
Probabilistic Bug-Masking Analysis for Post-Silicon Tests
in Microprocessor Verification

Doowon Lee*, Tom Kolan†, Arkadiy Morgenshtein†, Vitali Sokhin†,

Ronny Morad†, Avi Ziv† and Valeria Bertacco*

example of random instruction test

instruction 1: r3 ← r0 + r1

2: r4 ← r0 – r2

3: r5 ← r0 & r3

4: r3 ← r2 << r4

5: r5 ← r4 == r4

(end of test)

bug manifested

masked?

“incorrect
r3 value”

checking bug

“Is r3 value
correct?”

• Adopting information-flow tracking used
in software security analysis
 Treat each instruction’s target (e.g., register, memory)

as taint source

 Checking for information reachability

• Analyzing use-def chains along instruction sequence

no instruction
taint status

r0 r1 r2 r3 r4 r5

1 r3 ← r0 + r1

2 r4 ← r0 – r2

3 r5 ← r0 & r3

4 r3 ← r2 << r4

5 r5 ← r4 == r4

φ φ φ {1} φ φ

φ φ φ {1} {2} φ

φ φ φ {1} {2} {1,3}

φ φ φ {2,4} {2} {1,3}

φ φ φ {2,4} {2} {2,5}

union set = {2, 4, 5}

“Bugs manifested in other two instructions (1 and 3) could go undetected”

Buggy information can be masked by subsequent instructions
depending on how instructions propagate the information

example test

r4 ← r3 & r2

r5 ← r4 << 16

Information-flow tracking result:
“r5 might contain buggy information propagated from r3.”

 Actual results depends on register r2 value…

e.g.: Suppose r3 gets a buggy value 0xBAADBAAD

(1) When r2 = 0x0000FFFF

r4 ← 0xBAADBAAD & 0x0000FFFF

r5 ← 0x0000BAAD << 16

(= 0xBAAD0000)

(2) When r2 = 0xFFFF0000

r4 ← 0xBAADBAAD & 0xFFFF0000

r5 ← 0xBAAD0000 << 16

(= 0x00000000: no trace)

• Static information-flow tracking conservatively predicts
bug-masking incidence

• Goal: improving accuracy of tracking by using probability model

Step 1:

Calculate bug-masking probability for each instruction type

Step 2:

Calculate bug-masking probability for instruction sequence (test-case)

instruction set

add

and
sub

shift
load

…

For each source and target pair:

How likely is a buggy value in source masked,

and thus not appearing in target?

For each instruction:

How likely are buggy values masked by

subsequent instructions?

test-case

r0 ← r1 << r2

r1 ← mem[r0]

r2 ← r0 + r1

…

(checking for bugs)

RT

+

RA RB

1. addition
add RT,RA,RB

• How likely is a buggy value masked by a single instruction?

0% 0%

RA

&

RS RB

50% 50%

2. bitwise and
and RA,RS,RB

RA

<<

RS RB

49%* 91%†

3. shift left doubleword
sld RA,RS,RB

* uniformly random RB value
† RB uses only 6 bits in 64 bits

Three example instructions in Power ISA

0x10000x1234

0x2234

0x2244

0x1010

(bit flip)bug-

masking

rate

• Probability depends on bug model
 Single-bit flip bug considered here for illustration

 See paper for sensitivity study on bug models

compare

Bug-propagation probability

Lightweight probability computation using three simplifying
independence assumptions

1. Independence among instructions

2. Independence among inputs

3. Independence among resources

r2 ← r0 << r1

r4 ← r2 << r3

r5 ← r2 << r4

example test

Bug-propagation rates
of “sld RA,RS,RB”:

P(RS→RA) = 0.51

P(RB→RA) = 0.09

Bug-propagation probability

at the end of test:

register probability

r0 50%

r2 25.5%

r4 13%

r5 14%

† P((r2→r5) U (r4→r5))

= 1 – (1 – P(r2→r5)) × (1 – P(r4→r5))

‡ assumption 3:

P(r0 U r2 U r4 U r5)

= 1 – P(r0c ∩ r2c ∩ r4c ∩ r5c)

= 1 – (1 – P(r0)) × (1 – P(r2)) ×
(1 – P(r4)) × (1 – P(r5))

r0 r1

r2 r3

r2 r4

<<

<<

<<

25.5%

assumption 1:

13%
(= 0.255×0.51)

25.5%

r5 assumption 2:

14%†

50%
(buggy src)

total 72.1%‡

• Two ISAs evaluated: IBM Power and DEC Alpha
 IBM Power: approximately 4,000 source-target pairs

• Test generator: Threadmill [DAC’11]

 DEC Alpha: 218 source-target pairs (subset of instructions)

• Test generator: in-house fully-random test generator

• Bug model
 Mimicking micro-architectural bugs by slightly altering

architectural state

 Random erroneous value update for architectural state
(register / memory location)

• BugMAPI execution time
 BugMAPI (11.3 seconds) vs. dynamic analysis (~25,000

seconds): 3 orders-of-magnitude speedup

Bug-masking rate for individual instructions in fully random tests
(averaged over 30 tests)

Dotted lines are fitting curves

(unit of x is 10 instructions)

y = 0.177ln(x) – 0.005

dynamic analysis

y = 0.139ln(x) + 0.011

BugMAPI

y = 0.117ln(x) + 0.026

baseline static analysis

distance from the end of the test (in # of instructions)

b
u
g
-m

a
s
k
in

g
 r

a
te

0%

20%

40%

60%

80%

[1
,1

0
]

[1
1
,2

0
]

[2
1
,3

0
]

[3
1
,4

0
]

[4
1
,5

0
]

[5
1
,6

0
]

[6
1
,7

0
]

[7
1
,8

0
]

[8
1
,9

0
]

[9
1
,1

0
0

]

[1
0
1

,1
1

0
]

[1
1
1

,1
2

0
]

[1
2
1

,1
3

0
]

[1
3
1

,1
4

0
]

[1
4
1

,1
5

0
]

[1
5
1

,1
6

0
]

[1
6
1

,1
7

0
]

[1
7
1

,1
8

0
]

[1
8
1

,1
9

0
]

[1
9
1

,2
0

0
]

[2
0
1

,2
1

0
]

[2
1
1

,2
2

0
]

[2
2
1

,2
3

0
]

[2
3
1

,2
4

0
]

[2
4
1

,2
5

0
]

Observations:

1. The farther checking point, the higher bug-masking rate

(but slower increment)

2. BugMAPI recognizes 79% of masked instruction

Power ISA*

0%

20%

40%

60%

80%

100%

c
la

s
s
if
ic

a
ti
o
n
 o

f
 m

a
s
k
e
d
 b

u
g
s Power ISA* Alpha ISA†

test-case

* no memory disambiguation

applied for Power ISA tests
† with memory disambiguation

store instruction

BugMAPI – 0%

BugMAPI – <100%

BugMAPI – 100%

baseline static

Observations:

1. BugMAPI can detect masked bugs 15% more than baseline static analysis

: BugMAPI (77%) vs. baseline static analysis (62%) (Power ISA)

2. Bug-masking assessment remains stable regardless of length (Alpha ISA)

• Reducing bug-masking incidence in random instruction tests

• Two steps: identification and patching 57% (5,486 out of 9,624)

28% (3,384 out of 12,277)

original
tests

mask-reduced
tests

b
u
g
-m

a
s
k
in

g
 r

a
te

r3 ← r0 + r1

r4 ← r0 – r2

r5 ← r0 & r3

r3 ← r2 << r4

r5 ← r4 == r4

original test

r3 ← r0 + r1

r4 ← r0 – r2

r5 ← r0 & r3

r3 ← r2 << r4

r4 ← r5 XOR r4

r5 ← r4 == r4

mask-reduced test

(1) Identifying mask-

causing instructions by

using BugMAPI
(2) Patching mask-

reducing instructions

 XOR instruction

(0% masking rate)

 No extra register required

Results:

• Masking rate reduced to half

• Can further reduce masking by considering

mask-causing store instructions

* University of Michigan, † IBM Research – Haifa

Baseline: information-flow tracking

BugMAPI: Bug-Masking Analysis with Probabilistic Information-flow

Experimental evaluation

Application: bug-masking reduction

• Sources of inaccuracy
 Coarse granularity of information-flow tracking (register-level tracking)

 Approximated probability computation (dependency ignorance)

 Lack of consideration of instruction blocks (e.g., address calculation)

• Bug-model dependency
 5 models considered (random value overwrite, single-bit flip,

binary complementation, missing update, spurious update)

 Comparable detection rates, except for spurious update (false positives)

• Multi-thread programs
 Non-deterministic execution, inter-thread data dependency

 Profiling frequency of inter-thread data dependency

Discussions

Post-silicon validation and challenge

• Post-silicon validation is crucial to stimulate corner cases
that are unverified in pre-silicon validation

 Pseudo-random instruction tests Self-checking techniques

• Post-silicon validation challenge: limited observability to
microprocessor internals

 Assumption: only architectural state is observable at the end of test

• Bug-masking can happen due to limited observability

Step 1: calculating instruction’s probability Step 2: calculating sequence’s probability
BugMAPI overview

Bug-masking rate vs. distance from end of test BugMAPI accuracyExperimental setup

(Alpha ISA,

only non-store

mask-causing

instructions

considered)

Austin, TX, USA

June 5–9, 2016

shift: r0 ← r1 << r2
49% 91%

bug-masking rate

27% 33% 100%

bug-masking rate

data-flow

graph

one-time

computation

for each ISA

Limitation of information-flow tracking

