BugMD: Automatic Mismatch Diagnosis for Bug Triaging

Biruk Mammo, Milind Furia, Valeria Bertacco, Scott Mahlke, and Daya S. Khudia

1. Motivation

Checkers that monitor architectural state are widely used in low-observability validation environments.

Bugs are detected by comparing architectural state updates with those from a high-level golden model.

2. Limitations

- Diagnosis is difficult
- Several thousands of cycles between bug occurrence and manifestation
- Low-observability, limited information

Simulation stops typically after first mismatch
- Patterns may emerge if simulation continues to collect more mismatches

3. BugMD: key contributions

- Collects multiple, independent symptoms
 - Runs simulation past first mismatch
 - Avoids divergence by synchronizing ISS with design
- Learns patterns, without detailed µArch. knowledge
 - Generates feature vectors from multiple mismatches
 - Trains a machine-learning classifier
- Generates synthetic training data
 - Automatically injects thousands of bugs into the design

4. Symptom collection

- Unprocessed bug signatures are not amenable to machine learning
 - ML algorithms take fixed-size, real valued feature vectors
 - Bug signatures have arbitrary sizes, from 0 to millions of entries per simulation
- Symptoms need to be converted to meaningful, real-valued features
 - Feature vector size needs to be reasonable

5. Learning patterns: features

- Fixed-length feature vector
 - Fraction of occurrence for each group
 - Unusual mismatch pairs

6. Learning patterns: classifier

- Random decision forest algorithm performed the best
 - Multi-layer perceptron neural network
 - Convolutional neural network

7. Injecting synthetic bugs

- Classifier model has to be trained on known bugs
 - Known buggy unit along with associated bug signature(s)
- Large amount of training data required for learning
- We developed a synthetic bug model and injection framework
 - Random gate mutations to model bugs
 - Automatic bug instrumentation and flexible injection control during simulation

8. Results

- 4-wide, out-of-order FatScalar core; 12 design units
 - 6 instruction types
 - 34 mismatch types
 - 10,000 instruction window, feature vectors of size 470
 - 7,800 synthetic bugs, over 40,000 bug signatures

9. Conclusions and future work

- BugMD is a bug triaging mechanism intended for low-observability validation environments, which reduces bug triaging effort by suggesting likely bug sites
- Future work will explore better synthetic bug models and a cooperative selection of feature extraction approaches and classifiers

10. Technology transfer

- Industry interactions
 - Dr. Daya S. Khudia was hired by Intel Corporation
- Publications/presentations
 - To appear in proceedings of ICCAD'16
 - Manuscript uploaded to SRC