however, should not be MUX-

enriched since by construction they cannot have erroneous values. It also should be noted

that for hierarchical designs the primary inputs of a module may be driven by the outputs

of another module and, therefore, may assume erroneous values. To handle this situation,

138

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

m odule halLadder(a, b, s, c);
input a, b;
output s, c;
assign s = a " b;
assign c = a \ b;

endm odule

module half_adder_M UX_enriched(a, b, s„, c„, ssei, c?e/, s /■, C/);
input a, b, s?e/, c«./, s/, c/-;
output s„, c„;
assign s = a " b;
assign c = a | b;
assign s„ = s.Vf, ? s/ : s;
assign c„ = cSf/ ? C/ : c;

endm odule

Figure 9.3: An RTL error-modeling code example: module halfLadder shows the original
code, where c is erroneously driven by “a | b” instead of “a & b”\ and module
half_adder_MUX_enriched shows the M UX-enriched version. The differences
are marked in boldface.

procedure M UX^enrichment (v)
1. create a new signal w ire vn and new inputs Vf and vsei\
2. add conditional assignm ent “v„ = vsei ? Vf : v” ;
3. replace all occurrences of v that appear on the right-hand-side of

assignm ents (including outputs, if/case conditions, etc.) with v„;

Figure 9.4: Procedure to insert a conditional assignment for a signal in an RTL description
for error modeling.

we insert conditional assignments into the hierarchical m odules’ output ports.

Diagnosis with Synthesis

After the error-modeling constructs have been inserted into a design, error diagnosis

is used to identify the minimal number of select variables that should be asserted along

with the values of their corresponding free variables to produce the correct circuit behav­

ior. In this section we present an error-diagnosis technique that uses synthesis and circuit

unrolling. In contrast with existing gate-level diagnosis techniques described in Section

5.1.3, our RTL error-modeling constructs are synthesized with the design, which elimi-

139

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

nates the need to insert multiplexers at the gate level. In this way, the synthesized netlist

faithfully preserves the constructs inserted at the RTL, enabling accurate RTL error diag­

nosis. This is significantly different from diagnosing design errors at the gate level, since

synthesis is only used to generate Boolean expressions between RTL variables, and the

synthesized netlist is not the target of the diagnosis. As a result, our diagnosis method has

a much smaller search space and runs significantly faster than gate-level techniques, as we

show in our experimental results.

Procedure sy n J b ased jd iagn os is (des ign C N F , c, in p u ts , out pu ts)
1 C N F = unroll d es ig n C N F c times;
2 connect all select variables in C N F to those in the first cycle;
3 constrain PI/PO in CN F using inputs/out p u t s ;
4 P B C = C N F , m in(£ se lec t var iab les);
5 return solu tion^ PB -Solve(/iPC);

Figure 9.5: Procedure to perform error diagnosis using synthesis and circuit unrolling.

Figure 9.5 outlines the algorithm for synthesis-based error diagnosis. Before the proce­

dure is called, the design is synthesized and its combinational portion is converted to CNF

format (designCNF). Other inputs to the procedure include the length of the bug trace, c,

as well as the test vectors (inputs) and their correct output responses (outputs). To make

sure that the diagnosis applies to all simulation cycles, the algorithm connects the select

variables for each unrolled copy to the corresponding CN F variables in the first copy. On

the other hand, free variables for each unrolled copy of the circuit are independent. When

a solution is found, each asserted select variable is a symptom variable, and the solution

for its corresponding free variable is an alternative signal source that can fix the design er­

rors. Note that if state values over time are known, they can be used to constrain the CNF

at register boundaries, reducing the sequential error-diagnosis problem to combinational.

140

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The constructed CNF, along with the objective to minimize the sum of select variables,

forms a PBC. Error diagnosis is then performed by solving the PBC.

Diagnosis with RTL Symbolic Simulation

Here we propose an alternative error-diagnosis technique that scales further than the

synthesis-based technique. We achieve this by performing symbolic simulation directly

on the RTL representation and generating Boolean expressions at the primary outputs for

all simulated cycles. The outputs’ Boolean expressions are used to build a PB problem ’s

instance, that is then handed over to a PB solver for error diagnosis.

Although RTL symbolic simulators are not yet commonly available in the industry,

effective solutions have been proposed recently in the literature [70, 71]. Moreover, be­

cause o f the scalability advantages o f performing symbolic simulation at the RTL instead

of the gate level, commercial-quality solutions are starting to appear. For our empirical

validation we used one such experimental RTL symbolic simulator [126].

Figure 9.6 illustrates our novel procedure that uses symbolic simulation and PB solv­

ing. We assume that the registers are initialized to known values before the procedure

is invoked. We also assume that the circuit contains n MUX-enriched signals named vy,

where / = { \ . .n } . Each v, has a corresponding select variable v(; se/ and a free variable

V i _ f . There are o primary outputs, named P O j , where j = { l . .o} . We use subscript

to prefix the cycle during which the symbols are generated. For each primary output j

and for each cycle t we compute expression P O j @ t by symbolically simulating the given

RTL design, and also obtain correct output value C P O j @ , from the high-level model. The

inputs to the procedure are the RTL design (design), the test vectors (test.vectors), and the

141

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Procedure sim -based „diagnosis(design, tes t - v e c to r s ,C P O)
1 Vt, 1 < / < n, Vf rf/=- n e w s y m b o lQ ;
2 for f = 1 to c begin // Sim ulate c cycles
3 PI = test -vec to r at c y c le /;
4 Vi, 1 < i < n, new s y m b o l ()',
5 = sim ula te (design)',
6 end
7 PBC = A "= 1 A,=] (PO/@,== CPOj@t), min(L'L, v,_,e,);
8 return solution= P B S o lv e (P B C) \

Figure 9.6: Procedure to perform error diagnosis using symbolic simulation. The bold­
faced variables are symbolic variables or expressions, while all others arc
scalar values.

correct output responses over time (CPO).

In the algorithm shown in Figure 9.6, a symbol is initially created for each select vari­

able (line 1). During the simulation, a new symbol is created for each free variable in every

cycle, and test vectors are applied to primary inputs, as shown in lines 2-4. The reason for

creating only one symbol for each select variable is that a conditional assignment should

be either activated or inactivated throughout the entire simulation, while each free variable

requires a new symbol at every cycle because the value of the variable may change. As a

result, the symbols for the select variables are assigned outside the simulation loop, while

the symbols for the free variables are assigned in the loop. The values of the free variables

can be used as the alternative signal source to produce the correct behavior of the circuit.

After simulating one cycle, a Boolean expression for all o f the primary outputs arc created

and saved in PO@t (line 5). After the simulation completes, the generated Boolean expres­

sions for all the primary outputs are constrained by their respective correct output values

and are ANDed to form a PBC problem as line 7 shows. In order to minimize the number

of symptom variables, we minimize the sum of select variables, which is also added to the

PBC as the objective function. A PB solver is then invoked to solve the formulated PBC,

142

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

as shown in line 8. In the solution, the asserted select variables represent the symptom

variables, and the values of the free variables represent the alternative signal sources that

can be used to correct the erroneous output responses.

Below we present an example of a buggy design to illustrate the symbolic simulation-

based error-diagnosis technique.

module example(clk, II, 12, 01„, 02„, gl.se/, 01.se/, 0 2 sei, g l /■, O l / , 02 /) ;
input II, 12, gl.ve,, 01.se/, 02.se/, g l / , O l / , 0 2 /
output 01„, 02„;
reg rl, r2;
initial begin rl= 0; r2= 0; end
always @(posedge elk) begin

rl= II; r2= 12;
end
assign g l - rl — r2;
assign 01 = 1 1 — gl„;
assign 02 = 12 & gl„;
assign g l(J= gl,e, ? g l / : gl;
assign 01„= 01.se, ? 0 1 / : 01;
assign 02,,= 0 2 .fe, ? 0 2 / : 02;

endmodule

F ig u re9.7: Design for the example. Wire gl should be driven by “rl & r2” , but it is
erroneously driven by “rl | r2” . The changes made during M UX-enrichmcnt
are marked in boldface.

E xam ple 8 Assume that the circuit shown in Figure 9 .7 contains an error: signal g \ is

erroneously assigned to expression “r l \ r2 ” instead o f “r l & r2 ”. Conditional assign­

ments, highlighted in boldface, have been inserted into the circuit using the techniques

described in Section 9.2.2. For simplicity reasons, we do not include the MUXes al the

outputs o f registers r l and r2. The trace that exposes the error in two simulation cycles

consists o f the following values for inputs {II, 12}: {0, 1}, {I, I } . When the same trace is

simulated by a high-level behavioral model, the correct output responses fo r {0 1 , 0 2 } are

generated: {0, 0}, {/, 0}. Besides these output responses, no addition information, such

143

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

as values o f internal signals and registers, is required. We annotate the symbols in jected

during the simulation by their cycle numbers using subscripts. The Boolean expressions

fo r the primary outputs fo r the two cycles o f simulation are:

0 1 n @\ - 0 1 se, ? 0 1 j -@i .• [11 @ i | (g l Xci 2 g l f @ l •' 0)]

0 2 n@i = 02sei ? 02 f @i [I2@\ & (gl.sei ? g l f @i : 0)]

OI„m= 01 set ? 0 1 f ® 2 ■ {11 @2 I [g l set ? g i f ®2 •' (U ® \ & 12@\)]}

0 2 n(a)2- 0 2 se/ ? 02 j @2 : {I2@2& [g l sei ? g if® 2 •' (11®\ & 12@\)]}

Since the primary inputs are scalar values, the expressions can be greatly simplified dur­

ing symbolic simulation. For example, we know that I I @2=1; therefore, 0 1 n @ 2 can be

simplified to 0 1 sei ? 0 1 f@i : 1. As a result, the Boolean expressions actually generated

by the symbolic simulator are:

01 n@ 1= 01 sei ? 01 f @ 1 : (g lSel ? gi f® 1 •' 0)

0 2 n@\ = 0 2 sei ? 0 2 /@1 : (g lxei ? gi f®\ •' 0)

01 n@2 — 01 sei ? 01 f @2 •' 1

0 2 n@2 = 02 Sel ? 02 f @ 2 ■' (g l sei '? g i f @2 ■' 0)

To perform error diagnosis, we constrain the output expressions using the correct re­

sponses, and then construct a PBC as follows:

PBC = (01„@i = — 0) A (02„@i = = 0) A (0] n@2 ==z 1) A (02„@2 = = 0),

m i n (0 1 sel + 0 2 s e l + gl se i) -

One solution o f this PBC is to assert g l sei, which provides a correct symptom core.

144

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Handling Hierarchical Designs

Current designs often have hierarchical structures to allow the circuits to be decom­

posed into smaller blocks and thus reduce their complexity. Here we discuss how a MUX-

enriched circuit should be instantiated if it is encapsulated as a module in such a hierarchi­

cal design.

The algorithm to insert MUXes into a single module m is shown in Figure 9.4. If m is

instantiated inside of another module M, however, M UX-enrichment of M must include an

extra step where new inputs are added to all instantiations o f m. Therefore, for hierarchical

designs, the insertion of conditional assignments must be performed bottom-up: MUX-

enrichment in a module must be executed before it is instantiated by another module.

This is achieved by analyzing the design hierarchy and performing M UX-enrichment in a

reverse-topological order.

It is important to note that in hierarchical designs, the select variables of instances of

the same module should be shared, while the free variables should not. This is because all

instances of the same module will have the same symptom variables. As a result, select

variables should share the same signals. On the other hand, each instance is allowed to

have different values for their internal signals; therefore, each free variable should have its

own signal. However, it is possible that a bug requires fixing only one RTL instance while

other instances of the same module can be left intact. This situation requires generation of

new RTL modules and is currently not handled by our diagnosis techniques.

145

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9.2.3 RTL Error Correction

The RTL error-correction problem is formulated as follows: given an erroneous RTL

description of a digital design, find a variant description for one or more of the modules

that compose it so that the new design presents a correct behavior for the errors, while

leaving the known-correct behavior unchanged. Although many crror-rcpair techniques

exist for gate-level designs, very few studies focus on the RTL. One major reason is the

lack of logic representations that can support the logic manipulation required during RTL

error correction. For example, the logic of a signal in a gate-level netlist can be easily

represented by BDDs, and modifying the function of the signal can be supported by the

manipulation of its BDDs. However, most existing logic representations cannot be easily

applied to an RTL variable. This problem is further exacerbated by the fact that an RTL

module may be instantiated multiple times, creating many different functions for an RTL

variable depending on where it is instantiated.

In this subsection, we first describe the baseline error-correction technique that is easier

to understand. Next, we show how signatures should be generated at the RTL to handle

hierarchical and sequential designs. Finally, we provide some insights that we obtained

during the implementation of our system.

Baseline Error Correction Technique

F o r a f la tten ed c o m b in a tio n a l d e s ig n , e r ro r c o rre c tio n is p e rfo rm e d as fo llow s: (1) s ig ­

natures of RTL variables are generated using simulation; (2) error diagnosis is performed

to find a symptom core; (3) signatures of the symptom variables in the symptom core are

replaced by the values of their corresponding free variables; and (4) synthesis is applied

146

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

to find logic expressions generating the signatures of the symptom variables. By replac­

ing the expressions that generate the functions of the symptom variables with those new

expressions, design errors can be corrected.

Hierarchical and Sequential Designs

In a flattened design, each RTL variable represents exactly one logic function. In a

hierarchical design, however, each variable may represent more than one logic function.

Therefore, we devise the following techniques to construct the signatures of RTL variables.

For clarity, we call a variable in an RTL m odule a module variable and a variable in an

instance generated by the module an instance variable. A module variable may generate

multiple instance variables if the module is instantiated several times.

In RTL error correction, we modify the source code of the modules in order to correct

the design’s behavior. Since changing an RTL module will affect all the instances produced

by the module, we concatenate the simulation values of the instance variables derived from

the same module variable to produce the signature for the module variable. This way, we

can guarantee that a change in a module will affect instances in the same way. Similarly,

we concatenate the signatures of the module variable at different cycles for sequential error

correction. A signature-construction example is given in Figure 9.8. Note that to ensure

the correctness of error repair, the same instance and cycle orders must be used during the

concatenation of signatures for all module variables.

E xam ple 9 Using the same circuit as Example 8. The values returned by the PB solver

for gl f@ o and g l f@\ are both 0. Since the inputs to g l are {0 , 0} and {0, 1} fo r the first

two cycles, the correct expression fo r g 1 should generate Ofor these two inputs. RTL error

147

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Design:
module top;

c h i ld c l () , c 2 () , c3 () ;
endmodule
module ch i ld ;

wire v;
endmodule

Simulation values:
Cycle 0: top.cl.v = 0, top.c2.v = 0, top.c3.v = 1
Cycle 1: top.cl .v = 1, top.c2.v = 0, top.c3.v = 0

Constructed signature for RTL error correction:
c l . v c2 .v c3 .v r l . v e2 .v c3.v

child.v =
cycle 1 cycle 0

Figure 9.8: Signatnre-construction example. Simulation values of variables created from
the same RTL variable at all cycles should be concatenated for error correction.

correction returns the following new logic expressions that can fix the error: g l = r l& r2 ,

g l — r l , etc. Note that although the correct fix is returned, the fix is not unique. In general,

longer traces containing various test vectors will identify the error with higher precision

and suggest better fixes than short ones.

Identifying Erroneous Code Statements

Several existing error-diagnosis techniques are able to identify the RTL code state­

ments that may be responsible for the design errors [65, 96, 104, 109J. Unlike these

techniques, REDIR returns the RTL variables that are responsible for the errors instead.

Since one variable may be affected by multiple statements, the search space of the errors

modeled by these techniques tend to be larger than REDIR, making REDIR more efficient

in error diagnosis. On the other hand, being able to identify erroneous statements may

further localize the errors and make debugging easier. To achieve this goal, we observe

that in correctly designed RTL code, the value of a variable should be affected by at most

148

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

one statement at each cycle. Otherwise, a multiple-driven error will exist in the design.

Based on this observation, we develop the following procedure to identify the erroneous

code statements using our error-diagnosis results.

Given a symptom variable, we first record the cycles at which the values of its free

variables are different from its simulated values. Next, we identify the code statements

that assign new values to the symptom variable for those cycles: these code statements

are responsible for the errors. Since many modern logic simulators provide the capability

to identify the executed code statements (e.g., full-trace mode in Cadence Verilog-XL),

erroneous statements can be pinpointed easily by replaying the bug traces used for error

diagnosis. After erroneous statements are identified, signatures for error-correction can be

generated using only the cycles when the statements are executed. In this way, we can

produce corrections specifically for the erroneous statements.

Implementation Insights

When multiple bug traces are used in the diagnosis, the set of the reported symptom

variables is the intersection of the symptoms identified by each bug trace. Therefore, to

accelerate the diagnosis over a specific bug trace, we can deassert the select variables that

are never asserted during the execution of previous traces.

Fixing errors involving multi-bit variables is more difficult than fixing errors involv­

ing only one-bit variables because different bits in the variable may be generated differ­

ently. To solve this problem, we allow the user to insert a conditional assignment for

each bit in the variable. Alternatively, REDIR can also be configured to consider only the

least-significant bit when performing error correction. This is useful when the variable is

149

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

considered as a whole.

In synthesis-based error diagnosis, we observe that it is difficult to identify the wires

derived from the same RTL variable in a synthesized netlist. To overcome this problem,

we add the outputs of inserted conditional statements to the primary outputs of the M UX-

enriched modules to obtain the simulated values of the RTL variables. To improve our

error-correction quality, we utilize ODCs in our synthesis-based approach by simulating

the complement signatures of symptom variables and observe the changes at primary out­

puts (including inputs to registers).

9.3 Experimental Results

In this section we present experimental results of our error-repair techniques at both

the gate level and the RTL. At the gate level, we first evaluate the effectiveness of the

baseline CoRe framework on fixing bugs in combinational designs. Next, we use the

extension described in Section 9.1 to repair errors in sequential designs. At the RTL, we

first evaluate our error-diagnosis techniques and contrast the results with those at the gate

level. We then show the results on automatic error correction.

9.3.1 Gate-Level Error Repair

We implemented our CoRe framework using the OAGear package 1140] because it pro­

vides convenient logic representations for circuits. We adopted Sm ith’s [107] algorithm

and integrated MiniSat [51] into our system for error diagnosis and equivalence checking.

We used Espresso [99] to optimize the truth table returned by DPS, and then we con­

structed the resynthesized netlist using AND, OR and INVERTER gates. Our testcascs

150

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

were selected from IWLS2005 benchmarks [138] based on designs from ISCAS89 and

OpenCores suites. In our implementation, we limited the number of attempts to resynthe-

size a wire to 30, and we prioritized our correction by starting from fixes with wires closer

to primary inputs. We conducted four experiments on a 2.0GHz Pentium 4 workstation.

The first two experiments are in the context of equivalence checking, the third one deals

with simulation-based verification, while the last one repairs errors in sequential circuits.

Equiva lence checking: our first experiment employs Application 1 described in Sec­

tion 5.2.4 to repair an erroneous netlist by enforcing equivalency. Inputs and outputs of

the sequential elements in the benchmarks were treated as primary outputs and inputs, re­

spectively. The initial vectors were obtained by simulating 1024 random patterns, and one

error was injected to each netlist. In the first half of the experiment, the injected errors

fit in the error model described in Section 5.1.4; while the errors injected in the second

half involved more than 2 levels of logic and did not comply with the error model. We ap­

plied GDS and DPS separately to compare their error-correction power and performance.

Since GDS subsumes existing techniques that are based on error models, it can be used

as a comparison to them. The results are summarized in Table 9.1. As expected, GDS

could not repair netlists in the second half o f the experiment, showing that our resynthesis

techniques could fix more errors than those based on Abadir’s error models [74, 112).

From the results in the first half, we observe that both GDS and DPS performed well

in the experiment: the resynthesis time was short, and the number of iterations was typi­

cally small. "This result shows that the error-diagnosis technique we adopted was effective

and our resynthesis techniques repaired the netlists correctly. Compared with the error-

151

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 9.1: Error-correction experim ent for com binational gate-level netlists.
B en ch ­
mark

Gate
count

Type of
injected error

G DS DPS
R untim e (sec) No.

of
iter.

R untim e (sec) No.
o f

iter.
EC ED Verifi­

cation
EC ED Verifi­

cation
S1488 636 Single gate

change
1 3 1 1 1 4 1 1

" T

l

SI 5850 685 Connection change 1 5 1 2 2 5 1
S 9 2 3 4 J 974 Single gate

change
1 10 1 1 1 9 1

SI 3207 1219 C onnection change 1 5 1 1 1 5 1
S38584 6727 Single gate

change
1 306 83 1 1 306 81 1

S 8 3 8 J 367 M ultiple gate
changes

N/A 1 6 1 l

~ 6 ~

"~5~

SI 3207 1219 Multiple missing
gates

N/A 3 12 3

AC97_
CTR L

11855 M ultiple connection
changes

N /A 2 1032 252

The benchm arks in the top-half com ply with A badir’s error mode, w hile those in the bottom -half
do not. “No. of iter.” is the num ber of error-correction attem pts processed by the verification
engine. “E C ” means error correction, while “E D ” m eans error diagnosis.

correction time required by some previous techniques that enumerate possible fixes in the

error model [45, 112], the short runtime of GDS shows that our pruning methods are ef­

ficient, even though GDS also explores all possible combinations. We observe that the

program runtime was dominated by error diagnosis and verification, which highlights the

importance of developing faster error-diagnosis and verification techniques.

Errors that are difficult to diagnose and correct often need additional test vectors and

iterations. In order to evaluate our techniques on fixing difficult errors, we reran the first

three benchmarks and reduced the number of their initial patterns to 64. The results are

sum m arized in Table 9.2, where the number of iterations increased as expected. The results

suggest that our techniques continued to be effective for difficult errors, where all the errors

could be fixed within two minutes. We also observe that DPS may sometimes need more

iterations due to its much larger search space. However, our framework would guide both

152

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Tabic 9.2: Error-correction experiment for combinational gate-level netlists with reduced
number of initial patterns.

B enchm ark Gate Type o f GDS DPS
count injected error R untim e (sec) No. R un tim e (sec) No.

EC ED Verifi­
cation

of
iter.

EC ED Verifi­
cation

of
iter.

S 1488 636 Single gate
change

1 5 3 13 1 4 1 3

SI 5850 685 Connection
change

1 3 1 5 53 4 5 42

S9234.1 974 Single gate
change

1 8 3 6 1 10 3 4

techniques to the correct fix eventually.

We observe that an SPFD-based technique described in [122] is close to our CoRc

framework. To compare our results with theirs, we ran the largest five ISC A S’85 bench­

marks in [122] and injected bugs similar to their “_s” configuration. Since the techniques

in [122] can also find the correct fixes most of the time, we only compared our runtime

with theirs. In this experiment, we applied 64 initial vectors, and DPS was used because

it is similar to the technique described in [122], The results are summarized in Table

9.3. Since the bugs were simple, our technique was able to find valid fixes within a few

iterations. Note that the reported runtime is the total runtime of all iterations.

Table 9.3: A comparison of our work with another state-of-the-art technique [122],
Benchm ark R untim e of

first correction
(sec) [122]

Average
num ber of

iteration (Ours)

Our runtim e (sec)
Error

diagnosis
DPS Verification

C l 908 18.9 1.7 1.5 0.02 1.08
C2670 21.9 1 1.57 0.01 0.53
C 3 5 4 0 9.3 1.3 9.31 0.02 14.71
C5315 7.6 2.7 7.41 0.05 5.58
C7552 25.7 1 12.19 0.03 9.17

The only runtime reported in [122] is the runtime for their resynthesis technique to find

153

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the first fix that passes verification. As a result, this runtime should be compared to our

DPS runtime. Since almost all their first fixes passed verification (96% on average), their

runtime should be compared to our runtime when only 1.04 iteration is needed. The results

in Table 9.3 show that our DPS ran significantly faster than the resynthesis technique

described in [122]. In addition, the machine used in our experiment was a Pentium 4

2.0GIIz workstation, while [122] used a 2.7GHz workstation. As a result, our reported

runtime should be even smaller if the same types of machines were used. Since [122] did

not report their error diagnosis and verification time, we were unable to compare these two

results. However, we observe that the runtime of our error diagnosis + DPS is smaller than

the resynthesis runtime of [122] for most benchmarks. It is also worth noting that [122]

used ATPG to generate their initial vectors, while we used random simulation. As a result,

[122] should require more time to generate its initial vectors.

In our second experiment, we injected more than one error into the netlist. The injected

errors complied with Abadir’s model and could be fixed by both GDS and DPS. To mimic

difficult errors, the number of initial vectors was reduced to 64. We first measured the

runtime and the number of iterations required to fix each error separately, we then showed

the results on fixing multiple errors. Time-out was set to 30 minutes in this experiment,

and the results are summarized in Table 9.4. Similar to other error diagnosis and correc­

tion techniques, runtime of our techniques grows significantly with each additional error.

However, we can observe from the results that the number of iterations is usually smaller

than the product of the number of iterations for each error. It shows that our framework

tends to guide the resynthesis process to fix the errors instead of merely trying all possible

154

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

combinations of fixes. Another interesting phenomenon is that DPS could simultaneously

fix all three errors in the S1488 benchmark, while GDS could not. The reason is that DPS

found a fix involving only two wires even though three errors were injected. Since GDS

could not fix the netlist using only two error sites, three-error diagnosis was performed,

which was extremely slow. The reason is that in addition to fixes involving three error

sites, any combination of wires consisting of two error sites and one “healthy” site (site

with its function unchanged) is also a valid fix. As a result, the number of possible fixes

increased dramatically and evaluating all of them was time consuming. This explanation

is confirmed by the following observation: error diagnosis returned 8, 7 and 9 possible

fixes for error 1, error2 and error3 respectively, while the number of fixes for all three er­

rors using three sites was 21,842. This situation suggests that DPS is more powerful than

GDS, as well as many techniques subsumed by GDS.

Table 9.4: Multiple error experiment for combinational gate-level netlists.
B enchm ark R untim e (sec) N u m b er o f iterations

E r r l Err2 Err3 E r r l +2 Err 1+2+3 Errl Err2 Err3 E rr 1+2 Err 1+2+3
S 1488(G D S) 4 6 4 10 T/O 8 5 2 22 '170
S1488(D PS) 14 5 5 34 9 32 4 2 45 14
S 13207(G D S) 10 10 6 12 75 11 5 1 10 19
SI 32 0 7 (DPS) 7 9 6 14 74 4 5 1 16 15
S 15850(G D S) 4 3 4 5 7 1 1 1 1 1
S 15850(D PS) 4 3 5 5 10 1 1 1 3 H 1 11

Tim e-out is set to 30 m inutes and is m arked as T/O in the Table.

To further evaluate the strength of our error-repair techniques, we took the C l 7 bench­

m a rk from the ISC A S’85 suite and p re p a re d a to ta lly d iffe re n t circuit with the same num ­

ber of primary inputs and outputs, where the circuit is composed of two multiplexers.

Next, we used CoRe to “repair” the C17 benchmark so that it became equivalent to the

prepared circuit. CoRe successfully repaired the C17 benchmark in 0.04 seconds using 26

155

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

test vectors. Since the num ber of primary inputs is 5, this result suggests that CoRe can

find a fix without trying all possible input patterns (32 in this benchmark), even when the

the repaired circuit is considerably different from the original one.

Simulation-based verification: in our third experiment, we simulated n functionality-

preserving vectors and m error-sensitizing vectors, where m < < n. Error-sensitizing vec­

tors were produced by randomly changing one output per vector. We then checked whether

our framework could produce a netlist that was adaptive to the new responses. This is sim­

ilar to fixing errors found by simulation-based verification, where a few vectors break the

regression test while m ost vectors should be preserved. In this experiment, we set n=1024

while changing m, and the results are summarized in Table 9.5. We can observe from the

results that additional error-sensitizing vectors usually require more wires to be fixed, and

the runtime is also longer. However, our framework is able to repair all the benchmarks

within a short time by resynthesizing only a small number of wires. This result suggests

that our framework works effectively in the context of simulation-based verification.

Table 9.5: Error correction for combinational gate-level netlists in the context of
simulation-based verification.

Bench­
mark

Runtime (sec) Number of error sites
m= 1 m=2 m=3 m=4 m=l m-2 m-3 m=4

S 1488 3 4 10 10 1 2 3 3
S 15850 3 4 4 6 1 2 2 4
SI 3207 3 6 8 19 1 2 3 5

1024 functionality-preserving and in error-sensitizing vectors are simulated, where the error-
sensitizing vectors randomly change one output per vector.

Repairing errors in sequential circuits: our forth experiment repairs errors in se­

quential circuits using techniques described in Section 9.1. The characteristics of the

benchmarks and their results are summarized in Table 9.6. For each benchmark, 32 traces

156

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

were provided, and the goal was to repair the circuit so that it produces the correct out­

put responses for those traces. Note that diagnosing errors in sequential circuits is much

more difficult than that in combinational circuits because circuit unrolling is used. For

example, the bug trace for the last benchmark had 77 cycles, and it produced an unrolled

circuit containing more than one million standard cells. Since our algorithm processes

all the traces simultaneously, only one iteration will be required. For the computation of

more representative runtime only, we deliberately processed the traces one by one and

failed all verification so that all the benchmarks underwent 32 iterations. All the bugs

were injected at the RTL, and the designs were synthesized using Cadence RTL compiler

4.10. In the table, “Err. Diag. time” is the time spent on error diagnosis, “#Fixes” is

the number of valid fixes returned by CoRe, and “DPS time” is the runtime of DPS. The

minimum/maximum numbers of support variables and gates used in the returned fixes are

shown under “Resynthesized netlist” . Note that implementing any valid fix is sufficient to

correct the circuit’s behavior, and we rank the fixes based on the logic depth from primary

inputs: fixes closer to primary inputs are preferred. Under “Err. diag. time” , “ 1st” is the

runtime for diagnosing the first bug trace, while “Total” is the runtime for diagnosing all

32 traces.

The comparison between the first and total diagnosis time in Table 9.6 shows that diag­

nosing the first trace takes more than 30% of the total diagnosis time in all the benchmarks.

The reason is that the first diagnosis can often localize errors to a small number of sites,

which reduces the search space of further diagnoses significantly. Since CoRe relies on

iterative diagnosis to refine the abstraction of signatures, this phenomenon ensures that

157

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 9.6: Error-repair results for sequential circuits.
B ench ­ D escrip ­ #Cells Bug description Err. diag. #Fix- Resynthesi/ .ed DPS
mark tion time (sec) cs netlist time

first total #Supp. #G ates (sec)
Pre_ Part o f 1877 8-bit reduced OR 29.4 50.8 1 19/19 83/83 0.4
norm FPU A ND
MD5 M D 5 full

chip
13111 Incorrect state

transition
5294 5670 2 33/64 58/126 28.2

D LX 5-stage
pipeline
M IPS-

14725 JAL inst. leads to
incorrect bypass
from M E M stage

25674 78834 54 1/21 1/944 1745

Lite CPU Incorrect inst.
forwarding

29436 30213 6 1/2 1/2 85

D PS is used in this experim ent. The error-diagnosis technique is based on [61. “#Supp." is the
num ber of support signals and “#G ates” is the num ber of gates in the resynthesized netlist. The
num bers are shown as m inim um /m axim um .

CoRe is efficient after the first iteration. As Table 9.6 shows, error diagnosis is still the

bottleneck of the CoRe framework. We also observe that fixing some bugs requires a large

number of gates and support variables in their resynthesized netlists because the bugs arc

complex functional errors injected at the RTL.

9.3.2 RTL Error Repair

In RTL error-rcpair experiments, we evaluated the performance of the techniques de­

scribed in Section 9.2 with a range of Verilog benchmarks. We used a proprietary Pcrl-

based Verilog parser to insert conditional assignments into RTL code. Synthesis-based

diagnosis was implemented using OpenAccess 2.2 and OAGear 0.96 1140] with RTL

Compiler v4.10 from Cadence as the synthesis tool. For simulation-based diagnosis, we

adopted an experimental RTL symbolic simulator, Insight 1.4, from Avery Design Sys­

tems [126]. For efficiency, we implemented the techniques described in [52] to convert PB

problems to SAT problems and adopted MiniSat as our SAT solver [51]. All the experi­

ments were conducted on an AM D Opteron 880 (2.4GHz) Linux workstation with 16GB

158

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

memory. The designs under test included several circuits selected from OpenCores [1311

(Pre.norm, MD5, MiniRISC, and CF„FFT), the picoJava-II microprocessor (Pipe), DLX,

and Alpha. Bugs (described in Table 9.7) were injected into these benchmarks, with the

exception o f DLX and Alpha, which already included bugs. We used constrained-random

simulation to generate bug traces for Pipe, Pre j io rm , and CF_FFT, while the bug traces for

the rest of the benchmarks were generated using the verification environment shipped with

the designs. Traces to expose bugs in DLX and Alpha were given by the verification en­

gineer and were generated using a constrained-random simulation tool [113]. The number

of traces for the benchmarks and their lengths are also reported in Table 9.7. The charac­

teristics of these benchmarks are summarized in Table 9.8. In the table, “RTL #Lines” is

the number of lines of RTL code in a design, and “Gate-level #Cells” is the cell count of

the synthesized netlist. To compare our results with previous work, we implemented the

algorithms for gate-level error diagnosis in [6, 107]. In the table, we list the number of

MUXes inserted by their techniques in column “#M U X es” , and the number of conditional

assignments under “#Assi.” .

Synthesis-Based Error Diagnosis

In this experiment, we performed combinational and sequential error diagnosis using

the synthesis-based techniques described in Section 9.2.2. For comparison with previous

work, we also synthesized the benchmarks and performed gate-level error diagnosis using

Sm ith’s and A li’s [6, 107] techniques described in Section 5.1.3. The results are sum m a­

rized in Table 9.9 and Table 9.10. Recall that a symptom core suggests a possible set of

signals to modify for correcting the design, and it includes one or more symptom variables.

159

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 9.7: D escription o f bugs in benchm arks.
B ench­ B ug Description B ug traces
mark ID #Traces #Cyclcs
Pipe A O ne signal inverted 32 200
Pre­ A Reduced OR replaced by reduced A N D 32 20
norm B O ne signal inverted 32 20

C One 26-bit bus M U X select line inverted 32 20
D Bug A + Bug B 32 20
E Bug A + Bug B + Bug C 32 20

MD5 A Incorrect operand for a 32-bit addition 1 200
B Incorrect state transition 1 200
C Bug B with a shorter trace 1 50

M RISC A Incorrect RH S for a 1 1-bit value ass ignment 1 200
C I -F F T A O ne signal inverted 32 15
DLX A SL L inst. does shift the wrong way 1 150

B SLTIU inst. selects the w rong A L U operation 1 68(178)
C JAL inst. leads to incorrect bypass from M E M stage 1 47(142)
D Incorrect forwarding for A L U + IM M inst. 1 77(798)
E D oes not write to reg31 1 49(143)
F RT reads lower 30 bits only 1 188
G If RT = 7 m em ory write is incorrect 1 30(1080)

A lpha A W rite to zero-reg succeeds if rdbridx = 5 1 70(256)
B Forw arding through zero reg on rb 1 83(1433)
C Squash if source o f MEMAVB = dest. o f ID /E X and

instr. in ID is not a branch
1 150(9950)

DLX and A lpha included native bugs, while other bugs w ere m anually injected. Bug traces for
several DLX and A lpha benchm arks have been m inim ized before diagnosis, and their original
lengths are shown in parentheses.

In all our experiments, we found that the reported symptom cores included the root causes

of errors for all benchmarks. In other words, REDIR accurately pointed out the signals

that exhibited incorrect behavior.

Comparison between RTL and gate-level error diagnosis: this comparison clearly in­

dicates that diagnosing functional errors at the RTL has signilicant advantages over the

gate level, including shorter runtime and more accurate diagnoses. As Table 9.9 shows,

most errors can be diagnosed using our techniques within a few minutes, while Table 9.10

shows that identifying the same errors at the gate level takes more than 48 hours in many

cases. One major reason for this is that the number of possible symptom variables (er­

ror sites), i.e., internal netlist signals responsible for the bug, is significantly smaller in

160

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 9.8: Characteristics o f benchm arks.
B en ch ­ Description #Flip- Trace type Gate-level [6, 107] RTL (Ours)
mark flops #Cells # M U X es #Lines #Assi

Pipe Part o f Pico Java
pipeline control unit

2 Constrained-
random

55 72 264 31

Pre_norm Part o f FPU 71 Constrained
random

1877 1877 270 43

M D 5 M D 5 full chip 910 D irect test 13311 13313 438 37
M iniR ISC M in iR IS C full chip 887 Direct test 6402 6402 2013 43
C F .F F T Part o f the CF_FFT chip 16,638 Constrained-

random
126532 126560 998 223

D LX 5-stage pipeline C PU
running M IPS-L ite ISA

2,062 Constrained-
random

14725 14727 1225 84

Alpha 5-stage pipeline C PU
running Alpha ISA

2,917 Constrained-
random

38299 38601 1841 134

“#M U X es” is the num ber of M U X es inserted by gate-level diagnosis [6, 107] for com parison, and
“#Assi.” is the num ber of conditional assignm ents inserted by our solution.

RTL diagnosis, as can be observed from the numbers of inserted conditional assignments

shown in Table 9.8. This is due to the fact that one simple RTL statement may be synthe­

sized into a complex netlist, which proliferates the number of error sites. For example, a

statement like “a = b + c” creates only one symptom variable at the RTL. Its synthesized

netlist, however, may contain hundreds of error sites, depending on the implementation of

the adder and the bit-width of the signals. The small number of potential symptom vari­

ables at the RTL significantly reduces the search space for PB or SAT solvers and provides

very short diagnosis runtime. In addition, one bug at the RTL may transform into multiple

simultaneous bugs at the gate level. Since runtime of error diagnosis grows substantially

with each additional bug [107], being able to diagnose errors at the RTL avoids the ex­

pensive multi-error diagnosis process at the gate level. We also observed that although the

runtime of the RTL error diagnosis still increases with each additional bug, its growth rate

is much smaller than the growth rate at the gate level. For example, as Table 9.10 shows,

the runtime of the gate-level diagnosis for Pre_norm(A) and (D), which combined (A) and

161

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 9.9: RTL synthesis-based error-diagnosis results.
Bench­ Bug RTL diagnosis (Our work)
mark ID Combinational Sequential

Errors found Runtime Errors found Runtime
#Symp. #Cores (sec) #Symp. #Cores. (sec)

Pipe A 1 1 6.0 1 1 6.0
Pre_ A 1 1 13.2 1 1 13.2
norm B 1 1 11.4 1 2 13.4

C 1 1 11.4 1 1 11.4
D 1 12.4 2 2 13.8
E 2 13.9 3 4 17.4

MD5 A 1 1 83.3 1 3 173.2
B 1 1 42.9 1 2 110.1
C 1 1 14.1 1 6 49.8

MRISC A States unavai able 1 2 32.0
CF_FFT A 1 4 364.8 Trace unavailable
DLX A 1 1 41.2 1 3 220.8

B 1 4 54.8 1 17 1886.3
C 1 5 15.8 1 1 1 104.0
D 1 3 27.5 1 9 2765.1
E 1 4 19.1 1 12 105.2
F 1 2 67.8 1 2 457.4
G 1 1 11.3 Trace unavailable

Alpha A 1 5 127.4 1 9 525.3
B 1 5 111.6 1 5 368.9
C 1 3 122.3 1 3 250.5

l'#Symp.” is the number of symptom variables in each core, and l#Corcs” is the total number of
symptom cores. The results should be compared with Table 9.10, which show that RTL diagnosis
outperforms gate-level diagnosis in all the benchmarks: the runtime is shorter, and the diagnosis is
more accurate.

(B), was 63.6 and 88.7 seconds, respectively. On the other hand, Table 9.9 shows that the

runtime for RTL diagnosis was 13.2 and 13.8 seconds, respectively. These results clearly

indicate that adopting gate-level techniques into RTL is the correct approach: it provides

excellent accuracy because formal analysis can be performed, yet it avoids drawbacks in

gate-level analysis in that it is still highly scalable and efficient. This is achieved by our

new constructs that model errors at the RTL instead of the gate level. These results also

demonstrate that trying to diagnose RTL errors at the gate level and mapping the results

162

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 9.10: Gate-level error-diagnosis results.
B ench­ Bug Gate-level diagnosis [6 107]
m ark ID Com binational Sequential

Errors found Runtim e Errors found Runtim e
#Sites #Cores (sec) #Sites #Cores (sec)

Pipe A 1 1 6.9 1 1 7.1
Pre_ A 1 1 51.1 1 1 63.6
norm B 1 3 41.6 1 4 46.7

C Time-out (48 hours) with > 10 error sites
D 2 3 73.3 2 4 88.7
E Time-out (48 hours) with > 8 error sites

MD5 A Time-out (48 hours) with > 6 error sites
B 1 2 10980 1 4 41043
C 1 3 2731 1 28 17974

M RISC A States unavailable Time-out (48 hours)
C F J T T A 1 1 109305 Trace unavailable
DLX A Time-out (48 hours) Out of memory

B 1 20 15261 Out of memory
C 1 45 11436 1 170 34829
D 1 6 18376 1 6 49787
E 1 12 9743.5 1 193 19621
F 1 10 15184 Out of memory
G 1 9 4160.1 Trace unavailable

A lpha A Time-out (48 hours)
B Time-out (48 hours)
C Out of memory

“#Sites” is the num ber of error sites reported in each core, and “#C ores” is the total num ber of
sym ptom cores returned by error diagnosis.

back to the RTL is ineffective and inefficient, not to mention the fact that such a mapping

is usually difficult to find.

Comparison between combinational and sequential diagnosis: the difference between

combinational and sequential diagnosis is that sequential diagnosis only uses output re­

sponses for constraints, while combinational is allowed to use state values. As Table 9.9

shows, the runtime of combinational diagnosis is typically shorter, and the number of

symptom cores is often smaller. In DLX(D), for example, the combinational technique

runs significantly faster than sequential, and returns only three cores, while sequential

163

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

returns nine. The reason is that combinational diagnosis allows the use of state values,

which provide additional constraints to the PB instance. As a result, the PB solver can

find solutions faster, and the additional constraints further localize the bugs. Being able to

utilize state values is especially important for designs with very deep pipelines, where an

error may be observed hundred cycles later. For example, the error injected into C F T T T

requires more than 40 cycles to propagate to any primary output, making the use of se­

quential diagnosis difficult. In addition, bugs that are observed in design states can only be

diagnosed when state values are available, such as DLX(G). On the other hand, sequential

diagnosis is important when state values are unavailable. For example, the bug injected

into the MiniRISC processor changed the state registers, damaging correct state values. In

practice, it is also common that only responses at primary outputs arc known. Therefore,

being able to diagnose errors in combinational and sequential circuits is equally important,

and both are supported by REDIR.

The comparison between MD5(B) and MD5(C) shows that there is a trade-off between

diagnosis runtime and quality: MD5(C) uses a shorter trace and thus requires shorter

diagnosis runtime; however, the number of symptom cores is larger than that returned

by MD5(B), showing that the results are less accurate. The reason is that longer traces

usually contain more information; therefore, they can better localize design errors. One

way to obtain short yet high-quality traces is to perform bug trace minimization before

error diagnosis. Such minimization techniques can remove redundant information from the

bug trace and greatly facilitate error diagnosis. We used the Butramin technique described

in Chapter VIII to minimize the traces for DLX and Alpha, and the length of the original

164

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

traces is shown in parentheses. In general, one trace is enough to localize the errors to a

small number of symptom cores, while additional traces may further reduce this number.

Case study: we use DLX(D) as an example to show the power of our error-diagnosis

techniques. Part of its RTL code is shown below:

always @(memstage or exstage or idstage or rs3rd or rs3rt or rs4rd or rs4rt or rs r31)

casex ({memstage,exstage,idstage,rs3rd,rs3rt,rs4rd,rs4rt,rsr31})

{ ‘ALUimm, ‘dc3, ‘dc3 ,‘dc ,‘dc, ‘dc, ltrue,‘dc}:

RSsel = lselect_stage3.bypass; // Buggy

In this example, the buggy code selects stage3 bypass, while the correct implementation

should select stage4. Error diagnosis returns two symptom cores: RSsel and ALU out.

Obviously, RSsel is the correct diagnosis. However, ALUout is also a correct diagnosis

because if the ALU can generate correct outputs even though the control signal is incorrect,

then the bug can also be fixed. However, this is not a desirable fix. This case study shows

that REDIR can suggest various ways to repair the same error, allowing the designer to

consider different possibilities in order to choose the best fix.

Simulation-Based Error Diagnosis

In this experiment, we performed simulation-based diagnosis using the algorithm de­

scribed in Section 9.2.2 with Insight, an experimental RTL sym bolic s im ula to r from [1261.

Benchmarks Pipe and CFJFFT were used in this experiment. Simulation took 23.8 and

162.9 seconds to generate SAT instances for these benchmarks, respectively. The SAT

solver included in Insight then solved the instances in 1 and 723 seconds respectively, and

165

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 9.11: Error-correction results for RTL designs
Bench-m ark Bug #Cores Resyn. #Fixes Runtim e
mark ID fixed method (sec)
Pipe A 1 GDS 2214 1.0
Pre_norm A 1 GDS 4091 1.1

B 1 GDS 4947 2.4
C 1 GDS 68416 5.6
D 2 GDS 79358 7.1
E 3 GDS 548037 41.6

M D5 A 1 GDS 33625 4.1
B 0 GDS 0 3.86

CF_FFT A 3 GDS 214800 141.6
D LX A 0 GDS 0 1.3

B 3 GDS 5319430 111.2
C 5 DPS 5 1.6
D 3 DPS 3 1.6
E 4 DPS 4 1.4
F 2 DPS 2 2.9
G 1 GDS 51330 0.7

A lpha A 5 DPS 5 7.9
B 4 DPS 4 10.4
C 3 DPS 3 8.5

it successfully identified the design errors. Note that currently, the SAT solver only returns

one, instead of all possible symptom cores. Although the runtime of simulation-based

approach is longer than the synthesis-based method, it does not require the design to be

synthesized in advance, thus saving the synthesizer runtime.

Error Correction

In our error-correction experiment, we applied the techniques described in Section

9.2.3 to fix the errors diagnosed in Table 9.9. We used combinational diagnosis in this

experiment, and corrected the error locations using the resynthesis methods described in

Chapter VI. We summarize the results in Table 9.11 where we indicate which of the two

synthesis techniques we used, either GDS or DPS. In the table, “#Cores fixed” is the num-

166

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ber of symptom cores that can be corrected using our error-correction techniques, and

“#Fixes” is the number of ways to fix the errors. We applied GDS first in the experi­

ment, and observed that GDS often returns a large number of valid fixes that can correct

the design errors. One reason is that GDS performs exhaustive search to find new logic

expressions; therefore, it may find many different ways to produce the same signal. For

example, “A ■ B" and ‘71 • (A (B B)” are both returned even though they are equivalent.

Another reason is that we only diagnosed short bug traces, which may produce spurious

fixes: signatures of different variables are the same even though their functions are differ­

ent. As a result, we only report the first 100 fixes in our implementation, where the fixes

are sorted so that those with smaller number of logic operations are returned first. Due

to the exhaustive-search nature of GDS, memory usage of GDS may be high during the

search, as are the cases for benchmarks D LX (C-F) and Alpha. In these benchmarks, GDS

ran out of memory, and we relied on DPS to find fixes that can correct the errors. Since

DPS only returns one logic expression when fixing an error, the number of possible fixes

is significantly smaller.

Table 9.11 shows that we could not find valid fixes for benchmarks MD5(B) and

DLX(A). The reason is that the bugs in these benchmarks involve multi-bit variables.

For example, bug MD5(b) is an incorrect state transition for a 3-bit state register. Since

in this experiment we only consider the least-significant bits of such variables during er­

ror correction, we could not find a valid fix. This problem can be solved by inserting a

conditional assignment for every bit in a multi-bit variable.

167

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Discussion of RTL Error-Repair Results

The RTL error-diagnosis results show that our error-modeling constructs and diagnosis

techniques can effectively localize design errors to a small number of symptom variables.

On the other hand, our error-correction results suggest that options to repair the diagnosed

errors abound. The reason is that the search space of error correction is much larger than

error diagnosis: there are various ways to synthesize a logic function. As a result, finding

high-quality fixes for a bug requires much more information than providing high-quality

diagnoses. Although this can be achieved by diagnosing longer or more numerous bug

traces, the runtime of REDIR will also increase.

This observation shows that automatic error correction is a much more difficult prob­

lem than automatic error diagnosis. In practice, however, engineers often find error di­

agnosis more difficult than error correction. It is common that engineers need to spend

days or weeks finding the cause of a bug. However, once the bug is identified, fixing it

may only take a few hours. To this end, our error-correction technique can also be used

to facilitate manual error repair, and it works as follows: (1) the engineer fixes the RTL

code manually to provide new logic functions for the symptom cores identified by error

diagnosis; and (2) REDIR simulates the new functions to check whether the signatures

of symptom cores can be generated correctly using the new functions. If the signatures

cannot be generated by the new functions, then the fix is invalid. In this way, engineers

can check the correctness of their fixes before running verification, which can accelerate

the manual error-repair process significantly.

The synthesis-based results show that our techniques can effectively handle designs

168

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

as large as 2000 lines of RTL code, which is approximately the size that an engineer

actively works on. Since synthesis tools are available in most companies, REDIR can be

used by engineers everyday to facilitate their debugging process. On the other hand, the

simulation-based results suggest that our techniques are promising. Once RTL symbolic

simulators become accessible to most companies, REDIR can automatically exploit their

simulation power to handle even larger designs.

9.4 Summary

In this chapter we empirically evaluated the effectiveness of the CoRe framework in re­

pairing functional errors in combinational gate-level netlists. In addition, we extended the

framework to repair errors in sequential circuits. This framework exploits both satisfiabil­

ity and observability don’t-cares, and it uses an abstraction-refinement scheme to achieve

better scalability. The experimental results show that CoRe can produce a modified netlist

which eliminates erroneous responses while maintaining correct ones. In addition, CoRe

only requires test vectors and correct output responses; therefore, it can be easily adopted

in most verification flows.

Other contributions in this chapter are the constructs and algorithms that provide a

fundamentally new way to diagnose and correct errors at the RTL, including: (1) an RTL

error modeling construct; (2) scalable error-diagnosis algorithms using Pseudo-Boolean

constraints, synthesis, and sim ulation; and (3) a novel error-correction technique using

signatures. To empirically validate our proposed techniques, we developed a new veri­

fication framework, called REDIR. To this end, our experiments with industrial designs

demonstrate that REDIR is efficient and scalable. In particular, designs up to a few thou-

169

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

sand lines of code (or 100K cells after synthesis) can be diagnosed within minutes with

high accuracy. The superior scalability, efficiency and accuracy of REDIR ensure that

it can be used by engineers in their everyday debugging tasks, which can fundamentally

change the RTL debugging process.

The comparison between gate-level and RTL error diagnosis shows that RTL. bugs

should be fixed at the RTL because fixing the same errors at the gate level will become

much more difficult. To this end, REDIR can greatly enhance the RTL debugging process

to prevent bugs from escaping to the gate level, allowing most functional errors to be

caught and repaired at the RTL. Therefore, even if bugs still escape to the gate level, those

bugs will be more subtle and should require smaller changes to the netlist. This will allow

gate-level error-repair techniques to work more effectively.

170

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER X

Incremental Verification for Physical Synthesis

As interconnect increasingly dominates delay and power at the latest technology nodes,

much effort is invested in physical synthesis optimizations, posing great challenges in val­

idating the correctness of such optimizations. Common design methodologies that delay

the verification of physical synthesis transformations until the completion of the design

phase are no longer sustainable because it makes the isolation of potential errors extremely

challenging. Since the design’s functional correctness should not be compromised, engi­

neers dedicate considerable resources to ensure the correctness at the expense of improving

other aspects of design quality. To address these challenges, we propose a fast incremen­

tal verification system for physical synthesis optimizations, called InVerS, which includes

capabilities for error detection and diagnosis. This system helps engineers discover errors

earlier, which simplifies error isolation and correction, thereby reducing verification effort

and enabling more aggressive optimizations to improve performance.

10.1 Background

In this section we first take a closer look at the current physical synthesis flow. Next,

we describe a powerful physical synthesis technique called retiming. Retiming rcposi-

171

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

tions registers in a design and can perform optimizations not achievable by combinational

resynthesis methods. Our methodologies to verify the correctness of these optimizations

will be presented in the next section.

10.1.1 The Current Physical Synthesis Flow

Post-placement optimizations have been studied and used extensively to improve cir­

cuit parameters such as power and timing, and these techniques are often called physical

synthesis. In addition, it is sometimes necessary to change the layout manually in or­

der to fix bugs or optimize specific objectives; this process is called Engineering Change

Order (ECO). Physical synthesis is commonly performed using the following flow: (1)

perform accurate analysis of the optimization objective, (2) select gates to form a region

for optimization, (3) resynthesize the region to optimize the objective, and (4) perform

legalization to repair the layout. The work by Lu et al. [82] and Changfan et al. [41] are

all based on this flow.

Given that subtle and unexpected bugs still appear in physical synthesis tools today

[9], verification must be performed to ensure the correctness of the circuit. However,

verification is typically slow; therefore, it is often performed after hundreds or thousands

of optimizations, as shown in Figure 10.1. As a result, it is difficult to identify the circuit

modification that introduced the bug. In addition, debugging the circuit at this design stage

is often difficult because engineers are unfamiliar with the automatically generated netlist.

As we will show later, InVerS addresses these problems by providing a fast incremental

verification technique.

172

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Difficult to identify where
the bug is because
many optim izations

have been performed. y

Layout

Bug

Y es / O ptim ized
/ layout

No Tim ing/power
_ satisfied „

Post-layout
verificationOptim ization 3

Optim ization 1

Optim ization 2

Figure 10.1: The current post-layout optimization flow. Verification is performed after the
layout has undergone a large number of optimizations, which makes debug­
ging difficult.

10.1.2 Retiming

Retiming is a sequential logic optimization technique that repositions the registers in

a circuit while leaving the combinational cells unchanged [75, 102]. It is often used to

minimize the number of registers in a design or to reduce a circuit’s delay. For example,

the circuit in Figure 10.4(b) is a retimed version of the circuit in Figure 10.4(a) that opti­

mizes delay. Although retiming is a powerful technique, ensuring its correctness imposes

a serious problem on verification because sequential equivalence checking is orders of

magnitude more difficult than combinational equivalence checking [63]. As a result, the

runtime of sequential verification is often much longer than that of combinational verifi­

c a tio n , i f it e v e r fin ish es . T h is p ro b le m w ill b e a d d re sse d in S ec tio n 10 .2 .2 .

173

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10.2 Incremental Verification

We provide a robust incremental verification package that is composed of a logic sim­

ulator, a SAT-based formal equivalence checker, and our innovative similarity metric be­

tween a circuit and its revision. In this section we define our similarity metrics, and then

describe our overall verification methodology.

10.2.1 New Metric: Similarity Factor

We define the sim ilarity fac tor as an estimate of the similarity between two netlists,

ck t i and ckl2 - This metric is based on simulation signatures of individual signals, and those

signatures can be calculated using fast simulation. Let N be the total number of signals

(wires) in both circuits. Out of those N signals, we distinguish M matching signals — a

signal is considered matching if and only if both circuits include signals with an identical

signature. The similarity factor between ckt] and ckt2 is then M / N . In other words:

num ber o f matching signals
(10 . 1) similarity f a c t o r = ------------------ ------------------------

to ta l num ber o f signals

We also define the difference fa c to r as (1 — s im ilar i ty fa c to r) .

Example 10 Consider the two netlists shown in Figure 10.2, where the signatures are

shown above the wires. There are 10 signals in the netlists, an d 7 o f them are matching.

As a result, the sim ilarity fa c to r is 7 /1 0 - 70%, and the difference fa c to r is 1 - 7/10 - 30%.

Intuitively, the similarity factor of two identical circuits should be 100%. If a circuit

is changed slightly but is still mostly equivalent to the original version, then its similarity

factor should drop only slightly. For example, Figure 10.3(a) shows a netlist where a

174

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1110
OOlffiw

0110
0100

0000

Figure 10.2: Similarity factor example. Note that the signatures in the fanout cone of the
corrupted signal are different.

region of gates is resynthesized correctly. Since only the signatures in that region will be

affected, the similarity factor only drops slightly. However, if the change greatly affects

the circuit’s function, the similarity factor can drop significantly, depending on the number

of signals affected by the change. As Figure 10.3(b) shows, when a bug is introduced

by resynthesis, the signatures in the output cone of the resynthesized region will also be

different, causing a larger drop in similarity factor. However, two equivalent circuits may

be dissimilar, e.g., a Carry-Look-Ahead adder and a Kogge-Stonc adder. Therefore, the

similarity factor should be used in incremental verification and cannot replace traditional

verification techniques.

10.2.2 Verification of Retiming

A signature represents a fraction of a signal’s truth table, which in turn describes the

information flow within a circuit. While retiming may change the clock cycle that certain

signatures are generated, because combinational cells are preserved, most generated sig­

natures should be identical. Figure 10.4 shows a retiming example from [38], where (a) is

the original circuit and (b) is the retimed circuit. A comparison of signatures between the

175

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(a)

(b)

Figure 10.3: Resynthesis examples: (a) the gates in the rectangle are resynthesized cor­
rectly, and their signatures may be different from the original netlist: (b) an
error is introduced during resynthesis, and the signatures in the output cone
of the resynthesized region are also different, causing a significant drop in
similarity factor,

circuits shows that the signatures in (a) also appear in (b), although the cycles in which

they appear may be different. For example, the signatures of wire w (bold-faced) in the

retimed circuit appear one cycle earlier than those in the original circuit because the regis­

ters were moved later in the circuit. Otherwise, the signatures of (a) and (b) are identical.

This phenomenon becomes more obvious when the circuit is unrolled, as shown in Figure

10.5. Since the maximum absolute lag in this example is 1, retiming only affects gates in

the first and the last cycles, leaving the rest of the circuits identical. As a result, signatures

generated by the unaffected gates should also be identical. Based on this observation, we

extend our s imilarity factor to sequential verification, called sequential similarity factor,

as follows. Assum e two netlists, ckt\ and ckti, where the total number of signals (wires)

in both circuits is N. After simulating C cycles, N x C signatures will be generated. Out of

those signatures, we distinguish M matching signatures. The sequential similarity factor

176

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

betw een ckt] and ckt2 is then M / (iV x C). In other words:

number o f matching signatures f o r all cycles
(10.2) sequential s imilarity j a c t o r = -- L------

total number o f signatures f o r all cycles

0000
10.10

0000

0000
0000 1 100

'0000
0000
0000

4̂
(b)

Figure 10.4: A retiming example: (a) is the original circuit, and (b) is its retimed version.
The tables above the wires show their signatures, where the nth row is for the
nth cycle. Four traces are used to generate the signatures, producing four bits
per signature. Registers are represented by black rectangles, and their initial
states are 0. As wire w shows, retiming may change the cycle that signatures
appear, but it does not change the signatures (signatures shown in boldface
are identical).

10.2.3 Overall Verification Methodology

As mentioned in Section 10.1.1, traditional verification is typically performed after a

batch of circuit modifications because it is very demanding and time consuming. As a

result, once a bug is found, it is often difficult to isolate the change that introduced the bug

177

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

h(aiO M®Q 2(w . 1 M.'ff'l

a U I K / J O 2 f a i \ Mia;S,S, S4S

Figure 10.5: Circuits in Figure 10.4 unrolled three times. The cycle in which a signal
appears is denoted using subscript “ @” . Retiming affects gates in the first
and the last cycles (marked in dark gray), while the rest of the gates arc
structurally identical (marked in light gray). Therefore, only the signatures
of the dark-gray gates will be different.

because hundreds or thousands of changes have been made. Similarity factor addresses

this problem by pointing out the changes that might have corrupted the circuit. As de­

scribed in previous subsections, a change that greatly affects the circuit’s function will

probably cause a sudden drop in the similarity factor. By monitoring the change in s im ­

ilarity factor after every circuit modification, engineers will be able to know when a bug

might have been introduced and traditional verification should be performed. Using the

techniques that we developed, we propose the InVerS incremental verification methodol­

ogy as shown in Figure 10.6, and it works as follows:

1. After each change to the circuit, the similarity factor between the new and the origi­

nal circuit is calculated. Running average and standard deviation o f the past 30 simi­

larity factors are used to determine whether the current similarity factor has dropped

178

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Incremental verification
(InVerS)Layout

Potential error

fails

Yes / Optimized
7 layout

No Timing/power
satisfied „

Automatic
error repair

(Co Re)

Similarity
factor

Optimization 3

Optimization 1

Optimization 2

Formal
equivalence

checking

Figure 10.6: Our InVerS verification methodology. It monitors every layout modification
to identify potential errors and calls equivalence checking when necessary.
Our functional error repair techniques can be used to correct the errors when
verification fails.

significantly. Empirically, we found that if the current similarity factor drops below

the average by more than two standard deviations, then it is likely that the change

introduced a bug. This number, however, may vary among different benchmarks and

should be empirically determined.

2. When similarity factor indicates a potential problem, traditional verification should

be performed to verify the correctness of the executed circuit modification.

3. If verification fails, our functional error repair tools can be used to repair the errors.

Since InVerS monitors drops in similarity factors, rather than the absolute values of

similarity factors, the structures of the netlists become less relevant. Therefore, InVerS

can be applied to a variety of netlists, potentially with different error-flagging thresholds.

As Section 10.3 shows, the similarity factor exhibits high accuracy for various practical

designs and allows our verification methodology to achieve significant speed-up over tra­

ditional techniques.

179

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10.3 Experimental Results

We implemented InVerS using OpenAccess 2.2 and OAGear 0.96 [140]. Our testcascs

were selected from IW L S’05 benchmarks [138] based on designs from ISC A S’89 and

OpenCores suites, whose characteristics are summarized in Table 10.1. In the table, the

average level of logic is calculated by averaging the logic level of 30 randomly selected

gates. The number of levels of logic can be used as an indication of the circuit’s com ­

plexity. We conducted all our experiments on an A M D Opteron 880 Linux workstation.

The resynthesis package used in our experiments is ABC from UC Berkeley [127], In this

section we report results on combinational and sequential verification, respectively.

Table 10.1: Characteristics of benchmarks,
Benchmark Cell

count
Ave. level

of logic
Function

SI 196 483 6.8 ISCAS’89
USBqrhy 546 4.7 USB 1.1 PHY
SASC 549 3.7 Simple asynchronous serial controller
SI 494 643 6.5 ISCAS’89
I2C 1142 5.5 I2C master controller
DES_ARBA 3132 15.1 DES cipher (area optimized)
SPI 3227 15.9 SPI IP
TV 80 7161 18.7 8-Bit microprocessor
MEM_ctrl 1 1440 10.1 WISHBONE memory controller
PCLbridge32 16816 9.4 PCI bridge
AES..core 20795 11.0 AES cipher
WB^conmax 29034 8.9 WISHBONE Conmax IP core
DES_perf 98341 13.9 DES cipher (performance optimized)

10.3.1 V erification o f C om b in ation a l O ptim iza tion s

Evaluation of the similarity factor: in our first experiment, we performed two types of

circuit modifications to evaluate the effectiveness of the similarity factor for combinational

verification. In the first type, we randomly injected an error into the circuit according to

180

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abadir’s error model (see Section 5.1.4), which includes the errors that occur frequently

in gate-level netlists. This mimics the situation where a bug has been introduced. In the

second type, we extracted a subcircuit from the benchmark, which was composed of 2-20

gates, and performed resynthesis of the subcircuit using ABC with the “resyn” command

[127]. This is similar to the physical synthesis or ECO flow described in Section 10.1.1,

where gates in a small region of the circuit are changed. We then calculated the similarity

factor after each circuit modification for both types of circuit modifications and compared

their difference. Thirty samples were used in this experiment, and the results are sum m a­

rized in Table 10.2. From the results, we observe that both types of circuit modifications

lead to decreases in similarity factor. However, the decrease is much more significant

when an error is injected. As d\ shows, the standardized differences in the means of most

benchmarks are larger than 0.5, indicating that the differences are statistically significant.

Since resynthesis tests represent the norm and error-injection tests are anomalies, we also

calculated d j using only SDr. As di shows, the mean similarity factor drops more than

two standard deviations when an error is injected for most benchmarks. This result shows

that the similarity factor is effective in predicting whether a bug has been introduced by

the circuit modification. Nonetheless, in all benchmarks, the maximum similarity factor

for error-injection tests is larger than the minimum similarity factor for resynthesis tests,

suggesting that the similarity factor cannot replace traditional verification and should be

used as an auxiliary technique.

The impact of cell count on the similarity factor: in order to study other aspects that may

affect the similarity factor, we further analyze our results by plotting the factors against

181

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Tabic 10.2: Statistics of sim ilarity factors for different types of circuit modifications.
Benchmark Similarity factor (%)

Resynthesized One error injected d l ‘h.
M eanr M in, M axr SD, Mean, M ine Max,, SD ,

USB.phy 99.849 99.019 100.000 0.231 98.897 91.897 99.822 1.734 0.969 4.128
SASC 99.765 99.119 100.000 0.234 97.995 90.291 99.912 2.941 1.115 7.567
I2C 99.840 99.486 100.000 0.172 99.695 98.583 100.000 0.339 0.567 0.843
SPI 99.906 99.604 100.000 0.097 99.692 96.430 99.985 0.726 0.518 2.191
TV 80 99.956 99.791 100.000 0.050 99.432 94.978 100.000 1.077 0.930 10.425
M PM _ctrl 99.984 99.857 100.000 0.027 99.850 97.699 100.000 0.438 0.575 4.897
PCLbridgc32 99.978 99.941 100.000 0.019 99.903 97.649 99.997 0.426 0.338 3.878
A ESxore 99.990 99.950 100.000 0.015 99.657 98.086 99.988 0.470 1.372 21.797
WB.conmax 99.984 99.960 100.000 0.012 99.920 99.216 99.998 0.180 0.671 5.184
DF.S-perf 99.997 99.993 100.000 0.002 99.942 99.734 100.000 0.072 1.481 23.969

Thirty tests were performed in this experiment, whose means, minimal values (Min), maximum
values (Max), and standard deviations (SD) are shown. The last two columns show the standardized
differences in the means: d\ is calculated using the average of both S D e and S D r, while dn uses
only S D r.

the cell counts of the benchmarks. To make the figure clearer, we plot the difference factor

instead of the similarity factor. We notice that by construction, the difference factor tends

to reduce with the increase in design size, which makes the comparison among different

benchmarks difficult. In order to compensate this effect, we assume that the bug density

is 1 bug per 1,000 gates and adjust our numbers accordingly. The plot is shown in Figure

10.7, where the triangles represent data points from error-injection tests, and the squares

represent resynthesis tests. The linear regression lines of two data sets are also shown.

From the figure, we observe that the difference factor tends to increase with the cell count

for error-injection tests. The increase for resynthesis tests, however, is less significant.

As a result, the difference factor of error-injected circuits (triangle data points) will grow

faster than that of resynthesized circuits (square data points) when cell count increases,

creating larger discrepancy between them. This result shows that the similarity factor

will drop more significantly for larger designs, making it more accurate when applied to

practical designs, which often have orders of magnitude more cells than the benchmarks

used in our tests.

182

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

o
o

<DOc
0.100<D

Q
Error-injection tests ■ Resynthesis tests

0.010

100 1000 10000 100000
Cell Count

Figure 10.7: The relationship between cell count and the difference factor. The linear
regression lines of the datapoints are also shown.

The impact oflevel of logic on the similarity factor: here we perform similar analysis

using the number of levels of logic as the independent variable. The slopes of the linear

regression lines for the error-injection tests and the resynthesis tests are 0.236 and 0.012,

respectively. The difference in slopes shows that the difference factor grows faster when

the number of levels of logic increases, indicating that the similarity factor will be more

effective when designs become more complicated. This behavior is preferable because

complicated designs are often more difficult to verify.

To study the impact of the number of levels of logic on the difference factor within

a benchmark, we plotted the difference factor against the number of levels of logic using

benchmark DES_perf in Figure 10.8. The logarithmic regression line for the error-injection

tests are also shown. As the figure suggests, the difference factor decreases with the in­

crease in the number of levels of logic. The reason is that gates with smaller numbers of

levels of logic have larger downstream logic, therefore larger numbers of signatures will

be affected. As a result, the difference factor will be larger. That the variance explained is

large (0.7841) suggests that this relation is strong. However, some benchmarks do not ex-

183

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

hibit this trend. For example, the variance explained for benchmark TV 18 is only 0.1438.

For benchmarks that exhibit this trend, the similarity factor provides a good predication of

the location of the bug: a larger drop in the similarity factor indicates that the bug is closer

to primary inputs.

30

* Error-injection tests
■ R esynthesis tests

20

15

10

5

0
0 10 155

Levels of Logic

Figure 10.8: The relationship between the num ber of levels of logic and the difference
factor in benchmark DES.perf. The x-axis is the level of logic that the circuit
is modified. The logarithmic regression line for the error-injection tests is
also shown.

To evaluate the effectiveness of our incremental verification methodology described in

Section 10.2.3, we assumed that there is 1 bug per 100 circuit modifications, and then we

calculated the accuracy of our methodology. We also report the runtime for calculating

the similarity factor and the runtime for equivalence checking of each benchmark. Since

most circuit modifications do not introduce bugs, we report the runtime when equivalence

is maintained. The results are summarized in Table 10.3. From the results, we observe

that our methodology has high accuracy for most benchmarks. In addition, the results

show that calculating the similarity factor is significantly faster than performing equiva­

lence checking. For example, calculating the similarity factor of the largest benchmark

(DES_perf) takes less than 1 second, while performing equivalence checking takes about

184

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

78 minutes. Due to the high accuracy of the similarity factor, our incremental verification

technique identifies more than 99% of errors, rendering equivalence checking unnecessary

in those cases and providing a more than 100X speed-up.

Table 10.3: The accuracy of our incremental verification methodology.
Benchmark Cell

count
Accuracy Runtime(sec)

EC SF
USB^phy 546 92.70% 0.19 <0.01
SASC 549 89.47% 0.29 <0.01
I2C 1142 95.87% 0.54 <0.01
SPI 3227 96.20% 6.90 <0.01
TV80 7161 96.27% 276.87 0.01
MEM_ctrl 11440 99.20% 56.85 0.03
PCLbridge32 16816 99.17% 518.87 0.04
AES core 20795 99.33% 163.88 0.04
WB_conmax 29034 92.57% 951.01 0.06
IDES perf 98341 99.73% 4721.77 0.19

1 bug per 100 circuit modifications is assumed in this experiment. Runtime for similarity-factor
calculation (SF) and equivalence checking (EC) is also shown.

10.3.2 Sequential Verification of Retiming

In our second experiment, we implemented the retiming algorithm described in [75]

and used our verification methodology to check the correctness of our implementation.

This methodology successfully identified several bugs in our initial implementation. In our

experience, most bugs were caused by incorrect netlist modifications when repositioning

the registers, and a few bugs were due to erroneous initial state calculation. Examples of

the bugs include: (1) incorrect fanout connection when inserting a register to a wire which

already has a register; (2) missing/additional register; (3) missing wire when a register

drives a primary output; and (4) incorrect state calculation when two or more registers arc

connected in a row.

To quantitatively evaluate our verification methodology, we ran each benchmark us-

185

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ing the correct implementation and the buggy version to calculate their respective SSFs,

where 10 cycles were simulated. The results are summarized in Table 10.4, which shows

that the sequential similarity factors for retimed circuits arc 100% for most benchmarks.

As explained in Section 10.2.2, only a few signatures should be affected by retiming.

Therefore, the drop in similarity factor should be very small, making sequential similarity

factor especially accurate for verifying the correctness of retiming. This phenomenon can

also be observed from Table 10.5, where the accuracy of our verification methodology is

higher than 99% for most benchmarks. To compare our methodology with formal equiv­

alence checking, we also show the runtime of a sequential equivalence checker based

on bounded-model-checking in Table 10.5. This result shows that our methodology is

more beneficial for sequential verification than combinational because sequential equiv­

alence checking requires much more runtime than combinational. Since the runtime to

compute sequential similarity factor remains small, our technique can still be applied after

every retiming optimization and thus eliminating most unnecessary sequential equivalence

checking calls.

Table 10.4: Statistics of sequential similarity factors for retiming with and without errors.
B enchm ark Sequentia l sim ilarity factor (%)

R etim ing w ithout errors R etim ing w ith errors
Mecmr Min,- Max,- SDr Meane Mine Maxe SDe

3.027 rS I 196 100.0000 100.0000 100.0000 0 .0000 98.3631 86.7901 100.0000
U SB_phy 100.0000 100.0000 100.0000 0 .0000 99 .9852 99.6441 100.0000 0.0664

I). 1305SA SC 99.9399 99.7433 100.0000 0.0717 99.9470 99.3812 100.0000
SI 494 100.0000 100.0000 100.0000 0 .0000 99.0518 94.8166 99 .5414 1.5548
I2C 100.0000 100.0000 100.0000 0.0000 99.9545 99.6568 100.0000 0.1074

D E S -A R E A 100.0000 100.0000 100.0000 0 .0000 95 .9460 69.1441 100.0000 6.3899

Thirty tests were performed in this experiment, whose means, minimal values (Min), maximum
values (Max), and standard deviations (SD) are shown.

186

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 10.5: Runtime of sequential similarity factor calculation (SSF) and sequential equiv­
alence checking (SEC).

Benchmark Cell
count

DFF
count

Accuracy Runtime (sec)
SEC SSF

SI 196 483 18 99.87% 5.12 0.42
U SB .phy 546 98 99.10% 0.41 0.34
SASC 549 117 95.80% 5.16 0.56
SI 494 643 6 99.47% 2.86 0.45
I2C 1142 128 99.27% 2491.01 1.43
DES_AREA 3132 64 99.97% 49382.20 14.50

Accuracy of our verification methodology is also reported, where 1 bug per 100 retiming optimiza­
tions is assumed.

10.4 Summary

In this work we developed a novel incremental equivalence verification system, InVerS,

with a particular focus on improving design quality and engineers’ productivity. The high

performance of InVerS allows designers to invoke it frequently, possibly after each circuit

transformation. This allows errors to be detected sooner, when they can be more easily

pinpointed and resolved. The scalability of InVerS stems from the use of fast simulation,

which can efficiently calculate our proposed similarity factor metric to spot potential dif­

ferences between two versions of a design. The areas where we detect a low similarity are

spots potentially hiding functional bugs that can be subjected to more expensive formal

techniques. The experimental results show that InVerS achieves a hundred-fold runtime

speed-up on large designs compared to traditional techniques for similar verification goals.

Our methodology and algorithms promise to decrease the number of latent bugs released

in future digital designs and to facilitate more aggressive performance optimizations, thus

improving the quality of electronic design in several categories.

187

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER XI

Post-Silicon Debugging and Layout Repair

M odem IC designs have reached unparalleled levels of overall complexity, and thor­

ough verification is becoming more difficult. Furthermore, the verification problem is

exacerbated by the highly competitive market which requires shorter time-to-markct. As

a result, design errors are more likely to escape verification in the early stage of the design

flow and are found after layout has been finished; or even worse, after the chip has been

taped-out. Needless to say, these errors must be fixed before the IC can reach the market.

Fixing such errors is often costly, especially when the chip has been taped-out. The key

to reduce this cost is to preserve as much previous effort spent on the design as possible.

In this chapter we present error-repair techniques that support the post-silicon debugging

methodology described in Section 4.4. However, these techniques can be applied to pre-

silicon layout optimization or error repair as well.

As mentioned in Section 2.4, design errors that occur post-silicon can be functional

or electrical, and various physical synthesis techniques may be used to fix such errors.

However, there is no metric to measure the impact of a physical synthesis technique on

the layout. In this chapter, we first define and explore the concepts of physical safeness

188

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and logical soundness to measure such an impact. We observe from this analysis that most

existing physical synthesis techniques do not allow post-silicon metal fix, and those sup­

port metal fix have limited error-repair capabilities. Therefore, we propose a Safeliesynth

technique that is more powerful yet has little impact on a layout. The next section then

describes how SafeResynth can be applied to repair post-silicon electrical errors. In addi­

tion, the section also illustrates our new functional and electrical error repair techniques.

This chapter concludes with experimental results and a brief summary.

11.1 Physical Safeness and Logical Soundness

The concept of physical safeness is used to describe the impact of an optimization tech­

nique on the placement of a circuit. Physically safe techniques only allow legal changes

to a given placement; therefore, accurate analysis such as timing and congestion can be

performed. Such changes are safe because they can be rejected immediately if the layout

is not improved. On the other hand, unsafe techniques allow changes that produce a tem ­

porarily illegal placement. As a result, their evaluation is delayed, and it is not possible

to reliably decide if the change can be accepted or must be rejected until later. Therefore,

the average quality of unsafe changes may be worse than that of accepted safe changes. In

addition, other physical parameters, such as wirelength or via count, may be impacted by

unsafe transformations.

Sim ilar to physical safeness, logical soundness is used to describe the perturbation to

the logic made by the optimization techniques. Techniques that do not change the logic

usually do not require verification. Examples for this type of optimization include gate

sizing and buffer insertion. Techniques that change the logic of the circuit may require

189

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

verification to ensure their correctness. For example, optimizations based on reconnect­

ing wires require verification because any bug in the optimization process may change

the circuit’s behavior. Since local changes to combinational logic can be verified easily

using equivalence checking, they are considered logically sound. However, small changes

to sequential logic often have global implications and are much more difficult to verify,

therefore we do not classify them as logically sound techniques. These techniques include

the insertion of clocked repeaters and the use of retiming.

11.1.1 Physically Safe Techniques

Symmetry-based rewiring is one of the few physical synthesis techniques that is

physically safe in nature. As described in Chapter VII, it exploits symmetries in logic

functions, looking for pin reconnections that improve the optimization objective. For ex­

ample, the inputs to an AND gate can be swapped without changing its logic function.

Since only wiring is changed in this technique, the placement is always preserved. An

example of symmetry-based rewiring is given in Figure 11.1(a).

The advantage of physically safe techniques is that the effects of any change arc imm e­

diately measurable, therefore the change can be accepted or rejected reliably. As a result,

circuit parameters will not deteriorate after optimization and no timing convergence prob­

lem will occur. However, the improvement gained from these techniques is often limited

because they cannot aggressively modify the logic or use larger-scale optimizations. For

example, in [28] timing improvement measured before routing is typically less than 10%.

190

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11.1.2 Physically Unsafe Techniques

Traditional physical synthesis techniques are physically unsafe because they create

cell overlaps and thus prevent immediate evaluation of changes. Although some of these

techniques can be applied in a safe way, they may lose their strength. It follows that

existing physical synthesis tools usually rely on unsafe techniques, planning to correct

potentially illegal changes after the optimization phase is complete. A classification of

these techniques and their impact on logic are discussed below.

Gate sizing and buffer insertion are two important techniques that do not change the

logic, as shown in Figure 11.1(b) and Figure 11.1(d). Gate sizing chooses the size of the

gates carefully so that signal delay in wires can be balanced with gate delay, and the gates

have enough strength to drive the wires. Buffer insertion adds buffers to drive long wires.

The work by Kannan et al. [69] is based on these techniques.

Gate relocation moves gates on critical paths to better locations and also does not

change the logic. An example of gate relocation is given in Figure 11.1(c). Ajami el

al. [4] utilize this technique by performing timing-driven placement with global routing

information using the notion of movable Steiner points. They formulate the simultaneous

placement and routing problem as a mathematical program. The program is then solved

by Han-Powell method.

Gate replication is another technique that can improve circuit timing without chang­

ing the logic. As Figure 11.1(e) shows, by duplicating g5, the delay to g l and g9 can be

reduced. FIrkic et al. [60] proposed a placement-coupled approach based on such tech­

nique. Given a placed circuit, they first extract replication trees from the critical paths

191

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

after timing analysis, and then they perform embedding and post-unification to determine

the gates that should be duplicated as well as their locations. Since duplicated gates may

overlap with existing gates, at the end of the process, timing-driven legalization is ap­

plied. Although their approach improves timing by 1-36%, it also increases route length

by 2-28%.

iT "

gi ” g2 gi

H a

(a) Symmetry-based rewiring. (b) Gate sizing.

W

gi :g2 g3 ;|g4
J '

* '

1 g4

gs

gs

(c) Gate relocation. (d) Buffer insertion.

!
l_
;g4

97

g2 i g3

g8

)6

1; g21 g3

Ni H
%) 1 g4 p l f

g7~lft P -j 3 -

ge

gs

(e) Gate duplication.

Figure 11.1: Several distinct physical synthesis techniques. Newly-introduced overlaps
are removed by legalizers after the optimization phase has completed.

T rad itional rew iring techniques based on addition or removal o f redundant wires arc

not physically safe. The basic idea is to add one or more redundant wires to make a target

wire redundant so that it becomes removable. Since gates must be modified to reflect the

changes in wires, cell overlaps may occur. The work in [40] utilizes this technique using

192

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

an ATPG reasoning approach.

Optimization techniques discussed so far can be made physically safe by rejecting all

changes that create new overlaps. For example, this would allow inserting buffers only in

overlap-free sites. However, the prevailing practice for these and many other optimizations

is to first allow overlaps and then call a legalizer to fix the overlaps. According to our

definition, this is physically unsafe. In other words, depending on how many overlaps are

introduced, how powerful and how accurate the legalizer is, the physical parameters of the

circuit may improve or deteriorate.

T rad itional restru ctu rin g focuses on directing the synthesis process using timing in­

formation obtained from a placed or routed circuit. It is more aggressive in that it may

change the logic structure as well as the placement. This technique reflects the fact that

timing-driven synthesis requires accurate timing, which can only be obtained from a placed

circuit. However, a circuit cannot be placed unless it is synthesized. Restructuring attempts

to bridge the gap between these two different stages in circuit design.

A typical restructuring flow includes: (1) obtaining accurate timing analysis results

from a placed or routed design, (2) identifying critical paths in the design, (3) selecting

gates from the critical paths to form critical regions, (4) performing timing-driven resyn­

thesis on the critical regions, and (5) calling legalizers to remove gate overlaps that may

be created during the process. This process is repeated until timing closure is achieved.

The work by Lu et al. [81], Vaishnav et al. [I l l] and Changfan et al. [41] is all based on

this flow with emphasis on different aspects. For example, the work by Vaishnav focuses

on eliminating late-arriving events identified by symbolic simulation, while Changfan an-

193

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

alyzes the effects of routing on timing and utilizes them in his resynthesis and incremental

placement engines.

Traditional restructuring is usually physically unsafe. For example, evaluation of

new cell locations cannot be done reliably for technology-independent restructuring un­

less technology mapping is also performed. Moreover, restructuring techniques based on

AIGs are likely to be unsafe because node mergers performed in an AIG may distort a

given placed circuit [127]. As a result, the effects of the changes are not immediately

measurable. Although carefully designed techniques can be used to alleviate this prob­

lem [72, 78, 83], it is difficult to be eliminated altogether. The strength and safeness of

these techniques are summarized in Table 11.1. The two physically safe techniques will

be adapted to repair electrical errors in Section 11.4.

Table 11.1: Comparison of a range of physical synthesis techniques in terms of physical
safeness and optimization potential.

Techniques Physical
safeness

Optimization
potential

Symmetry-based rewiring Safe Low
SafeResynth Safe Medium
ATPG-based rewiring, buffer insertion,
gate sizing, gate relocation

Unsafe* Low

Gate replication Unsafe* Medium
Restructuring Unsafe High

Low potential means that only local optimizations are possible, and high potential means that large
scale optimizations are possible. *Note: some of these techniques could be made safe but popular
implementations use them in an unsafe fashion, allowing gate overlap.

11.2 New Resynthesis Technique — SafeResynth

Our safe physical synthesis approach, SafeResynth, is discussed in detail in this sec­

tion. It uses signatures (see Section 5.1.1) produced by simulation to identify potential

194

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

resynthesis opportunities, whose correctness are then validated by equivalence checking

[127]. Since our goal is layout optimization and error repair, we can prune some of the op­

portunities based on their improvement potential before formally verifying them. To this

end, we propose pruning techniques based on physical constraints and logical compatibil­

ity among signatures. SafeResynth is powerful in that it does not restrict resynthcsis to

small geometric regions or small groups of adjacent wires. It is safe because the produced

placement is always legal and the effect can be evaluated immediately.

11.2.1 Terminology

A signature is a bit-vector of simulated values of a wire. Given the signature s, of a

wire wt to be resynthesized, and a certain gate g i , a wire w\ with signature .vi is said to

be compatible with wt if it is possible to generate st using gi with signature s\ as one of

its inputs. In other words, it is possible to generate w, from w\ using g i . For example, if

.Vi = 1 , ^ = 1 a n d g i = A N D , then w\ is compatible with wt using gi because it is possible

to generate 1 on an A N D ’s output if one of its inputs is 1. However, if .vj = 0, then w\ is

not compatible with wt using gi because it is impossible to obtain 1 on an A N D ’s output

if one of its inputs is 0 (see Figure 11.4).

A controlling value of a gate is the value that fully specifies the gate’s output when

applied to one input of the gate. For example, 0 is the controlling value for AND because

when applied to the AND gate, its output is always 0 regardless of the value of other inputs.

When two signatures are incompatible, that can often be traced to a controlling value in

some bits of one of the signatures.

195

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11.2.2 SafeResynth Framework

The SafeResynth framework is outlined in Figure 11.2, and an example is shown in

Figure 11.3. In this section we illustrate how timing can be optimized; however, Safe­

Resynth can also be used to optimize other circuit parameters or repair post-silicon errors.

Initially, l ibrary contains all the gates to be used for rcsynthesis. We first generate a

signature for each wire by simulating certain input patterns. In order to optimize timing,

wiret in line 2 will be selected from wires on the critical paths in the circuit. Line 3 restricts

our search of potential resynthesis opportunities according to certain physical constraints,

and lines 4-5 further prune our search space based on logical soundness. After a valid

resynthesis option is found, we try placing the gate on various overlap-free sites close to

a desired location in line 6 and check their timing improvements. In this process, more

than one gate may be added if there are multiple sinks for wiret , and the original driver of

wirei may be replaced. In line 10 we remove redundant gates and wires that may appear

because wire'ts original driver may no longer drive any wire, which often initiates a chain

of further simplifications.

11.2.3 Search-Space Pruning Techniques

In order to resynthesize a target wire (wiret) using an n-input gate in a circuit con­

taining in wires, the brute force technique needs to check combinations of possible

inputs, which can be very t im e-consum ing for n > 2. Therefore it is im portan t to prune

the number of wires to try.

When the objective is to optimize timing, the following physical constraints can be

used in line 3 of the framework: (1) wires with arrival time later than that of wire, arc

196

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1. Simulate patterns and generate a signature for each wire.
2. Determine wire, to be resynthesized and retrieve wiresc from the circuit.
3. Prune wiresc according to physical constraints.
4. Foreach gate £ library with inputs selected from combinations of compatible

wires £ wiresc.
5. Check if wire,'s signature can be generated using gate with its inputs’ signatures.

If not, try next combination.
6. If so, do restructuring using gate by placing it on overlap-free sites close to the

desired location.
7. If timing is improved, check equivalency. If not equivalent, try next combination

of wires.
8. If equivalent, a valid restructuring is found.
9. Use the restructuring with maximum delay improvement for resynthesis.

10. Identify and remove gates and wires made redundant by resynthesis.

Figure 11.2: The SafeResynth framework.

discarded because resynthesis using them will only increase delay; and (2) wires that arc

too far away from the sinks of wiret are abandoned because the wire delay will be too

large to be beneficial. We set this distance threshold to twice the H PW L (Half-Perimeter

WireLength) of wiret .

In line 4 logical compatibility is used to prune the wires that need to be tried. Wires not

compatible with wiret using gate are excluded from our search. Figure 11.4 summarizes

how compatibilities are determined given a gate type, the signatures of wire, and the wire

to be tested {wire |).

To accelerate compatibility testing, we use the one-count, i.e., the number of Is in the

signature, to filter out unpromising candidates. For example, if gate— OR and the onc-

count of wire, is smaller than that of wire), then these two wires are incompatible because

OR will only increase one-count in the target wire. This technique can be applied before

bit-by-bit compatibility test to detect incompatibility faster.

Our prunedsearch algorithm that implements lines 4-5 of the framework is outlined in

197

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Input vectors
I. I I I4 I,
0 1 1 0 0
1 1 1 0 1
1 1 0 0 0
1 0 1 0 0

\ 0110
2

00101101
3

0000
01004

0100 W-
5

w 2': g
L : 6 n l

w - "

‘\ 0 1 1 0

/ W nl

W 7 1 g
Z i n2

W 3^................. "

\ 0 0 0 0

Restructuring
options

Figure 11.3: A restructuring example. Input vectors to the circuit are shown on the left.
Each wire is annotated with its signature computed by simulation on those
test vectors. We seek to compute signal wi by a different gate, e.g., in terms
of signals W2 and W3 . Two such restructuring options (with new gates) arc
shown as g n] and gn2 . Since gn\ produces the required signature, equivalence
checking is performed between wn\ and wi to verify the correctness of this
restructuring. Another option, gn2 , is abandoned because it fails our com pat­
ibility test.

Gate type wiret wire 1 Result
NAND 0 0 Incompatible
NOR 1 1 Incompatible
AND 1 0 Incompatible
OR 0 1 Incompatible

XOR/XNOR Any Any Compatible

Figure 11.4: Conditions to determine compatibility: wire, is the target wire, and wire\ is
the potential new input of the resynthesized gate.

Figure 11.5. It is specifically optimized for two-input gates and is a special version of the

CDS algorithm shown in Section 6.3. Wiret is the target wire to be resynthesized, wiresc

are wires selected according to physical constraints, and library contains gates used for

resynthesis. All wires in the fanout cone of wire, are excluded in the algorithm to avoid

the formation of combinational loops.

In Figure 11.5, function compatible returns wires in wires f, that are compatible with

wire, given gale. Function get -.potent iaLwires returns wires in wires d that arc capable of

generating the signature of wiret using gate and wire], and its algorithm is outlined in Fig-

198

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Function p ru n e d .se a rc h (w ire , , w iresc , l ibrary)
1 foreach g a te 6 l ibrary
2 wiresg = co m p a t ib le (w ire t ,w ire sc ,g a te) \
3 foreach w ir e 1 € w iresg
4 w ires j = get .p o te n t ia l .w i r e s (w ir e , , w i r e \ , w i r e s g a t e);
5 foreach wireo € wiresci
6 restructure using g a te , wire 1 and wirep,

Figure 11.5: The pruned_search algorithm.

ure 11.6. For XOR and XNOR, the signature of the other input can be calculated directly,

and wires with signatures identical to that signature are returned using the signature hash

table. For other gate types, signatures are calculated iteratively for each wire (denoted as

wire2) using wire 1 as the other input, and the wires that produce signatures which match

wire'ts are returned.

Function get . p o te n t ia l .w i r e s (w ire , , w i r e \ , w ires g , ga te)
1 if (g a te — XOR/XNOR)
2 w iresd= sig-hash[wiret .signature XOR/XNOR wire \.signature]-,
3 else
4 foreach w ire2 6 wiresg
5 if (wire, .signature == g a te .eva luate (wire \ .signature, w ire i .s ign a tu re))
6 wiresd = wiresd U w ire2 ;
7 return wires,/',

Figure 11.6: Algorithm lor function get_potentiaLwires. XOR and XNOR are considered
separately because the required signature can be calculated uniquely from
wiret and wire \.

11.3 Physically-Aware Functional Error Repair

In this section we describe our Physically-Aware Functional Error Repair (PAPER)

framework, which is based on the CoRe framework (see Chapter V). PAFER automatically

diagnoses and fixes logic errors in the layout by changing its combinational portion. In

this context, we assume that state values are available, and we treat connections to the

flip-flops as primary inputs and outputs. To support the layout change required in logic

199

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

error repair, we also develop a Physically-Aware ReSynthesis (PARSyn) algorithm.

11.3.1 T he P A F E R F ra m e w o rk

The algorithmic flow of our PAFER framework is outlined in Figure 11.7. The en­

hancements to make the CoRe framework physically-aware are marked in boldface. Note

that unlike CoRe, the circuits (ckterr, cktnew) in PAFER now include layout information.

framework PAFER(cklerr,v e c to r sp , vec to rse , cktnew)
1 calculate ckterr's initial signatures using v e c to rsp and vec torse \
2 f i x e s — d iagnose(ck terr, vectors e);
3 foreach f i x € f ix e s
4 cktsnew = PARSyn(fix,cktcrr);
5 if (every circuit in ckts„ew violates physical constraints)
6 continue;
7 cktnew — the first circuit in ck tsnew that does not violate physical constraints;
8 cou n terexam ple — v e r i f y (c k tnew)\
9 if (counterexam ple is empty)

10 return (cktnew)\
11 else
12 if (check(cklen-, cou n terexam ple) fails)
13 f ix e s = red iagnose(ck terr, coun terexam ple , f i x e s) ’,
14 simulate cou n terexam ple and update ck t’s signatures;

Figure 11.7: The algorithmic flow of the PAFER framework.

The inputs to the framework include the original circuit (ckterr) and the test vectors

(vectorsp, vectorse). The output of the framework is a circuit (cktnew) that passes verifica­

tion and does not violate any physical constraints. In line 2 of the PAFER framework, the

error is diagnosed, and the fixes are returned in f ixes. Each fix contains one or more wires

that are responsible for the circuit’s erroneous behavior and should be resynthesized. In

line 4 of the PAFER framework, PARSyn is used to generate a scl of new resynthesized

circuits (cktnew), which will be described in the next subsection. These circuits arc then

checked to determine if any physical constraint is violated. For example, whether it is

possible to implement the change using metal fix. In lines 5-6, that no circuit complies

200

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

with the physical constraints means no valid implementation can be found for the current

f ix. As a result, the f i x will be abandoned and the next f i x will be tried. Otherwise, the

first circuit that does not violate any physical constraints is selected in line 7, where the

circuits in cktsnew can be pre-sorted using important physical parameters such as timing,

power consumption, or reliability. The functional correctness of this circuit is then verified

as in the original CoRe framework. Please refer to Chapter V for more details on this part

of the framework.

11.3.2 The PARSyn Algorithm

The resynthesis problem in post-silicon debugging is considerably different from tra­

ditional ones because the numbers and types of spare cells are often limited. As a result,

traditional resynthesis flows may not work because technology mapping the resynthesis

function using the limited number of cells can be difficult. Even if the resynthesis function

can be mapped, implementing the mapped netlist may still be infeasible due to other phys­

ical limitations. Therefore, it is desirable in post-silicon debugging that the resynthesis

technique can generate as many resynthesized netlists as possible.

To support this requirement, our PARSyn algorithm exhaustively tries all possible

combinations of spare cells and input signals in order to produce various resynthesized

netlists. To reduce its search space, we also develop several pruning techniques based on

logical and physical constraints. Although exhaustive in nature, our PARSyn algorithm is

still practical because the numbers of spare cells and possible inputs to the resynthesized

netlists are often small in post-silicon debugging, resulting in a significantly smaller search

space than traditional resynthesis problems.

201

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Our PARSyn algorithm is illustrated in Figure 11.8, which tries to resynthesize every

wire (wire,) in the given f ix . In line 2 of the algorithm, getSpareCel l searches for spare

cells within RANGE and returns the results in spareCells, where RANGE is a distance

parameter given by the engineer. This parameter limits the search of spare cells to those

within RANGE starting from wire,'s driver. One way to determine RANGE is to use the

m aximum length o f a wire that FIB can produce. A subcircuit, ckt[ocai, is then extracted by

extractSubCkt in line 3. This subcircuit contains the cells which generate the signals that

are allowed to be used as new inputs for the resynthesized netlists. A set of resynthesized

netlists (resynN etsnew) is then generated by exhaustiveSearch in line 4. The cells in those

netlists are then “placed” using spare cells in the layout to produce new circuits (cktsnew),

which are returned in line 6.

function P A R S y n (f ix ,c k t)
1 foreach wire, 6 f i x
2 s p a re C e l l s = g e tS p a r e C e l l (w ir e , , ck t , RANGE)',
3 ckt iocai = extractSubCkt (wire, , c k t , R A N G E)]
4 resyn N etsnew - exhaustiveSearch(1, s p a re C e l ls , cktincai);
5 cktsnew = p la c eR esy n N et lis t (ckt ,resyn N els new)\
6 return (cktsnew)\

Figure 11.8: The PARSyn algorithm.

To place the cells in a resynthesized netlist, we first sort spare cells according to their

distances to wire,A driver. Next, we map each cell in the resynthesized netlist, the one

closer to the netlist’s output first, to the spare cell closest to wire , 's driver. The reason

behind this is that we assume the original driver is placed at a relatively good location.

Since our resynthesized netlist will replace the original driver, we want to place the cell

that generates the output signal of the resynthesized netlist as close to that location as

202

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

possible. The rest of the cells in the resynthesized netlist are then placed using the spare

cells around that cell.

The exhaustiveSearch function called in the PARSyn algorithm is given in Figure 1 1.9.

This function exhaustively tries combinations of different cell types and input signals in

order to generate resynthesized netlists. The inputs to the function include the current logic

level {logic), available spare cells (spareCel ls), and a subcircuit {cktioca\) whose cells can

be used to generate new inputs to the resynthesized netlists. The function returns valid

resynthesized netlists in net list snew.

function exhaustiveS earch ileve l , s p a r e C e l l s , cktiocaj)
1 if (level == M A X L E V E L)
2 return all cells in ckti0CC,i\
3 foreach c e l lT y p e £ v a l id C e l lT y p e s
4 if (c h e c k S p a re C e l l (sp a re C e l l s ,c e l lT y p e) fails)
5 continue;
6 spareC e lls [ce l lT ype] .cou n t-
7 n etl is tss„h ~ exhaustiveSearchilevel -1- 1. sp a re C e lls . cktimai)\
8 n etl is tsn — g en e r a te N e w C k ts (c e l lT y p e , netl is ts);
9 net list s„ = checkN e t l i s t {n e t l i s tsn , spareCells)',

10 n etl is ts new = net l is ts new U net lis t sn\
11 if (leve l == 1)
12 rem ove!ncorrect (net I is tsnew) ;
13 return net list snew',

Figure 11.9: The exhaustiveScarch function.

In the function, MAXLEVEL is the maximum depth of logic allowed to be used by the

resynthesized netlists. So when level equals to MAXLEVEL, no further search is allowed,

and all th e ce lls in ckti„cai are re tu rn e d (l ines 1-2). In l ine 3, the sea rch s tarts b ra n c h in g by

trying every valid cell type, and the search is bounded if no spare cells are available for that

cell type (lines 4-5). If a cell is available for resynthesis, it is deducted from the spareCells

repository in line 6. In line 7 the algorithm recursively generates subnetlists for the next

203

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

logic level, and the results are saved in n e t l i s t New netlists (netlistsn) for this logic

level are then produced by generateNewCkts. This function produces new netlists using a

cell with i yp t - ce U T ype and inputs from combinations of subnetlists from the next logic

level. In line 9 checkNetlist checks all the netlists in netlistn and removes those that cannot

be implemented using the available spare cells. All the netlists that can be implemented

are then added to a set of netlists called netlistsnew. If level is 1, the logic correctness of the

netlists in netlistsnew is checked by removelncorrect, and the netlists that cannot generate

the correct resynthesis functions will be removed. The rest of the netlists will then be

returned in line 13. Note that BUFFER should always be one of the valid cell types in

order to generate resynthesized netlists whose logic levels are smaller than M AXLEVEL.

The BUFFERS in a resynthesized netlist can be implemented by connecting their fanouts

to their input wires without using any spare cells.

To bound the search in exhaustiveSearch, we also used the logic pruning techniques

described in Section 6.3. To further reduce the resynthesis runtime, we use netlist connec­

tivity to remove unpromising cells from our search pool, e.g., cells that are too far away

from the erroneous wire. In addition, cells in the fanout cone-of the erroneous wire are

also removed to avoid the formation of combinational loops.

11.4 Automating Electrical Error Repair

T h e e lec tr ica l e r ro rs fo u n d p o s l - s i l ic o n are u su a l ly u n l ik e ly to h a p p e n in any g iven re ­

gion of a circuit, but become statistically significant in large chips. To this end, a slight

modification of the affected wires has a high probability to successfully repair the problem.

Being able to check this by performing accurate simulation and comparing several altcr-

204

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

native fixes also increase the chances of successfully repairing the circuit even further. In

this section we first describe two techniques that can automatically find a variety of elec­

trical error repair options, including SymWire and SafeResynth. These techniques arc able

to generate layout transformations that modify the erroneous wires without affecting the

circuit’s functional correctness. Next, we study three cases to show how our techniques

can be used to repair electrical errors.

11.4.1 The SymWire Rewiring Technique

Symmetry-based rewiring changes the connections between gates using symmetries.

An example is illustrated in Figure 11.11(b), where the inputs to cells gi and g2 are

symmetric and thus can be reconnected without changing the circuit’s functionality. The

change in connections modifies the electrical characteristics of the affected wires and can

be used to fix electrical errors. Since this rewiring technique does not perturb any cells, it

is especially suitable for post-silicon debugging. In light of this, we propose an electrical

error repair technique using the symmetry-based rewiring method presented in Chapter

VII. This technique is called SymWire and its algorithm is outlined in Figure 11.10. The

input to the algorithm is the wire (w) that has electrical errors, and this algorithm changes

the connections to the wire using symmetries. In line 1, we extract various subcircuits

(subCircuits) from the original circuit, where each subcircuit has at least one input con­

necting to w. Currently, we extract subcircuits composed of 1-7 cells in the fanout cone

of w using breadth-first search and depth-first search. For each extracted subcircuit, which

is saved in ckt, we detect as many symmetries as possible using function symmetry Detect

(line 3). If any of the symmetries involve a permutation of w with another input, we swap

205

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

function Sym W ire(w)
1 extract subCircuits with w as one of the inputs;
2 foreach ckt e subCircuits
3 sym = sym m etry D e te c t (ckt)\
4 if (sym involves permutation of w with another input)
5 reconnect wires in ckt using sym\

Figure 11.10: The SymWire algorithm.

the connections to change the electrical characteristics of w. The symmetry detector is

implemented using the techniques presented in Section 7.2.

11.4.2 Adapting SafeResynth to Perform Metal Fix

Some electrical errors cannot be fixed by modifying a small number of wires, and a

more aggressive technique is required. In this subsection we show how the SafeResynth

technique described in Section 11.2 can be adapted to perform post-silicon metal fix.

Assume that the error is caused by wire w or the cell g that drives w. We first use

SafeResynth to find an alternative way to generate the same signal that drives w. In post­

silicon debugging, however, we only rely on the spare cells that are embedded into the

design but not connected to other cells (see Section 2.4). Therefore we do not need to

insert new cells, which would be impossible to implement with metal fix. Next, we drive

a portion or all of vv’s fanouts using the new cell. Since a different cell can also be used

to drive w, we can change the electrical characteristics of both g and w in order to fix the

error. Note that SafeResynth subsumes cell relocation; therefore, it can also find layout

t r a n s fo rm a t io n s in v o lv in g re p la c e m e n ts o f cells .

206

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11.4.3 Case Studies

In this subsection we show how our techniques can repair drive strength and coupling

problems, as well as avoid the harm caused by the antenna effect. Note that these case

studies only serve as examples, and our techniques can also be applied to repair many

other errors.

Drive s treng th problems occur when a cell is too small to propagate its signal to all the

fanouts within the designed timing budget. Our SafeResynth technique solves this prob­

lem by finding an alternative source to generate the same signal. As illustrated in Figure

11.11(a), the new source can be used to drive a fraction of the fanouts of the problematic

cell, reducing its required driving capability.

4

(a)

4

(b)

Figure 11.11: Case studies: (a)g i has insufficient driving strength, and SafeResynth uses a
new cell, gnew, to drive a fraction of gi ’s fanouts; (b) SymWire reduces cou­
pling between parallel long wires by changing their connections using sym ­
metries, which also changes metal layers and can alleviate the antenna effect
(electric charge accumulated in partially-connected wire segments during
the manufacturing process).

C oupling between long parallel wires that are next to each other can result in delayed

signal transitions under some conditions and also introduces unexpected signal noise. Our

207

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

SafeResynth technique can prevent these undesirable phenomena by replacing the driver

for one of the wires with an alternative signal source. Since the cell that generates the

new signal will be at a different location, the wire topology can be changed. Alternatively,

SymWire can also be used to solve the coupling problem. As shown in Figure 11.11(b),

the affected wires no longer travel in parallel for long distances after rewiring, which can

greatly reduce their coupling effects.

Antenna effects are caused by the charge accumulated during semiconductor m anu­

facturing in partially-connected wire segments. This charge can damage and permanently

disable transistors connected to such wire segments. In less severe situations, it changes

the transistors’ behavior gradually and reduces the reliability of the circuit. Because the

charge accumulated in a metal layer will be eliminated when the next layer is processed,

it is possible to split the total charge with another layer by breaking a long wire and going

up or down one layer through vias. Based on this observation, metal jumpers [53] have

been used to alleviate the antenna effect, where vias are intentionally inserted to change

layers for long wires. However, the new vias will increase the resistivity of the nets and

slow down the signals. To this end, our SymWire technique can find transformations that

change the metal layers of several wires to reduce their antenna effects. In addition, it al­

lows simultaneous optimization of other parameters, such as the coupling between wires,

as shown in Figure 11.11 (b).

11.5 Experimental Results

To measure the effectiveness of the components in our FogClear post-silicon method­

ology, we conducted two experiments. In the first experiment we apply PAFER to repair

208

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

functional errors in a layout; while the second experiment evaluates the effectiveness of

SymWire and SafeResynth in finding potential electrical fixes. To facilitate metal fix, we

pre-placed spare cells uniformly using the whitespace in the layouts, and they occupied

about 70% of each layout’s whitespace. These spare cells included INVERTERS, as well

as two-input AND, OR, XOR, NAND, and NOR gates. In the PAPER framework, we

set the RANGE parameter to 50/jm and M AXLEVEL to 2. Under these circumstances,

around 45 spare cells (on average) are available when resynthesizing each signal. All the

experiments were conducted on an AM D Opteron 880 workstation running Linux. The

benchmarks were selected from OpenCores [131] except DLX, Alpha, and EXUJECL.

DLX and Alpha were internally developed benchmarks, while EXUJECL was the control

unit of OpenSparc’s EXU block [142], Our benchmarks are representative because they

cover various categories of modern circuits, and their characteristics are summarized in

Table 11.2. In the table, “#FFs” is the number of flip-flops and “#Cells” is the cell count

of each benchmark. To produce the layouts for our experiments, we first synthesized the

RTL designs with Cadence RTL Compiler 4.10 using a cell library based on the 0.18/jm

technology node. We then placed the synthesized netlists with Capo 10.2 [21] and routed

them with Cadence NanoRoute 4.10.

11.5.1 Functional Error Repair

To evaluate our PAFER framework, we chose several benchmarks and injected func­

tional errors at either the gate level or the RTL. At the gate level we injected bugs that

complied with Abadir’s error model (see Section 5.1.4), while those injected at the RTL

were more complex errors (DLX contained real bugs). We collected input patterns for the

209

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 11.2: Characteristics of benchmarks.
Benchm ark Description #FFs #Cells
Stepper Stepper M otor Drive 25 226
SA SC Sim ple A synchronous Serial

Controller
117 549

EXU_ECL O penSparc EX U control unit 351 1460
Pre_norm Part o f FPU 71 1877
M iniRISC M iniR ISC full chip 887 6402
AC97_ctrl W ISH B O N E AC 97 C ontroller 2199 11855
U SBT’unct USB function core 1746 12808
MD5 M D5 full chip 910 13311
DLX 5-stage pipeline CPU running

M IPS-Lite ISA
2062 14725

PCI_bridge32 PCI bridge 3359 16816
AES_core AES Cipher 530 20795
WB ..con max W ISH B O N E C onm ax IP Core 770 29034
A lpha 5-stage pipeline CPU running

A lpha ISA
2917 38299

Ethernet E thernet IP core 10544 46771
DES_perf DES core 8808 98341

benchmarks from several traces generated by verification (some o f the traces were reduced

by Butramin), and a golden model was used to generate the correct output responses and

state values for error diagnosis and correction. Note that the golden model can be a high-

level behavior model because we do not need the simulation values for the internal signals

of the circuit. The goal of this experiment was to fix the layout of each benchmark so that

the circuit produces correct output responses for the given input patterns. This is similar

to the situation described in Section 2.4 where fixing the observed errors allows the silicon

die to be used for further verification. If the repaired die fails further verification, new

counterexamples will be used to refine the fix as described in the PATER framework. The

results are summarized in Table 11.3, where “#Patterns” is the number of input patterns

used in each benchmark, and “#Resyn. cells” is the number of cells used by the resyn­

thesized netlist. In order to measure the effects of our fix on important circuit parameters,

210

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 11.3: Post-silicon functional error repair results.
B enchm ark Bug descrip tion #Pat- #R esyn. C hanges after repair R untim e

tem s cells #V ias W L D elay (sec)
S A S C (G L l) M issing w ire 90 2 0.29% 1.27% -0.13% 9.9
SA SC (G L 2) Incorrect gate 66 1 0.13% 0.33% 0.00% 4.4

EXU.JECL
(G L1)

Incorrect gate 90 N o valid fix w as found 158.71

E X U JiC L
(G L2)

W rong w ire 74 0 0.01% 0.03% 0.00% 145.3

P re-norm
(G L I)

Incorrect w ire 46 2 0.10% 0.24% -0.05%o 38.92

D L X (G L l) Incorrec t gate 46 0 0.38% 0.02% 0.00% 17245
D L X (G L 2) A dditional w ire 33 0 -0 .13% -0.04% -0.15% 12778

Pre_norm
(R T L 1)

R educed OR rep laced by
reduced A N D

672 3 0.19% 0.38% 0.57% 76.24

M D 5(R T L1) Inco rrec t state transition 201 3 0.02% 0.03% -0.02% 29794
D L X (R T L l) SLTIU inst. selects the

w rong A LU operation
2208 N o valid fix was found 12546

D LX (R T L2) JAL inst. leads to incorrect
bypass from M EM stage

1536 0 0.00% 0.00% 0.03% 8495

D LX (R T L3) Incorrect forw arding for
A L U +IM M inst.

1794 0 0.00% 0.00% 0.03%. 13807

D LX (R T L4) D oes not w rite to re g 3 1 1600 N o valid fix was found 7723
D LX (R T L5) If RT = 7 m em ory w rite

is incorrect
992 0 0.00% 0.00%- 0.00% 5771

The bugs in the upper half were injected at the gate level, while those in the low er half were injected
at the RTL. Som e errors can be repaired by simply reconnecting wires and do not require the use
of any spare cell, as shown in Colum n 4.

we also report the changes in via count (“#Vias”), wirelength (“WL”), and m aximum de­

lay (“Delay”) after the layout is repaired. These numbers were collected after running

NanoRoute in its ECO mode, and then they were compared to those obtained from the

original layout. The maximum delay was reported by NanoRoute’s timing analyzer.

The results in Table 11.3 show that our techniques can successfully repair logic errors

for more than 70% of the benchmarks. We analyzed the benchmarks that could not be re­

paired and found that in those benchmarks, cells that produce the required signals were too

far away and were excluded from our search. As a result, our resynthesis technique could

not find valid fixes. In practice, this also means that the silicon die cannot be repaired

211

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

via metal fix. The results also show that our error-repair techniques may change physical

parameters such as via count, wirelength, and maximum delay. For example, the wirc-

length of SA SC (G L l) increased by more than 1 % after the layout was repaired. However,

it is also possible that the fix we performed will actually improve these parameters. For

example, the via count, wirelength, and maximum delay were all improved in DLX(GL2).

In general, the changes in these physical parameters are typically small, showing that our

error-repair techniques have few side effects.

11.5.2 Electrical Error Repair

We currently do not have access to tools that can identify electrical errors in a layout.

Therefore, in this experiment we evaluate the effectiveness o f our electrical error repair

techniques by computing the percentages of wires where at least one valid transforma­

tion can be found. To this end, we selected 100 random wires from each benchmark and

assumed that the wires contained electrical errors. Next, we applied SymWire and SafcR-

esynth to find layout transformations that could modify the wires to repair the errors. The

results are summarized in Table 11.4. In the table, “#Repaired” is the number of wires that

could be modified, and “Runtime” is the total runtime of analyzing all 100 wires. We also

report the minimum, maximum and average numbers of metal segments affected by our

error-repair techniques. These numbers include the segments removed and inserted due to

the layout changes.

From the results, we observe that both SymWire and SafeResynth were able to alter

more than half of the wires for most benchmarks, suggesting that they can effectively find

layout transformations that change the electrical characteristics of the erroneous wires. In

212

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 11.4: Results of post-silicon electrical error repair.
B enchm ark Sym W ire SafeR esynth

#R e- M etal seg. affected R untim e #Re~ M etal seg. affected R untim e
paired M in M ax M ean (sec) paired M in M ax M ean (sec)

S tepper 81 6 33 15.7 0.03 79 14 53 28.3 4.68
SA SC 50 8 49 19.8 0.79 41 2 48 27.8 3.32
EXLLECL 68 7 42 15.0 1.13 71 14 831 119.1 23.02
M iniR ISC 58 4 29 13.7 1.65 57 14 50 28.1 166
AC97 .Ctrl 52 9 26 13.9 3.26 56 14 53 31.9 68.02
USB J ’unct 70 7 36 16.4 1.84 58 16 74 32.4 157.52
M D5 82 7 30 15.0 1.83 79 13 102 37.9 2630
D LX 64 6 49 15.8 11.00 67 13 97 40.2 8257
PC I_bridge32 42 8 42 16.6 6.04 32 15 54 31.2 211.28
A ES x o r e 83 5 32 15.0 2.53 83 12 64 31.4 285.58
W B -C onm ax 84 7 35 16.0 2.96 46 19 71 35.2 317.50
A lpha 67 9 41 16.3 12.32 55 11 101 36.9 85 104
E thernet 36 7 22 13.4 45.01 18 18 104 46.6 3714
D E S .p e rf 91 7 1020 36.7 4.86 76 10 60 29.0 585.34

100 wires w ere random ly selected to be erroneous, and “#R epaired” is the num ber of errors that
could be repaired by each technique. The num ber of metal segm ents affected by each technique is
also shown.

addition, the number of affected metal segments is often small, which indicates that both

techniques have little physical impact on the chip, and the layout modifications can be

implemented easily by FIB. The runtime comparison between these techniques shows that

SymWire runs significantly faster than SafeResynth because symmetry detection for small

subcircuits is much faster than equivalence checking. However, SafeResynth is able to

find and implement more aggressive layout changes for more difficult errors: as the results

suggest, SafeResynth typically affects more metal segments than SymWire, producing

more aggressive physical modifications. We also observe that SymWire seems to perform

especially well for arithmetic cores such as MD5, AES_core, and DES_perf, possibly due

to the large numbers of logic operations used in these cores. Since many basic logic

operations are symmetric (such as AND, OR, XOR), SymWire is able to find many repair

opportunities. On the other hand, SymWire seems to perform poorly for benchmarks with

213

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

high percentages of flip-flops, such as SASC, PCI_bridge32, and Ethernet. The reason is

that SymWire is not able to find symmetries in flip-flops. As a result, if many wires only

fanout to flip-flops, SymWire will not be able to find fixes for those wires.

11.6 Summary

Due to the dramatic increase in design complexity, more and more errors are escap­

ing pre-silicon verification and are discovered post-silicon. While most steps in the IC

design flow have been highly automated, little effort has been devoted to the post-silicon

debugging process, making it difficult and ad hoc. To address this problem, we use our

FogClear methodology to systematically automate the post-silicon debugging process, and

it is powered by our new techniques and algorithms that enhance key steps in post-silicon

debugging. The integration of logical, spatial and electrical considerations in these tech­

niques facilitates the generation of netlists and layout transformations to fix the bug, and

these techniques are complemented by search pruning methods for more scalable process­

ing. These ideas form the foundation o f our PAFER framework and the PARSyn algorithm

that correct functional errors, as well as the SymWire and SafeResynth methods to repair

electrical errors. Our empirical results show that these techniques can repair a substantial

number of errors in most benchmarks, demonstrating their effectiveness for post-silicon

debugging. FogClear can also reduce the costs of respins: fixes generated by FogClear

only impact m etal layers, hence enabling the reuse o f transistor m asks. The accelerated

post-silicon debugging process also promises to shorten the time to the next respin, which

can limit revenue loss due to late market entry.

214

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER XII

Conclusions

Verification is important in ensuring the correctness of a circuit design. As a result,

it has been studied extensively and is highly automated. However, once errors are found,

their diagnosis and correction are still mostly performed manually, which can be very dif­

ficult and time-consuming. Existing techniques that address this error-repair problem arc

often limited in their strength and scalability. This deficiency can be explained, in part, by

the lack of scalable resynthesis methods. In addition, existing gate-level error-diagnosis

techniques cannot be applied to the RTL, where most design activities occur, making auto­

matic functional error correction much more difficult. This problem is further exacerbated

by poor interoperability between verification and debugging tools, which stresses existing

error-correction techniques even more. Since functional correctness is the most important

aspect of high-quality designs, the resources consumed by debugging limit the effort that

can be devoted to improve the performance of a circuit, hampering the sophistication of

digital designs.

In this dissertation we proposed several innovative algorithms, data structures, and

methodologies that provide new ways for error diagnosis and correction. In addition,

215

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

we described the FogClear framework that automates the functional error-repair process.

This framework automatically corrects design errors at the RTL or gate level, and it is able

to physically implement the corrections with minimal changes to existing cell locations,

wire routes and manufacturing masks. In addition, our physical synthesis techniques arc

able to fix electrical errors with minimal impact to the layout. Below we summarize our

contributions and discuss directions for future research.

12.1 Summary of Contributions

In this dissertation, we proposed several resynthesis and error-diagnosis algorithms,

devised a compact encoding o f resynthesis information to enhance the algorithms, and de­

scribed a unified framework that supports the error-repair requirements at different design

stages. Our major contributions are summarized below:

• We developed a scalable bug trace minimizer, called Butramin, that reduces the

complexity of bug traces and bridges the gap between verification and debugging.

• We proposed a CoRe resynthesis framework based on simulation and SAT. To achieve

better scalability, we used an abstraction-refinement scheme in this framework. In

addition, we devised a simplification of SPFDs, Pairs o f Bits to be Distinguished

(PBDs), to encode the resynthesis information required by the framework. This rep­

resentation supports the use of complete don’t-cares and makes CoRe scale further

than most existing error-correction techniques. Based on PBDs, we developed two

innovative resynthesis algorithms, Distinguishing-Power Search (DPS) and Goal-

Directed Search (GDS), to support the logic changes required by error correction.

216

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The abstraction-refinement scheme in CoRe is conceptually different from those

in existing solutions because CoR e’s abstraction is based on signatures, which can

be easily used by various resynthesis tools and extended to support different error-

repair requirements. As articulated in Chapters IX and XI, CoRe can be extended to

repair RTL and post-silicon functional errors, but existing solutions do not have this

flexibility. For example, it is difficult to utilize the abstraction proposed in [8] for

automatic error correction.

• We designed a comprehensive and powerful functional symmetry detection algo­

rithm for digital logic based on reduction to the graph-automorphism problem and

available solvers. Given a multi-output logic function, this algorithm detects all sym ­

metries of all known types, including permutations and phase-shifts on inputs and

outputs, as well as the so-called higher-order symmetries. In addition, we devised a

rewiring technique that uses the detected symmetries to optimize circuit wirelength

or repair electrical errors discovered post-silicon.

• We introduced an innovative RTL error model that facilitates efficient and effective

R T L e rro r d ia g n o s is . In a d d itio n , w e p ro p o se d tw o d ia g n o s is a lg o r ith m s b ased on

synthesis and symbolic simulation. Both techniques can scale much farther than

existing gate-level diagnosis techniques, making our approach applicable to much

larger designs. O ur results also show that m any m ore functional errors can be d iag ­

nosed compared with traditional gate-level diagnosis techniques.

• We outlined an incremental verification system, InVerS, that uses similarity factor

to quickly estimate the functional correctness of physical synthesis optimizations.

217

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

W hen errors are flagged, traditional verification techniques will be used. This sys­

tem helps localize and identify bugs introduced by physical synthesis optimizations,

and therefore decreases the risk from introducing new aggressive optimizations.

• We defined the concept of physical safeness and devised several physically safe

techniques for post-silicon debugging. In order to repair functional errors, we pro­

posed the PAFER framework and the PARSyn resynthesis algorithms. In addition,

we illustrated two techniques, SafeResynth and SymWire, that can repair electrical

errors on the layout. Since these techniques do not affect gate placements, they also

allow metal fix.

• To facilitate comprehensive error repair at multiple stages of circuit design flow,

we integrated several software components into a unified framework, called Fog­

Clear, This framework couples verification with debugging and can greatly reduce

the debugging effort.

Our empirical validation shows that all components of the FogClear framework are ef­

fective in performing their functions, and the integrated framework for post-silicon debug­

ging is equally promising. With the help of FogClear, engineers will be able to diagnose

and fix design errors more efficiently, which, we hope, will improve design quality and

reduce cost.

12.2 Directions for Future Research

The results developed during the course of our research suggest several directions for

future exploration. As shown in our experimental results, error diagnosis is the major

218

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

bottleneck of error repair. Although our RTL diagnosis techniques can alleviate this prob­

lem, they are applicable only if the bugs can be corrected at the RTL. In particular, they

cannot be used to accelerate gate-level error diagnosis. One future direction is to reduce

the runtime of error diagnosis. By improving error diagnosis, more iterations can be ex­

ecuted in our CoRe framework within the same amount of time, allowing CoRe to repair

more complex errors. Fortunately, the error-diagnosis technique that we adopted directly

benefits from ongoing improvements in SAT solvers delivered regularly by the SAT com ­

munity in recent years.

Sequential error diagnosis is another component that limits the scalability of the CoRe

framework because existing techniques based on circuit unrolling may result in m em ­

ory explosions. Our simulation-based diagnosis approach can potentially reduce memory

usage because Boolean expressions can be simplified on the fly; however, this problem

cannot be fully eliminated. Ali et al, [5] proposed the use of Quantified Boolean Formulas

(QBF) to reduce memory usage in combinational error diagnosis; nonetheless, they did not

apply Q BF to diagnose errors in sequential circuits. It will be interesting to know whether

such a technique can be used to solve the memory explosion problem when diagnosing

errors in sequential circuits.

Potentially, the CoRe framework proposed in this dissertation can be applied to physi­

cal synthesis, as follows:

1. When optimizing a critical path, we temporarily relax the constraint that the func­

tional correctness of the circuit must be preserved. For example, an XOR gate can

be changed to an OR gate as long as the change improves timing. In other words,

219

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

such changes can introduce bugs.

2. To restore the circuit’s functional correctness, we then use CoRe to find a bug fix

such that the critical path is not affected.

Related ideas have been used in existing physical synthesis techniques such as ATPG-

based rewiring [29, 40], which is based on the addition and removal of redundant wires.

Unlike such techniques, CoRe is novel and more general in that it does not limit the logic

transformations that can be performed. To make CoRe effective in physical synthesis,

however, many questions still need to be answered. For example, what types of changes

can be accepted without introducing an error beyond repair? And how to find a fix that has

the minimal impact on circuit timing? All these questions warrant further investigation.

In the functional error repair chapter (Chapter IX), we provided effective error-diagnosis

algorithms and proposed techniques to repair RTL errors. However, our experimental re­

sults show that not all functional errors can be fixed using our proposed techniques. Since

automatic RTL error repair is a relatively young field, there is still much room for further

research. For example, Abadir’s gate-level error model [1] has been used by many error-

repair techniques and is successful to some extent. It will be interesting to know if similar

models can be established at the RTL. Such models can help engineers better understand

the nature of RTL bugs and facilitate the development of automatic error-repair tools. A n­

other related problem is that currently there is no good method to predict how difficult it is

to fix a bug. Since our error-correction techniques strive to minimize the size of resynthc-

sized netlists, we speculate that a bug which can be repaired with smaller changes to the

netlist should be easier to fix. To validate this speculation, however, more research should

220

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

be conducted.

In our metal-fix experiments we assume that all cell types are equally useful, and spare

cells are placed uniformly. In practice, however, some cell types may be more useful than

others, and certain regions in the layout may require more spare cells than other regions.

To improve the quality of metal fix, further studies can be conducted to investigate the

relationship among errors, cell types, and the placement of spare cells.

Due to the rapid growth in design complexity, developing RTL descriptions of a circuit

is becoming too costly. As a result, design methodologies using an even higher level

of abstraction, called the Electronic System Level (ESL), have been proposed recently.

We believe that some of the error-repair techniques proposed in this dissertation can be

extended to ESL as well, although the detailed implementation may be different.

As demonstrated by our experimental results, FogClear can automate several error-

repair processes when designing m odem digital circuits. We believe that automatic error-

repair techniques will grow in importance and their development will remain an interesting

research problem. To this end, our research contributes a better understanding of design

errors and ways to fix them, leading to more reliable IC design processes of the future.

221

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BIBLIOGRAPHY

222

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BIBLIOGRAPHY

[1J M. S. Abadir, J. Ferguson and T. E. Kirkland, “Logic Verification via Test Genera­
tion” , IEEE Trans, on Computer-Aided Design o f Integrated Circuits and Systems,
Jan. 1988, pp. 138-148.

[2] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. M emmi and D. Miller, “A
Reconfigurable Design-for-Debug Infrastructure for SoCs”, Proc. Design Automa­
tion Conference (DAC), 2006, pp. 7-12.

[3] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa and I. L. Markov, “Unification
of Partitioning, Floorplanning and Placement” , Proc. International Conference on
Computer-Aided Design (ICCAD), 2004, pp. 550-557.

[4] A. H. Ajami and M. Pedram, “Post-Layout Timing-Driven Cell Placement Using an
Accurate Net Length Model with Movable Steiner Points” , Proc. Design Automa­
tion Conference (DAC), 2001, pp. 595-600.

[5] M. F. Ali, S. Safarpour, A. Veneris, M. S. Abadir and R. Drechsler, “Post-
Verification Debugging of Hierarchical Designs” , Proc. International Conference
on Computer-Aided Design (ICCAD), 2005, pp. 871-876.

[6] M. F. Ali, A. Veneris, S. Safarpour, R. Drechsler, A. Smith and M. S. Abadir, “De­
bugging Sequential Circuits Using Boolean Satisfiability” , Proc. International Con­
ference on Computer-Aided Design (ICCAD), 2004, pp. 44-49.

[7] F. A. Aloul, A. Ramani, I. L. Markov and K. A. Sakallah, “Solving Difficult In­
stances of Boolean Satisfiability in the Presence of Symmetry” , IEEE Trans, on
Computer-Aided Design o f Integrated Circuits and Systems, Sep. 2003, pp. 1117-
1137.

[8] Z. S. Andraus, M. H. Liffiton and K. A. Sakallah, “Refinement Strategies lor Ver­
ification Methods Based on Datapath Abstraction” , Proc. Asia and South Pacific
Design Automation Conference (ASPDAC), 2006, pp. 19-24.

[9] Anonymous, “Conformal Finds DC/PhysOpt was Missing 40 DFFs!” , ESNUG 464
Item 4, Mar. 30, 2007.

[10J K. Baker and J. V. Beers, “Shmoo Plotting: The Black Art of IC Testing” , IEEE
Design and Test o f Computers, Vol. 14, No. 3, pp. 90-97, 1997.

223

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[11| Z. Barzilai, J. L. Carter, and J. D. Rutledge, “HSS - a High-speed Simulator” , IEEE
Trans, on Computer-Aided Design o f Integrated Circuits and Systems, vol. 6, Jul.
1987, pp. 601-617.

[12] Janick Bergeron, “W riting Testbenches: Functional Verification of HDL M odels” ,
Kluwer Academic Publishers, 2nd edition, 2003.

[131 V. Bertacco, “Scalable Hardware Verification with Symbolic Simulation” , Springer,
2005.

[14J V. Bertacco and M. Damiani, “The Disjunctive Decomposition of Logic Functions” ,
Proc. International Conference on Computer-Aided Design (ICCAD), 1997, pp. 78-
82.

[15] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model checking without
BD D s”, in Proc. International Conference on Tools and Algorithms fo r the Con­
struction and Analysis o f Systems (TACAS) - Lecture Notes in Computer Science
(LNCS) 1579, 1999, pp. 193-207.

[16] R. Bloem and F. Wotawa, “Verification and Fault Localization for V H D L Pro­
grams” , Journal o f the Telematics Engineering Society (TIV), Vol. 2, 2002, pp.
30-33.'

[17] D. Brand, R. A. Bergamaschi and L. Stok, “Be Careful with D on’t Cares,” Proc.
International Conference on Computer-Aided Design (ICCAD), 1995, pp. 83-86.

[18] R. E. Brayant, “Graph-Based Algorithms for Boolean Function Manipulation” ,
IEEE Trans, on Computers, Aug. 1986, pp. 677-691.

[19] R. E. Brayant, D. Beatty, K. Brace, K. Cho and T. Sheffler, “COSMOS: a Compiled
Simulator for M OS Circuits” , Proc. Design Automation Conference (DAC), 1987,
pp. 9-16.

[20] M. L. Bushnell and V. D. Agrawal, Essentials o f Electronic Testing, Kluwer, Boston,
2000 .

[21] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive Bisection Alone Pro­
duce Routable Placements?” , Proc. Design Automation Conference (DAC), 2000,
pp. 693-698.

[22] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Toward CAD-IP Reuse: The
M ARCO GSRC Bookshelf of Fundamental CAD Algorithms”, IEEE Design and
Test o f Computers , May 2002, pp. 72-81.

[23] D. V. Campenhout, H. Al-Asaad, J. P. Hayes, T. M udge and R. B. Brown, “ High-
Level Design Verification of Microprocessors via Error M odeling” , ACM Trans, on
Design Automation o f Electronic Systems, Oct. 1998, pp. 581-599.

22 4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[24] D. V. Campenhout, J, P. Hayes and T. Mudge, “Collection and Analysis of M icro­
processor Design Errors” , IEEE Design and Test o f Computers, Oct.-Dec. 2000, pp.
51-60.

[25] D. Chai and A. Kuehlmann, “Building a Better Boolean M atcher and Symmetry
Detector” , Proc. International Workshop on Logic and Synthesis (IWLS), Jun. 2005,
pp. 391-398.

[26] D. Chai and A. Kuehlmann, “A Compositional Approach to Symmetry Detection in
Circuits” , Proc. International Workshop on Logic and Synthesis (IWLS), Jun. 2006,
pp. 228-234.

[27] D. Chai and A. Kuehlmann, “Symmetry Detection for Large Multi-Output Func­
tions” , Proc. International Workshop on Logic and Synthesis (IWLS), May. 2007,
pp. 305-31 1.

[28] C. W. Chang, M. F. Hsiao, B. Hu, K. Wang, M. Marek-Sadowska, C. H. Cheng,
and S. J. Chen, “Fast Postplacement Optimization Using Functional Symmetries” ,
IEEE Trans, on Computer-Aided Design o f Integrated Circuits and Systems, Jan.
2004, pp. 102-118.

[29] C. W. Chang and M. Marek-Sadowska, “Single-Pass Redundancy Addition and Re­
moval” , International Conference on Computer-Aided Design (ICCAD), Nov. 2001,
pp. 606-609.

[30] K.-H. Chang, V. Bertacco and I. L. Markov, “Simulation-Based Bug Trace
Minimization with BM C-Based Refinement,” Proc. International Conference on
Computer-Aided Design (ICCAD), 2005, pp. 1045-1051.

[31] K.-H. Chang, V. Bertacco and I. L. Markov, “Simulation-Based Bug Trace M ini­
mization with BM C-Based Refinement,” IEEE Trans, on Computer-Aided Design
o f Integrated Circuits and Systems, Jan. 2007, pp. 152-165.

[32] K.-FI. Chang, I. L. Markov and V. Bertacco, “Post-Placement Rewiring and Re-
buffering by Exhaustive Search For Functional Symmetries,” Proc. International
Conference on Computer-Aided Design (ICCAD), 2005, pp. 56-63.

[33] K.-FI. Chang, I. L. Markov and V. Bertacco, “Post-Placement Rewiring by Ex­
haustive Search For Functional Symmetries,” ACM Trans, on Design Automation
o f Electronic Systems, Article 32, Aug. 2007, D O I=10.1145/1255456.1255469.

[34] K.-FI. Chang, I. L. Markov and V. Bertacco, “Safe Delay Optimization for Physi­
cal Synthesis” , Proc. Asia and South Pacific Design Automation Conference (ASP-
DAC), 2007, pp. 628-633.

[35] K.-H. Chang, I. L. Markov and V. Bertacco, “Fixing Design Errors with Coun­
terexamples and Resynthesis” , Proc. Asia and South Pacific Design Automation
Conference (ASPDAC), 2007, pp. 944-949.

225

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[36] K.-H. Chang, I. L. Markov and V. Bertacco, “Fixing Design Errors with Counterex­
amples and Resynthesis” , to appear in IEEE Trans, on Computer-Aided Design o f
Integrated Circuits and Systems, 2008.

[37] K.-H. Chang, I. L. Markov, and V. Bertacco, “Automating Post-Silicon Debugging
and Repair” , to appear in Proc. International Conference on Computer-Aided D e­
sign (ICCAD), Nov. 2007.

[38] K.-H. Chang, D. A. Papa, I. L. Markov and V. Bertacco, “InVcrS: An Incremental
Verification System with Circuit Similarity Metrics and Error Visualization” , Proc.
International Symposium on Quality Electronic Design (ISQED), 2007, pp.487-
492.

[39] K.-H. Chang, I. Wagner, V. Bertacco and I. L. Markov, “Automatic Error Diagno­
sis and Correction for RTL Designs”, Proc. International Workshop on Logic and
Synthesis (IWLS), May 2007, pp. 106-113.

[40] S. C. Chang, L. P. P. P. van Ginneken and M. Marek-Sadowska, “Circuit Optimiza­
tion by Rewiring” , IEEE Trans, on Computers, Sep. 1999, pp. 962-969.

[41] C. Changfan, Y. C. Hsu and F. S. Tsai, “Timing Optimization on Routed De­
signs with Incremental Placement and Routing Characterization” , IEEE Trans, on
Computer-Aided Design o f Integrated Circuits and Systems, Feb. 2000, pp. 188-
196.

[42] I. Chayut, “Next-Generation Multimedia Designs: Verification Needs” , Design Au­
tomation Conference (DAC), 2006, Section 23.2,
http://www.dac.com/43rd/43talkindex.html

[43] Y . A. Chen and F. S. Chen, “Algorithms for Compacting Error Traces”, Proc. Asia
and South Pacific Design Automation Conference (ASPDAC), 2003, pp. 99-103.

[44] S.-J. Pan, K.-T. Cheng, J. Moondanos, Z. Hanna, “Generation of Shorter Sequences
for High Resolution Error Diagnosis Using Sequential SAT”, Proc. Asia and South
Pacific Design Automation Conference (ASPDAC), 2006, pp. 25-29.

[45] P.-Y. Chung and I. N. Hajj, “ACCORD: Automatic Catching and CORrection of
Logic Design Errors in Combinational Circuits” , Proc. International Test Confer­
ence (ITC), 1992, pp. 742-751

[46] J. Cong and W. Long, “Theory and Algorithm for SPFD-Based Global Rewiring” ,
Proc. International Workshop on Logic and Synthesis (IWLS), June 2001, pp. 150-
155.

[471 S. Cook, “Proc. ACM symposium on Theory of Computing” , 1971, pp. 151-158.

[48] O. Coudert, C. Berthet and J. C. Madre, “Verification of Synchronous Sequential
Machines Based on Symbolic Execution” , Proc. Automatic Verification Methods

226

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.dac.com/43rd/43talkindex.html

fo r Finite Slate Systems - Lecture Notes in Computer Science (LNCS) 407, 1990,
p p . 365-373.

[49] J5. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov, “Exploiting Structure
in Symmetry Detection for CN F”, Proc. Design Automation Conference (DAC),
2004, pp. 530-534.

[50] R. A. Demillo, R. J. Lipton and F. G. Sayward, “Hints on Test Data Selection: Help
for the Practicing Programmer” , IEEE Computer, Apr. 1978, pp. 34-41.

[51] N. Een and N. Sorensson, “An extensible SAT-solver” , Proc. Theory and Applica­
tions o f Satisfiability Testing, 2003, pp. 502-518.

[52] N. Een and N. Sorensson, “Translating Pseudo-Boolean Constraints into SAT”,
Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 2006, pp.
1-25.

[53] J. Ferguson, “Turning Up the Yield”, IEE Electronics Systems and Software, pp.
12-15, June/July 2003.

[54] M. Gao, J. Jiang, Y. Jiang, Y. Li, S. Singha, and R. K. Brayton. MVSIS. Proc.
International Workshop on Logic and Synthesis (IWLS), 2001,
h t t p :/ / e m b e d d e d . e e c s . b e r k e l e y . e d u / R e s p e p / R e s e a r c h / m v s i s /

[55] P. Gastin, P. Moro, and M. Zeitoun, “Minimization of Counterexamples in SPIN”,
Proc. SPIN - Lecture Notes in Computer Science (LNCS) 2989, 2004, pp. 92-108.

[56] R. Goering, “Post-Silicon Debugging Worth a Second Look” , EETimes, Feb. 05,
2007.

[57] A. Groce and D. Kroening, “Making the Most of BMC Counterexamples” , Proc.
Workshop on BMC, 2004, pp. 71-84.

[58] R. Hildebrandt and A. Zeller, “Simplifying Failure-Inducing Input” , Proc. Interna­
tional Symposium on Software Testing and Analysis, 2000, pp. 134-145.

[59] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J. Taylor and
J. L o n g , “Smart simulation using collaborative formal and simulation engines” ,
Proc. International Conference on Computer-Aided Design (ICCAD), 2000, pp.
120-126.

[60] M. Hrkic, J. Lillis and G. Beraudo, “An Approach to Placement-Coupled Logic
Replication” , Proc. Design Automation Conference (DAC), 2004, pp. 71 1-716.

[61] A. Hu, “Formal Hardware Verification with BDDs: An Introduction” , Proc. Pacific
Rim Conference (PACRIM), 1997, pp. 677-682.

[62] S.-Y. Huang, K.-C. Chen and K.-T. Cheng, “AutoFix: A Hybrid Tool for Automatic
Logic Rectification” , IEEE Trans, on Computer-Aided Design o f Integrated Circuits
and Systems, Sep. 1999, pp. 1376-1384.

227

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://embedded.eecs.berkeley.edu/Respep/Research/mvsis/

[63] J.-H. R. Jiang and R. K. Brayton, “On the Verification of Sequential Equivalence” ,
IEEE Transactions on Computer-Aided Design, Jun. 2003, pp. 686-697.

[64] T.-Y. Jiang, C.-N. J. Liu and J.-Y. Jou, “Estimating Likelihood of Correctness for
Error Candidates to Assist Debugging Faulty H D L Designs” , Proc. International
Symposium on Circuits and Systems (ISCAS), 2005, pp. 5682-5685.

[65] W. Jiang, T. Marwah and D. Bouldin, “Enhancing Reliability and Flexibility of a
System-on-Chip Using Reconfigurable Logic” , Proc. International Symposium, on
Circuits and Systems (ISCAS), 2005, pp. 879-882.

[66] H. Jin, K. Ravi, and F. Somenzi, “Fate and Free Will in Error Traces” , Proc. In­
ternational Conference on Tools and Algorithms fo r the Construction and Analysis
o f Systems (TACAS) - Lecture Notes in Computer Science (LNCS) 2280, 2002, pp.
445-459.

[67] D. Josephson, “The Manic Depression of Microprocessor D ebug” , Proc. Interna­
tional Test Conference (ITC), 2002, pp. 657-663.

[68] D. Josephson, “The Good, the Bad, and the Ugly of Silicon Debug” , Proc. Design
Automation Conference (DAC), 2006, pp. 3-6.

[69] E. N, Kannan, R R. Suaris and H. G. Fang, “A Methodology and Algorithms for
Post-Placement Delay Optimization” , Proc. Design Automation Conference (DAC),
1994, pp. 327-332.

[70] A. Kolbl, J. Kukula and R. Damiano, “Symbolic RTL simulation” , Proc. Design
Automation Conference (DAC), 2001, pp. 47-52.

[71] A. Kolbl, J. Kukula, K. Antreich and R. Damiano, “Handling Special Constructs
in Symbolic Simulation” , Proc. Design Automation Conference (DAC), 2002, pp.
105-110.

[72] V. N. Kravets and P. Kudva, “Implicit Enumeration of Structural Changes in Circuit
Optimization” , Proc. Design Automation Conference (DAC), 2004, pp. 438-441.

[73] A. Kuehlmann and F. Krohm, “Equivalence Checking Using Cuts and Heaps” , Proc.
Design Automation Conference (DAC), 1997, pp. 263-268.

[74] S.-Y. Kuo, “Locating Logic Design Errors via Test Generation and D on’t-Care
Propagation” , Proc. European Design Automation Conference (EDAC), 1992, pp.
466-471.

[75] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous Circuitry” , Algorithmica,
1991, Vol. 6, pp. 5-35.

[76] N. G. Leveson and C. S. Turner, “An Investigation of the Therac-25 Accidents” ,
IEEE Computer, Jul. 1993, pp. 18-41.

228

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[77] D. M. Lewis, “A Hierarchical Compiled-code Event-driven Logic Simulator” , IEEE
Trans, on Computer-Aided Design o f Integrated Circuits and Systems, Jun. 1991,
pp. 726-737.

[78] C. Li, C-K. Koh and P. H. Madden, “Floorplan Management: Incremental Place­
ment for Gate Sizing and Buffer Insertion” , Proc. Asia and South Pacific Design
Automation Conference (ASPDAC), 2005, pp. 349-354.

[79] C.-C. Lin, K.-C. Chen and M. Marek-Sadowska, “Logic Synthesis for Engineer­
ing Change”, IEEE Trans, on Computer-Aided Design o f Integrated Circuits and
Systems, Mar. 1999, pp.282-202.

[80] C.-H. Lin, Y.-C. Huang, S.-C. Chang and W.-B. Jone, “Design and Design Autom a­
tion of Rectification Logic for Engineering Change” , Proc. Asia and South Pacific
Design Automation Conference (ASPDAC), 2005, pp. 1006-1009.

[811 A. Lu, H. Eisenmann, G. Stenz and F. M. Johannes, “Combining Technology M ap­
ping with Post-Placement Resynthesis for Performance Optimization” , Proc. Inter­
national Conference on Computer Design (ICCD), 1998, pp. 616-621.

[82] F. Lu, M. K. Iyer, G. Parthasarathy, L.-C. Wang, and K.-T. Cheng and K.C. Chen,
“An efficient sequential SAT solver with improved search strategies” , Proc. Design
Automation and Test in Europe (DATE), 2005, pp. 1102-1107.

[83] T. Luo, H. Ren, C. J. Alpert and D. Pan, “Computational Geometry Based Place­
ment Migration” , Proc. International Conference on Computer-Aided Design (IC-
CAD), 2005, pp. 41-47.

[84] J. C. Madre, O. Coudert and J. PI. Billon, “Automating the Diagnosis and the Rec­
tification of Design Errors with PR IA M ”, International Conference on Computer-
Aided Design (ICCAD), 1989, pp. 30-33.

[85] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A Search Algorithm for P repo­
sitional Satisfiability” , IEEE Trans, on Computers, vol. 48, no. 5, May. 1999, pp.
506-521.

[86] J. Melngailis, L. W. Swanson and W. Thompson, “Focused Ion Beams in Semi­
conductor M anufacturing” , Wiley Encyclopedia o f Electrical and Electronics Engi­
neering,Dec. 1999.

[87] A. Mishchenko, “Fast Computation of Symmetries in Boolean Functions” , IEEE
Trans, on Computer-Aided Design o f Integrated Circuits and Systems, Nov. 2003,
pp. 1588-1593.

[88] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. Brayton and M. Chrzanowska-
Jeske, “Using Simulation and Satisfiability to Compute Flexibilities in Boolean
Networks” , IEEE Trans, on Computer-Aided Design of Integrated Circuits and Sys­
tems, M ay 2006, pp. 743-755.

229

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[89] D. Moller, J. M ohnke and M. Weber, “Detection of Symmetry of Boolean Functions
Represented by ROBDDs” , Proc. International Conference on Computer-Aided D e­
sign (ICCAD), 1993, pp. 680-684.

[90] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang and S. Malik, “Chaff: e n ­
gineering an Efficient SAT Solver” , Proc. Design Automation Conference (DAC).
2001, pp. 530-535.

[91] D. Nayak and D. M. FI. Walker, “Simulation-Based Design Error Diagnosis and
Correction in Combinational Digital Circuits” , Proc. VLSI Test Symposium (V IS),
1999 ,p p . 25-29.

[92] S. Panda, F. Somenzi and B. F. Plessier, “Symmetry Detection and Dynamic
Variable Ordering of Decision Diagrams”, Proc. International Conference on
Computer-Aided Design (ICCAD), 1994, pp. 628-631.

[93] S. M. Plaza, I. L. Markov and V. Bertacco, “Toggle: A Coverage-Guided Random
Stimulus Generator” , Proc. International Workshop on Logic and Synthesis (IWLS),
2 0 0 7 ,p p . 351-357.

[94] 1. Pomeranz and S. M. Reddy, “On Determining Symmetries in Inputs of Logic Cir­
cuits” , IEEE Trans, on Computer-Aided Design o f Integrated Circuits and Systems,
Nov. 1994, pp. 1428-1434.

[95] P. Rashinkar, P. Paterson and L. Singh, “System-on-a-chip Verification: M ethodol­
ogy and Techniques” , Kluwer Academic Publishers, 2002.

[96] J.-C. Rau, Y.-Y. Chang and C.-H. Lin, “An Efficient M echanism for Debugging
RTL Description” , Proc. International Workshop on Syslem-on-Chip fo r Real-Time
Applications (IWSOC), 2003, pp. 370-373.

[97] K. Ravi and F. Somenzi, “High-Density Reachability Analysis” , Proc. International
Conference on Computer-Aided Design (ICCAD), 1995, pp. 154-158.

[98] K. Ravi and F. Somenzi, “Minimal Satisfying Assignments for Bounded Model
Checking” , Proc. International Conference on Tools and Algorithms fo r the Con­
struction and Analysis o f Systems (TACAS) - Lecture Notes in Computer Science
(LNCS) 2988, 2004, pp. 31-45.

[99] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-Valued Minimization for PEA
Optimization” , IEEE Trans, on Computer-Aided Design o f Integrated Circuits and
Systems, pp. 727-750, Sep. 1987.

[100] S. Safarpour and A. Veneris, “Trace Compaction using SAT-Based Reachability
Analysis” , Proc. Asia and South Pacific Design Automation Conference (ASPDAC),
2007, pp. 932-937.

230

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1101] S. Safarpour and A. Veneris, “Abstraction and Refinement Techniques in Automated
Design Debugging” , Proc. Design Automation and Test in Europe (DATE), 2007,
pp. 1182-1187.

[102] N. Shenoy and R. Rudell, “Efficient Implementation of Retiming”, Proc. Interna­
tional Conference on Computer-Aided Design (ICCAD), 1994, pp. 226-233.

[103] S. Shen, Y. Qin, and S. Li, “A Fast Counterexample Minimization Approach with
Refutation Analysis and Incremental SAT,” Proc. Asia and South Pacific Design
Automation Conference (ASPDAC), 2005, pp. 451-454.

[104] C.-PI. Shi and J.-Y. Jou, “An Efficient Approach for Error Diagnosis in HDL De­
sign” , Proc. International Symposium on Circuits and Systems (ISCAS), 2003, pp.
732-735.

11051 S. Sinha, “SPFDs: A New Approach to Flexibility in Logic Synthesis” , Ph.D. The­
sis, University of California, Berkeley, May 2002.

[106] K. Shimizu and D. L. Dill, “Deriving a Simulation Input Generator and a Coverage
Metric From a Formal Specification” , Proc. Design Automation Conference (DAC),
2002. pp. 801-806.

[107] A. Smith, A. Veneris and A. Viglas, “Design Diagnosis Using Boolean Satisfiabil­
ity” , Proc. Asia and South Pacific Design Automation Conference (ASPDAC), 2004,
pp. 218-223.

[108] S, Staber, B. Jobstmann and R. Bloem, “Finding and Fixing Faults” , Proc. A d ­
vanced Research Working Conference on Correct Hardware Design and Verifica­
tion Methods (CHARME) - Lecture Notes in Computer Science (LNCS) 3725, 2005,
pp. 35-49.

1109] S. Staber, G. Fey, R. Bloem and R. Drechsler, “Automatic Fault Localization for
Property Checking” , Lecture Notes in Computer Science (LNCS) 4383, 2007, pp.
50-64.

[110[G. Swamy, S. Rajamani, C. Lennard and R. K. Brayton, “ Minimal Logic Rc-
Synthesis for Engineering Change” , Proc. International Symposium on Circuits and
Systems (ISCAS), 1997, pp. 1596-1599.

[111] II. Vaishnav, C. K. Lee and M. Pedram, “Post-Layout Circuit Speed-up by Event
Elimination” , Proc. International Conference on Computer Design (ICCD). 1997,
pp . 2 1 1 -2 1 6 .

[112] A. Veneris and I. N. Hajj, “Design Error Diagnosis and Correction via Test Vector
Simulation” , IEEE Trans, on Computer-Aided Design o f Integrated Circuits and
Systems, Dec. 1999, pp. 1803-1816.

231

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[113] I. Wagner, V. Bertacco and T. Austin, “StressTest: An Automatic Approach to Test
Generation via Activity M onitors” , Proc. Design Automation Conference (DAC),
2005. pp. 783-788.

[114] I. Wagner, V. Bertacco and T. Austin, “Shielding Against Design Flaws with Field
Repairable Control Logic” , Proc. Design Automation Conference (DAC), 2006. pp.
344-347.

[115] D. E. Wallace, “Recognizing Input Equivalence in Digital Logic” , Proc. Interna­
tional Workshop on Logic and Synthesis (IWLS), 2001, pp. 207-212.

[116] G. Wang, A. Kuehlmann and A. Sangiovanni-Vincentelli, “Structural Detection of
Symmetries in Boolean Functions” , Proc. International Conference on Computer
Design (ICCD), 2003, pp. 498-503

[117] C. Wilson and D. L. Dill, “Reliable Verification Using Symbolic Simulation with
Scalar Values” , Proc. Design Automation Conference (DAC), 2000, pp. 124-129.

[118] Y. L. Wu, W. Long and H. Fan, “A Fast Graph-Based Alternative Wiring Scheme
for Boolean Networks” , Proc. International VLSI Design Conference, 2000, pp.
268-273.

[119] Q. Wu, C. Y. R. Chen and J. M. Aken, “Efficient Boolean Matching Algorithm for
Cell Libraries”, Proc. International Conference on Computer Design (ICCD), 1994,
pp. 36-39.

[120] II. Xiang, L.-D. Iluang, K.-Y. Chao and M. D. F. Wong, “An ECO Algorithm for
Resolving OPC and Coupling Capacitance Violations”, Proc. International Confer­
ence On ASIC (ASICON), 2005, pp. 784-787.

[121] S. Yamashita, FI. Sawada and A. Nagoya, “SPFD: A New M ethod to Express Func­
tional Flexibility” , IEEE Trans, on Computer-Aided Design o f Integrated Circuits
and Systems, pp. 840-849, Aug. 2000.

[122] Y.-S. Yang, S. Sinha, A. Veneris and R. E. Brayton, “Automating Logic Rectifi­
cation by Approximate SPFDs”, Proc. Asia and South Pacific Design Automation
Conference (ASPDAC), 2007, pp. 402-407.

[1231 J. Yuan, K. Albin, A. Aziz and C. Pixley, “Constraint Synthesis for Environment
Modeling in Functional Verification” , Proc. Design Automation Conference (DAC),
2003, pp. 296-299.

[124] Q. K. Zhu and P. Kilze, “Metal Fix and Power Network Repair for SO C”, IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), 2006, pp. 33-37.

[125] h t t p :/ / e n . w ik ip e d ia .org /w ik i /P e n t iu m 2F D IV Jn ig

[1261 h t t p : / /www. a v e r y - d e s i g n . com/

232

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://en.wikipedia.org/wiki/Pentium2FDIVJnig
http://www.avery-design.com/

127] Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential
Synthesis and Verification, Release 51205.
h t t p : / /w w w -c a d . e e c s . b e r k e l e y . e d u / ~ a l a n m i / a b c /

128] h t tp : / /w w w .c a d e n c e .c o m /

129] h t t p : / / w w w .d e n a l i . c o m /

130] International Technology Roadmap for Semiconductors 2005 Ldition,
h t t p : //www. i t r s . n e t

131] http://www.opencores.org/

132] h t t p : / / v i s i c a d . e e c s . u m i c h . e d u / B K / P l a c e U t i l s /

133] h t t p : / / v l s i c a d . e e c s .u m i c h .e d u / B K /S A U C Y /

134] 1TC’99 Benchmarks(2nd release), http://www.cad.polito.it/tools/itc99.html

135] UMICH Physical Design Tools, h t t p : / / v l s i c a d . e e c s .um ich . e d u /B K /P D to o ls /

136] h t t p : / / w w w .d a f c a . c o m /

137] h t t p : //www. i n t e l . c o m / d e s ig n / c o r e 2 d u o /d o c u m e n t a t i o n . htm

138] h t t p : / / i w l s . o r g / iw l s 2 0 0 5 /b e n c h m a r k s .h tm l

139] Lehrstuhl fuer Elektronische Bauelemente - LEB
h t t p : //www. l e b . e e i . u n i - e r l a n g e n . d e /

140] h t t p : / /w w w .o p e n e d a to o l s . o r g / p r o j e c t s / o a g e a r /

141] h t tp : / /w w w .s y n o p s y s .c o m /

142] h t t p : / / o p e n s p a r c - t l . s u n s o u r c e . n e t /

143] picoJave Core, h t t p : / /www. s u n . c o m / m i c r o e l e c t r o n i c s / p i c o J a v a /

144] Pueblo SAT Solver, http://www.eecs.umich.edu/ hsheini/pueblo/

145] Verilog Simulator Benchmarks, http://www.veripool.com/verilog_sim_bcnchmarks.html

233

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www-cad.eecs.berkeley.edu/~alanmi/abc/
http://www.cadence.com/
http://www.denali.com/
http://www.itrs.net
http://www.opencores.org/
http://visicad.eecs.umich.edu/BK/PlaceUtils/
http://vlsicad.eecs.umich.edu/BK/SAUCY/
http://www.cad.polito.it/tools/itc99.html
http://www.dafca.com/
http://www.intel.com/design/core2duo/documentation.htm
http://iwls.org/iwls2005/benchmarks.html
http://www.leb.eei.uni-erlangen.de/
http://www.openedatools.org/projects/oagear/
http://www.synopsys.com/
http://opensparc-tl.sunsource.net/
http://www.sun.com/microelectronics/picoJava/
http://www.eecs.umich.edu/
http://www.veripool.com/verilog_sim_bcnchmarks.html

