
Ofir Weisse
Valeria Bertacco

Todd Austin

Regaining Lost Cycles with HotCalls:
A Fast Interface for SGX Secure Enclaves

What is the impact on overall application’s performance?

What creates the bottlenecks?

Authenticated code

Malicious environment

Is it practical?

No SGX With SGX

Throughput degradation

SGX Secure Execution

 To lower costs - computation

and storage are moved to third

party machines

 This implies trust across the

entire software stack

And cloud provider employees

OS

Virtualization

Software

SMM code

(firmware)

Hardware

User Space ddddddd d

OS Kernel

VMM

SMM

RAM HW CPU

Enclave

Application memory address spacePlaintext Shared Memory

Enclave –

Trusted Code

Application –

Untrusted Code

Encrypted Memory

ocall

ecall

• Can access all memory

• No access to system calls

• Can call system

API functions

(send, fread, etc.)

• Ecall: a secure context switch to enclave code

• Ocall: reverse context switch to request OS services

102%

overhead

Write Latency Read Latency

6% overhead

(Cache-miss: 30%) (Cache-miss: 20%)

8,600 cycles = 2.16 𝝁𝒔𝒆𝒄

8,200 cycles = 2.06 𝝁𝒔𝒆𝒄

Ecalls

-SDK code

-EENTER

-EEXIT

Ocalls

-SDK code

-EEXIT

-ERESUME

8,600 cycles
= 2.16 𝝁𝒔𝒆𝒄

8,200 cycles
= 2.06 𝝁𝒔𝒆𝒄

Cycles (x1000)

14,100 cycles
= 3.52 𝝁𝒔𝒆𝒄

14,100 cycles
= 3.52 𝝁𝒔𝒆𝒄

100%

50%

0%

100%

50%

0%

Physical

Memory

Enclave Page

Cache (EPC)

EPC metadata

Application
Calls

/second

Core

spending

Memcached 200,000 43%

OpenVPN 275,000 57%

Lighttpd 270,000 56%

HotCalls ResponderRequester

Shared Memory
void *dataSpinlock call_ID Go | DoneSpinlockSpinlock void *data call_ID Go | DoneSpinlock Go | Done

Shared Memory
void *dataSpinlock call_ID Go | DoneSpinlock void *data call_ID

Shared Memory
void *dataSpinlock call_ID Go | DoneSpinlock call_ID

Additional thread

Go | Donevoid *data

Shared memory

No context switch

317866 53.4

OpenVPN
(MB / sec)

Memcached
(K-ops / sec)

Lighttpd
(K-requests / sec)

66

309

12.1

185

823
44.8

Normalized Throughput

8,600 cycles

14,100 cycles

8,200 cycles

14,100 cycles

600 cycles

1,300 cycles

580 cycles

1,300 cycles

Cycles (x1000)

HotCalls are order of magnitude fasterPublished at ISCA 2017

No roll-back

Secure enclave is isolated from the system

Cloud Attack Surface SGX in a Nutshell

SGX Life-Cycle Cost of Ecalls/Ocalls Cost of Encrypted Memory

HotCalls Mechanism HotCalls vs. SDK Calls HotCalls in Action

Making SGX great again

The attack surface is largeContribution: overcoming the bottlenecks with HotCalls

Encrypted memory is a potential bottleneck Context switches may dominate performanceSGX operations may become a bottleneck

Memory encrypted on
CPU die (via MEE)

Key insight: requesting services does not mandate a

context switch

Cumulative Distribution of Call Latencies

Cumulative Distribution of Call Latencies

SDK Calls

Hot Calls

SDK Calls
Ocalls

-EEXIT

-ERESUME Hot Calls

Ecalls

-EENTER

-EEXIT

100%

50%

0%

100%

50%

0%

Center for Future
Architectures Research

