
BugMD: Automatic Mismatch Diagnosis for

Bug Triaging
Biruk Mammo, Milind Furia, Valeria Bertacco, Scott Mahlke, and Daya S. Khudia

Center for Future

Architectures Research

1. Motivation

1. MOV r1, #0xBEEF

r1 = 0xBEEF

2. ADD r3, r1, r2

r3 = 0xFEED

3. ST r1, r3

MEM[0xBEE5] = 0xFEED

architectural state

register value

register index

memory address

memory value

program counter

expected state from

instruction set simulator

1. MOV r1, #0xBEEF

r1 = 0xBEEF

2. ADD r3, r1, r2

r3 = 0xFEED

3. ST r1, r3

MEM[0xBEEF] = 0xFEED

ISS

0xBEE5 ≠ 0xBEEF : Mismatch!

Checkers that monitor architectural state are widely

used in low-observability validation environments

Design

Bugs are detected by comparing architectural state

updates with those from a high-level golden model

What if we had more manifestations?

2. Limitations

 Diagnosis is difficult

 Several thousands of cycles between bug occurrence and manifestation

 Low-observability, limited information

 Simulation stops typically after first mismatch

 Patterns may emerge if simulation continues to collect more mismatches

Instr.

count

mismatch

type

instr. type design

value

ISS value

3 MEM ADDR MEM 0xBEE5 0xBEEF

5 REG VALUE ALU 0xFEE4 0xFEEE

3. (0x0C) ST r1, r3

MEM[0xBEE5] = 0xFEED

4. (0x10) MOV r2, #4

r2 = 0x0004

5. (0x14) ADD r4, r3, #1

r4 = 0xFEE4

6. (0x18) BR +0x10

PC = 0x0020

6 PC VALUE CONTROL 0x0020 0x0028

What happens when design execution diverges?

How do we automatically identify patterns?

How do we get enough data to learn multiple patterns?

3. BugMD: key contributions

 Collects multiple, independent symptoms

 Runs simulation past first mismatch

 Avoids divergence by synchronizing ISS with design

 Learns patterns, without detailed µArch. knowledge

 Generates feature vectors from multiple mismatches

 Trains a machine-learning classifier

 Generates synthetic training data

 Automatically injects thousands of bugs into the design

training

testing

diagnosed

buggy unit

classifier

modelsynthetic bugs

injected for training

4. Symptom collection

ISS
Design

same

?
state
updates

state
updates

mismatch
synchronize state

(0x0C) ST r1, r3

MEM[0xBEE5] = 0xFEED

(0x14) ADD r4, r3, #1

r4 = 0xFEE4

(0x18) BR +0x10

PC = 0x0020

(0x20) …

(0x0C) ST r1, r3

MEM[0xBEEF] = 0xFEED

(0x14) ADD r4, r3, #1

r4 = 0xFEEE

(0x18) BR +0x10

PC = 0x0028

(0x20) …

PC

state
update

mismatch
sync: MEM[0xBEEF] = prev_value,

MEM[0xBEE5] = 0xFEED

Instr.

count

mismatch

type

instr. type design

value

ISS value

3 MEM ADDR MEM 0xBEE5 0xBEEF

5 REG VALUE ALU 0xFEE4 0xFEEE

6 PC VALUE CONTROL 0x0020 0x0028

symptom
bug
signature

, sync: r4 = 0xFEE4

, sync: PC = 0x0020

5. Learning patterns: features

 Unprocessed bug signatures are not amenable to machine learning

 ML algorithms take fixed-size, real valued feature vectors

 Bug signatures have arbitrary sizes, from 0 to millions of entries per simulation

 Symptoms need to be converted to meaningful, real-valued features

 Feature vector size needs to be reasonable

Instr.
count

mismatch
type

instr. type design
value

ISS value

3 MEM ADDR MEM 0xBEE5 0xBEEF

5 REG VALUE ALU 0xFEE4 0xFEEE

N+3 OVERFLOW ALU 0x0000 0x1000

… … … … …
consider only
windows of N
instructions

compute differences
and hamming distances

diff hamming
distance

0xA 2
0xA 2

0x1000 1

group by mismatch type X instr. type

of samples
in window

fraction of
occurrence

mean
difference

stdev
difference

mean
hamming

stdev
hamming

take mean and
stdev per groupcompute fraction of occurrence for each group

entries per mismatch type – instruction type pair

fixed-length
feature vector

6. Learning patterns: classifier

 Investigated several machine-learning algorithms

 Classic machine-learning classifiers (SVM, naïve bayes, etc.)

 Multi-layer perceptron neural network

 Convolutional neural network

 Random decision forest algorithm performed the best

bug
signature

feature
vector

likely buggy unit or
top N likely buggy units

classifier

model

Decision Tree:
learns simple if-

then rules
…

multiple decision trees
constructed from randomly
partitioned training
samples

majority

voter
final output

…

7. Injecting synthetic bugs

 Classifier model has to be trained on known bugs

 Known buggy unit along with associated bug signature(s)

 Large amount of training data required for learning

 We developed a synthetic bug model and injection framework

 Random gate mutations to model bugs

 Automatic bug instrumentation and flexible injection control during simulation

Fetch
Decoder

Decoder

Integer

ALU

Floating Point

L

S

Q
Back

End

RTL

netlist

synthesize to
technology-

independent netlist

instrument bugs:
1. pick a random gate
2. find an equivalent mutation
3. add mutant and injection control

a
b c

c

en

instrumentation

netlist

injection
control

…

Fetch
Decoder

Decoder

Integer

ALU

L

S

Q
Back

End

8. Results

0

0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

design unit

first prediction multi-test top 2 top 3 single-mismatch baseline

F
E

T
C

H
1

F
E

T
C

H
2

D
E

C
O

D
E

IN
S

T
B

U
F

R
E

N
A

M
E

D
IS

P
A

T
C

H

IS
S

U
E

Q

R
E

G
R

E
A

D

E
X

E
C

U
T

E

L
S

U

R
E

T
IR

E

M
A

P
TA

B
L

E

FETCH1 78.9% 7.7% 2.2% 1.9% 0.0% 1.3% 1.9% 0.0% 0.3% 0.0% 5.8% 0.0%

FETCH2 8.0% 78.3% 3.5% 3.2% 1.3% 1.0% 3.5% 0.0% 0.0% 0.0% 1.3% 0.0%

DECODE 7.7% 1.3% 66.8% 2.6% 4.2% 8.6% 2.2% 0.0% 0.3% 0.0% 3.8% 2.6%

INSTBUF 4.5% 0.0% 9.9% 69.3% 4.2% 5.4% 5.1% 0.0% 0.0% 0.3% 0.0% 1.3%

RENAME 0.6% 0.6% 1.6% 1.9% 61.3% 2.6% 5.1% 1.0% 1.0% 0.6% 2.9% 20.8%

DISPATCH 19.2% 1.0% 2.6% 3.8% 4.5% 50.5% 0.3% 0.0% 0.3% 0.3% 8.9% 8.6%

ISSUEQ 3.2% 1.6% 1.9% 7.3% 5.8% 2.2% 68.4% 1.0% 2.9% 2.2% 0.6% 2.9%

REGREAD 0.0% 0.6% 0.3% 0.0% 0.6% 0.3% 1.0% 90.1% 6.4% 0.0% 0.0% 0.6%

EXECUTE 2.2% 0.0% 0.6% 0.0% 0.0% 1.0% 4.2% 7.3% 78.9% 2.2% 2.9% 0.6%

LSU 0.0% 0.0% 0.0% 1.9% 0.0% 0.0% 0.0% 0.0% 4.2% 92.7% 1.3% 0.0%

RETIRE 15.7% 1.9% 2.2% 1.3% 3.8% 8.3% 3.8% 1.6% 5.8% 1.9% 47.0% 6.7%

MAPTABLE 0.0% 0.3% 0.3% 0.3% 16.3% 1.0% 1.0% 0.3% 0.3% 0.0% 3.5% 76.7%

diagnosed

actual

0%

100%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ac
cu

ra
cy

size of training set (multiples of size of test set)

mean LSU DISPATCH

 4-wide, out-of-order FabScalar

core, 12 design units

 6 instruction types

 34 mismatch types

 10,000 instruction window, feature

vectors of size 470

 7080 synthetic bugs, over 40,000

bug signatures

9. Conclusions and future work

 BugMD is a bug triaging mechanism intended for low-observability

validation environments, which reduces bug triaging effort by suggesting

likely bug sites

 Future work will explore better synthetic bug models and a cooperative

selection of feature extraction approaches and classifiers

 Industry interactions

 Dr. Daya S. Khudia was hired by

Intel Corporation

 Publications/presentations

 To appear in proceedings of

ICCAD’16

 Manuscript uploaded to SRC

10. Technology transfer

