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Abstract
This paper describes a new technique for measuring Web client
request patterns and analyzes a large client trace collected using
the new method. In this approach a modified proxy intercepts
requests and serves all responses to clients marked uncacheable,
effectively disabling browser caches and allowing the proxy to
record requests that would otherwise result in silent browser
cache hits. WebTV Networks used a “cache-busting proxy” to
collect an unusually large and detailed anonymized Web client
trace in September 2000. It contains over 347 million requests
for over 36 million documents by over 37,000 clients and spans
16 days. By most measures it is two orders of magnitude larger
than existing Web client traces.

We compare cache-busting proxies with conventional client
instrumentation and use the WebTV trace to explore browser
cache performance, reference locality, and document aliasing. We
present the aggregate browser cache success function (hit rate vs.
cache size) of theentire client populationand discuss design im-
plications for memory- and bandwidth-constrained Web clients.

For the workload studied, eliminating redundant data transfers
would increase browser cache hit rates by 35% to 45% over their
current levels. A simple and practical technique for eliminating
redundant transfers is described. Document sharing across client
reference streams is so strong that the hit rate of a shared proxy
cache could exceed 57% even if browser caches were infinitely
large.

Keywords: World Wide Web, WebTV, client trace, browser trace,
instrumentation, workload characterization, duplicate suppres-
sion, hit rates, cache simulation, success function, LRU stack dis-
tance, lognormal models.

1 Introduction
To design efficient and cost-effective systems we must understand
the workloads submitted to them. World Wide Web workload
consists of two fundamental components: the universe of data
made available by servers, and client requests for these data. This
paper deals with the latter aspect of Web workload. We discuss
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a new technique for measuring Web client request streams and
describe how it was used to collect a large and detailed trace at
WebTV Networks. The paper also presents a preliminary work-
load analysis, including simulation results describing the aggre-
gate hit rate of the entire client population as a function of browser
cache size. For the workload studied the potential benefits of
eliminating redundant proxy-to-browser transfers are large, and
we describe a simple way to obtain these benefits.

Empirical Web caching research is largely based on proxy logs.
Implementors and administrators regard these logs primarily as
security features; consequently the logging capabilities of most
proxies are not well suited to research. Logs rarely record all of
the data available to the proxy and typically omit information cru-
cial to accurate trace-driven simulation. In particular, they fail to
record cache-related HTTP metadata in reply headers and “META
http-equiv ” tags within HTML files, reply entity-bodies or
their hashes, and accurate, high-resolution timestamps. Davison
and Cáceres et al. have described the shortcomings of conven-
tional proxy log formats [14,18].

In a few cases researchers have instrumented browsers to col-
lect Web client traces [15, 17]. In principle, such traces support
arbitrarily realistic bottom-up explorations of cache hierarchies
and shed light on user interactions invisible outside the client.
Unfortunately, today most researchers cannot instrument popular
browsers because source code is unavailable. Even if it were, it
is difficult to deploy an instrumented browser among a large and
representative sample of Web users. Furthermore, if such a feat
were possible it would still be difficult to synchronize large num-
bers of client clocks, and without precise event timestamps accu-
rate simulation of a cache hierarchy is impossible. Finally, elab-
orate browser instrumentation may not be an option in severely
memory-constrained client devices.

Another problem with existing proxy and client traces is that
most were collected in idiosyncratic environments, e.g., academic
computer science departments and computer corporations. Fi-
nally, nearly all existing traces were generated by heavyweight
clients: full-featured browsers running on desktop PCs or engi-
neering workstations. They may not be representative of work-
loads on the memory- and bandwidth-constrained browsers that
are proliferating as the Web expands onto set-top boxes and wire-
less handheld devices.

This paper describes a technique that combines the relative
ease of proxy logging with some of the advantages of client
instrumentation. In this method a “cache-busting proxy” inter-
cepts requests from unmodified clients and labels all replies un-
cacheable, thereby disabling browser caches and allowing the
proxy to log requests that would otherwise be served silently from



browser caches. An informal survey of Web researchers reveals
that this technique has been proposed before; it was discussed by
a group at Boston University in late 1999 [13] and is described in
a recent book by Krishnamurthy & Rexford [24]. However to the
best of our knowledge it has never before been used.

In September 2000 WebTV Networks collected a large
anonymized trace of client accesses using a cache-busting proxy.
The proxy itself ran in non-caching mode; the trace therefore
reflects activity in a cacheless system. The proxy furthermore
recorded a checksum of every entity-body (data payload) re-
ceived from origin servers, as well as a checksum of the (pos-
sibly different) entity-body served to the client after transcoding
by the proxy. All events in this trace are timestamped at mi-
crosecond resolution by well-synchronized proxy clocks. The
proxy recorded all cache-related HTTP metadata in client re-
quests, server reply headers, and “META http-equiv ” tags
in HTML files. WebTV’s trace spans 16 days and records over
347 million requests to over 36 million documents by over 37,000
clients; it is two orders of magnitude larger than any client trace
described in the Web caching literature.

This paper presents a preliminary analysis of the WebTV trace
and describes how it was recorded. Careful capacity planning
based on workload measurement is essential in large-scale de-
ployments of spartan clients, where neither storage nor band-
width are cheap or abundant. Therefore the relationship between
browser cache size and performance is our primary concern. An
efficient single-pass simulation algorithm permits us to compute
arbitrarily-weighted hit rates ateverycache size foreachclient
in the WebTV trace [23]. It is straightforward to aggregate indi-
vidual client success functions to obtain hit rate as a function of
cache size for the entire client population, and this is the center-
piece of our analysis. Reference locality and document aliasing
have performance implications, and we shall explore these issues
as well.

Our main finding is that browser cache hit rates would increase
substantially if redundant payload transfers resulting from unnec-
essary cache misses were eliminated, and we describe a simple
and practical way to eliminate redundant transfers.

2 Related Work
Researchers have investigated in detail the workload placed on
componentsof the World Wide Web, e.g., servers, proxies, and
networks [4–9, 19–21, 38, 39]. However, little is known about
the workload placed on the Webas a system, i.e., the universe
of available documents and patterns of client requests. Recently
Padmanabhan & Qiu have investigated content creation and mod-
ification dynamics at a large, busy Web site [34]; this is the only
systematic study of available content (not to be confused with
requestedcontent, i.e., server access patterns) of which we are
aware.

The situation is only slightly better at the client end, where true
client traces—request streams not filtered by browser caches—
are extremely rare. The Web Characterization Repository [1]
contains several proxy and server workloads but only a single
client trace, collected at Boston University’s Computer Science
Department in 1995. Catledge & Pitkow recorded a client trace
at Georgia Tech’s CS department in 1994. Both the BU and
Georgia Tech traces are remarkably rich, recording a wide va-
riety of user-interface events unavailable outside the browser. To-
gether these two traces have supported a number of interesting

cache size # in H.R.
Type Description RAM disk trace (%)

FCS “Classic” 420 KB 8,790 37.64
BPS No-frills 1240 KB 11,253 41.94
LC2.5 “Plus” 3200 KB 7,370 44.41
LC2 Diskful Plus 1 MB 20 MB 8,535 44.64
ST1 Satellite 3 MB 20 MB 1,221 44.81

Table 2:WebTV client devices.

studies [12, 15–17]. Unfortunately, as Netscape and Microsoft
Internet Explorer displaced the open-source Mosaic browser in
the late 1990s it became difficult for researchers to instrument
Web browsers, and no true client traces have been collected since
1995.1

Table 1 summarizes the aforementioned Web client traces,
more recent proxy and server traces used in References [6, 7, 28,
39], an AFS client trace [32] and the WebTV trace that is the sub-
ject of this paper. The most striking feature of Table 1 is the large
size difference between the early client traces and the more recent
proxy and server traces; by nearly every measure the latter are
orders of magnitude larger. The difficulty of deploying an instru-
mented browser on large numbers of clients is largely responsible
for the difference.

To summarize, the few existing Web client traces are several
years old, reflect the requests of computer science students, and
are small in comparison with server and proxy traces. By contrast
server and proxy traces are often large and sometimes describe
more representative user populations but typically omit much in-
formation in the original client request streams, e.g., references
served from browser caches. Section 3 describes a collection
methodology that combines some of the advantages of client and
proxy traces and explains how this technique was used to measure
Web client workload on a very large scale.

3 Trace Collection

With over a million active subscribers WebTV Networks is among
the largest ISPs, and its customer base is arguably more represen-
tative of the general public than the traditional subjects of Web
traces (computer science students and computer industry employ-
ees). Furthermore the WebTV system is extraordinarily well in-
tegrated, providing essentially everything but the origin server:
client hardware, browser software, proxies, and Internet connec-
tivity. Most importantly, WebTV staff constantly monitor and
tune the system to improve its performance, frequently adding
new instrumentation as new questions arise. For these reasons
WebTV is an ideal environment for Web-related research.

WebTV clients represent an interesting intermediate point
in design space, midway between the resource-rich PC-based
browsers of the early Web and the ultra-thin clients of tomorrow.
WebTV employs a relatively inexpensive (often diskless) set-top
box to enable Web surfing on a conventional television. Five types
of client devices were in use during September 2000; see Table 2.
Clients connect to the WebTV service via modem; according to
WebTV’s measurements, bandwidth to clients varies but is typi-
cally roughly 33.6 Kbps.

1A 1999 sequel to the original B.U. study used a trace that did not
reflect browser cache hits [10].



Requests per
Trace Type Begin End Clients Objects Requests Client per Day

CITI AFS client 20 Oct 93 20 Dec 93 37 N/A 12,192,933 5,402
Georgia Tech. client 3 Aug 94 24 Aug 94 107 9,452 43,060 19
Boston U. client 21 Nov 94 17 Jan 95 600 46,830 575,775 17

Cable Modem proxy 3 Jan 97 31 May 97� thousands 16,110,126 117,652,652
World Cup server 1 May 98 23 Jul 98 2,770,108 20,728 1,352,804,107 6
Compaq WRL proxy 1 Jan 99 31 Mar 99 � 25,000 N/A 125,259,641 54
U. Washington proxy 7 May 99 14 May 99 22,984� 18,400,000 � 82,800,000 515
Microsoft proxy 7 May 99 14 May 99 60,233 � 15,300,000 � 107,700,000 286

WebTV client 7 Sep 00 22 Sep 00 37,169 36,573,327 347,483,200 425

Table 1:Traces used in Web and file system research. Dynamic IP addresses prevented a precise count of clients in the Cable Modem
trace [3]. The number of distinct documents is not known for the Compaq data [27].

Our original goal was to collect a client trace using instru-
mented browsers. WebTV frequently downloads software up-
dates to its client devices, so at first this seemed a straightforward
approach. However a combination of logistical difficulties and
schedule constraints forced us to seek an alternative approach.
Compared with client software modifications, proxy patches are
much easier to implement and deploy and are far more frequent in
practice. We therefore decided to record unfiltered client requests
by disabling the browser cache with a modified proxy.

A sophisticated centralized service infrastructure compensates
for WebTV clients’ limitations by transcoding images, re-writing
HTML, and maintaining persistent state (e.g., cookies). Sixteen
modified proxies collected WebTV’s client trace, with the follow-
ing non-standard features enabled during data collection:

� events were timestamped at microsecond resolution;
� checksums were logged of all entity bodies received from

origin servers and all entity bodies served to clients after
transcoding;

� all metadata relevant to caching in client requests, server
reply headers, and embedded HTML tags were logged;

� all documents were served to clients with an
“Expires: 0 ” HTTP header;2

� the proxy itself was run in non-caching mode.

During normal operations WebTV proxies process every byte of
every data payload, so the performance penalty of computing
checksums was relatively minor; similarly, the proxies normally
parse META tags in HTML. The number of proxy hosts that col-
lected data was twice as large as would normally be used for our
sample client population, so the proxies were not overloaded as
they recorded the trace. All trace fields related to user identity
and requested content are anonymized to protect user privacy.

META tags are necessary for correct browser cache simula-
tions and are furthermore interesting because they illustrate dis-
crepancies between HTML-embedded metadata and HTTP head-
ers. For instance, META expiration dates often disagree with
HTTP expirations. Of over 149 million requests issued during
16–22 September, 95,558 have expiration dates in both headers
and META tags. Among these requests the META expiration is
earlier than the response header expiration 21.8% of the time; ig-
noring the HTML-embedded expiration could cause consistency
violations in some of these cases. In 141,159 cases an expira-
tion is specified only in a META tag; unnecessary revalidations

2Caching pre-expired objects is legal in HTTP/1.1 [22], but WebTV
clients do not do so.
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Figure 1:Distribution of NTP parameters during data collection.

would result from ignoring the embedded metadata in some of
these cases.

WebTV proxy host clocks are carefully synchronized using
Network Time Protocol [26]. A script queried the proxies with
ntpq at ten-minute intervals throughout the data-collection pe-
riod to check their clock synchronization; Figure 1 shows the dis-
tribution of observed NTP parameters. The absolute offset of the
proxies with respect to an accurate reference is nearly always un-
der 10 milliseconds.

A sample of client devices was “attached” to our modified
proxy bank throughout the data collection period, i.e., all Web
sessions initiated by these devices were handled by the special
proxies. WebTV clients communicate directly with origin servers
for secure transactions, which are therefore not reflected in our
trace. Furthermore the trace contains only HTTP requests; we did
not record the small volume of FTP and Gopher traffic handled
by the proxies.

We began serving documents pre-expired on 6 Septem-
ber 2000. The number of requests per hour reaching our prox-
ies promptly doubled, as illustrated in Figure 2. By compar-
ing request volumes from each client device type before and
after 6 September we obtain crude estimates of browser cache
hit rates; estimates based on requests of 4–5 vs. 11–12 Septem-
ber are shown in Table 2. This technique must be used with
care, because our sample browser caches did not cease to oper-
ate on 6 September, they merely ceased to cache incoming doc-
uments. It is reasonable to suppose that many browser caches
remained “warm” even after our experiment began, serving some
fraction of requests from cache. We gain insight into browser
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cache “cool down” from the percentage of revalidation requests
(“ If-Modified-Since ”) reaching our proxies from each de-
vice type over time, as shown in Figure 3.

Rich-client browsers typically use separate regions of memory
to hold the currently-viewed document and to cache previously-
viewed objects; the contents of the cache therefore change only
when new items are cached. In the memory-constrained WebTV
client, however, the same region of memory is used as both a
“staging area” for the current item and as cache for previously-
requested items. Large incoming documents therefore cause
cache evictionseven if they are not cached themselves. This ac-
counts for the rapid decrease in IMS requests in Figure 3. Collec-
tively, the browser caches in our sample are never flushed com-
pletely; even after two weeks IMS requests reach our proxies,
possibly from clients with low activity levels. However the frac-
tion of IMS requests quickly falls to negligible levels, particularly
for diskless clients. Our estimates of browser cache hit rate are
based on proxy request volumes several days after cache busting
began, by which time most browser caches have cooled substan-
tially. However it is possible that our estimated hit rates for disk-
ful clients are slightly low.

In retrospect, we realize that we might have obtained better re-
sults from a more thorough cache-busting proxy that attempted to
forcibly flush browser caches, e.g., by serving an HTML file with
a large number of newline characters appended to it. Alternately,
we might have served replies with expiration dates equal to the
current time plus one second; we would then see IMS requests in
most cases that would otherwise be browser cache hits.

Clients 37,169
Payloads (entity-bodies) 36,573,327
Total requests 347,483,200
Successful requests 325,591,889
Sum of payload sizes 640,177,065,087
Bytes transferred* 4,376,249,806,158

mean median
Payload size 17,504 5,493
Transfer size* 13,441 2,916
Requests per client* 8,760 3,326

Table 3: WebTV trace summary statistics. All sizes in bytes.
Asterisk (*) indicates figures based on successful requests only.

Table 3 summarizes the WebTV trace. As noted above, it is
roughly as large in most respects as recent proxy traces and sub-
stantially larger than mid-90s Web client traces. Furthermore it
reflects a client sample comparable to the entire end-user pop-
ulation served by NLANR’s cache hierarchy, which is thought
to be under 100,000.3 The compressed trace occupies roughly
101.6 GB on disk.

4 Preliminary Analysis
A thorough workload characterization of the WebTV trace is the
subject of ongoing research; this section presents only a brief
preliminary analysis. For simplicity and also for computational
reasons we focus on the entity-bodies returned by origin servers
rather than the URLs and request headers submitted by clients.
For brevity we shall often use the terms “document” or “payload”
instead of “entity-body.” Throughout this section we consider
only successful requests (response code 200); the trace records
over 325 million such events (93.7% of the total). We equate a
document with its payload checksum and define its size to be the
largest document-size-related reply header associated with it; size
therefore includes protocol overhead. Figure 4 shows the distri-
butions of document and transfer sizes.

Figure 5 shows the percentage of replies containing never-
before-seen payloads in non-overlapping windows of 10,000,000

3NLANR caches’x-forwarded-for logs recorded 98,144 unique
“leaf” IP addresses during the first 26 days of October 2000 [37]. This
may over-estimate the end-user population due to the use of dynamic IP
addresses.
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requests for the first 320 million references in the WebTV trace.
This is identical to the minimal miss rate of the overall WebTV
system, assuming caches so large that capacity misses never oc-
cur. The figure shows that in the absence of redundant payload
transfers the steady-state hit rate of an infinitely large WebTV
proxy serving cacheless clients exceeds 90%; even a cold proxy
cache would enjoy an 80% hit rate. In practice, imperfect cache
consistency mechanisms and namespace complexities (aliasing)
cause unnecessary cache misses and redundant payload transfers.
Section 5 describes a simple and practical way to eliminate these
problems entirely and raise hit rates to the full potential suggested
by Figure 5.

Client activity levels span a wide range. Figure 6 shows the
distribution of the number of requests and total bytes transferred
to clients in the WebTV trace. Graphical evidence suggests that
these distributions are roughly lognormal, i.e., the logarithm of
requests-per-client and of bytes-per-client appears to be roughly
Gaussian, as illustrated in Figure 7. The figure shows histograms
of log-transformed data superimposed over a normal curve de-
fined by sample mean and sample variance.

Similarly, graphical evidence suggests that the distribution of
LRU stack distances at the client may be lognormal (Figure 7,
right; the data shown are from a sample of requests from a sub-
set of BPS clients, described below). This distribution is closely
related to the success function of an LRU cache [23,25] and is of-
ten used to measure temporal locality in reference streams [2, 9].
Almeida et al. report that references reachingserversappear to
have lognormal stack distance distributions, and that lognormal
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Figure 6:Distribution of references/client and bytes/client.

stack distance models predict cache success functions well [2].
We have not yet tested the usefulness of lognormal models in pre-
dicting hit rates for the WebTV data.

We might expect bandwidth-constrained thin clients to “surf”
at different rates than conventional rich-client browsers in aca-
demic or corporate environments. Figure 8 shows the distribution
of inter-reference intervals for the last seven days of the WebTV
trace and for the Boston University client trace. WebTV requests
corresponding to user-initiated actions are marked as “primary”
in the trace, and the distribution of intervals between primary
references is plotted separately for WebTV. The Boston distribu-
tion is bi-modal due to browser cache hits (compound objects,
e.g., HTML pages with embedded images, arenot responsible;
such objects are present in both traces). The WebTV data re-
flect a cacheless low-bandwidth environment, and therefore it is
somewhat surprising that WebTV browsers appear to be operat-
ing roughly as fast as Xmosaic: 89.5% of BU requests are served
in 10 seconds or less; for WebTV the figure is 93%.

Figure 9 shows the distribution of maximal browser hit rates
under ideal conditions for the observed request sequences, and the
distribution of browser cache sizes required to achieve maximal
hit rates. “Ideal conditions” means that the first request that yields
a given payload is a miss, but all subsequent requests that would
return the same payload are hits. In other words, no redundant
transfers occur, and only compulsory misses occur. This is similar
to the “perfect coherency” cache considered by Mogul [28–30],
but it assumes no misses due to aliasing. In Mogul’s terminology,
we simulate a “perfect duplicate suppression” cache large enough
to store all requested documents. We see from the left-hand sub-
figure that the median of maximal individual browser hit rates is
roughly 65%.

A browser cache attains maximal hit rate if it can store all re-
quested documents; the sum of distinct payload sizes is therefore
termed the “infinite cache size” of a request sequence. However if
we assume LRU replacement we can compute the maximalprior-
ity depthacross references in a workload [23]; this is the smallest
LRU cache size that experiences no capacity misses. The distri-
bution of infinite cache sizes and maximal LRU priority depths
is shown on the right of Figure 9. For the workloads studied an
11.6 MB LRU cache is effectively infinite for half of clients.

Muntz and Honeyman report that hit rates of shared inter-
mediate caches in network file systems will not exceed 20% if
reference streams are filtered by even small client caches [31].
The WebTV data, however, point to a dramatically different con-
clusion: Assuminginfinite browser caches and perfect duplicate
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suppression, 73.4% of requests would be served from browser
caches. Of the remaining requests, 57.7% could be served from a
sufficiently large shared proxy cache.

We obtain a complete picture of the relationship between
browser cache size and hit rate by computing each client’s success
function (hit rate as a function of cache size) separately, assuming
LRU replacement. We now permit capacity misses, but as before
no redundant transfers occur. Efficient single-pass simultaneous
simulation algorithms for this computation have long been avail-
able for the special case where document sizes and miss penalties
are uniform [11, 33, 36] and have recently been generalized to
non-uniform sizes and miss costs [23]. Using the Reeves-Kelly
algorithm we first compute browser cache hit rates for each client
at every cache size. We then aggregate the results into a single

success function for the entire client population.4

To avoid the confounding effects of cache cool-down (Fig-
ure 3) and cold-start, we also perform the same exercise for a sam-
ple of 1,959 modern diskless (BPS) clients with moderately heavy
request volumes (between median and 75th percentiles) and mod-
erate locality (maximal browser cache hit rates between the 25th
and 75th percentiles). We use each client’s first 2,000 references

4Kelly & Reeves note that fast simultaneous simulation yields cor-
rect results only for cache sizes no smaller than the largest document in
a trace [23]. This is true for rich-client browsers such as Netscape and
IE, in which replies larger than the cache do not alter its contents. The
memory-constrained WebTV browser, however, uses the same region of
memory as both a cache and a staging area for the document currently be-
ing viewed. A reply larger than the cache will therefore flush the browser
cache’s contents. Stack methods can simulate WebTV-like browser caches
atall cache sizes.
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Cache Measured BPS sample All clients
Type Size H.R. (%) H.R. R.I. H.R. R.I.
FCS 420 KB 37.6 50.8 35.1 56.4 50.0
BPS 1240 KB 41.9 57.3 36.8 64.1 53.0
LC2.5 3200 KB 44.4 60.6 36.5 66.9 50.7
LC2 21 MB 44.6 65.1 46.0 71.7 60.8
ST1 23 MB 44.8 65.1 45.3 71.8 60.3

Table 4: Percent relative improvement (R.I.) over current hit
rates.

to warm the browser cache and tabulate hit rates based only on
its next 1,000 requests. Results for both the BPS sample and the
entire client population are shown in Figure 10; the estimates of
actual WebTV browser hit rates from Table 2 are included for
comparison. Our results are comparable to the success function
presented in Figure 5 of Bestavros et al., which assumes LFU re-
placement [12].

Aggregate browser cache success functions are needed in or-
der to make informed tradeoffs between browser functionality
and cache hit rates in thin-client systems such as WebTV. New
versions of browser software support new features and therefore
require more resources, e.g., RAM, but capacity expansion is not
possible in the installed base of client devices. One option for
browser designers is to steal application memory from the cache.
However it is impossible to know the performance implications of
such a decision without browser cache success functions obtained
through measurement (Table 2) or simulation (Figure 10).

Table 4 summarizes the relative improvement in aggregate
browser cache hit rates that would result from eliminating redun-
dant payload transfers. For each WebTV device type, the table
compares simulated hit rates with estimates based on proxy re-
quest volumes before and after cache-busting began. The large
gap between the simulated and measured success functions in the
WebTV data is due to unnecessary misses caused by inefficient
consistency mechanisms and aliasing. Section 5 describes a sim-
ple and practical way to completely eliminate redundant payload
transfers, raising actual cache hit rates to the full potential illus-
trated by our simulations.

A detailed investigation of aliasing in the WebTV trace is the
subject of ongoing work, and presents formidable computational
challenges: Mogul reports that 7,400 MB of RAM is required to
analyze duplication in a trace containing 80 million events [29];
the WebTV trace is over four times larger. As a first step, we
computed the number of payloads in the trace that are aliased, i.e.,

Before After
MIME type number % number %

image/gif 43,941,647 48.11 96,904,786 64.49
image/jpeg 17,889,601 19.59 26,037,449 17.33

text/html 14,150,501 15.49 14,397,016 9.58
(missing) 13,290,676 14.55 9,469,181 6.30

application/
x-javascript 934,997 1.02 1,652,086 1.10

OTHER 1,131,681 1.24 1,795,913 1.20

TOTAL 91,339,103 100.00 150,256,431 100.00

Table 5:Most common MIME types before (31 Aug–6 Sept) and
after (14–20 Sept) cache busting.

that are referenced through more than one URL. Roughly 4.98%
of payloads are aliased.

Table 5 shows the relative frequency of the twenty most com-
mon MIME types observed during one-week periods before and
after cache-busting was activated. Several popular types, e.g.,
PDF, are absent entirely because WebTV browsers do not support
them. The large increase in the popularity of GIFs may occur
because GIFs are normally extraordinarily cacheable. It is also
conceivable that the browser requests multiframe GIFs each time
they are displayed; at the time of writing it is unclear whether
WebTV browsers do so.

5 Discussion
The main contributions of this paper are a new method for record-
ing Web browser requests, including browser cache hits, and a
preliminary analysis of workload data collected with it.

The advantages of the cache-busting proxy technique are that it
requires no client modifications and relatively minor proxy mod-
ifications. In most situations is it probably easier to use than con-
ventional client instrumentation, especially for collecting large
and representative data sets. However the method is not with-
out limitations and disadvantages. One limitation is that it fails
to record user-interface events and therefore cannot support the
same range of investigations as an instrumented client, which re-
mains the “gold standard” for trace collection. Furthermore the
new method provides event timestamps recorded at the proxy, and
these do not necessarily reflect the latency experienced by clients.
If documents are served pre-expired as in the WebTV procedure,
browsers may continue to serve some requests from cache even
after cache-busting begins (Figure 3), so the technique does not
provide a perfect record of client requests. Finally, it is unclear
whether cache busting alters user behavior by increasing latency.
Nonetheless a cache-busting proxy trace sheds far more light on
client access patterns than ordinary proxy logs.

The most interesting result of our workload analysis is the large
gap between actual and potential browser cache hit rates for the
client population as a whole (Figure 10). One way to think about
the simulated success functions is that they describe performance
in a “trivial namespace” Web, in which a simple one-to-one corre-
spondence exists between URLs and data payloads. To an extent
such a namespace is achievable in practice, e.g., by embedding
payload checksums in URLs. Content delivery networks do this
already: Akamai URLs contain partial MD5 checksums of data
payloads. If requests contain payload checksums, replies never



expire and stale content is never served from cache; a simple
namespace improves the both the performance and the correct-
ness of CDNs. Unchanging and mnemonic document names are
necessary in systems like the Web, however, and this requirement
precludes an entirely flat namespace.

Several practical techniques have been proposed to avoid re-
dundant payload transfers, but published “duplicate suppression”
schemes for the Web do not completely eliminate the problem
and require that modified servers supply hints to clients. Mogul
reports that one such proposal would increase an infinite proxy’s
hit rate and byte hit rate by 5.4% and 6.2% respectively [29,30].

While the benefits of imperfect duplicate suppression for infi-
nite proxy caches may be modest, WebTV’s data show that the
benefits ofperfectduplicate suppression forfinite browsercaches
are substantial. Our most conservative simulation data suggest
that browser cache hit rates would increase by 35% to 45% over
their estimated current levels (Table 4). Fortunately a simple and
practical procedure can completely eliminate redundant proxy-to-
client transfers in systems such as WebTV:

� The browser caches every data payload it receives, without
exception.

� The browser issues ordinary requests to the proxy.
� Before the proxy returns a payload it first sends the pay-

load’s checksum.
� The browser compares the checksum to those of items in its

cache. A match ends the transaction; otherwise the proxy
transmits the full payload.

Several variants of this overall approach are possible: The proxy
could transmit a full reply preceded by a payload checksum and
halt the transmission at the client’s request. Alternately the proxy
might wait for an explicit “proceed/abort” from the client. The
former entails no user-latency penalty and does not throttle the
proxy or prolong transactions. However it may have little impact
in high-bandwidth, high-round-trip-time environments if docu-
ments are small (the full payload reaches the client before its
“halt” message reaches the proxy). The latter variant introduces
an additional RTT into the transaction but completely eliminates
redundant transfers; it may be attractive in low-bandwidth, low-
RTT environments.

For purposes of duplicate suppression the proposed approach
entirely ignores the namespace (URLs, request headers, etc.) and
consistency mechanisms. Unnecessary misses due to aliasing
and inappropriate metadata therefore disappear completely; only
compulsory and capacity misses occur. The proposed approach
could use entity tags as well as payload digests to avoid still more
unnecessary transfers, and furthermore could be used as a hop-
by-hop mechanism between any two levels in a cache hierarchy.
The semantics of existing protocols, e.g., HTTP, are largely un-
changed if cached payloads and digests thereof are used to avoid
redundant transfers. The above scheme is similar in spirit to
Spring & Wetherall’s method of eliminating redundant network
traffic [35]. Mogul independently conceived a technique essen-
tially identical to the one presented here but has not published
it [27].

Re-writing the rules of browser/proxy interaction is difficult in
the most general case because different vendors’ products must
interoperate during migration and backward compatibility with
legacy software must be maintained. However in more tightly
integrated environments where a single organization controls
both browser and upstream service infrastructure, e.g., WebTV
and AOLTV, such changes are feasible. These also happen to

be bandwidth-constrained environments, where the prospect of
transferring compact message digests rather than far larger entity-
bodies is particularly attractive.
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