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9. Conclusions

• MTraceCheck improves the efficiency of memory consistency 

validation by using (1) memory-access interleaving signature

(93% reduction in logging memory operations) and (2) collective 

graph checking (81% reduction in graph-checking time)

10. Technology Transfer

• Industry interaction and internship

– IBM Research in Israel (Summer 2015)

– Post-silicon validation research is motivated from this internship

• An extended version has been presented at the 44th International 

Symposium on Computer Architecture (ISCA 2017)

• Source code available at: https://github.com/leedoowon/MTraceCheck

8. MTraceCheck Instrusiveness
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Average
– 93% reduction in memory

accesses unrelated to

test execution

– Higher benefit in

less contentious tests

– 3.7 larger than

original test

– Small enough to fit in

L1 caches

7. MTraceCheck Validation Performance
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– 81% reduction in

graph-checking time,

compared to individual

graph checking

– High benefit in

relaxed memory model

(ARM)

– 22% / 38% runtime

increase due to signature

computation / sorting,

respectively

– This increase is marginal

(approximately 5 times)

compared to time saving

in violation checking
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6. Non-Determinism in Memory Interleaving
x86-64 (x86-TSO) ARMv7 big.LITTLE (weakly-ordered)

Processor Intel Core 2 Quad Q6600 Samsung Exynos 5422

Operating frequency 2.4 GHz 800 MHz

Number of cores 4 4 (Cortex-A7) + 4 (Cortex-A15)

Cache architecture 32 + 32 kB (L1), 8 MB (L2) 32 + 32 kB (L1), 512 kB + 2 MB (L2)

Cache configuration Write back (both L1 and L2) Write back (L1), Write through (L2)

Systems

under

validation

Test program

configurations

Number of test threads 2, 4, 7

Number of memory operations per thread 50, 100, 200

Number of distinct shared memory addresses 32, 64, 128

Measured non-determinism in memory-access interleaving

How to interpret

test configuration

 x86 ISA,

2 threads,

100 operations,

32 addresses
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High non-determinism (0–65K unique interleavings) Low non-determinism (0–10K)

We ran each test 65,536 times and measured the number of unique memory-access interleavings

21 test configurations

(each with 10 randomly

generated tests)

Test configuration

5. Collective Graph Checking

 Collective graph checking reduces result-checking computation 
by exploiting similarity among graphs from repeated runs

Step 1: Find similar graph

Step 2: Re-sort topological order

Execution signatures

0x0108

0x0406

0x0010

…

0x0010

0x0108

0x0406

…

(before) (after)

Sort

Run 1
Thread 1

⋮
 st A
 ld B
 st A
 ld B
 st A

⋮

Thread 2
⋮

 st B
 ld A
 st B
 ld A
 st B

⋮

Run 3 (buggy)

Thread 1

⋮
 st A
 ld B
 st A
 ld B
 st A

⋮

Thread 2
⋮

 st B
 ld A
 st B
 ld A
 st B

⋮

Run 2
Thread 1

⋮
 st A
 ld B
 st A
 ld B
 st A

⋮

Thread 2
⋮

 st B
 ld A
 st B
 ld A
 st B

⋮

Topologically

sorted order

(assuming

total store order)

…→→→→→→→→→→→…Run 1:

Run 2:

Run 3:

…→→→→→→→→→→→…

…→→→→→→→→→→→…

No topological sort exists (consistency violation)

backward edge at run 2

backward edges at run 3

We use memory-access interleaving 
signature to estimate graph similarity

We re-sort only the region
enclosed by backward edge(s)

Diff graphs in a pair-wise manner

4. Memory-Access Interleaving Signature

Thread 1 Thread 2 Thread 3

 MEM[A]1  MEM[B]5  MEM[B]8

 r0MEM[A]

 r1MEM[B]

 MEM[A]4

 MEM[A]6

 r2MEM[A]

 MEM[A]9

 MEM[B]10

Thread 1

MEM[A]1

r0MEM[A]

r1MEM[B]

MEM[A]4









reads
from:

init   
reads
from:

0 3 6 9

 

* Inspired by control flow path profiling

(Ball and Larus, “Efficient path profiling” [MICRO’96])

0 1 2weight:

weight:

Step 1. Identify all reads-from relationships
for each load operation

Step 2. Assign a unique weight for
each reads-from relationship*

Step 3. Accumulate weights
observed at runtime

e.g.  from 
(weight: 2) (weight: 6)

 Signature = 8and  from 

 Memory-access interleaving signature encapsulates loaded 
values over the execution of test program

3. MTraceCheck Workflow

Code 
instrumentation

Tests with 

enhanced 

observability

• Static code analysis 

• Compact signature

Tests 
generation

Multi-threaded 

tests

• Constrained random

• Designed for memory 
consistency validation

• Minimal test perturbation

• Signature collection

Violation 
checking

Signature 1
Signature 2

…
Signature N

• Collective checking 
for signatures

Tests 
execution

2. Prior Memory Consistency Validation

 Formal verification approach 
[Alglave’14, Lustig’17, etc.]

 Constrained-random testing 
approach [Hangal’04, Elver’16, etc.]

Short

(≈10 insns)

Thread 1

MEM[A]1
MEM[A]2

Thread 2

r0MEM[A]
r1MEM[A]

Check if r0=2 and r1=1

(TSO violation)

Long

(>1000 insns)

Simulator

Emulator

Silicon

Abstract model 
of MCM

Theorem prover,
SAT solver

Litmus tests

Test generation 
parameters

Test generator

Constrained-
random tests

Thread 1

MEM[A]1
MEM[B]2
… (omitted)

r0MEM[A]

Thread 2

r1MEM[C]
MEM[D]101
… (omitted)

MEM[B]150
Check any invalid memory ordering

(computation-heavy graph checking)

Runs repeatedly

Our proposal best works with

this second approach in silicon

debugging (post-silicon validation)

1. Memory Consistency Models

 Memory consistency models specify observable orderings of 
memory accesses

 Sequential consistency (MIPS R10K), total store order (x86, SPARC), 
weakly-ordered models (ARM, IBM POWER), etc.

 Multi-threaded programs experience various memory ordering 
patterns during their program executions
• Due to μ-arhictectural optimizations related to out-of-order execution, 

coherent caches, multiple memory channels, on-chip interconnect etc.

• Memory ordering violations may cause incorrect execution results in 
multi-threaded programs

• Many hard-to-find bugs (errata bugs) are related to memory behaviors 
in multi-threaded programs

Research goal:

Improving the efficiency of memory consistency validation


