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Regaining Lost Cycles with HotCalls:  
A Fast Interface for SGX Secure Enclaves

What is the impact on overall application’s performance?

What creates the bottlenecks?

Authenticated code

Malicious environment

Is it practical?

No SGX With SGX

Throughput degradation

SGX Secure Execution

 To lower costs - computation 

and storage are moved to third 

party machines

 This implies trust across the 

entire software stack

And cloud provider employees
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• Can access all memory 

• No access to system calls

• Can call system 

API functions

(send, fread, etc.)

• Ecall: a secure context switch to enclave code

• Ocall: reverse context switch to request OS services
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Core 

spending

Memcached 200,000 43%

OpenVPN 275,000 57%

Lighttpd 270,000 56%

HotCalls ResponderRequester

Shared Memory
void *dataSpinlock call_ID Go | DoneSpinlockSpinlock void *data call_ID Go | DoneSpinlock Go | Done

Shared Memory
void *dataSpinlock call_ID Go | DoneSpinlock void *data call_ID

Shared Memory
void *dataSpinlock call_ID Go | DoneSpinlock call_ID

Additional thread

Go | Donevoid *data

Shared memory

No context switch
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Cycles (x1000)

HotCalls are order of magnitude fasterPublished at ISCA 2017

No roll-back

Secure enclave is isolated from the system

Cloud Attack Surface SGX in a Nutshell

SGX Life-Cycle Cost of Ecalls/Ocalls Cost of Encrypted Memory

HotCalls Mechanism HotCalls vs. SDK Calls HotCalls in Action

Making SGX great again

The attack surface is largeContribution: overcoming the bottlenecks with HotCalls

Encrypted memory is a potential bottleneck Context switches may dominate performanceSGX operations may become a bottleneck

Memory encrypted on
CPU  die (via MEE)

Key insight:  requesting services does not mandate a 

context switch

Cumulative Distribution of Call Latencies
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