Persistent-Memory gawk User Manual

9 February 2025
gawk version 5.3.1
pm-gawk version 2022.100c¢t.30.1667172241 (Avon 8)

Terence Kelly

tpkelly@eecs.umich.edu
tpkelly@cs.princeton.edu
tpkellyQ@acm.org
http://web.eecs.umich.edu/ " tpkelly/pma/
https://dl.acm.org/profile/81100523747
https://queue.acm.org/DrillBits

Copyright (© 2022, 2025 Terence Kelly

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Introduction” and “History”,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is available at
https://www.gnu.org/licenses/fd1l-1.3.html

mailto:tpkelly@eecs.umich.edu
mailto:tpkelly@cs.princeton.edu
mailto:tpkelly@acm.org
http://web.eecs.umich.edu/~tpkelly/pma/
https://dl.acm.org/profile/81100523747
https://queue.acm.org/DrillBits
https://www.gnu.org/licenses/fdl-1.3.html

1 Introduction

GNU AWK (gawk) 5.2, released in September 2022, introduced a new persistent memory
feature that makes AWK scripting easier and sometimes improves performance. The new
feature, called “pm-gawk,” can “remember” script-defined variables and functions across
executions and can pass variables and functions between unrelated scripts without seri-
alizing/parsing text files—all with near-zero fuss. pm-gawk does not require non-volatile
memory hardware nor any other exotic infrastructure; it runs on the ordinary conventional
computers and operating systems that we’ve all been using for decades.

The main gawk documentation' covers the basics of the new persistence feature. This

supplementary manual provides additional detail, tutorial examples, and a peek under the
hood of pm-gawk. If you're familiar with gawk and Unix-like environments, dive straight in:

e Chapter 2 [Quick Start], page 2, hits the ground running with a few keystrokes.

e Chapter 3 [Examples]|, page 3, shows how pm-gawk streamlines typical AWK scripting.
e Chapter 4 |

e Chapter 5 |
e Chapter 6 [Acknowledgments|, page 15, thanks those who made pm-gawk happen.

Performance|, page 6, covers asymptotic efficiency, OS tuning, and more.

Data Integrity|, page 14, explains how to protect data from mishaps.

e Appendix A [Installation|, page 15, shows where obtain pm-gawk.
e Appendix B [Debugging], page 17, explains how to handle suspected bugs.
e Appendix C [History], page 17, traces pm-gawk’s persistence technology.

You can find the latest version of this manual, and also the “director’s cut,” at the web
site for the persistent memory allocator used in pm-gawk:

http://web.eecs.umich.edu/ " tpkelly/pma/

Two publications describe the persistent memory allocator and early experiences with a
pm-gawk prototype based on a fork of the official gawk sources:

e https://queue.acm.org/detail.cfm?id=3534855

e http://nvmw.ucsd.edu/nvmw2022-program/nvmw2022-data/nvmw2022-paper35-final_version_your.
pdf

Feel free to send me questions, suggestions, and experiences:

tpkelly@eecs.umich.edu (preferred)
tpkelly@cs.princeton.edu
tpkellyQ@acm.org

L See https://www.gnu.org/software/gawk/manual/ and man gawk and info gawk.

http://web.eecs.umich.edu/~tpkelly/pma/
https://queue.acm.org/detail.cfm?id=3534855
http://nvmw.ucsd.edu/nvmw2022-program/nvmw2022-data/nvmw2022-paper35-final_version_your_extended_abstract.pdf
http://nvmw.ucsd.edu/nvmw2022-program/nvmw2022-data/nvmw2022-paper35-final_version_your_extended_abstract.pdf
mailto:tpkelly@eecs.umich.edu
mailto:tpkelly@cs.princeton.edu
mailto:tpkelly@acm.org
https://www.gnu.org/software/gawk/manual/

2 Quick Start

Here’s pm-gawk in action at the bash shell prompt (‘$’):

$ truncate -s 4096000 heap.pma

$ export GAWK_PERSIST_FILE=heap.pma

$ gawk 'BEGIN{myvar = 47}'

$ gawk 'BEGIN{myvar += 7; print myvar}'

54 # 'T' => not pm-gawk, crash => bad build

First, truncate creates an empty (all-zero-bytes) heap file where pm-gawk will store script
variables; its size is a multiple of the system page size (4 KiB). Next, export sets an
environment variable that enables pm-gawk to find the heap file; if gawk does not see this
envar, persistence is not activated. The third command runs a one-line AWK script that
initializes variable myvar, which will reside in the heap file and thereby outlive the interpreter
process that initialized it. Finally, the fourth command invokes pm-gawk on a different one-
line script that increments and prints myvar. The output shows that pm-gawk has indeed
“remembered” myvar across executions of unrelated scripts. To disable persistence until
you want it again, prevent gawk from finding the heap file via ‘unset GAWK_PERSIST_FILE’.
To permanently “forget” script variables, delete the heap file.

See Appendix A [Installation|, page 15, for two common problems and their fixes: If
you run the example above and pm-gawk crashes on the second invocation, it is likely that
your pm-gawk was incorrectly built. If the printed output is ‘7’ instead of ‘54’, the gawk
executable in your search $PATH lacks the persistence feature.

Toggling persistence by export-ing and unset-ing “ambient” envars requires care: For-
getting to unset when you no longer want persistence can cause surprises. Fortunately,
bash allows you to pass envars more deliberately, on a per-command basis:

$ rm heap.pma # start fresh
$ unset GAWK_PERSIST_FILE # eliminate ambient envar
$ truncate -s 4096000 heap.pma # create new heap file

$ GAWK_PERSIST_FILE=heap.pma gawk 'BEGIN{myvar = 47}'

$ gawk 'BEGIN{myvar += 7; print myvarl}'

7

$ GAWK_PERSIST_FILE=heap.pma gawk 'BEGIN{myvar += 7; print myvar}'
54

The first gawk invocation sees the special envar prepended on the command line, so it acti-
vates pm-gawk. The second gawk invocation, however, does not see the envar and therefore
does not access the script variable stored in the heap file. The third gawk invocation does
see the special envar and therefore uses the script variable from the heap file.

While sometimes less error prone than ambient envars, per-command envar passing is
verbose and shouty. A shell alias saves keystrokes and reduces visual clutter:
$ alias pm='GAWK_PERSIST_FILE=heap.pma'
$ pm gawk 'BEGIN{print ++myvarl}'
55
$ pm gawk 'BEGIN{print ++myvarl}'
56

3 Examples

Our first example uses pm-gawk to streamline analysis of a prose corpus, Mark Twain’s
Tom Sawyer and Huckleberry Finn from https://gutenberg.org/files/74/74-0.txt
and https://gutenberg.org/files/76/76-0.txt. We first convert non-alphabetic char-
acters to newlines (so each line has at most one word) and convert to lowercase:

$ tr -c a-zA-Z '\n' < 74-0.txt | tr A-Z a-z > sawyer.txt

$ tr -c a-zA-Z '\n' < 76-0.txt | tr A-Z a-z > finn.txt

It’s easy to count word frequencies with AWK’s associative arrays. pm-gawk makes

these arrays persistent, so we need not re-ingest the entire corpus every time we ask a new
question (“read once, analyze happily ever after”):

$ truncate -s 100M twain.pma
$ export GAWK_PERSIST_FILE=twain.pma

$ gawk '{ts[$1]++}' sawyer.txt # ingest
$ gawk 'BEGIN{print ts["work"], ts["play"]l}' # query
92 11
$ gawk 'BEGIN{print ts["necktie"], ts["knife"]}' # query
2 27

The truncate command above creates a heap file large enough to store all of the data it
must eventually contain, with plenty of room to spare. (As we’ll see in Section 4.3 [Sparse
Heap Files|, page 8, this isn’t wasteful.) The export command ensures that subsequent
gawk invocations activate pm-gawk. The first pm-gawk command stores Tom Sawyer’s
word frequencies in associative array ts[]. Because this array is persistent, subsequent
pm-gawk commands can access it without having to parse the input file again.

Expanding our analysis to encompass a second book is easy. Let’s populate a new
associative array hf [] with the word frequencies in Huckleberry Finn:

$ gawk '{hf[$1]++}' finn.txt
Now we can freely intermix accesses to both books’ data conveniently and efficiently, without
the overhead and coding fuss of repeated input parsing:

$ gawk 'BEGIN{print ts["river"], hf["river"]}'

26 142

pm-gawk feels like it has a read-eval-print loop, which invites casual interactive con-
versations with data. If we’re curious what words from Finn are not in Sawyer, answers
(including “flapdoodle,” “yellocution,” and “sockdolager”) are a few keystrokes away:

$ gawk 'BEGIN{for(w in hf) if (!(w in ts)) print w}'

Rumors of Twain’s death may be exaggerated. If he publishes new books in the fu-
ture, it will be easy to incorporate them into our analysis incrementally. The performance
benefits of incremental processing for common AWK chores such as log file analysis are
discussed in https://queue.acm.org/detail.cfm?id=3534855 and the companion paper
cited therein, and below in Chapter 4 [Performance], page 6.

Exercise: The “Markov” AWK script on page 79 of Kernighan & Pike’s The Practice of
Programming generates random text reminiscent of a given corpus using a simple statistical
modeling technique. This script consists of a “learning” or “training” phase followed by
an output-generation phase. Use pm-gawk to de-couple the two phases and to allow the
statistical model to incrementally ingest additions to the input corpus.

https://gutenberg.org/files/74/74-0.txt
https://gutenberg.org/files/76/76-0.txt
https://queue.acm.org/detail.cfm?id=3534855

Our second example considers another domain that plays to AWK’s strengths, data
analysis. For simplicity we’ll create two small input files of numeric data.

$ printf '1\n2\n3\n4\n5\n' > A.dat
$ printf '5\n6\n7\n8\n9\n' > B.dat

A conventional non-persistent AWK script can compute basic summary statistics:

$ cat summary_conventional.awk
1 == NR { min = max = $1 }
min > $1 { min $1
max < $1 { max $1 1
{ sum += $1 }
END { print "min: " min " max: " max

" mean: " sum/NR }

$ gawk -f summary_conventional.awk A.dat B.dat
min: 1 max: 9 mean: 5

To use pm-gawk for the same purpose, we first create a heap file for our AWK script
variables and tell pm-gawk where to find it via the usual environment variable:

$ truncate -s 10M stats.pma
$ export GAWK_PERSIST_FILE=stats.pma

pm-gawk requires changing the above script to ensure that min and max are initialized exactly
once, when the heap file is first used, and not every time the script runs. Furthermore,
whereas script-defined variables such as min retain their values across pm-gawk executions,
built-in AWK variables such as NR are reset to zero every time pm-gawk runs, so we can’t
use them in the same way. Here’s a modified script for pm-gawk:

$ cat summary_persistent.awk
| init { min = max = $1; init =1 }
min > $1 { min = $1 }
max < $1 { max = $1 }
{ sum += $1; ++n }
END { print "min: " min " max: " max

" mean: " sum/n }

Note the different pattern on the first line and the introduction of n to supplant NR. When
used with pm-gawk, this new initialization logic supports the same kind of cumulative
processing that we saw in the text-analysis scenario. For example, we can ingest our input
files separately:

$ gawk -f summary_persistent.awk A.dat
min: 1 max: 5 mean: 3

$ gawk -f summary_persistent.awk B.dat
min: 1 max: 9 mean: 5

As expected, after the second pm-gawk invocation consumes the second input file, the output
matches that of the non-persistent script that read both files at once.

Exercise: Amend the AWK scripts above to compute the median and mode(s) using
both conventional gawk and pm-gawk. (The median is the number in the middle of a sorted
list; if the length of the list is even, average the two numbers at the middle. The modes are
the values that occur most frequently.)

Our final examples show that pm-gawk allows us to bundle both script-defined data and
also user-defined functions in a persistent heap that we can pass freely between unrelated
AWK scripts.

The following shell transcript repeatedly invokes pm-gawk to create and then employ
a user-defined function. These separate invocations involve several different AWK scripts
that communicate via the heap file. Each invocation can add user-defined functions and
add or remove data from the heap that subsequent invocations will access.

truncate -s 10M funcs.pma

export GAWK_PERSIST_FILE=funcs.pma

gawk 'function count(A,t) {for(i in A)t++; return t+0}'
gawk 'BEGIN { a["x"] = 4; al["y"] = 5; a["z"] =6 }'
gawk 'BEGIN { print count(a) }'

gawk 'BEGIN { delete a["x"] }'
gawk 'BEGIN { print count(a) }'

gawk 'BEGIN { delete a }'
gawk 'BEGIN { print count(a) }'

gawk 'BEGIN { for (i=0; i<47; i++) al[i]l=i }'
gawk 'BEGIN { print count(a) }'

BB O B BN PP WP P NP

a7

The first pm-gawk command creates user-defined function count (), which returns the num-
ber of entries in a given associative array; note that variable t is local to count (), not global.
The next pm-gawk command populates a persistent associative array with three entries; not
surprisingly, the count () call in the following pm-gawk command finds these three entries.
The next two pm-gawk commands respectively delete an array entry and print the reduced
count, 2. The two commands after that delete the entire array and print a count of zero.
Finally, the last two pm-gawk commands populate the array with 47 entries and count them.

The following shell script invokes pm-gawk repeatedly to create a collection of user-
defined functions that perform basic operations on quadratic polynomials: evaluation at a
given point, computing the discriminant, and using the quadratic formula to find the roots.
It then factors 22 + x — 12 into (z — 3)(z + 4).

#!/bin/sh
rm -f poly.pma
truncate -s 10M poly.pma

export GAWK_PERSIST_FILE=poly.pma
gawk 'function q(x) { return a*x"2 + b*x + c }'

gawk 'function p(x) { return "q(" x ") =" q(x) }'

gawk 'BEGIN { print p(2) }' # evaluate & print
gawk 'BEGIN{ a = 1; b =1; ¢ = -12 }' # new coefficients
gawk 'BEGIN { print p(2) }' # eval/print again

gawk 'function d(s) { return s * sqrt(b”2 - 4*axc)}'
gawk 'BEGIN{ print "discriminant (must be >=0): " d(1)}'
gawk 'function r(s) { return (-b + d(s))/(2*a)}'

gawk 'BEGIN{ print "root: " r(1) " " p(r(1)) }'

gawk 'BEGIN{ print "root: " r(-1) " " p(r(-1)) }'

gawk 'function abs(n) { returnn > 0 ? n : -n }'

gawk 'function sgn(x) { return x >= 0 ? "- " : "+ " } !
gawk 'function f(s) { return "(x " sgn(r(s)) abs(r(s))}'
gawk 'BEGIN{ print "factor: " £(1) ")" }'

gawk 'BEGIN{ print "factor: " f£(-1) ")" }'

rm -f poly.pma

4 Performance

This chapter explains several performance advantages that result from the implementa-
tion of persistent memory in pm-gawk, shows how tuning the underlying operating system
sometimes improves performance, and presents experimental performance measurements.
To make the discussion concrete, we use examples from a GNU /Linux system—GNU utili-
ties atop the Linux OS—but the principles apply to other modern operating systems.

4.1 Constant-Time Array Access

pm-gawk preserves the efficiency of data access when data structures are created by one
process and later re-used by a different process.

Consider the associative arrays used to analyze Mark Twain’s books in Chapter 3 [Exam-
ples|, page 3. We created arrays ts[] and hf [] by reading files sawyer.txt and finn.txt.
If N denotes the total volume of data in these files, building the associative arrays typi-
cally requires time proportional to N, or “O(N) expected time” in the lingo of asymptotic
analysis. If W is the number of unique words in the input files, the size of the associative
arrays will be proportional to W, or O(W). Accessing individual array elements requires
only constant or O(1) expected time, not O(N) or O(W) time, because gawk implements
arrays as hash tables.

The performance advantage of pm-gawk arises when different processes create and access
associative arrays. Accessing an element of a persistent array created by a previous pm-gawk
process, as we did earlier in BEGIN{print ts["river"], hf["river"]}, still requires only
O(1) time, which is asymptotically far superior to the alternatives. Naively reconstructing
arrays by re-ingesting all raw inputs in every gawk process that accesses the arrays would of
course require O(N) time—a profligate cost if the text corpus is large. Dumping arrays to
files and re-loading them as needed would reduce the preparation time for access to O(W).
That can be a substantial improvement in practice; N is roughly 19 times larger than W
in our Twain corpus. Nonetheless O(W) remains far slower than pm-gawk’s O(1). As we’ll
see in Section 4.6 [Results], page 13, the difference is not merely theoretical.

The persistent memory implementation beneath pm-gawk enables it to avoid work pro-
portional to N or W when accessing an element of a persistent associative array. Under the
hood, pm-gawk stores script-defined AWK variables such as associative arrays in a persis-
tent heap laid out in a memory-mapped file (the heap file). When an AWK script accesses
an element of an associative array, pm-gawk performs a lookup on the corresponding hash
table, which in turn accesses memory on the persistent heap. Modern operating systems
implement memory-mapped files in such a way that these memory accesses trigger the bare
minimum of data movement required: Only those parts of the heap file containing needed
data are “paged in” to the memory of the pm-gawk process. In the worst case, the heap
file is not in the file system’s in-memory cache, so the required pages must be faulted into
memory from storage. Our asymptotic analysis of efficiency applies regardless of whether
the heap file is cached or not. The entire heap file is not accessed merely to access an
element of a persistent associative array.

Persistent memory thus enables pm-gawk to offer the flexibility of de-coupling data
ingestion from analytic queries without the fuss and overhead of serializing and loading
data structures and without sacrificing constant-time access to the associative arrays that
make AWK scripting convenient and productive.

4.2 Virtual Memory and Big Data

Small data sets seldom spoil the delights of AWK by causing performance troubles, with or
without persistence. As the size of the gawk interpreter’s internal data structures approaches
the capacity of physical memory, however, acceptable performance requires understanding
modern operating systems and sometimes tuning them. Fortunately pm-gawk offers new de-
grees of control for performance-conscious users tackling large data sets. A terse mnemonic
captures the basic principle: Precluding paging promotes peak performance and prevents
perplexity.

Modern operating systems feature virtual memory that strives to appear both larger than
installed DRAM (which is small) and faster than installed storage devices (which are slow).
As a program’s memory footprint approaches the capacity of DRAM, the virtual memory
system transparently pages (moves) the program’s data between DRAM and a swap area
on a storage device. Paging can degrade performance mildly or severely, depending on the
program’s memory access patterns. Random accesses to large data structures can trigger
excessive paging and dramatic slowdown. Unfortunately, the hash tables beneath AWK’s
signature associative arrays inherently require random memory accesses, so large associative
arrays can be problematic.

Persistence changes the rules in our favor: The OS pages data to pm-gawk’s heap file
instead of the swap area. This won’t help performance much if the heap file resides in a
conventional storage-backed file system. On Unix-like systems, however, we may place the
heap file in a DRAM-backed file system such as /dev/shm/, which entirely prevents paging
to slow storage devices. Temporarily placing the heap file in such a file system is a reasonable
expedient, with two caveats: First, keep in mind that DRAM-backed file systems perish
when the machine reboots or crashes, so you must copy the heap file to a conventional
storage-backed file system when your computation is done. Second, pm-gawk’s memory
footprint can’t exceed available DRAM if you place the heap file in a DRAM-backed file
system.

Tuning OS paging parameters may improve performance if you decide to run pm-gawk
with a heap file in a conventional storage-backed file system. Some OSes have unhelpful
default habits regarding modified (“dirty”) memory backed by files. For example, the OS
may write dirty memory pages to the heap file periodically and/or when the OS believes
that “too much” memory is dirty. Such “eager” writeback can degrade performance notice-
ably and brings no benefit to pm-gawk. Fortunately some OSes allow paging defaults to
be over-ridden so that writeback is “lazy” rather than eager. For Linux see the discussion
of the dirty_* parameters at https://www.kernel.org/doc/html/latest/admin-guide/
sysctl/vm.html. Changing these parameters can prevent wasteful eager paging:!

$ echo 100 | sudo tee /proc/sys/vm/dirty_background_ratio

$ echo 100 | sudo tee /proc/sys/vm/dirty_ratio

$ echo 300000 | sudo tee /proc/sys/vm/dirty_expire_centisecs

$ echo 50000 | sudo tee /proc/sys/vm/dirty_writeback_centisecs

Tuning paging parameters can help non-persistent gawk as well as pm-gawk.
[Disclaimer: OS tuning is an occult art, and your mileage may vary.]

1 The tee rigmarole is explained at https://askubuntu.com/questions/1098059/
which-is-the-right-way-to-drop-caches-in-lubuntu.

https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html
https://askubuntu.com/questions/1098059/which-is-the-right-way-to-drop-caches-in-lubuntu
https://askubuntu.com/questions/1098059/which-is-the-right-way-to-drop-caches-in-lubuntu

4.3 Sparse Heap Files

To be frugal with storage resources, pm-gawk’s heap file should be created as a sparse file:
a file whose logical size is larger than its storage resource footprint. Modern file systems
support sparse files, which are easy to create using the truncate tool shown in our examples.

Let’s first create a conventional non-sparse file using echo:

$ echo hi > dense

$ 1s -1 dense

-rw-rw-r--. 1 me me 3 Aug 5 23:08 dense
$ du -h dense

4.0K dense

The 1s utility reports that file dense is three bytes long (two for the letters in “hi” plus one
for the newline). The du utility reports that this file consumes 4 KiB of storage—one block
of disk, as small as a non-sparse file’s storage footprint can be. Now let’s use truncate to
create a logically enormous sparse file and check its physical size:

$ truncate -s 1T sparse

$ 1s -1 sparse

-rw-rw-r--. 1 me me 1099511627776 Aug 5 22:33 sparse
$ du -h sparse

0 sparse

Whereas 1s reports the logical file size that we expect (one TiB or 2 raised to the power 40
bytes), du reveals that the file consumes zero storage. The file system will allocate physical
storage beneath this file as data are written to it; reading unwritten regions yields zeros.

The “pay as you go” storage cost of sparse files offers both convenience and control
for pm-gawk users. If your file system supports sparse files, go ahead and create lavishly
capacious heap files for pm-gawk. Their logical size costs nothing and persistent memory
allocation within pm-gawk won’t fail until physical storage resources beneath the file system
are exhausted. But if instead you want to prevent a heap file from consuming too much
storage, simply set its initial size to whatever bound you wish to enforce; it won’t eat more
disk than that. Copying sparse files with GNU cp creates sparse copies by default.

To maximize storage frugality we sometimes want to “re-sparsify” heap files cluttered
with de-allocated memory that pm-gawk no longer needs. A stand-alone utility, pma_sam,
is provided for this purpose at the pma web site.

File-system encryption can preclude sparse files: If the plaintext of a byte offset range
within a file is all zero bytes, the corresponding ciphertext mustn’t be all zeros! Encrypting
at the storage layer instead of the file system may offer acceptable security while still
permitting sparse files.

Sometimes you want a dense heap file backed by pre-allocated storage, e.g., to ensure
that pm-gawk’s internal memory allocation will succeed until the persistent heap fills the
entire file. The fallocate utility does the trick:

$ fallocate -1 1M mibi

$ 1s -1 mibi

-rw-rw-r-—. 1 me me 1048576 Aug 5 23:18 mibi

$ du -h mibi

1.0M mibi # We get our MiB, both logically & physically.

4.4 Persistence versus Durability

Arguably the most important general guideline for good performance in computer systems
is, “pay only for what you need.”! To apply this maxim to pm-gawk we must distinguish
two concepts that are frequently conflated: persistence and durability.? (A third logically
distinct concept is the subject of Chapter 5 [Data Integrity], page 14.)

Persistent data outlive the processes that access them, but don’t necessarily last forever.
For example, as explained in ‘man mq_overview’, message queues are persistent because
they exist until the system shuts down. Durable data reside on a physical medium that
retains its contents even without continuously supplied power. For example, hard disk
drives and solid state drives store durable data. Confusion arises because persistence and
durability are often correlated: Data in ordinary file systems backed by HDDs or SSDs are
typically both persistent and durable. Familiarity with fsync() and msync() might lead
us to believe that durability is a subset of persistence, but in fact the two characteristics are
orthogonal: Data in the swap area are durable but not persistent; data in DRAM-backed
file systems such as /dev/shm/ are persistent but not durable.

Durability often costs more than persistence, so performance-conscious pm-gawk users
pay the added premium for durability only when persistence alone is not sufficient. Two
ways to avoid unwanted durability overheads were discussed in Section 4.2 [Virtual Memory
and Big Data|, page 7: Place pm-gawk’s heap file in a DRAM-backed file system, or disable
eager writeback to the heap file. Expedients such as these enable you to remove durability
overheads from the critical path of multi-stage data analyses even when you want heap files
to eventually be durable: Allow pm-gawk to run at full speed with persistence alone; force
the heap file to durability (using the cp and sync utilities as necessary) after output has
been emitted to the next stage of the analysis and the pm-gawk process using the heap has
terminated.

Experimenting with synthetic data builds intuition for how persistence and durability
affect performance. You can write a little AWK or C program to generate a stream of
random text, or just cobble together a quick and dirty generator on the command line:

$ openssl rand --base64 1000000 | tr -c a-zA-Z '\n' > random.dat

Varying the size of random inputs can, for example, find where performance “falls off the
cliff” as pm-gawk’s memory footprint exceeds the capacity of DRAM and paging begins.

Experiments require careful methodology, especially when the heap file is in a storage-
backed file system. Overlooking the file system’s DRAM cache can easily misguide inter-
pretation of results and foil repeatability. Fortunately Linux allows us to invalidate the file
system cache and thus mimic a “cold start” condition resembling the immediate aftermath
of a machine reboot. Accesses to ordinary files on durable storage will then be served from
the storage devices, not from cache. Read about sync and /proc/sys/vm/drop_caches at
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html.

1 Remarkably, this guideline is widely ignored in surprising ways. Certain well-known textbook algorithms
continue to grind away fruitlessly long after having computed all of their output.
See https://queue.acm.org/detail.cfm?id=3424304.

2 In recent years the term “persistent memory” has sometimes been used to denote novel byte-addressable
non-volatile memory hardware—an unfortunate practice that contradicts sensible long-standing conven-
tion and causes needless confusion. NVM provides durability. Persistent memory is a software abstraction
that doesn’t require NVM. See https://queue.acm.org/detail.cfm?id=3358957.

https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html
https://queue.acm.org/detail.cfm?id=3424304
https://queue.acm.org/detail.cfm?id=3358957

4.5 Experiments

The C-shell (csh) script listed below illustrates concepts and implements tips presented in
this chapter. It produced the results discussed in Section 4.6 [Results|, page 13, in roughly
20 minutes on an aging laptop. To reproduce my experiments, cut/paste the listing below
into a file; take care that no lines are duplicated or omitted.

The script measures the performance of four different ways to support word frequency
queries over a text corpus: The naive approach of reading the corpus into an associative
array for every query; manually dumping a text representation of the word-frequency table
and manually loading it prior to a query; using gawk’s rwarray extension to dump and load
an associative array; and using pm-gawk to maintain a persistent associative array.

Comments at the top explain prerequisites. Lines 8-10 set input parameters: the direc-
tory where tests are run and where files including the heap file are held, the off-the-shelf
timer used to measure run times and other performance characteristics such as peak mem-
ory usage, and the size of the input. The default input size results in pm-gawk memory
footprints under 3 GiB, which is large enough for interesting results and small enough to fit
in DRAM and avoid paging on today’s computers. Lines 13-14 define a homebrew timer.

Two sections of the script are relevant if the default run directory is changed from
/dev/shm/ to a directory in a conventional storage-backed file system: Lines 15-17 define the
mechanism for clearing file data cached in DRAM,; lines 23-30 set Linux kernel parameters
to discourage eager paging.

Lines 37-70 spit out, compile, and run a little C program to generate a random text
corpus. This program is fast, flexible, and deterministic, generating the same random output
given the same parameters.

Lines 71-100 run the four different AWK approaches on the same random input, re-
porting separately the time to build and to query the associative array containing word
frequencies.

#!/bin/csh -f

Set PMG envar to path of pm-gawk executable and AWKLIBPATH # 2
to find rwarray.so # 3
Requires "sudo" to work; consider this for /etc/sudoers file: # 4
Defaults:youruserid lauthenticate # 5
echo 'begin: ' “date” “date +Js” # 6
unsetenv GAWK_PERSIST_FILE # disable persistence until wanted # 7
set dir = '/dev/shm' # where heap file et al. will live # 8
set tmr = '/usr/bin/time'’ # can also use shell built-in "time" # 9
set isz = 1073741824 # input size; 1 GiB # 10
set isz = 100000000 # small input for quick testing # 11
cd $dir # tick/tock/tyme below are homebrew timer, good within ~2ms # 12
alias tick 'set tl = “date +%s.%N"' ; alias tock 'set t2 = “date +Ys.}N' # 13
alias tyme '$PMG -v t1=$t1 -v t2=$t2 "BEGIN{print t2-t1}"' # 14
alias tsync 'tick ; sync ; tock ; echo "sync time: " “tyme™' # 15
alias drop_caches 'echo 3 | sudo tee /proc/sys/vm/drop_caches' # 16
alias snd 'tsync; drop_caches' # 17
echo "pm-gawk: $PMG" ; echo 'std gawk: ' “which gawk® # 18
echo "run dir: $dir" ; echo 'pwd: ' Tpwd” # 19
echo 'dir content:' ; 1s -1 $dir |& $PMG '{print " " $0}' # 20
echo 'timer: ' $tmr ; echo 'AWKLIBPATH: ' $AWKLIBPATH # 21

echo '0OS params:' ; set vm = '/proc/sys/vm/dirty'

sudo sh -c "echo 100 > ${vm}_background_ratio" # restore these
sudo sh -c "echo 100 > ${vm}_ratio" # paging params
sudo sh -c "echo 1080000 > ${vm}_expire_centisecs" # to defaults

sudo sh -c "echo 1080000 > ${vm}_writeback_centisecs" # if necessary
foreach d (${vm}_background_ratio ${vm}_ratio \
${vm}_expire_centisecs ${vm}_writeback_centisecs)

printf " %-38s %7d\n" $d “cat $d°
end
tick ; tock ; echo 'timr ovrhd: ' “tyme” 's (around 2ms for TK)'
tick ; $PMG 'BEGIN{print "pm-gawk? yes"}'
tock ; echo 'pmg ovrhd: ' “tyme 's (around 4-5 ms for TK)'
set inp = 'input.dat'
echo 'input size ' $isz

echo "input file: $inp"

set rg = rgen # spit out and compile C program to generate random inputs
rm -f $inp $rg.c $rg

cat <<EOF > $rg.c

// generate N random words, one per line, no blank lines

// charset is e.g. 'abcdefg@' where '@' becomes newline

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define RCH c = alrand() % LI1;
#define PICK do { RCH } while (0)
#define PICKCH do { RCH } while (c == '@')

#define FP(...) fprintf(stderr, __VA_ARGS__)
int main(int argc, char *argv[]) {
if (4 '= argce) {
FP("usage: ¥%s charset N seed\n",

argv[0]); return 1; }

char c, *a = argv([1]; size_t L = strlen(a);
long int N = atol(argv[2]);
srand (atol(argv[31));
if (2 > N) { FP("N == %1d < 2\n", N); return 2; }
PICKCH;
for (5;) {
if (2 == N) { PICKCH; putchar(c); putchar('\n'); break; }
if ('@' == c¢) { putchar('\n'); PICKCH; }
else { putchar(¢); PICK; ¥
if (0 >= --N) break;
}
}
EOF

gcc -std=cll -Wall -Wextra -03 -o $rg $rg.c

set t = '@00GQCQ' ; set c = "abcdefghijklmnopqrstuvwxyzttttetet"
tick ; ./$rg "$c" $isz 47 > $inp ; tock ; echo 'gen time: ' “tyme~

echo "input file: $inp"

echo 'input wc: ' “wc < $inp” ; echo 'input uniq: ' “sort -u $inp | wc”

H OHE B HHHHHEHHEHHHHHHEHEHE R HHHEHEHEHE R HHHEHEHEHE R HHHEHHEHRE R HHEHHEHRR

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

snd ####HHHHFHHHHREREEREHEEEEEE S R R R R R R R R
tick ; $tmr $PMG '{n[$1]++}END{print "output: " n["foo"]}' $inp
tock ; echo 'T naive O(N): ' “tyme" ; echo "'
rm -f rwa
snd ##HHHFHHFH SRR AR R R R R R
echo ''
tick ; $tmr $PMG -1 rwarray '{n[$1]++}END{print "writea",writea("rwa",n)}' $inp
tock ; echo 'T rwarray build O(N): ' “tyme ™ ; echo ''
snd # # # # # H HEHAEHAFAAERARSAHHFHFHHBHEAERARRRRHRHHHHHEHRH
tick ; $tmr $PMG -1 rwarray 'BEGIN{print "reada",reada("rwa",n); \
print "output: " n["foo"1}'
tock ; echo 'T rwarray query 0(W): ' “tyme" ; echo ''
rm -f ft
snd R R R
tick ; $tmr $PMG '{n[$1]++}END{for(w in n)print n[w]l, w}' $inp > ft
tock ; echo 'T freqtbl build O(N): ' “tyme™ ; echo ''
Sl N EEEEEEEEEEEEEEEEEEENEEEEE:E:E:EJEE:E:EJ::
tick ; $tmr $PMG '{n[$2] = $1}END{print "output: " n["foo"]}' ft
tock ; echo 'T freqtbl query 0(W): ' “tyme” ; echo "'
rm -f heap.pma
snd ##HHFHHFHHH AR EREEREEEEEEEE R R R R R
truncate -s 3G heap.pma # enlarge if needed
setenv GAWK_PERSIST_FILE heap.pma
tick ; $tmr $PMG '{n[$1]++}' $inp
tock ; echo 'T pm-gawk build O(N): ' “tyme ™ ; echo ''
snd # # # # H# H HEHEAF RS A HFHFHHBHEAAARRRRHEHHHHHEHRH
tick ; $tmr $PMG 'BEGIN{print "output: " n["foo"l}'
tock ; echo 'T pm-gawk query 0(1): ' “tyme” ; echo "'
unsetenv GAWK_PERSIST_FILE
snd ##HHHH R R R R R R
echo 'Note: all output lines above should be identical' ; echo ''
echo 'dir content:' ; 1s -1 $dir |& $PMG '{print " " $0}'
echo '' ; echo 'storage footprints:'
foreach f (rwa ft heap.pma) # compression is very slow, so we comment it out
echo " $f " “du -BK $dir/$f° # “xz --best < $dir/$f | wc -c” 'bytes xz'
end
echo '' ; echo 'end: ' “date” “date +%s~ ; echo ''

H OHE H HHHHHHEHHEHHHHEHEHEHE R HHHEHHER R HHHEHHEHRE R

71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

4.6 Results

Running the script of Section 4.5 [Experiments], page 10, with default parameters on an ag-
ing laptop yielded the results summarized in the table below. More extensive experiments,
not reported here, yield qualitatively similar results. Keep in mind that performance mea-
surements are often sensitive to seemingly irrelevant factors. For example, the program
that runs first may have the advantage of a cooler CPU; later contestants may start with
a hot CPU and consequent clock throttling by a modern processor’s thermal regulation
apparatus. Very generally, performance measurement is a notoriously tricky business. For
scripting, whose main motive is convenience rather than speed, the proper role for per-
formance measurements is to qualitatively test hypotheses such as those that follow from
asymptotic analyses and to provide a rough idea of when various approaches are practical.

run time peak memory intermediate
AWK script (sec) footprint (K) storage (K)
naive 0(N) 242.132 2,081,360 n/a
rwarray build 0(N) 250.288 2,846,868 156,832
rwarray query 0(W) 11.653 2,081,444
freqtbl build 0(N) 288.408 2,400,120 69,112
freqtbl query O(W) 11.624 2,336,616
pm-gawk build O(N) 251.946 2,079,520 2,076,608
pm-gawk query 0(1) 0.026 3,252

The results are consistent with the asymptotic analysis of Section 4.1 [Constant-Time
Array Access|, page 6. All four approaches require roughly four minutes to read the synthetic
input data. The nalve approach must do this every time it performs a query, but the other
three build an associative array to support queries and separately serve such queries. The
freqtbl and rwarray approaches build an associative array of word frequencies, serialize
it to an intermediate file, and then read the entire intermediate file prior to serving queries;
the former does this manually and the latter uses a gawk extension. Both can serve queries
in roughly ten seconds, not four minutes. As we’d expect from the asymptotic analysis,
performing work proportional to the number of words is preferable to work proportional
to the size of the raw input corpus: O(W) time is faster than O(N). And as we’d expect,
pm-gawk’s constant-time queries are faster still, by roughly two orders of magnitude. For
the computations considered here, pm-gawk makes the difference between blink-of-an-eye
interactive queries and response times long enough for the user’s mind to wander.

Whereas freqtbl and rwarray reconstruct an associative array prior to accessing an
individual element, pm-gawk stores a ready-made associative array in persistent memory.
That’s why its intermediate file (the heap file) is much larger than the other two intermediate
files, why the heap file is nearly as large as pm-gawk’s peak memory footprint while building
the persistent array, and why its memory footprint is very small while serving a query that
accesses a single array element. The upside of the large heap file is O(1) access instead of
O(W)—a classic time-space tradeoff. If storage is a scarce resource, all three intermediate
files can be compressed, freqtbl by a factor of roughly 2.7x, rwarray by roughly 5.6x,
and pm-gawk by roughly 11x using xz. Compression is CPU-intensive and slow, another
time-space tradeoff.

5 Data Integrity

Mishaps including power outages, OS kernel panics, scripting bugs, and command-line
typos can harm your data, but precautions can mitigate these risks. In scripting scenarios
it usually suffices to create safe backups of important files at appropriate times. As simple
as this sounds, care is needed to achieve genuine protection and to reduce the costs of
backups. Here’s a prudent yet frugal way to back up a heap file between uses:

backup_base=heap_bk_~date +Js”

cp —-reflink=always heap.pma $backup_base.pma

chmod a-w $backup_base.pma

sync

touch $backup_base.done

chmod a-w $backup_base.done

sync

1s -1 heap*

-rw-rw-r-—-. 1 me me 4096000 Aug 6 15:53 heap.pma

-r--r--r-—. 1 me me 0 Aug 6 16:16 heap_bk_1659827771.done
-r--r—-r--. 1 me me 4096000 Aug 6 16:16 heap_bk_1659827771.pma

Timestamps in backup filenames make it easy to find the most recent copy if the heap file
is damaged, even if last-mod metadata are inadvertently altered.

SF H H P P P PP

The cp command’s --reflink option reduces both the storage footprint of the copy
and the time required to make it. Just as sparse files provide “pay as you go” storage
footprints, reflink copying offers “pay as you change” storage costs.! A reflink copy shares
storage with the original file. The file system ensures that subsequent changes to either file
don’t affect the other. Reflink copying is not available on all file systems; XFS, BtrF'S, and
OCFS2 currently support it.? Fortunately you can install, say, an XFS file system inside
an ordinary file on some other file system, such as ext4.3

After creating a backup copy of the heap file we use sync to force it down to durable
media. Otherwise the copy may reside only in volatile DRAM memory—the file system’s
cache—where an OS crash or power failure could corrupt it.* After sync-ing the backup we
create and sync a “success indicator” file with extension .done to address a nasty corner
case: Power may fail while a backup is being copied from the primary heap file, leaving
either file, or both, corrupt on storage—a particularly worrisome possibility for jobs that run
unattended. Upon reboot, each .done file attests that the corresponding backup succeeded,
making it easy to identify the most recent successful backup.

Finally, if you’re serious about tolerating failures you must “train as you would fight” by
testing your hardware/software stack against realistic failures. For realistic power-failure
testing, see https://queue.acm.org/detail.cfm?id=3400902.

1 The system call that implements reflink copying is described in ‘man ioctl_ficlone’.

2 The --reflink option creates copies as sparse as the original. If reflink copying is not available,
--sparse=always should be used.

3 See https://www.usenix.org/system/files/login/articles/login_winter19_08_kelly.pdf.

4 On some OSes sync provides very weak guarantees, but on Linux sync returns only after all file system
data are flushed down to durable storage. If your sync is unreliable, write a little C program that calls
fsync () to flush a file. To be safe, also call £sync() on every enclosing directory on the file’s realpath()
up to the root.

https://queue.acm.org/detail.cfm?id=3400902
https://www.usenix.org/system/files/login/articles/login_winter19_08_kelly.pdf

6 Acknowledgments

Haris Volos, Zi Fan Tan, and Jianan Li developed a persistent gawk prototype based on
a fork of the gawk source. Advice from gawk maintainer Arnold Robbins to me, which
I forwarded to them, proved very helpful. Robbins moreover implemented, documented,
and tested pm-gawk for the official version of gawk; along the way he suggested numerous
improvements for the pma memory allocator beneath pm-gawk. Corinna Vinschen suggested
other improvements to pma and tested pm-gawk on Cygwin. Nelson H. F. Beebe provided
access to Solaris machines for testing. Robbins, Volos, Li, Tan, Jon Bentley, and Hans
Boehm reviewed drafts of this user manual and provided useful feedback. Bentley suggested
the min/max/mean example in Chapter 3 [Examples|, page 3, and also the exercise of
making Kernighan & Pike’s “Markov” script persistent. Volos provided and tested the
advice on tuning OS parameters in Section 4.2 [Virtual Memory and Big Datal, page 7.
Stan Park provided insights about virtual memory, file systems, and utilities. Antonio
Giovanni Colombo translated an earlier edition of this manual into Italian in August 2022;
see file doc/it/pm-gawk.texi in the gawk distribution tarball.

Appendix A Installation

Users may obtain pm-gawk via software package management systems or via manual instal-
lation. Each approach has pros and cons.

Packages Delegating the chore of installation to software package management systems,
such as those associated with major Linux distributions including Ubuntu and Fedora, is
easier—in theory. Software packages on some Linux distributions, however, lag years behind
the latest software releases. Therefore relatively new features might be available only in
“upstream” releases but not “downstream” packages. For example, as of February 2025
the package-installed gawk on Ubuntu Linux is pre-5.2 and therefore lacks the persistence
feature introduced in gawk 5.2, which was released way back in September 2022! If the first
output line of gawk --version shows 5.2 or later and “PMA,” you’ve got a pm-gawk that
supports persistence; otherwise see “Manual Install” below.

Another problem with software installed by package managers is that the software may
have been compiled/built incorrectly. For example, as of February 2025 the package-
installed gawk 5.3.0 on Fedora 41 was incorrectly created as a position-independent exe-
cutable (PIE), despite the official gawk distribution’s build system very deliberately and
explicitly disabling PIE. The result, noted in Chapter 2 [Quick Start], page 2, is that pm-
gawk crashes the second time it is invoked. The details of the Fedora package bug, and
remedies that are works in progress as of early February 2025, are available at

https://bugzilla.redhat.com/show_bug.cgi?id=2341653
The file utility reveals whether gawk was incorrectly built. On Fedora 41, for example:

$ which gawk

/usr/bin/gawk

$ file /usr/bin/gawk

/usr/bin/gawk: ELF 64-bit LSB pie ...
That little word “pie” is likely to blame if your pm-gawk crashes on the second invocation.
By default, PIEs run with address-space layout randomization (ASLR), which gawk 5.2 thru
the current 5.3.1 do not tolerate.

https://bugzilla.redhat.com/show_bug.cgi?id=2341653

(Note: The persistent memory allocator that enables persistent-memory gawk—the pma
library—is perfectly compatible with PIE and ASLR. The incompatibility of gawk and
ASLR arises from the interpreter’s internal data structures, which require that function
pointers be consistent across invocations. ASLR introduces gratuitous inconsistencies into
these pointers.)

While we’re waiting for an elegant and permanent fix for the Fedora 41 PIE bug, we can
use a klugey workaround: Run the pm-gawk interpreter via ‘setarch -R’, which disables
ASLR despite the PIE. Here’s the first example from Chapter 2 [Quick Start], page 2, first
without the fix, then with the fix:

$ truncate -s 4096000 heap.pma

$ export GAWK_PERSIST_FILE=heap.pma

$ gawk 'BEGIN{myvar = 47}'

$ gawk 'BEGIN{myvar += 7; print myvar}'

Segmentation fault (core dumped) # thanks to PIE
$ rm -f heap.pma # discard heap from first try
$ truncate -s 4096000 heap.pma # start fresh

$ setarch -R gawk 'BEGIN{myvar = 47}
$ setarch -R gawk 'BEGIN{myvar += 7; print myvar}'
54 # success

You can define a shell alias to expand the familiar and ergonomic gawk into the cumbersome
and verbose ‘setarch -R gawk’.

Alternatively, it might be possible to disable ASLR system-wide by using sysctl to
twiddle variables such as kernel.randomize_va_space. I have not investigated such mea-
sures, which should be used with caution. Fully understand the implications of such a blunt
system-wide change before making it.

It’s reasonable to expect that, in the normal course of events, correctly built pm-gawk
will eventually find its way into the default package-installed gawk on major GNU/Linux
distros. Meanwhile, manual installation is a fairly easy way to get a working pm-gawk.

Manual Install Manually compiling gawk from source code in the latest upstream re-
lease gives you the most recent stable version of gawk, built in accordance with with the
maintainer’s recipe, with no meddling by intermediaries. Therefore a manual install won’t
suffer from bugs such as the PIE bug discussed above. Download the latest release here:

https://ftp.gnu.org/gnu/gawk/
https://ftp.gnu.org/gnu/gawk/gawk-5.3.1.tar.xz

Finally, for the ultimate in bleeding-edge upstream freshness, adventurous do-it-
yourselfers can grab the git master branch from
http://git.savannah.gnu.org/cgit/gawk.git/snapshot/gawk-master.tar.gz
Unpack the tarball, run ./bootstrap.sh, ./configure, make, and make check, then try
some of the examples presented earlier.

As of February 2025, pm-gawk is supported on most, but not all, major Unix-like plat-
forms. The gawk build system decides whether to include support for persistence; see the
gawk documentation and file ./m4/pma.m4 in the gawk distribution.

https://ftp.gnu.org/gnu/gawk/
https://ftp.gnu.org/gnu/gawk/gawk-5.3.1.tar.xz
http://git.savannah.gnu.org/cgit/gawk.git/snapshot/gawk-master.tar.gz

Appendix B Debugging

For bugs unrelated to persistence, see the gawk documentation, e.g., GAWK: Effective AWK
Programming, available at https://www.gnu.org/software/gawk/manual/.

If pm-gawk doesn’t behave as you expect, first consider whether you're using the heap
file that you intend; using the wrong heap file is a common mistake. Other fertile sources
of bugs for newcomers are the fact that a BEGIN block is executed every time pm-gawk
runs, which isn’t always what you really want, and the fact that built-in AWK variables
such as NR are always reset to zero every time the interpreter runs. See the discussion of
initialization surrounding the min/max/mean script in Chapter 3 [Examples|, page 3.

If pm-gawk crashes on the second invocation that uses a particular heap file, see the
discussion of PIE in Appendix A [Installation], page 15. If you suspect some other kind of
persistence-related bug in pm-gawk, you can set an environment variable that will cause its
persistent heap module, pma, to emit more verbose error messages; for details see the main
gawk documentation.

Programmers: You can re-compile gawk with assertions enabled, which will trigger ex-
tensive integrity checks within pma. Ensure that pma.c is compiled without the ~-DNDEBUG
flag when make builds gawk. Run the resulting executable on small inputs, because the
integrity checks can be very slow. If assertions fail, that likely indicates bugs somewhere in
pm-gawk. Report such bugs to me (Terence Kelly) and also following the procedures in the
main gawk documentation. Specify what version of gawk you’re using, and try to provide a
small and simple script that reliably reproduces the bug.

Appendix C History

The pm-gawk persistence feature is based on a new persistent memory allocator, pma, whose
design is described in https://queue.acm.org/detail.cfm?id=3534855. It is instructive
to trace the evolutionary paths that led to pma and pm-gawk.

I wrote many AWK scripts during my dissertation research on Web caching 25 years
ago, most of which processed log files from Web servers and Web caches. Persistent gawk
would have made these scripts smaller, faster, and easier to write, but at the time I was
unable even to imagine that pm-gawk is possible. So I wrote a lot of bothersome, inefficient
code that manually dumped and re-loaded AWK script variables to and from text files. A
decade would pass before my colleagues and I began to connect the dots that make persistent
scripting possible, and a further decade would pass before pm-gawk came together.

Circa 2011 while working at HP Labs I developed a fault-tolerant distributed computing
platform called “Ken,” which contained a persistent memory allocator that resembles a
simplified pma: It presented a malloc()-like C interface and it allocated memory from a
file-backed memory mapping. Experience with Ken convinced me that the software abstrac-
tion of persistent memory offers important attractions compared with the alternatives for
managing persistent data (e.g., relational databases and key-value stores). Unfortunately,
Ken’s allocator is so deeply intertwined with the rest of Ken that it’s essentially inseparable;
to enjoy the benefits of Ken’s persistent memory, one must “buy in” to a larger and more
complicated value proposition. Whatever its other virtues might be, Ken isn’t ideal for
showcasing the benefits of persistent memory in isolation.

https://www.gnu.org/software/gawk/manual/
https://queue.acm.org/detail.cfm?id=3534855

Another entangled aspect of Ken was a crash-tolerance mechanism that, in retrospect,
can be viewed as a user-space implementation of failure-atomic msync(). The first post-
Ken disentanglement effort isolated the crash-tolerance mechanism and implemented it in
the Linux kernel, calling the result “failure-atomic msync()” (FAMS). FAMS strengthens
the semantics of ordinary standard msync() by guaranteeing that the durable state of a
memory-mapped file always reflects the most recent successful msync() call, even in the
presence of failures such as power outages and OS or application crashes. The original
Linux kernel FAMS prototype is described in a paper by Park et al. in EuroSys 2013. My
colleagues and I subsequently implemented FAMS in several different ways including in
file systems (FAST 2015) and user-space libraries. My most recent FAMS implementa-
tion, which leverages the reflink copying feature described elsewhere in this manual, is now
the foundation of a new crash-tolerance feature in the venerable and ubiquitous GNU dbm
(gdbm) database (https://queue.acm.org/detail.cfm?id=3487353).

In recent years my attention has returned to the advantages of persistent memory pro-
gramming, which was a hot topic circa COVID thanks to the fleeting commercial availability
of byte-addressable non-volatile memory hardware (Intel Optane, confusingly marketed as
“persistent memory”). The software abstraction of persistent memory and the correspond-
ing programming style, however, are perfectly compatible with conventional computers—
machines with neither non-volatile memory nor any other special hardware or software.
Several papers make this point, e.g., https://queue.acm.org/detail.cfm?id=3358957

In early 2022 I wrote a new stand-alone persistent memory allocator, pma, to make persis-
tent memory programming easy on conventional hardware. The pma interface is compatible
with malloc () and, unlike Ken’s allocator, pma is not coupled to a particular crash-tolerance
mechanism. Using pma is easy and fun.

Ken had been integrated into prototype forks of both the V8 JavaScript interpreter and
a Scheme interpreter, so it was natural to consider whether pma might similarly enhance an
interpreted scripting language. GNU AWK was a natural choice because the source code
is orderly and because gawk has a single primary maintainer with an open mind regarding
new features.

Jianan Li, Zi Fan Tan, Haris Volos, and I began considering persistence for gawk in late
2021. While I was writing pma, they prototyped pm-gawk in a fork of the gawk source.
Experience with the prototype confirmed the expected convenience and efficiency bene-
fits of pm-gawk, and by spring 2022 Arnold Robbins was implementing persistence in the
official version of gawk. The persistence feature in official gawk differs slightly from the
prototype: The former uses an environment variable to pass the heap file name to the
interpreter whereas the latter uses a mandatory command-line option. In many respects,
however, the two implementations are similar. A description of the prototype, including
performance measurements, is available at http://nvmw.ucsd.edu/nvmw2022-program/
nvmw2022-data/nvmw2022-paper35-final_version_your_extended_abstract.pdf.

I enjoy several aspects of pm-gawk. It’s unobtrusive; as you gain familiarity and ex-
perience, it fades into the background of your scripting. It’s simple in both concept and
implementation, and more importantly it simplifies your scripts; much of its value is mea-
sured not in the code it enables you to write but rather in the code it lets you discard.
It’s all that I needed for my dissertation research 25 years ago, and more. Anecdotally,
it appears to inspire creativity in early adopters, who have devised uses that pm-gawk’s
designers never anticipated. I'm curious to see what new purposes you find for it.

https://queue.acm.org/detail.cfm?id=3487353
https://queue.acm.org/detail.cfm?id=3358957
http://nvmw.ucsd.edu/nvmw2022-program/nvmw2022-data/nvmw2022-paper35-final_version_your_extended_abstract.pdf
http://nvmw.ucsd.edu/nvmw2022-program/nvmw2022-data/nvmw2022-paper35-final_version_your_extended_abstract.pdf

