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1. Motivation
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MEM[0xBEEF] = 0xFEED

ISS

0xBEE5 ≠ 0xBEEF : Mismatch!

Checkers that monitor architectural state are widely 

used in low-observability validation environments

Design

Bugs are detected by comparing architectural state 

updates with those from a high-level golden model

What if we had more manifestations?

2. Limitations

 Diagnosis is difficult

 Several thousands of cycles between bug occurrence and manifestation

 Low-observability, limited information

 Simulation stops typically after first mismatch

 Patterns may emerge if simulation continues to collect more mismatches
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3 MEM ADDR MEM 0xBEE5 0xBEEF

5 REG VALUE ALU 0xFEE4 0xFEEE

3. (0x0C) ST  r1, r3

MEM[0xBEE5] = 0xFEED

4. (0x10) MOV r2, #4

r2 = 0x0004

5. (0x14) ADD r4, r3, #1

r4 = 0xFEE4

6. (0x18) BR +0x10

PC = 0x0020

6 PC VALUE CONTROL 0x0020 0x0028

What happens when design execution diverges?

How do we automatically identify patterns?

How do we get enough data to learn multiple patterns?

3. BugMD: key contributions

 Collects multiple, independent symptoms

 Runs simulation past first mismatch

 Avoids divergence by synchronizing ISS with design

 Learns patterns, without detailed µArch. knowledge

 Generates feature vectors from multiple mismatches

 Trains a machine-learning classifier

 Generates synthetic training data

 Automatically injects thousands of bugs into the design
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4. Symptom collection
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5. Learning patterns: features

 Unprocessed bug signatures are not amenable to machine learning

 ML algorithms take fixed-size, real valued feature vectors

 Bug signatures have arbitrary sizes, from 0 to millions of entries per simulation

 Symptoms need to be converted to meaningful, real-valued features

 Feature vector size needs to be reasonable
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6. Learning patterns: classifier

 Investigated several machine-learning algorithms

 Classic machine-learning classifiers (SVM, naïve bayes, etc.)

 Multi-layer perceptron neural network

 Convolutional neural network

 Random decision forest algorithm performed the best
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7. Injecting synthetic bugs

 Classifier model has to be trained on known bugs

 Known buggy unit along with associated bug signature(s)

 Large amount of training data required for learning

 We developed a synthetic bug model and injection framework

 Random gate mutations to model bugs

 Automatic bug instrumentation and flexible injection control during simulation
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8. Results
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FETCH1 78.9% 7.7% 2.2% 1.9% 0.0% 1.3% 1.9% 0.0% 0.3% 0.0% 5.8% 0.0%

FETCH2 8.0% 78.3% 3.5% 3.2% 1.3% 1.0% 3.5% 0.0% 0.0% 0.0% 1.3% 0.0%

DECODE 7.7% 1.3% 66.8% 2.6% 4.2% 8.6% 2.2% 0.0% 0.3% 0.0% 3.8% 2.6%

INSTBUF 4.5% 0.0% 9.9% 69.3% 4.2% 5.4% 5.1% 0.0% 0.0% 0.3% 0.0% 1.3%

RENAME 0.6% 0.6% 1.6% 1.9% 61.3% 2.6% 5.1% 1.0% 1.0% 0.6% 2.9% 20.8%

DISPATCH 19.2% 1.0% 2.6% 3.8% 4.5% 50.5% 0.3% 0.0% 0.3% 0.3% 8.9% 8.6%

ISSUEQ 3.2% 1.6% 1.9% 7.3% 5.8% 2.2% 68.4% 1.0% 2.9% 2.2% 0.6% 2.9%

REGREAD 0.0% 0.6% 0.3% 0.0% 0.6% 0.3% 1.0% 90.1% 6.4% 0.0% 0.0% 0.6%

EXECUTE 2.2% 0.0% 0.6% 0.0% 0.0% 1.0% 4.2% 7.3% 78.9% 2.2% 2.9% 0.6%

LSU 0.0% 0.0% 0.0% 1.9% 0.0% 0.0% 0.0% 0.0% 4.2% 92.7% 1.3% 0.0%

RETIRE 15.7% 1.9% 2.2% 1.3% 3.8% 8.3% 3.8% 1.6% 5.8% 1.9% 47.0% 6.7%

MAPTABLE 0.0% 0.3% 0.3% 0.3% 16.3% 1.0% 1.0% 0.3% 0.3% 0.0% 3.5% 76.7%
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 4-wide, out-of-order FabScalar

core, 12 design units

 6 instruction types

 34 mismatch types

 10,000 instruction window, feature 

vectors of size 470

 7080 synthetic bugs, over 40,000 

bug signatures

9. Conclusions and future work

 BugMD is a bug triaging mechanism intended for low-observability 

validation environments, which reduces bug triaging effort by suggesting 

likely bug sites

 Future work will explore better synthetic bug models and a cooperative 

selection of feature extraction approaches and classifiers
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10. Technology transfer


