Probabilistic Bug-Masking Analysis for Post-Silicon Tests
In Microprocessor Verification

Doowon Lee*, Tom Kolan®, Arkadiy Morgenshteint, Vitali Sokhinf,

Ronny Morad™, Avi Zivi and Valeria Bertacco*
UNIVERSITY OF

MICHIGAN * University of Michigan, IBM Research — Haifa

Post-silicon validation and challenge Baseline: information-flow tracking

« Post-silicon validation is crucial to stimulate corner cases . Adopting information-flow tracking used Limitation of information-flow tracking

that are unverified in pre-silicon validation in software security analysis Buggy information can be masked by subsequent instructions
= Pseudo-random instruction tests = Self-checking techniques = Treat each instruction’s target (e.g., register, memory) depending on how Instructions propagate the information

- s . s as taint source
. - ; rvabili - -
Post-silicon validation challenge: limited observability to « Checking for information reachability example test Information-flow tracking result:

MICroprocessor internals Analvzi def chai | instructi “r5 might contain buggy information propagated from r3.”
= Assumption: only architectural state is observable at the end of test nalyzing use-det cnains along instruction sequence = Actual results depends on register r2 value...

 Bug-masking can happen due to limited observability m- e.0.: SUppose I3 gets a buggy value 0xBAADEAAD
Instruction

' ' r2 r3 r4 5
example of random instruction test .\) incorrect /(1) When r2 = 0x0000FFFF A /(2) When r2 = 0xFFFF0000 A
r3 value” 3« r0+rl ¢ {1} ¢ ¢

Instruction 1: r3 «— r0 +rl r4 «— O0xBAADBAAD & 0x0000FFFF 4 «— O0xBAADBAAD & OxFFFF0000
2 4«10 —r2 ¢ 11 2} ¢ (5« 0x0000BAAD << 16 (5 « 0xBAAD0000 << 16
2: 14 —10-r2 3 15« r0&r3 ¢ {1} {2} {13} (= 0xBAADO000) ﬁ (= 0x00000000: no trace)
3:15 10 & I3 _ 4 r3er2<<r4 ¢ {24} {2} {13} . PR
5

15 <« r4 ==r4 ¢ 2,4 2 2,5 .. . : : .
4: 13 — 12 << r4 “Is r3 value Y{) « Static information-flow tracking conservatively predicts

5 15 14 == r4 | correct?” union set = {2, 4, 5} bug-masking incidence
(end of testy checkingbug ” "Bugs manifested in other two instructions (1 and 3) could go undetected” |+ Gpgl: improving accuracy of tracking by using probability model

bug manifested

)

BugMAPI: Bug-Masking Analysis with Probabilistic Information-flow

BugMAPI overview . : . : -
Step 1- - Step 1: calculating instruction’s probability Step 2: calculating sequence’s probability
Calculate bug-masking probability for each instruction type : : : . . : : . : : : e
9 gp y P * How likely is a buggy value masked by a single instruction? Lightweight probability computation using three simplifying
~ instruction set ~ FOr each source and target pair: Three example instructions in Power ISA iIndependence assumptions
How likely is a buggy value in source masked, . .
add T 4 _ B 4 __ N _) 1. Independence among instructions 3. Independence among resources
and thus not appearing in target? 1. addition 2. bitwise and 3. shift left doubleword .
and sub & add RT,RA,RB and RA,RS,RB s1d RA,RS,RB 2. Independence among inputs
: : " Bug-propagation probabilit
oad | LSMft~ & bug-masking rate 0x1234 0x1000 Bug-propagation probabillty attho end of test:
St 0 1L<<12 | g0, g o1 01070 osol0] [
L) T & pug- (bit flip) example test | data-flow | (BUGAY \@/ 0 500
masking 2« rg<<rl | 9raph - .
Step 2: rate 4 —r2<<r3 | | 25.5%1 r2/ 13 [= ’
Calculate bug-masking probability for instruction sequence (test-case) 5 «—r2<<r4 r4 13%
r5 14%
(| test-case T For each instruction: —— — \ Y | rz 7 assumption 1
v : 0x2234 * uniformly random RB value Te9.970] "13% _
0 11 << 12 =ﬁ How likely are buggy values masked by 0x2244 } compare ' RE uses only 6 bits in 64 bits - 0.0255><o.51) + assumption 3:
* SUbsequent InStrUCtIOnSr) Bug_propagation rates e P(I‘O U I‘2 U I‘4 U I‘5)
r1 < mem[rO] 3 . i _ of “s1d RA,RS,RB" =1—P(r0° N r2¢ N r4c N r5°)
T & _ Probability depends on bug model | one-time P(RS—RA) =051 | | [15} =1-(1=P(0)) X (1-P(r2)) X
2 «r0+rl ﬁ bug masklng rate = Single-bit flip bug considered here for illustration computation P(RB—RA) = 0.09 . J (1 -P(r4)) x (1 —P(r5))
= See paper for sensitivity study on bug models t P((r2—r5) U (r4—r15
y (() U()
: . A A for each ISA =1—(1-P(r2—15)) x (1 - P(r4—r5))
(checking for bugs) | 27% 33% 100%
Experimental evaluation
Experimental setup Bug-masking rate vs. distance from end of test BugMAPI| accuracy
_ Bug-masking rate for individual instructions in fully random tests
* Two ISAs evaluated: IBM Power and DEC Alpha (averaged over 30 tests) - Power ISA* A|pha|SAT
= |BM Power: approximately 4,000 source-target pairs o 27 B = tore metruction
. Test generator: Threadmill [DAC'11] 2 ower ISA* 3 80w []
. . . i i — O
» DEC Alpha: 218 source-target pairs (subset of instructions) | o sp0r . |\ dynamic analysis R BUGMAPI — 0%
| Q =y =0.177In(x) — 0.005 S BuaMAPI| — <100%
» Test generator: in-house fully-random test generator © _ _ _ 5 ug - 0
'8 baseline static analysis o 40% - BUgMAPI — 100%
% y = 0.117In(x) + 0.026 2 _ _
0 g 20% B baseline static
» Bug model T BUgMAP! 2 o
Mimicki : : : : s 0 e y = 0.139In(x) + 0.011 o 0% N i . o
= Mimicking micro-architectural bugs by slightly altering = - AN N N RS \@ \@ no memory disambiguation
architectural state Dotted lines are fitting curves PO &Q§ & F & FE \ R Tapplled for Power ISA tests
_ it of X is 10 instructions) S @c} ,\Q S with memory disambiguation
= Random erroneous value update for architectural state (uni 3 test-case ,
(register / memory location)
distance from the end of the test (in # of instructions)
: : Observations: Observations:
* BugMAPI execution time 1. The farther checking point, the higher bug-masking rate 1. BugMAPI can detect masked bugs 15% more than baseline static analysis
= BugMAPI (11.3 seconds) vs. dynamic analysis (~25,000 (but slower increment) : BUQMAPI (77%) vs. baseline static analysis (62%) (Power ISA)
seconds): 3 orders-of-magnitude speedup 2. BugMAPI recognizes 79% of masked instruction 2. Bug-masking assessment remains stable regardless of length (Alpha ISA)
Application: bug-masking reduction Discussions

« Sources of inaccuracy
= Coarse granularity of information-flow tracking (register-level tracking)
= Approximated probability computation (dependency ignorance)
» Lack of consideration of instruction blocks (e.g., address calculation)

« Reducing bug-masking incidence in random instruction tests

» Two steps: identification and patching (Alpha ISA,

only non-store
mask-causing
Instructions
considered)

»

57% (5,486 out of 9,624)

original test mask-reduced test
rI3«—r0+rl I3« r0+rl
r4 «—r0Q —r2 r4 «—rQ—r2
5 «—r0 &r3 5« r0&r3
I3« r2<<r4 I3« r2<<r4

28% (3,384 out of 12,277)

* Bug-model dependency

= 5 models considered (random value overwrite, single-bit flip,
binary complementation, missing update, spurious update)

= Comparable detection rates, except for spurious update (false positives)

« Multi-thread programs
* Non-deterministic execution, inter-thread data dependency
* Profiling frequency of inter-thread data dependency

bug-masking rate

(5 14 == r4 (4 < 15 XOR r4 original mask-reduced
5 14 == 4 tests tests

(1) Identifying mask-
causing instructions by (2) Patching mask-

using BugMAPI reducing instructions Results:_
v XOR instruction Masking rate reduced to half

(0% masking rate) « Can further reduce masking by considering (
O

v No extra register required mask-causing store instructions] .
Austin, TX, USA & N
June 5-9,2016 |o . AUTOMATION

