
BugMD: Automatic Mismatch Diagnosis for 

Bug Triaging
Biruk Mammo, Milind Furia, Valeria Bertacco, Scott Mahlke, and Daya S. Khudia

Center for Future 

Architectures Research

1. Motivation
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r3 = 0xFEED

3. ST  r1, r3

MEM[0xBEE5] = 0xFEED
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r1 = 0xBEEF

2. ADD  r3, r1, r2

r3 = 0xFEED

3. ST  r1, r3

MEM[0xBEEF] = 0xFEED

ISS

0xBEE5 ≠ 0xBEEF : Mismatch!

Checkers that monitor architectural state are widely 

used in low-observability validation environments

Design

Bugs are detected by comparing architectural state 

updates with those from a high-level golden model

What if we had more manifestations?

2. Limitations

 Diagnosis is difficult

 Several thousands of cycles between bug occurrence and manifestation

 Low-observability, limited information

 Simulation stops typically after first mismatch

 Patterns may emerge if simulation continues to collect more mismatches
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3 MEM ADDR MEM 0xBEE5 0xBEEF

5 REG VALUE ALU 0xFEE4 0xFEEE

3. (0x0C) ST  r1, r3

MEM[0xBEE5] = 0xFEED

4. (0x10) MOV r2, #4

r2 = 0x0004

5. (0x14) ADD r4, r3, #1

r4 = 0xFEE4

6. (0x18) BR +0x10

PC = 0x0020

6 PC VALUE CONTROL 0x0020 0x0028

What happens when design execution diverges?

How do we automatically identify patterns?

How do we get enough data to learn multiple patterns?

3. BugMD: key contributions

 Collects multiple, independent symptoms

 Runs simulation past first mismatch

 Avoids divergence by synchronizing ISS with design

 Learns patterns, without detailed µArch. knowledge

 Generates feature vectors from multiple mismatches

 Trains a machine-learning classifier

 Generates synthetic training data

 Automatically injects thousands of bugs into the design
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4. Symptom collection
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5 REG VALUE ALU 0xFEE4 0xFEEE

6 PC VALUE CONTROL 0x0020 0x0028
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5. Learning patterns: features

 Unprocessed bug signatures are not amenable to machine learning

 ML algorithms take fixed-size, real valued feature vectors

 Bug signatures have arbitrary sizes, from 0 to millions of entries per simulation

 Symptoms need to be converted to meaningful, real-valued features

 Feature vector size needs to be reasonable
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6. Learning patterns: classifier

 Investigated several machine-learning algorithms

 Classic machine-learning classifiers (SVM, naïve bayes, etc.)

 Multi-layer perceptron neural network

 Convolutional neural network

 Random decision forest algorithm performed the best

bug 
signature

feature 
vector

likely buggy unit or
top N likely buggy units

classifier 

model

Decision Tree: 
learns simple if-

then rules  
…

multiple decision trees 
constructed from randomly 
partitioned training 
samples

majority 

voter
final output

…

7. Injecting synthetic bugs

 Classifier model has to be trained on known bugs

 Known buggy unit along with associated bug signature(s)

 Large amount of training data required for learning

 We developed a synthetic bug model and injection framework

 Random gate mutations to model bugs

 Automatic bug instrumentation and flexible injection control during simulation
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8. Results
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FETCH1 78.9% 7.7% 2.2% 1.9% 0.0% 1.3% 1.9% 0.0% 0.3% 0.0% 5.8% 0.0%

FETCH2 8.0% 78.3% 3.5% 3.2% 1.3% 1.0% 3.5% 0.0% 0.0% 0.0% 1.3% 0.0%

DECODE 7.7% 1.3% 66.8% 2.6% 4.2% 8.6% 2.2% 0.0% 0.3% 0.0% 3.8% 2.6%

INSTBUF 4.5% 0.0% 9.9% 69.3% 4.2% 5.4% 5.1% 0.0% 0.0% 0.3% 0.0% 1.3%

RENAME 0.6% 0.6% 1.6% 1.9% 61.3% 2.6% 5.1% 1.0% 1.0% 0.6% 2.9% 20.8%

DISPATCH 19.2% 1.0% 2.6% 3.8% 4.5% 50.5% 0.3% 0.0% 0.3% 0.3% 8.9% 8.6%

ISSUEQ 3.2% 1.6% 1.9% 7.3% 5.8% 2.2% 68.4% 1.0% 2.9% 2.2% 0.6% 2.9%

REGREAD 0.0% 0.6% 0.3% 0.0% 0.6% 0.3% 1.0% 90.1% 6.4% 0.0% 0.0% 0.6%

EXECUTE 2.2% 0.0% 0.6% 0.0% 0.0% 1.0% 4.2% 7.3% 78.9% 2.2% 2.9% 0.6%

LSU 0.0% 0.0% 0.0% 1.9% 0.0% 0.0% 0.0% 0.0% 4.2% 92.7% 1.3% 0.0%

RETIRE 15.7% 1.9% 2.2% 1.3% 3.8% 8.3% 3.8% 1.6% 5.8% 1.9% 47.0% 6.7%

MAPTABLE 0.0% 0.3% 0.3% 0.3% 16.3% 1.0% 1.0% 0.3% 0.3% 0.0% 3.5% 76.7%
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 4-wide, out-of-order FabScalar

core, 12 design units

 6 instruction types

 34 mismatch types

 10,000 instruction window, feature 

vectors of size 470

 7080 synthetic bugs, over 40,000 

bug signatures

9. Conclusions and future work

 BugMD is a bug triaging mechanism intended for low-observability 

validation environments, which reduces bug triaging effort by suggesting 

likely bug sites

 Future work will explore better synthetic bug models and a cooperative 

selection of feature extraction approaches and classifiers

 Industry interactions

 Dr. Daya S. Khudia was hired by 

Intel Corporation

 Publications/presentations

 To appear in proceedings of 

ICCAD’16

 Manuscript uploaded to SRC

10. Technology transfer


