
1

Disaggregated Memory for Expansion and Sharing
in Blade Servers

Kevin Lim*, Jichuan Chang†, Trevor Mudge*, Parthasarathy Ranganathan†,
Steven K. Reinhardt+*, Thomas F. Wenisch*

* University of Michigan, Ann Arbor

{ktlim,tnm,twenisch}@umich.edu

†
Hewlett-Packard Labs

{jichuan.chang,partha.ranganathan}@hp.com

+
Advanced Micro Devices, Inc.
steve.reinhardt@amd.com

ABSTRACT
Analysis of technology and application trends reveals a growing
imbalance in the peak compute-to-memory-capacity ratio for
future servers. At the same time, the fraction contributed by
memory systems to total datacenter costs and power consumption
during typical usage is increasing. In response to these trends, this
paper re-examines traditional compute-memory co-location on a
single system and details the design of a new general-purpose
architectural building block—a memory blade—that allows
memory to be "disaggregated" across a system ensemble. This
remote memory blade can be used for memory capacity expansion
to improve performance and for sharing memory across servers to
reduce provisioning and power costs. We use this memory blade
building block to propose two new system architecture
solutions—(1) page-swapped remote memory at the virtualization
layer, and (2) block-access remote memory with support in the
coherence hardware—that enable transparent memory expansion
and sharing on commodity-based systems. Using simulations of a
mix of enterprise benchmarks supplemented with traces from live
datacenters, we demonstrate that memory disaggregation can
provide substantial performance benefits (on average 10X) in
memory constrained environments, while the sharing enabled by
our solutions can improve performance-per-dollar by up to 87%
when optimizing memory provisioning across multiple servers.

Categories and Subject Descriptors
C.0 [Computer System Designs]: General – system
architectures; B.3.2 [Memory Structures]: Design Styles –
primary memory, virtual memory.

General Terms
Design, Management, Performance.

Keywords
Memory capacity expansion, disaggregated memory, power and
cost efficiencies, memory blades.

1. INTRODUCTION
Recent trends point to the likely emergence of a new memory
wall—one of memory capacity—for future commodity systems.
On the demand side, current trends point to increased number of
cores per socket, with some studies predicting a two-fold increase
every two years [1]. Concurrently, we are likely to see an
increased number of virtual machines (VMs) per core (VMware
quotes 2-4X memory requirements from VM consolidation every
generation [2]), and increased memory footprint per VM (e.g., the
footprint of Microsoft® Windows® has been growing faster than
Moore’s Law [3]). However, from a supply point of view, the
International Technology Roadmap for Semiconductors (ITRS)
estimates that the pin count at a socket level is likely to remain
constant [4]. As a result, the number of channels per socket is
expected to be near-constant. In addition, the rate of growth in
DIMM density is starting to wane (2X every three years versus 2X
every two years), and the DIMM count per channel is declining
(e.g., two DIMMs per channel on DDR3 versus eight for DDR)
[5]. Figure 1(a) aggregates these trends to show historical and
extrapolated increases in processor computation and associated
memory capacity. The processor line shows the projected trend of
cores per socket, while the DRAM line shows the projected trend
of capacity per socket, given DRAM density growth and DIMM
per channel decline. If the trends continue, the growing imbalance
between supply and demand may lead to memory capacity per
core dropping by 30% every two years, particularly for
commodity solutions. If not addressed, future systems are likely to
be performance-limited by inadequate memory capacity.

At the same time, several studies show that the contribution of
memory to the total costs and power consumption of future
systems is trending higher from its current value of about 25%
[6][7][8]. Recent trends point to an interesting opportunity to
address these challenges—namely that of optimizing for the
ensemble [9]. For example, several studies have shown that there
is significant temporal variation in how resources like CPU time
or power are used across applications. We can expect similar
trends in memory usage based on variations across application
types, workload inputs, data characteristics, and traffic patterns.
Figure 1(b) shows how the memory allocated by TPC-H queries
can vary dramatically, and Figure 1(c) presents an eye-chart
illustration of the time-varying memory usage of 10 randomly-
chosen servers from a 1,000-CPU cluster used to render a recent
animated feature film [10]. Each line illustrates a server’s memory
usage varying from a low baseline when idle to the peak memory
usage of the application. Rather than provision each system for its
worst-case memory usage, a solution that provisions for the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06...$5.00.

2

1

10

100

1000

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

#Core

DRAM

R
e
la

ti
ve

c
a

p
a
c
ity

(a) Trends leading toward the memory capacity wall

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

0.1MB

1MB

10MB

100MB

1GB

10GB

100GB

(b) Memory variations for TPC-H queries (log scale)

(c) Memory variations in server memory utilization

Figure 1: Motivating the need for memory extension and
sharing. (a) On average, memory capacity per processor core
is extrapolated to decrease 30% every two years. (b) The
amount of granted memory for TPC-H queries can vary by
orders of magnitude. (c) “Ensemble” memory usage trends
over one month across 10 servers from a cluster used for
animation rendering (one of the 3 datacenter traces used in
this study).

typical usage, with the ability to dynamically add memory
capacity across the ensemble, can reduce costs and power.

Whereas some prior approaches (discussed in Section 2) can
alleviate some of these challenges individually, there is a need for
new architectural solutions that can provide transparent memory
capacity expansion to match computational scaling and
transparent memory sharing across collections of systems. In
addition, given recent trends towards commodity-based solutions
(e.g., [8][9][11]), it is important for these approaches to require at
most minor changes to ensure that the low-cost benefits of
commodity solutions not be undermined. The increased adoption
of blade servers with fast shared interconnection networks and
virtualization software creates the opportunity for new memory
system designs.

In this paper, we propose a new architectural building block to
provide transparent memory expansion and sharing for
commodity-based designs. Specifically, we revisit traditional
memory designs in which memory modules are co-located with
processors on a system board, restricting the configuration and
scalability of both compute and memory resources. Instead, we
argue for a disaggregated memory design that encapsulates an
array of commodity memory modules in a separate shared
memory blade that can be accessed, as needed, by multiple
compute blades via a shared blade interconnect.

We discuss the design of a memory blade and use it to propose
two new system architectures to achieve transparent expansion
and sharing. Our first solution requires no changes to existing
system hardware, using support at the virtualization layer to
provide page-level access to a memory blade across the standard
PCI Express® (PCIe®) interface. Our second solution proposes
minimal hardware support on every compute blade, but provides
finer-grained access to a memory blade across a coherent network
fabric for commodity software stacks.

We demonstrate the validity of our approach through simulations
of a mix of enterprise benchmarks supplemented with traces from
three live datacenter installations. Our results show that memory
disaggregation can provide significant performance benefits (on
average 10X) in memory-constrained environments. Additionally,
the sharing enabled by our solutions can enable large
improvements in performance-per-dollar (up to 87%) and greater
levels of consolidation (3X) when optimizing memory
provisioning across multiple servers.

The rest of the paper is organized as follows. Section 2 discusses
prior work. Section 3 presents our memory blade design and the
implementation of our proposed system architectures, which we
evaluate in Section 4. Section 5 discusses other tradeoffs and
designs, and Section 6 concludes.

2. RELATED WORK
A large body of prior work (e.g., [12][13][14][15][16][17][18])
has examined using remote servers’ memory for swap space
[12][16], file system caching [13][15], or RamDisks [14],
typically over conventional network interfaces (i.e., Ethernet).
These approaches do not fundamentally address the compute-to-
memory capacity imbalance: the total memory capacity relative to
compute is unchanged when all the servers need maximum
capacity at the same time. Additionally, although these
approaches can be used to provide sharing, they suffer from
significant limitations when targeting commodity-based systems.
In particular, these proposals may require substantial system
modifications, such as application-specific programming
interfaces [18] and protocols [14][17]; changes to the host
operating system and device drivers [12][13][14][16]; reduced
reliability in the face of remote server crashes [13][16]; and/or
impractical access latencies [14][17]. Our solutions target the
commodity-based volume server market and thus avoid invasive
changes to applications, operating systems, or server architecture.

Symmetric multiprocessors (SMPs) and distributed shared
memory systems (DSMs) [19][20][21][22][23][24][25][26][27]
allow all the nodes in a system to share a global address space.
However, like the network-based sharing approaches, these
designs do not target the compute-to-memory-capacity ratio.

3

Hardware shared-memory systems typically require specialized
interconnects and non-commodity components that add costs; in
addition, signaling, electrical, and design complexity increase
rapidly with system size. Software DSMs [24][25][26][27] can
avoid these costs by managing the operations to send, receive, and
maintain coherence in software, but come with practical
limitations to functionality, generality, software transparency,
total costs, and performance [28]. A recent commercial design in
this space, Versatile SMP [29], uses a virtualization layer to chain
together commodity x86 servers to provide the illusion of a single
larger system, but the current design requires specialized
motherboards, I/O devices, and non-commodity networking, and
there is limited documentation on performance benefits,
particularly with respect to software DSMs.

To increase the compute-to-memory ratio directly, researchers
have proposed compressing memory contents [30][31] or
augmenting/replacing conventional DRAM with alternative
devices or interfaces. Recent startups like Virident [32] and Texas
Memory [33] propose the use of solid-state storage, such as
NAND Flash, to improve memory density albeit with higher
access latencies than conventional DRAM. From a technology
perspective, fully-buffered DIMMs [34] have the potential to
increase memory capacity but with significant trade-offs in power
consumption. 3D die-stacking [35] allows DRAM to be placed
on-chip as different layers of silicon; in addition to the open
architectural issues on how to organize 3D-stacked main memory,
this approach further constrains the extensibility of memory
capacity. Phase change memory (PCM) is emerging as a
promising alternative to increase memory density. However,
current PCM devices suffer from several drawbacks that limit
their straightforward use as a main memory replacement,
including high energy requirements, slow write latencies, and
finite endurance. In contrast to our work, none of these
approaches enable memory capacity sharing across nodes. In
addition, many of these alternatives provide only a one-time
improvement, thus delaying but failing to fundamentally address
the memory capacity wall.

A recent study [36] demonstrates the viability of a two-level
memory organization that can tolerate increased access latency
due to compression, heterogeneity, or network access to second-
level memory. However, that study does not discuss a commodity
implementation for x86 architectures or evaluate sharing across
systems. Our prior work [8] employs a variant of this two-level
memory organization as part of a broader demonstration of how
multiple techniques, including the choice of processors, new
packaging design, and use of Flash-based storage, can help
improve performance in warehouse computing environments. The
present paper follows up on our prior work by: (1) extending the
two-level memory design to support x86 commodity servers; (2)
presenting two new system architectures for accessing the remote
memory; and (3) evaluating the designs on a broad range of
workloads and real-world datacenter utilization traces.

As is evident from this discussion, there is currently no single
architectural approach that simultaneously addresses memory-to-
compute-capacity expansion and memory capacity sharing, and
does it in an application/OS-transparent manner on commodity-
based hardware and software. The next section describes our
approach to define such an architecture.

3. DISAGGREGATED MEMORY
Our approach is based on four observations: (1) The emergence of
blade servers with fast shared communication fabrics in the
enclosure enables separate blades to share resources across the
ensemble. (2) Virtualization provides a level of indirection that
can enable OS-and-application-transparent memory capacity
changes on demand. (3) Market trends towards commodity-based
solutions require special-purpose support to be limited to the non-
volume components of the solution. (4) The footprints of
enterprise workloads vary across applications and over time; but
current approaches to memory system design fail to leverage these
variations, resorting instead to worst-case provisioning.

Given these observations, our approach argues for a re-
examination of conventional designs that co-locate memory
DIMMs in conjunction with computation resources, connected
through conventional memory interfaces and controlled through
on-chip memory controllers. Instead, we argue for a
disaggregated multi-level design where we provision an
additional separate memory blade, connected at the I/O or
communication bus. This memory blade comprises arrays of
commodity memory modules assembled to maximize density and
cost-effectiveness, and provides extra memory capacity that can
be allocated on-demand to individual compute blades. We first
detail the design of a memory blade (Section 3.1), and then
discuss system architectures that can leverage this component for
transparent memory extension and sharing (Section 3.2).

3.1 Memory Blade Architecture
Figure 2(a) illustrates the design of our memory blade. The
memory blade comprises a protocol engine to interface with the
blade enclosure’s I/O backplane interconnect, a custom memory-
controller ASIC (or a light-weight CPU), and one or more
channels of commodity DIMM modules connected via on-board
repeater buffers or alternate fan-out techniques. The memory
controller handles requests from client blades to read and write
memory, and to manage capacity allocation and address mapping.
Optional memory-side accelerators can be added to support
functions like compression and encryption.

Although the memory blade itself includes custom hardware, it
requires no changes to volume blade-server designs, as it connects
through standard I/O interfaces. Its costs are amortized over the
entire server ensemble. The memory blade design is
straightforward compared to a typical server blade, as it does not
have the cooling challenges of a high-performance CPU and does
not require local disk, Ethernet capability, or other elements (e.g.,
management processor, SuperIO, etc.) Client access latency is
dominated by the enclosure interconnect, which allows the
memory blade’s DRAM subsystem to be optimized for power and
capacity efficiency rather than latency. For example, the controller
can aggressively place DRAM pages into active power-down
mode, and can map consecutive cache blocks into a single
memory bank to minimize the number of active devices at the
expense of reduced single-client bandwidth. A memory blade can
also serve as a vehicle for integrating alternative memory
technologies, such as Flash or phase-change memory, possibly in
a heterogeneous combination with DRAM, without requiring
modification to the compute blades.

To provide protection and isolation among shared clients, the
memory controller translates each memory address accessed by a

4

Backplane

Protocol agent

Memory controller

Accelerators

Address mapping

Compute Blades Memory blade

DIMMs (data, dirty, ECC)

DIMMs (data, dirty, ECC)

DIMMs (data, dirty, ECC)

DIMMs (data, dirty, ECC)

(a) Memory blade design

Base Limit

Super page

SMA

Map
registers

RMMA Permission

RMMA Permission

RMMA Free list

RMMA maps

Base Limit

+

RMMA

Offset

(Address)

+
(Blade ID)

System Memory Address Remote Machine Memory Address

(b) Address mapping

Figure 2: Design of the memory blade. (a) The memory blade
connects to the compute blades via the enclosure backplane.
(b) The data structures that support memory access and
allocation/revocation operations.

client blade into an address local to the memory blade, called the
Remote Machine Memory Address (RMMA). In our design, each
client manages both local and remote physical memory within a
single System Memory Address (SMA) space. Local physical
memory resides at the bottom of this space, with remote memory
mapped at higher addresses. For example, if a blade has 2 GB of
local DRAM and has been assigned 6 GB of remote capacity, its
total SMA space extends from 0 to 8 GB. Each blade’s remote
SMA space is mapped to a disjoint portion of the RMMA space.
This process is illustrated in Figure 2(b). We manage the blade’s
memory in large chunks (e.g., 16 MB) so that the entire mapping
table can be kept in SRAM on the memory blade’s controller. For
example, a 512 GB memory blade managed in 16 MB chunks
requires only a 32K-entry mapping table. Using these “superpage”
mappings avoids complex, high-latency DRAM page table data
structures and custom TLB hardware. Note that providing shared-
memory communications among client blades (as in distributed
shared memory) is beyond the scope of this paper.

Allocation and revocation: The memory blade’s total capacity is
partitioned among the connected clients through the cooperation
of the virtual machine monitors (VMMs) running on the clients,
in conjunction with enclosure-, rack-, or datacenter-level
management software. The VMMs in turn are responsible for
allocating remote memory among the virtual machine(s) (VMs)
running on each client system. The selection of capacity allocation
policies, both among blades in an enclosure and among VMs on a
blade, is a broad topic that deserves separate study. Here we
restrict our discussion to designing the mechanisms for allocation
and revocation.

Allocation is straightforward: privileged management software on
the memory blade assigns one or more unused memory blade

superpages to a client, and sets up a mapping from the chosen
blade ID and SMA range to the appropriate RMMA range.

In the case where there are no unused superpages, some existing
mapping must be revoked so that memory can be reallocated. We
assume that capacity reallocation is a rare event compared to the
frequency of accessing memory using reads and writes.
Consequently, our design focuses primarily on correctness and
transparency and not performance.

When a client is allocated memory on a fully subscribed memory
blade, management software first decides which other clients must
give up capacity, then notifies the VMMs on those clients of the
amount of remote memory they must release. We propose two
general approaches for freeing pages. First, most VMMs already
provide paging support to allow a set of VMs to oversubscribe
local memory. This paging mechanism can be invoked to evict
local or remote pages. When a remote page is to be swapped out,
it is first transferred temporarily to an empty local frame and then
paged to disk. The remote page freed by this transfer is released
for reassignment.

Alternatively, many VMMs provide a “balloon driver” [37] within
the guest OS to allocate and pin memory pages, which are then
returned to the VMM. The balloon driver increases memory
pressure within the guest OS, forcing it to select pages for
eviction. This approach generally provides better results than the
VMM’s paging mechanisms, as the guest OS can make a more
informed decision about which pages to swap out and may simply
discard clean pages without writing them to disk. Because the
newly freed physical pages can be dispersed across both the local
and remote SMA ranges, the VMM may need to relocate pages
within the SMA space to free a contiguous 16 MB remote
superpage.

Once the VMMs have released their remote pages, the memory
blade mapping tables may be updated to reflect the new
allocation. We assume that the VMMs can generally be trusted to
release memory on request; the unlikely failure of a VMM to
release memory promptly indicates a serious error and can be
resolved by rebooting the client blade.

3.2 System Architecture with Memory Blades
Whereas our memory-blade design enables several alternative
system architectures, we discuss two specific designs, one based
on page swapping and another using fine-grained remote access.
In addition to providing more detailed examples, these designs
also illustrate some of the tradeoffs in the multi-dimensional
design space for memory blades. Most importantly, they compare
the method and granularity of access to the remote blade (page-
based versus block-based) and the interconnect fabric used for
communication (PCI Express versus HyperTransport).

3.2.1 Page-Swapping Remote Memory (PS)
Our first design avoids any hardware changes to the high-volume
compute blades or enclosure; the memory blade itself is the only
non-standard component. This constraint implies a conventional
I/O backplane interconnect, typically PCIe. This basic design is
illustrated in Figure 3(a).

Because CPUs in a conventional system cannot access cacheable
memory across a PCIe connection, the system must bring
locations into the client blade’s local physical memory before they

5

Backplane

Memory
blade

Compute Blade

P P P P

D
IM

M

Memory controller

PCIe bridgeHypervisor (SMA)

OS (PA)

App (VA)

Software Stack

(a) Compute blade

(b) Address mapping process

Figure 3: Page-swapping remote memory system design.
(a) No changes are required to compute servers and
networking on existing blade designs. Our solution adds
minor modules (shaded block) to the virtualization layer.
(b) The address mapping design places the extended capacity
at the top of the address space.

can be accessed. We leverage standard virtual-memory
mechanisms to detect accesses to remote memory and relocate the
targeted locations to local memory on a page granularity. In
addition to enabling the use of virtual memory support, page-
based transfers exploit locality in the client’s access stream and
amortize the overhead of PCIe memory transfers.

To avoid modifications to application and OS software, we
implement this page management in the VMM. The VMM detects
accesses to remote data pages and swaps those data pages to local
memory before allowing a load or store to proceed.

Figure 3(b) illustrates our page management scheme. Recall that,
when remote memory capacity is assigned to a specific blade, we
extend the SMA (machine physical address) space at that blade to
provide local addresses for the additional memory. The VMM
assigns pages from this additional address space to guest VMs,
where they will in turn be assigned to the guest OS or to
applications. However, because these pages cannot be accessed
directly by the CPU, the VMM cannot set up valid page-table
entries for these addresses. It instead tracks the pages by using
“poisoned” page table entries without their valid bits set or by
tracking the mappings outside of the page tables (similar
techniques have been used to prototype hybrid memory in
VMWare [38]). In either case, a direct CPU access to remote
memory will cause a page fault and trap into the VMM. On such a
trap, the VMM initiates a page swap operation. This simple OS-
transparent memory-to-memory page swap should not be
confused with OS-based virtual memory swapping (paging to
swap space), which is orders of magnitude slower and involves an
entirely different set of sophisticated data structures and
algorithms.

In our design, we assume page swapping is performed on a 4 KB
granularity, a common page size used by operating systems. Page
swaps logically appear to the VMM as a swap from high SMA
addresses (beyond the end of local memory) to low addresses
(within local memory). To decouple the swap of a remote page to
local memory and eviction of a local page to remote memory, we
maintain a pool of free local pages for incoming swaps. The
software fault handler thus allocates a page from the local free list
and initiates a DMA transfer over the PCIe channel from the
remote memory blade. The transfer is performed synchronously
(i.e., the execution thread is stalled during the transfer, but other
threads may execute). Once the transfer is complete, the fault
handler updates the page table entry to point to the new, local
SMA address and puts the prior remote SMA address into a pool
of remote addresses that are currently unused.

To maintain an adequate supply of free local pages, the VMM
must occasionally evict local pages to remote memory, effectively
performing the second half of the logical swap operation. The
VMM selects a high SMA address from the remote page free list
and initiates a DMA transfer from a local page to the remote
memory blade. When complete, the local page is unmapped and
placed on the local free list. Eviction operations are performed
asynchronously, and do not stall the CPU unless a conflicting
access to the in-flight page occurs during eviction.

3.2.2 Fine-Grained Remote Memory Access (FGRA)
The previous solution avoids any hardware changes to the
commodity compute blade, but at the expense of trapping to the
VMM and transferring full pages on every remote memory access.
In our second approach, we examine the effect of a few minimal
hardware changes to the high-volume compute blade to enable an
alternate design that has higher performance potential. In
particular, this design allows CPUs on the compute blade to
access remote memory directly at cache-block granularity.

Our approach leverages the glueless SMP support found in
current processors. For example, AMD Opteron™ processors
have up to three coherent HyperTransport™ links coming out of
the socket. Our design, shown in Figure 4, uses custom hardware
on the compute blade to redirect cache fill requests to the remote
memory blade. Although it does require custom hardware, the
changes to enable our FGRA design are relatively straightforward
adaptations of current coherent memory controller designs

This hardware, labeled “Coherence filter” in Figure 4, serves two
purposes. First, it selectively forwards only necessary coherence
protocol requests to the remote memory blade. For example,
because the remote blade does not contain any caches, the
coherence filter can respond immediately to invalidation requests.
Only memory read and write requests require processing at the
remote memory blade. In the terminology of glueless x86

Backplane

Memory
blade

Compute Blade

P P P P

D
IM

M

Memory controller

Coherence filter

OS (PA)

App (VA)

Software Stack

Figure 4: Fine-grained remote memory access system design.
This design assumes minor coherence hardware support in
every compute blade.

6

multiprocessors, the filter ensures that the memory blade is a
home agent but not a cache agent. Second, the filter can
optionally translate coherence messages destined for the memory
blade into an alternate format. For example, HyperTransport-
protocol read and write requests can be translated into generic
PCIe commands, allowing the use of commodity backplanes and
decoupling the memory blade from specific cache-coherence
protocols and processor technologies.

Because this design allows the remote SMA space to be accessed
directly by CPUs, VMM support is not required; an unmodified
OS can treat both local and remote addresses uniformly. However,
a VMM or additional OS support is required to enable dynamic
allocation or revocation of remote memory. Performance can also
potentially be improved by migrating the most frequently accessed
remote pages into local memory, swapping them with infrequently
accessed local pages—a task that could be performed by a VMM
or by extending the NUMA support available in many OSes.

4. EVALUATION

4.1 Methodology
We compare the performance of our memory-blade designs to a
conventional system primarily via trace-based simulation. Using
traces rather than a detailed execution-driven CPU model makes it
practical to process the billions of main-memory references
needed to exercise a multi-gigabyte memory system. Although we
forgo the ability to model overlap between processor execution
and remote memory accesses with our trace-based simulations,
our memory reference traces are collected from a simulator that
does model overlap of local memory accesses. Additionally, we
expect overlap for remote accesses to be negligible due to the
relatively high latencies to our remote memory blade.

We collected memory reference traces from a detailed full-system
simulator, used and validated in prior studies [39], modified to
record the physical address, CPU ID, timestamp and read/write
status of all main-memory accesses. To make it feasible to run the
workloads to completion, we use a lightweight CPU model for
this simulation. (Each simulation still took 1-2 weeks to

complete.) The simulated system has four 2.2 GHz cores, with
per-core dedicated 64KB L1 and 512 KB L2 caches, and a 2 MB
L3 shared cache.

The common simulation parameters for our remote memory blade
are listed in Table 1. For the baseline PS, we assume that the
memory blade interconnect has a latency of 120 ns and bandwidth
of 1 GB/s (each direction), based loosely on a PCIe 2.0 x2
channel. For the baseline FGRA, we assume a more aggressive
channel, e.g., based on HyperTransport™ or a similar technology,
with 60 ns latency and 4 GB/s bandwidth. Additionally, for PS,
each access to remote memory results in a trap to the VMM, and
VMM software must initiate the page transfer. Based on prior
work [40], we assume a total of 330 ns (roughly 1,000 cycles on a
3 GHz processor) for this software overhead, including the trap
itself, updating page tables, TLB shootdown, and generating the
request message to the memory blade. All of our simulated
systems are modeled with a hard drive with 8 ms access latency
and 50 MB/s sustained bandwidth. We perform initial data
placement using a first-touch allocation policy.

We validated our model on a real machine to measure the impact
of reducing the physical memory allocation in a conventional
server. We use an HP c-Class BL465c server with 2.2GHz AMD
Opteron 2354 processors and 8 GB of DDR2-800 DRAM. To
model a system with less DRAM capacity, we force the Linux
kernel to reduce physical memory capacity using a boot-time
kernel parameter.

The workloads used to evaluate our designs include a mixture of
Web 2.0-based benchmarks (nutch, indexer), traditional server
benchmarks (pgbench, TPC-H, SPECjbb®2005), and traditional
computational benchmarks (SPEC® CPU2006 – zeusmp, gcc,
perl, bwaves, mcf). Additionally we developed a multi-
programmed workload, spec4p, by combining the traces from
zeusmp, gcc, perl, and mcf. Spec4p offers insight into multiple
workloads sharing a single server’s link to the memory blade.
Table 1 describes these workloads in more detail. We further
broadly classify the workloads into three groups—low, medium,
and high—based on their memory footprint sizes. The low group
consists of benchmarks whose footprint is less than 1 GB,

Memory blade parameters

DRAM Latency 120 ns Map table access 5 ns Request packet processing 60 ns

DRAM Bandwidth 6.4 GB/s Transfer page size 4KB Response packet processing 60 ns

Workloads Footprint size

SPEC CPU
2006

5 large memory benchmarks: zeusmp, perl, gcc, bwaves, and mcf, as well as a combination of
four of them, spec4p.

Low (zeusmp, gcc, perl, bwaves),
Medium (mcf), High (spec4p)

nutch4p Nutch 0.9.1 search engine with Resin and Sun JDK 1.6.0, 5GB index hosted on tempfs. Medium

tpchmix
TPC-H running on MySQL 5.0 with scaling factor of 1. 2 copies of query 17 mixed with
query 1 and query 3 (representing balanced, scan and join heavy queries).

Medium

pgbench TPC-B like benchmark running PostgreSQL 8.3 with pgbench and a scaling factor of 100. High

Indexer Nutch 0.9.1 indexer, Sun JDK 1.6.0 and HDFS hosted on one hard drive. High

SPECjbb 4 copies of Specjbb 2005, each with 16 warehouses, using Sun JDK 1.6.0. High

Real-world traces

Animation
Resource utilization traces collected on 500+ animation rendering servers over a year, 1-second sample interval. We present
data from traces from a group of 16 representative servers.

VM consolidation
VM consolidation traces of 16 servers based on enterprise and web2.0 workloads, maximum resource usage reported every
10-minute interval.

Web2.0
Resource utilization traced collected on 290 servers from a web2.0 company, we use sar traces with 1-second sample interval
for 16 representative servers.

Table 1: Simulation parameters and workload/trace description.

7

medium ranges from 1 GB to 1.75 GB, and high includes those
with footprints between 1.75GB and 3GB. In addition to these
workloads, we have also collected traces of memory usage in three
real-world, large-scale datacenter environments. These
environments include Animation, VM consolidation, and web2.0,
and are described in Table 1. These traces were each gathered for
over a month across a large number of servers and are used to
guide our selection of workloads to mimic the time-varying

memory requirements of applications seen in real-world
environments.

To quantify the cost benefits of our design, we developed a cost
model for our disaggregated memory solutions and the baseline
servers against which we compare. Because our designs target the
memory system, we present data specific to the memory system.
We gathered price data from public and industry sources for as
many components as possible. For components not available off
the shelf, such as our remote memory blade controller, we
estimate a cost range. We further include power and cooling costs,
given a typical 3-year server lifespan. We used DRAM power
calculators to evaluate the power consumption of DDR2 devices.
Estimates for the memory contributions towards power and
cooling are calculated using the same methodology as in [8].

4.2 Results
4.2.1 Memory expansion for individual benchmarks
We first focus on the applicability of memory disaggregation to
address the memory capacity wall for individual benchmarks. To
illustrate scenarios where applications run into memory capacity
limitations due to a core-to-memory ratio imbalance, we perform
an experiment where we run each of our benchmarks on a baseline
system with only 75% of that benchmark’s memory footprint (M-
app-75%). The baseline system must swap pages to disk to
accommodate the full footprint of the workload. We compare
these with our two disaggregated-memory architectures, PS and
FGRA. In these cases, the compute nodes continue to have local
DRAM capacity corresponding to only 75% of the benchmark’s
memory footprint, but have the ability to exploit capacity from a
remote memory blade. We assume 32GB of memory on the
memory blade, which is sufficient to fit any application’s
footprint. Figure 5(a) summarizes the speedup for the PS and
FGRA designs relative to the baseline. Both of our new solutions
achieve significant improvements, ranging from 4X to 320X
higher performance. These improvements stem from the much
lower latency of our remote memory solutions compared to OS-
based disk paging. In particular, zeusmp, bwaves, mcf, specjbb,
and spec4p show the highest benefits due to their large working
sets.

Interestingly, we also observe that PS outperforms FGRA in this
experiment, despite our expectations for FGRA to achieve better
performance due to its lower access latency. Further investigation
reveals that the page swapping policy in PS, which transfers
pages from remote memory to local memory upon access,
accounts for its performance advantage. Under PS, although the
initial access to a remote memory location incurs a high latency
due to the VMM trap and the 4 KB page transfer over the slower
PCIe interconnect, subsequent accesses to that address
consequently incur only local-memory latencies. The FGRA
design, though it has lower remote latencies compared to PS,
continues to incur these latencies for every access to a frequently
used remote location. Nevertheless, FGRA still outperforms the
baseline. We examine the addition of page swapping to FGRA in
Section 4.2.5.

Figure 5(b) considers an alternate baseline where the compute
server memory is set to approximate the median-case memory
footprint requirements across our benchmarks (M-median =
1.5GB). This baseline models a realistic scenario where the server

1

10

100

1000

S
p

e
e

d
u

p
o

v
e

r
M
-
a
p
p
-
7
5
% PS FGRA

(a) Speedup over M-app-75% provisioning

1

10

100

1000

S
p

e
e

d
u

p
o

v
e

r
M
-
m
e
d
i
a
n

PS FGRA

(b) Speedup over M-median provisioning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
lo

w
d

o
w

n
v
e

rs
u

s
M
-
m
a
x

PS FGRA

(c) Slowdown vs. worst-case (M-max) provisioning

Figure 5: Capacity expansion results. (a) and (b) show the
performance improvement for our two designs over memory-
capacity-constrained baselines; (c) shows performance and costs
relative to worst-case provisioning.

8

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0% 100% 200% 300%

A
v
e
ra

g
e

P
e
rf

o
rm

a
n

c
e

/
$

im
p

ro
v
e

m
e
n

t
o

v
e

r
M
-
m
a
x

Memory blade cost
(percent of remote DRAM cost)

PS

FGRA

Figure 6: Memory blade cost analysis. Average
performance-per-memory dollar improvement versus memory
blade costs relative to the total cost of remote DRAM.

is provisioned for the common-case workload, but can still see a
mix of different workloads. Figure 5(b) shows that our proposed
solutions now achieve performance improvements only for
benchmarks with high memory footprints. For other benchmarks,
the remote memory blade is unused, and does not provide any
benefit. More importantly, it does not cause any slowdown.

Finally, Figure 5(c) considers a baseline where the server memory
is provisioned for the worst-case application footprint (M-max =
4GB). This baseline models many current datacenter scenarios
where servers are provisioned in anticipation of the worst-case
load, either across workloads or across time. We configure our
memory disaggregation solutions as in the previous experiment,
with M-median provisioned per-blade and additional capacity in
the remote blade. Our results show that, for workloads with small
footprints, our new solutions perform comparably. For workloads
with larger footprints, going to remote memory causes a
slowdown compared to local memory; however, PS provides
comparable performance in some large-footprint workloads
(pgbench, indexer), and on the remaining workloads its
performance is still within 30% of M-max. As before, FGRA loses
performance as it does not exploit locality patterns to ensure most
accesses go to local memory.

4.2.2 Power and cost analysis
Using the methodology described in 4.1, we estimate the memory
power draw of our baseline M-median system as 10 W, and our
M-max system as 21 W. To determine the power draw of our
disaggregated memory solutions, we assume local memory
provisioned for median capacity requirements (as in M-median)
and a memory blade with 32 GB shared by 16 servers.
Furthermore, because the memory blade can tolerate increased
DRAM access latency, we assume it aggressively employs DRAM
low-power sleep modes. For a 16-server ensemble, we estimate
the amortized per-server memory power of the disaggregated
solution (including all local and remote memory and the memory
blade interface hardware, such as its controller, and I/O
connections) at 15 W.

Figure 6 illustrates the cost impact of the custom designed
memory blade, showing the changes in the average performance-
per-memory cost improvement over the baseline M-max system as
memory blade cost varies. To put the memory blade cost into
context with the memory subsystem, the cost is calculated as a
percentage of the total remote DRAM costs (memory blade cost

divided by remote DRAM costs), using 32 GB of remote memory.
Note that for clarity, the cost range on the horizontal axis refers
only to the memory blade interface/packaging hardware excluding
DRAM costs (the fixed DRAM costs are factored in to the
results). The hardware cost break-even points for PS and FGRA
are high, implying a sufficiently large budget envelope for the
memory blade implementation. We expect that the overhead of a
realistic implementation of a memory blade could be below 50%
of the remote DRAM cost (given current market prices). This
overhead can be reduced further by considering higher capacity
memory blades; for example, we expect the cost to be below 7%
of the remote DRAM cost of a 256 GB memory blade.

4.2.3 Server consolidation
Viewed as a key application for multi-core processors, server
consolidation improves hardware resource utilization by hosting
multiple virtual machines on a single physical platform. However,
memory capacity is often the bottleneck to server consolidation
because other resources (e.g., processor and I/O) are easier to
multiplex, and the growing imbalance between processor and
memory capacities exacerbates the problem. This effect is evident
in our real-world web2.0 traces, where processor utilization rates
are typically below 30% (rarely over 45%) while more than 80%
of memory is allocated, indicating limited consolidation
opportunities without memory expansion. To address this issue,
current solutions either advocate larger SMP servers for their
memory capacity or sophisticated hypervisor memory
management policies to reduce workload footprints, but they incur
performance penalties, increase costs and complexity, and do not
address the fundamental processor-memory imbalance.

Memory disaggregation enables new consolidation opportunities
by supporting processor-independent memory expansion. With
memory blades to provide the second-level memory capacity, we
can reduce each workload’s processor-local memory allocation to
less than its total footprint (M-max) while still maintaining
comparable performance (i.e., <3% slowdown). This workload-
specific local vs. remote memory ratio determines how much
memory can be freed on a compute server (and shifted onto the
memory blade) to allow further consolidation. Unfortunately, it is
not possible to experiment in production datacenters to determine
these ratios. Instead, we determine the typical range of local-to-
remote ratios using our simulated workload suite. We can then use
this range to investigate the potential for increased consolidation
using resource utilization traces from production systems.

We evaluate the consolidation benefit using the web2.0 workload
(CPU, memory and IO resource utilization traces for 200+
servers) and a sophisticated consolidation algorithm similar to that
used by Rolia et al. [41]. The algorithm performs multi-
dimensional bin packing to minimize the number of servers
needed for given resource requirements. We do not consider the
other two traces for this experiment. Animation is CPU-bound and
runs out of CPU before it runs out of memory, so memory
disaggregation does not help. However, as CPU capacity increases
in the future, we may likely encounter a similar situation as
web2.0. VM consolidation, on the other hand, does run out of
memory before it runs of out CPU, but these traces already
represent the result of consolidation, and in the absence of
information on the prior consolidation policy, it is hard to make a
fair determination of the baseline and the additional benefits from
memory disaggregation over existing approaches.

9

%
o
ri

g
in

a
l
p
ro

v
is

io
n

0%

20%

40%

60%

80%

100%

Server Memory

Current PS

0.8

1

1.2

1.4

1.6

1.8

2

0.4 0.6 0.8 1 1.2 1.4

P
e

rf
o

rm
a

n
c

e
/

$
im

p
ro

v
e

m
e

n
t

o
v
e

r
M
-
m
a
x

Remote Memory Capacity
(fraction of 'Sum of peaks')

Animation
web2.0
VM Consolidation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Animation web2.0 VM
consolidation

S
lo

w
d

o
w

n
v
e

rs
u

s
M
-
m
a
x

(a) Reductions from consolidation (b) Cost efficiency vs. remote capacity (c) Perf. at cost-optimized provisioning

Figure 7: Mixed workload and ensemble results. (a) Hardware reductions from improved VM consolidation made possible by remote
memory. (b) Performance-per-dollar as remote memory capacity is varied. (c) Slowdown relative to per-blade worst-case provisioning
(M-max) at cost-optimal provisioning.

As shown in Figure 7(a), without memory disaggregation, the
state-of-the-art algorithm (“Current”) achieves only modest
hardware reductions (5% processor and 13% memory); limited
memory capacity precludes further consolidation. In contrast,
page-swapping–based memory disaggregation corrects the time-
varying imbalance between VM memory demands and local
capacity, allowing a substantial reduction of processor count by a
further 68%.

4.2.4 Ensemble-level memory sharing
We now examine the benefits of disaggregated memory in multi-
workload server ensembles with time-varying requirements. By
dynamically sharing memory capacity at an ensemble level,
disaggregated memory can potentially exploit the inter- and intra-
workload variations in memory requirements. This variation is
highlighted by the difference in the peak of sums versus the sum
of peaks. The peak of sums is the maximum total memory required
across the ensemble at any single point in time. On the other hand,
the sum of peaks is the sum of the worst-case memory
requirements of all the servers for the applications they are
running. In conventional environments, servers must be
provisioned for the worst-case memory usage (sum of peaks) to
avoid potentially-catastrophic performance losses from
underprovisioning (which may lead to swapping/thrashing).
However, the peak of sums is often much smaller than the sum of
peaks as servers rarely reach their peak loads simultaneously;
systems provisioned for worst-case demands are nearly always
underutilized. Ensemble-level sharing allows servers to instead be
provisioned for the sum of peaks, saving costs and power.

We examine the potential of ensemble-level sharing for a 16-
server blade enclosure running a mix of enterprise workloads with
varying memory requirements (similar to the scenario shown in
Figure 1(b)). We examine three real-world enterprise datacenter
workload traces (Animation, VM consolidation, and web2.0), and
create a mixed workload trace using our simulated workloads to
mimic the same memory usage patterns. We divide each trace into
epochs and measure the processing done per epoch; we then
compare these rates across different configurations to estimate
performance benefits. Given that allocation policies are outside
the scope of this paper, we assume a simple policy where, at the
beginning of each epoch, each compute blade requests the

additional memory it needs from the memory blade. (In a task-
scheduling environment, this could be based on prior knowledge
of the memory footprint of the new task that will be scheduled.)
For the cost of the memory blade, we conservatively estimated the
price to be approximately that of a low-end system. We expect
this estimate to be conservative because of the limited
functionality and hardware requirements of the memory blade
versus that of a general purpose server.

Figure 7(b) shows the performance-per-memory-dollar
improvement, normalized to the M-max baseline, for PS over a
range of remote memory sizes. We focus on the PS design as the
FGRA design is not as competitive due to its inability to migrate
frequently accessed data to local memory (see Section 4.2.1). As
is shown, both the VM consolidation and web2.0 traces benefit
substantially from ensemble-level provisioning, gaining 78% and
87% improvement in performance-per-dollar while requiring only
70% and 85% of the sum-of-peaks memory capacity, respectively.
These savings indicate that the remote memory capacity can be
reduced below worst-case provisioning (sum of peaks) because
demands in these workloads rarely reach their peak
simultaneously. In contrast, the peak of sums closely tracks the
sum of peaks in the Animation trace, limiting the opportunity for
cost optimization.

We next evaluate the performance of a cost-optimized
disaggregated memory solution relative to the M-max baseline
(worst-case provisioning). Figure 7(c) shows the performance
sacrificed by the per-workload cost-optimal design (as determined
by the performance-per-dollar peak for each workload in Figure
7(b)). There is minimal performance loss for the web2.0 and VM
consolidation traces (5% and 8%), indicating that disaggregated
memory can significantly improve cost-efficiency without
adversely affecting performance. For the Animation traces there is
a larger performance penalty (24%) due to its consistently high
memory demands. Compared to the M-median baseline, the
disaggregated memory designs show substantial throughput
improvements (34-277X) for all the traces.

4.2.5 Alternate designs
As discussed earlier, our FGRA design suffers relative to PS
because it does not exploit locality by swapping heavily used
remote pages to local memory. This disadvantage can be

10

addressed by adding page migration to FGRA, similar to existing
CC-NUMA optimizations (e.g., Linux’s memory placement
optimizations [42]). To study the potential impact of this
enhancement, we modeled a hypothetical system that tracks page
usage and, at 10 ms intervals, swaps the most highly used pages
into local memory. Figure 8(a) summarizes the speedup of this
system over the base FGRA design for M-median compute
blades. For the high-footprint workloads that exhibit the worst
performance with FGRA (mcf, SPECjbb, and SPEC4p), page
migration achieves 3.3-4.5X improvement, with smaller (5-8%)
benefit on other high-footprint workloads. For all workloads, the
optimized FGRA performs similarly to, and in a few cases better
than, PS. These results motivate further examination of data
placement policies for FGRA.

The hardware cost of FGRA can be reduced by using a standard
PCIe backplane (as PS does) rather than a coherent interconnect,
as discussed in Section 3.2.2. This change incurs a latency and
bandwidth penalty as the standardized PCIe interconnect is less
aggressive than a more specialized interconnect such as cHT.
Figure 8(b) shows the change in performance relative to the
baseline FGRA. Performance is comparable, decreasing by at most
20% on the higher memory usage workloads. This performance
loss may be acceptable if the cost extending a high-performance
interconnect like cHT across the enclosure backplane is high.

Though not shown here (due to space constraints), we have also
studied sensitivity of our results to the VMM overhead and
memory latency parameters in Table 1. Our results show no
qualitative change to our conclusions.

5. DISCUSSION
Evaluation assumptions. Our evaluation does not model
interconnect routing, arbitration, buffering, and QoS management
in detail. Provided interconnect utilization is not near saturation,
these omissions will not significantly impact transfer latencies.
We have confirmed that per-blade interconnect bandwidth
consumption falls well below the capabilities of PCIe and HT.
However, the number of channels to the memory blade may need
to be scaled with the number of supported clients.

Impact of the memory blade on ensemble manageability. Memory
disaggregation has both positive and negative impacts on
enterprise system reliability, availability, security, and
manageability. From a reliability perspective, dynamic
reprovisioning provides an inexpensive means to equip servers
with hot-spare DRAM; in the event of a DIMM failure anywhere
in the ensemble, memory can be remapped and capacity
reassigned to replace the lost DIMM. However, the memory
blade also introduces additional failure modes that impact
multiple servers. A complete memory-blade failure might impact
several blades, but this possibility can be mitigated by adding
redundancy to the blade's memory controller. We expect that high
availability could be achieved at a relatively low cost, given the
controller’s limited functionality. To provide security and
isolation, our design enforces strict assignment of capacity to
specific blades, prohibits sharing, and can optionally erase
memory content prior to reallocation to ensure confidentiality.
From a manageability perspective, disaggregation allows
management software to provision memory capacity across
blades, reducing the need to physically relocate DIMMs.

Memory blade scalability and sharing. There are several obvious
extensions to our designs. First, to provide memory scaling
beyond the limits of a single memory blade, a server ensemble
might include multiple memory blades. Second, prior studies of
consolidated VMs have shown substantial opportunities to reduce
memory requirements via copy-on-write content-based page
sharing across VMs [37]. Disaggregated memory offers an even
larger scope for sharing content across multiple compute blades.
Finally, in some system architectures, subsets of processors/blades
share a memory coherence domain, which we might seek to
extend via disaggregation.

Synergy with emerging technologies. Disaggregated memory
extends the conventional virtual memory hierarchy with a new
layer. This layer introduces several possibilities to integrate new
technologies into the ensemble memory system that might prove
latency- or cost-prohibitive in conventional blade architectures.
First, we foresee substantial opportunity to leverage emerging
interconnect technologies (e.g., optical interconnects) to improve
communication latency and bandwidth and allow greater physical
distance between compute and memory blades. Second, the
memory blade’s controller provides a logical point in the system
hierarchy to integrate accelerators for capacity and reliability
enhancements, such as memory compression [30][31]. Finally,
one might replace or complement memory blade DRAM with
higher-density, lower-power, and/or non-volatile memory

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

N
o

rm
a
li
z
e
d

P
e

rf
o

rm
a
n

c
e

(a) FGRA placement-aware design

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o

rm
a

li
ze

d
P

e
rf

o
rm

a
n

c
e

(b) FGRA over PCIe design

Figure 8: Alternate FGRA designs. (a) shows the normalized
performance when FGRA is supplemented by NUMA-type
optimizations; (b) shows the performance loss from tunneling
FGRA accesses over a commodity interconnect.

11

technologies, such as NAND Flash or phase change memory.
Unlike conventional memory systems, where it is difficult to
integrate these technologies because of large or asymmetric access
latencies and lifetime/wearout challenges, disaggregated memory
is more tolerant of increased access latency, and the memory
blade controller might be extended to implement wear-leveling
and other lifetime management strategies [43]. Furthermore,
disaggregated memory offers the potential for transparent
integration. Because of the memory interface abstraction provided
by our design, Flash or phase change memory can be utilized on
the memory blade without requiring any further changes on the
compute blade.

6. CONCLUSIONS
Constraints on per-socket memory capacity and the growing
contribution of memory to total datacenter costs and power
consumption motivate redesign of the memory subsystem. In this
paper, we discuss a new architectural approach—memory
disaggregation—which uses dedicated memory blades to provide
OS-transparent memory extension and ensemble sharing for
commodity-based blade-server designs. We propose an extensible
design for the memory blade, including address remapping
facilities to support protected dynamic memory provisioning
across multiple clients, and unique density optimizations to
address the compute-to-memory capacity imbalance. We discuss
two different system architectures that incorporate this blade: a
page-based design that allows memory blades to be used on
current commodity blade server architectures with small changes
to the virtualization layer, and an alternative that requires small
amounts of extra hardware support in current compute blades but
supports fine-grained remote accesses and requires no changes to
the software layer. To the best of our knowledge, our work is the
first to propose a commodity-based design that simultaneously
addresses compute-to-memory capacity extension and cross-node
memory capacity sharing. We are also the first to consider
dynamic memory sharing across the I/O communication network
in a blade enclosure and quantitatively evaluate design tradeoffs
in this environment.

Simulations based on detailed traces from 12 enterprise
benchmarks and three real-world enterprise datacenter
deployments show that our approach has significant potential. The
ability to extend and share memory can achieve orders of
magnitude performance improvements in cases where applications
run out of memory capacity, and similar orders of magnitude
improvement in performance-per-dollar in cases where systems
are overprovisioned for peak memory usage. We also demonstrate
how this approach can be used to achieve higher levels of server
consolidation than currently possible. Overall, as future server
environments gravitate towards more memory-constrained and
cost-conscious solutions, we believe that the memory
disaggregation approach we have proposed in the paper is likely
to be a key part of future system designs.

7. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their feedback. This work
was partially supported by NSF grant CSR-0834403, and an Open
Innovation grant from HP. We would also like to acknowledge
Andrew Wheeler, John Bockhaus, Eric Anderson, Dean Cookson,
Niraj Tolia, Justin Meza, the Exascale Datacenter team and the

COTSon team at HP Labs, and Norm Jouppi for their support and
useful comments.

8. REFERENCES
[1] K. Asanovic et al. The Landscape of Parallel Computing

Research: A View from Berkeley. UC Berkeley EECS Tech
Report UCB/EECS-2006-183, Dec. 2006.

[2] VMWare Performance Team Blogs. Ten Reasons Why
Oracle Databases Run Best on VMWare "Scale up with
Large Memory." http://tinyurl.com/cudjuy

[3] J. Larus. Spending Moore's Dividend. Microsoft Tech Report
MSR-TR-2008-69, May 2008

[4] SIA. International Technology Roadmap for Semiconductors
2007 Edition, 2007.

[5] HP. Memory technology evolution: an overview of system
memory technologies. http://tinyurl.com/ctfjs2

[6] A. Lebeck, X. Fan, H. Zheng and C. Ellis. Power Aware
Page Allocation. In Proc. of the 9th Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IX), Nov. 2000.

[7] V. Pandey, W. Jiang, Y. Zhou and R. Bianchini. DMA-
Aware Memory Energy Conservation. In Proc. of the 12th
Int. Sym. on High-Performance Computer Architecture
(HPCA-12), 2006

[8] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge and S.
Reinhardt. Understanding and Designing New Server
Architectures for Emerging Warehouse-Computing
Environments. In Proc. of the 35th Int. Sym. on Computer
Architecture (ISCA-35), June 2008

[9] P. Ranganathan and N. Jouppi. Enterprise IT Trends and
Implications for Architecture Research. In Proc. of the 11th
Int. Sym. on High-Performance Computer Architecture
(HPCA-11), 2005.

[10] http://apotheca.hpl.hp.com/pub/datasets/animation-bear/
[11] L. Barroso, J. Dean and U. Hoelzle. Web Search for a Planet:

The Google Cluster Architecture. IEEE Micro, 23(2),
March/April 2003.

[12] E. Felten and J. Zahorjan. Issues in the implementation of a
remote memory paging system. University of Washington
CSE TR 91-03-09, March 1991.

[13] M. Feeley, W. Morgan, E. Pighin, A. Karlin, H. Levy and C.
Thekkath. Implementing global memory management in a
workstation cluster. In Proc. of the 15th ACM Sym. on
Operating System Principles (SOSP-15), 1995.

[14] M. Flouris and E. Markatos. The network RamDisk: Using
remote memory on heterogeneous NOWs. Cluster
Computing, Vol. 2, Issue 4, 1999.

[15] M. Dahlin, R. Wang, T. Anderson and D. Patterson.
Cooperative caching: Using remote client memory to
improve file system performance. In Proc. of the 1st
USENIX Sym. of Operating Systems Design and
Implementation (OSDI ‘94), 1994.

[16] M. Hines, L. Lewandowski and K. Gopalan. Anemone:
Adaptive Network Memory Engine. Florida State University
TR-050128, 2005.

[17] L. Iftode. K. Li and K. Peterson. Memory servers for
multicomputers. IEEE Spring COMPCON ’93, 1993.

[18] S. Koussih, A. Acharya and S. Setia. Dodo: A user-level
system for exploiting idle memory in workstation clusters. In
Proc. of the 8th IEEE Int. Sym. on High Performance

12

Distributed Computing (HPDC-8), 1999.
[19] A. Agarwal et al. The MIT Alewife Machine: Architecture

and Performance. In Proc. of the 23rd Int. Sym. on Computer
Architecture (ISCA-23), 1995.

[20] D. Lenoski et al. The Stanford DASH Multiprocessor. IEEE
Computer, 25(3), Mar. 1992.

[21] E. Hagersten and M. Koster. WildFire–A Scalable Path for
SMPs. In Proc. of the 5th Int. Sym. on High-Performance
Computer Architecture (HPCA-5), 1999.

[22] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. In Proc. of the 25th Int. Sym. on
Computer Architecture (ISCA-25), 1997.

[23] W. Bolosky, M. Scott, R. Fitzgerald, R. Fowler and A. Cox.
NUMA Policies and their Relationship to Memory
Architecture. In Proc. of the 4th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-IV), 1991

[24] K. Li and P. Hudak, Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems
(TOCS), 7(4), Nov. 1989.

[25] D. Scales, K. Gharachorloo and C. Thekkath. Shasta: A Low
Overhead, Software-Only Approach for Supporting Fine-
Grain Shared Memory. In Proc. of the 7th Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VII), 1996.

[26] C. Amza et al. TreadMarks: Shared Memory Computing on
Networks of Workstations. IEEE Computer, 29(2), 1996.

[27] I. Schoinas, B. Falsafi, A. Lebeck, S. Reinhardt, J. Larus and
D. Wood. Fine-grain Access Control for Distributed Shared
Memory. In Proc. of the 6th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-VI), 1994.

[28] K Gharachorloo. The Plight of Software Distributed Shared
Memory. Invited talk at 1st Workshop on Software
Distributed Shared Memory (WSDSM '99), 1999.

[29] ScaleMP. The Versatile SMP™ (vSMP) Architecture and
Solutions Based on vSMP Foundation™. White paper at
http://www.scalemp.com/prod/technology/how-does-it-work/

[30] F. Douglis. The compression cache: using online
compression to extend physical memory. In Proc. of 1993
Winter USENIX Conference, 1993.

[31] M. Ekman and P. Stenström. A Robust Main Memory
Compression Scheme. In Proc. of the 32rd Int. Sym. on
Computer Architecture (ISCA-32), 2005

[32] Virident. Virident’s GreenGateway™ technology and
Spansion® EcoRAM. http://www.virident.com/solutions.php

[33] Texas Memory Systems. TMS RamSan-440 Details.
http://www.superssd.com/products/ramsan-440/

[34] Intel. Intel Fully Buffered DIMM Specification Addendum.
http://www.intel.com/technology/memory/FBDIMM/spec/Int
el_FBD_Spec_Addendum_rev_p9.pdf

[35] T. Kgil et al. PicoServer: using 3D stacking technology to
enable a compact energy efficient chip multiprocessor. In
Proc. of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-XII), 2006.

[36] M. Ekman and P. Stenstrom. A Cost-Effective Main Memory
Organization for Future Servers. In Proc. of the 19th Int.
Parallel and Distributed Processing Symposium, 2005.

[37] C. Waldspurger. Memory Resource Management in VMware
ESX Server. In Proc. of the 5th USENIX Sym. on Operating
System Design and Implementation (OSDI ‘02), 2002.

[38] D. Ye, A . Pavuluri, C. Waldspurger, B. Tsang, B. Rychlik
and S. Woo. Prototyping a Hybrid Main Memory Using a
Virtual Machine Monitor. In Proc. of the 26th Int. Conf. on
Computer Design (ICCD), 2008.

[39] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero and D.
Ortega. COTSon: Infrastructure for System-Level
Simulation. ACM Operating Systems Review 43(1), 2009.

[40] J.R. Santos, Y. Turner, G. Janakiraman and I. Pratt. Bridging
the gap between software and hardware techniques for I/O
virtualization. USENIX Annual Technical Conference, 2008.

[41] J. Rolia, A. Andrzejak and M. Arlitt. Automating Enterprise
Application Placement in Resource Utilities. 14th IFIP/IEEE
Int. Workshop on Distributed Systems: Operations and
Management, DSOM 2003.

[42] R. Bryant and J. Hawkes. Linux® Scalability for Large
NUMA Systems. In Proc. of Ottowa Linux Symposium
2003, July 2003.

[43] T. Kgil, D. Roberts and T. Mudge. Improving NAND Flash
Based Disk Caches. In Proc. of the 35th Int. Sym. on
Computer Architecture (ISCA-35), June 2008.

AMD, the AMD Arrow Logo, AMD Opteron and combinations thereof are trademarks of Advanced Micro Devices, Inc.
HyperTransport is a trademark of the HyperTransport Consortium.
Microsoft and Windows are registered trademarks of Microsoft Corporation.
PCI Express and PCIe are registered trademarks of PCI-SIG.
Linux is a registered trademark of Linus Torvalds.
SPEC is a registered trademark Standard Performance Evaluation Corporation (SPEC).

