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2. Limitations
[ ]

o Diagnosis is difficult
Several thousands of cycles between bug occurrence and manifestation

1. Motivation
[ ]

Checkers that monitor architectural state are widely
used in low-observability validation environments

Bugs are detected by comparing architectural state c++ . e xn
updates with those from a high-level golden model |SS R

expected state from
instruction set simulator

o Collects multiple, independent symptoms
Runs simulation past first mismatch
Low-observabillity, limited information Avoids divergence by synchronizing ISS with design

o Simulation stops typically after first mismatch
Patterns may emerge if simulation continues to collect more mismatches
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4. (0x10) MOV r2, #4

o Learns patterns, without detailed pArch. knowledge

architectural state Generates feature vectors from multiple mismatches
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Trains a machine-learning classifier
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OxBEES5 # OxBEEF : Mismatch!

What happens when design execution diverges? classifier

synthetic bug model

How do we automatically identify patterns? injected for training

How do we get enough data to learn multiple patterns?

5. Learning patterns: features
]

o Unprocessed bug signatures are not amenable to machine learning
ML algorithms take fixed-size, real valued feature vectors

6. Learning patterns: classifier-#
- m
o Investigated several machine-learning algorithms
Classic machine-learning classifiers (SVM, naive bayes, etc.)

_ state C++
~ Updates |gg

synchronize state

Bug signatures have arbitrary sizes, from 0 to millions of entries per simulation Multi-layer perceptron neural network

PC—(0x0C) ST r1, r3

(0x0C) ST r1, r3

Symptoms need to be converted to meaningful, real-valued features

Feature vector size needs to be reasonable compute differences

Convolutional neural network
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Injecting synthetic bugs

o Classifier model has to be trained on known bugs
Known buggy unit along with associated bug signature(s)

8.

4-wide, out-of-order FabScalar
core, 12 design units

Results

m first prediction = multi-test ® top2 = top 3 —single-mismatch baseline

O. Conclusions and future work
[ ]

o BugMD is a bug triaging mechanism intended for low-observability
validation environments, which reduces bug triaging effort by suggesting

: : 0.8 . .
Large amount of training data required for learning 6 |nstruct|on types = 05 likely bug sites
| S 34 mismatch types s o Future work will explore better synthetic bug models and a cooperative
0 We developed a synthetic bug model and injection framework 10,000 instruction window, feature & > selection of feature extraction approaches and classifiers

Random gate mutations to model bugs

Automatic bug instrumentation and flexible injection control during simulation

vectors of size 470 0.2
7080 synthetic bugs, over 40,000 0
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