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ABSTRACT

Optimization in Web Caching:

Cache Management, Capacity Planning,

and Content Naming

by

Terence P. Kelly

Chair: Peter Honeyman

Caching is fundamental to performance in distributed information retrieval systems

such as the World Wide Web. This thesis introduces novel techniques for optimizing per-

formance and cost-effectiveness in Web cache hierarchies.

When requests are served by nearby caches rather than distant servers, server loads and

network traffic decrease and transactions are faster. Cache system design and management,

however, face extraordinary challenges in loosely-organized environments like the Web,

where the many components involved in content creation, transport, and consumption are

owned and administered by different entities. Such environments call fordecentralized

algorithms in which stakeholders act on local information and private preferences.

In this thesis I consider problems of optimally designing new Web cache hierarchies

and optimizing existing ones. The methods I introduce span the Web from point of content

creation to point of consumption: I quantify the impact of content-naming practices on

cache performance; present techniques for variable-quality-of-service cache management;

describe how a decentralized algorithm can compute economically-optimal cache sizes in

a branching two-level cache hierarchy; and introduce a new protocol extension that elimi-

nates redundant data transfers and allows “dynamic” content to be cached consistently.

To evaluate several of my new methods, I conducted trace-driven simulations on an

unprecedented scale. This in turn required novel workload measurement methods and effi-



cient new characterization and simulation techniques. The performance benefits of my pro-

posed protocol extension are evaluated using two extraordinarily large and detailed work-

load traces collected in a traditional corporate network environment and an unconventional

thin-client system.

My empirical research follows a simple but powerful paradigm: measure on a large

scale an important production environment’s exogenous workload; identify performance

bounds inherent in the workload, independent of the system currently serving it; identify

gaps between actual and potential performance in the environment under study; and finally

devise ways to close these gaps through component modifications or through improved

inter-component integration. This approach may be applicable to a wide range of Web

services as they mature.
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CHAPTER 1

Introduction

Caching is essential to distributed information retrieval systems such as the World Wide

Web, helping to reduce network traffic, server load, and client latency. In order to scale,

systems like the Web must exploit caching to the extent permitted by offered workload.

Not surprisingly, caching is widespread on the Web today, but by any measure it is far from

optimal. The design and operation of components such as browser and proxy caches, and

the protocols that govern their interactions, often serve the Web’s exogenous workload in-

efficiently. The roots of this problem are partly historical. Web technologies evolved into

their present form on “Internet time,” during a period of intense commercial competition in

the 1990s when time-to-market pressures forced hasty deployments of poor designs. An-

other factor is the decomposition of the Web into independently designed yet interoperable

components, e.g., servers, proxies and browsers. Decomposition has permitted rapid com-

ponent evolution—server software today, for instance, is far more capable than that of the

early Web—but it has led to a component-centric view of performance that often ignores

system-level performance and interactions among components. Finally, the preferences of

system “stakeholders” and the monetary costs of relevant technologies rarely inform cache

design decisions or run-time algorithms in principled ways. This dissertation addresses

these problems by describing ways of optimizing the design, operation, and inter-operation

of Web caches in terms of both conventional performance metrics and novel measures in-

volving monetary costs and user preferences.

Mainstream Web researchers and practitioners have long recognized that bottom-line

concerns ultimately motivate caching. Wessels’ recent bookWeb Caching, for instance,

opens with the question, “Why cache the Web? The short answer is that caching saves
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money” [165]. However the widespread vague recognition that “money is important”

has not translated into widespread adoption of economically principled design methods

or preference-sensitive run-time behavior; Wessels’ discussion of proxy cache sizing, for

instance, says nothing about the tradeoff between the monetary costs of cache misses and

storage. Recognition that economic considerations should predominate in design decisions

is growing slowly, driven mainly by electronic commerce:

Quality of service of e-commerce sites has been usually managed by the allo-

cation of resources such as processors, disks, and network bandwidth, and by

tracking conventional performance metrics such as response time, throughput,

and availability. However, the metrics that are of utmost importance to the

management of a Web store are revenue and profits. Thus, the resource man-

agement schemes for e-commerce servers should be geared towards optimizing

business metrics as opposed to conventional performance metrics [110].

Similar sentiments are echoed by van Moorsel [157], but this perspective remains the ex-

ception rather than the rule. This dissertation validates my thesis:that economic perspec-

tives can help us to enhance both the performance and cost-effectiveness of Web caching

systems. As we shall see, some of the novel principles and methods that enable us to do so

have precedents in the literature on database capacity planning and the literature on proces-

sor memory hierarchies. By extending, generalizing, re-interpreting and complementing

existing methods we can optimize performance metrics appropriate to the age of electronic

commerce.

Divide-and-conquer is an essential strategy in distributed system design and the Web

could not exist without it. However excessive focus on Web components can divert at-

tention from the fundamentals of exogenous workload and the question of how best to

serve it. This is especially true of intermediate components such as caching proxies, which

are shielded from the raw workloads entering the Web at client and server ends. Even

within a company like Microsoft, whose product line—FrontPage, IIS, ProxyServer, IE—

spans the Web from point of content creation to point of consumption, component prod-

uct teams often regard system-level performance as someone else’s problem. This dis-

sertation demonstrates that researchers, implementors, and administrators must shift from

a component-centric perspective to a system-level focus now that Web technologies and
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workloads have matured. It describes previously unknown interactions across Web com-

ponents that can impair the performance of Web cache hierarchies; these subtle, non-local

effects call for solutions that transcend the narrow focus of today’s component design-

ers and product groups. Furthermore, this dissertation quantifies the substantial degree of

waste in existing Web cache hierarchies by comparing their performance with upper bounds

inherent in offered workload. More importantly, it describes a simple protocol extension

capable of closing the gap between actual and potential performance, a protocol extension

that can enable independently-developed components to achieve the same performance as

a well-integrated single-vendor product line.

One contribution of this dissertation is to formulate important Web cache design prob-

lems as properoptimizationproblems that explicitly incorporate technology costs and

system user preferences. My results complement the existing capacity planning litera-

ture by identifying cases where capacity expansion beyond minimal system requirements

yields lower overall operating costs; similarly, they extend and generalize the existing Web

caching literature with techniques for adapting to user preferences. For problems involving

large-scale systems, e.g., branching cache hierarchies, I considerdecentralizedtechniques

involving only local computations on local information, and compare the solutions we ob-

tain from such methods with those of centralized approaches.

Another contribution is a very large scale empirical exploration of Web workloads. I

have obtained extraordinarily large and detailed data sets from Compaq Corporation and

WebTV Networks; I collected the latter data set using an innovative measurement tech-

nique. To analyze these data I have developed scalable methods for trace-driven simulation

and workload characterization. These methods allowed me to demonstrate that unneces-

sary cache misses occur frequently in a production system currently serving over a million

paying customers. In an effort to explain this problem, I quantified for the first time the

performance penalty that arises from interactions between conventional cache management

algorithms and the exogenous inputs entering the Web from opposite ends: contentnaming

at the server end, and contentaccesspatterns at the client end.

The remainder of this section surveys the most important facets of my research, relates

them to existing literature, and summarizes my contributions.
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1.1 Market-Based Solutions

Market-based solutions are appealing in distributed computing systems because in some

models they compute optimal resource allocations in a decentralized (and hence scalable)

manner. Not surprisingly, the use of price systems and market-like schemes for computer

resource allocation has been proposed sporadically for over three decades [152]. One

design method involves building “computational market economies” directly inspired by

economic theory. Examples of this approach include the SPAWN distributed computing

system [162] and Kurose & Simha’s file allocation scheme [98]; Wellman provides a re-

view of “market-oriented programming” and its application to distributed resource alloca-

tion [163]. An alternative approach, evident in much of my work, is to generalize well-

known resource-allocation algorithms in economically meaningful ways. I have shown, for

instance, that biased cache replacement policies can increase aggregate system value by

diverting storage space to stakeholders who value cache hits most.

First-generation Web architectures provided only “best effort” service, in the sense

that they were insensitive to the service quality preferences of system users (e.g., content

providers). A mature, fully commercialized Web will provide variable quality of service

(QoS), delivering highest performance to users who value performance most; content deliv-

ery networks (CDNs) such as Akamai are early examples of this trend. While preliminary

investigations of variable-QoS Webservershave appeared [3, 29, 133, 161], little comple-

mentary research exists on variable-QoS Webcaching. This is surprising, because storage

space in shared Web caches is a scarce resource that may be diverted to serve some system

users at the expense of others, and therefore such caches are obvious loci for variable-QoS

mechanisms. My investigations of preference-sensitive caching have yielded removal poli-

cies that are tailored to observed regularities in Web cache workloads and that also account

for heterogeneous QoS demand. I have shown that biased removal policies deliver higher

overall value to system users than conventional replacement policies when used to maxi-

mize value to content providers. I have also shown that the problem of maximizing value to

clients can be more difficult, and have identified interactions between client preferences and

request patterns that can cause the additional difficulty. Chapter 3 presents these results.
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1.2 Optimal Capacity Planning

Careful capacity planning and resource allocation within emerging Web caching sys-

tems becomes increasingly important as their size grows: Calculating precisely the resource

requirements of an isolated proxy might not be worth the bother, but deployments on the

scale of Akamai and WebTV will likely reward exact reckoning with substantial savings.

Furthermore caching entails resource tradeoffs that must be made wisely as we move to-

ward a future of ubiquitous ultra-thin clients, e.g., wireless palmtop browsers, where no

resource is cheap or plentiful: Huge losses will result if millions of devices each waste a

dollar. Surprisingly, recent literature on Web caching and Web capacity planning is largely

silent on the problem of serving offered workload at minimal cost. For instance, the obvious

tradeoff between bandwidth and cache storage costs is rarely mentioned in Web research,

despite the fact that data-engineering folklore has provided straightforward approaches to

this problem for over a decade [71]. I have extended these well-known rules of thumb to

a practical, general, exact method for computing the optimal size of a single cache based

on workload and the costs of memory and cache misses. This method relies on a highly

efficient, novel single-pass simulation technique that Daniel Reeves and I developed.

A single-cache optimization method is not sufficient for system-level optimization be-

cause Web caches are deployed in branching hierarchies: Many browsers share a common

proxy, and many proxies may share a common backbone-network cache. Design deci-

sions at one node influence the workload reaching other nodes, and this kind of interaction

might require that we consider the entire system simultaneously to compute global op-

tima. Furthermore, the Web differs from other multi-layered storage systems in that nodes

are geographically dispersed and administered by separate organizations. A capacity plan-

ning method that requires a “central planner” to collect and process information from all

nodes may be infeasible for reasons of scalability, reliability, and privacy. Decentralized

resource allocation schemes wherein nodes compute local allocations based solely on local

information are far more desirable, provided that they compute the same allocations as an

optimal central planner. I have shown that under certain conditions optimal cache sizes may

be computed in a large two-level branching cache hierarchy via a greedy local algorithm.

Chapter 4 describes my optimal capacity planning results.
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1.3 Cache Analysis and Simulation

Purely analytic approaches to cache evaluation often yield powerful results in the spe-

cial case where cache entries are of uniform size and miss penalties are uniform. However

Web object sizes and miss costs can be non-uniform, and this both complicates the analysis

and diminishes the practical value of analytic results. We must therefore often resort to

numerical methods (cache simulation) when evaluating design alternatives.

Simulation is undoubtedly necessary and often straightforward but never easy when

done well. Severe scalability challenges confront Web researchers who analyze workloads

or evaluate new designs empirically: The Web is growing rapidly, and the research com-

munity’s expectations for the scale of empirical investigations have risen correspondingly.

Therefore we require efficient and scalable algorithms to support trace-driven simulation

and analysis of large workloads. However, simulation methodology does not figure promi-

nently in the Web caching literature, despite the fact that research projects are sometimes

hampered by inadequate simulators. To cite one well-known example, Cao & Irani’s empir-

ical evaluation of their GreedyDual-Size cache removal policy was impaired by a simulator

capable of processing only two million requests at a time, whereas their largest trace con-

tained 24 million requests [42, page 196].

I have developed a general-purpose parallel cache simulator capable of fully exploiting

available CPUs and RAM on shared-memory architectures. Furthermore, Daniel Reeves

and I devised an efficient algorithm that simultaneously computes arbitrarily-weighted hit

rates atall cache sizes for a class of removal policies that includes LRU; our algorithm

is also useful for analyzing temporal locality in request streams. An implementation is

freely available and has been used by researchers in three countries. Although generalized

for the special needs of the Web, our algorithm is closely related to techniques developed

in the processor caching literature between the mid-1970s and early 1980s. This kind of

algorithm, however, appears not to be widely known among Web researchers, and anecdotal

evidence suggests that it outperforms less efficient methods in current use by a substantial

margin. Martin Arlitt of HP Labs reports that my simple unoptimized implementation of

the Reeves/Kelly algorithm computes LRU stack distances for a very large trace roughly

six times faster than his own highly-optimized implementation of a fundamentally slower

algorithm (19 hours vs. roughly 5 days).
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Chapter 5 reviews the shortcomings of purely analytic evaluation methods, discusses

deficiencies in existing Web traces and trace-collection methods, and describes the design

of my parallel cache simulator. The parallel simulator is necessary in cases where the fast

Reeves/Kelly single-pass simulation method of Section 4.5 is inapplicable.

1.4 Workload Measurement

Web caching research suffers from a shortage of satisfactory workload data. The fun-

damental exogenous workload placed on the Webas a systemconsists of the universe of

content available from Web servers, the names (URLs) through which content is “pub-

lished,” and end-user requests for content. Most publicly-available traces, however, reflect

only the workload placed on individualcomponentsof the Web, e.g., servers and proxies.

It is impossible to infer the fundamentals of data supply and demand from such sources;

server workloads don’t reflect documents that are never referenced, and proxy workloads

don’t reflect browser cache hits. While Web component workloads can help us to design

better components, we requiresystemworkloads when we consider fundamentally new

Web architectures and design methods. Furthermore existing Web traces record insuffi-

cient information about the content (data payloads) returned by servers and therefore shed

no light on the performance impact of content-naming practices. In this dissertation I em-

ploy two remarkably detailed and large Web workload traces collected in very different

environments: a proxy trace recorded on the Compaq corporate network in early 1999 and

a client trace collected at WebTV Networks in late 2000.

Since Netscape Navigator and Microsoft Internet Explorer displaced open-source brow-

sers in the late 1990s, it has been difficult for researchers to instrument browsers to collect

true client traces, i.e., transaction records that includeall client accesses, not merely those

that miss in the browser cache. Anecdotal evidence suggests thatcommercialenterprises

have logged client activity on a large scale using proprietary methods [2], but neither the

methods used nor the data collected have been described in the research literature. Be-

tween 1995 and my work at WebTV in 2000, researchers recorded countless proxy and

server traces, but no true client traces. Furthermore the client traces collected in academic

environments in the mid-1990s were far smaller than proxy and server traces, encompass-

ing hundreds of clients and fewer than a million transactions.

7



The anonymized trace I collected at WebTV is two orders of magnitude larger than any

other client trace described in Web-related literature and more detailed in most respects

than existing client traces. It includes data-payload checksums for every transaction and

records over 347 million transactions initiated by over 37,000 clients during a period of

16 days. To measure workload on this unprecedented scale I employed method never used

before: A “cache-busting” proxy served all replies to clients marked pre-expired, thereby

effectively disabling browser caches and allowing the proxy to recordall client requests,

including those that would normally be served silently from the browser cache.

Chapter 6 describes how the WebTV trace was collected and presents a detailed work-

load characterization. My analysis reveals a large gap between the maximal browser cache

hit rates determined by client access patterns and those of actual WebTV browser caches.

In other words, I found that redundant proxy-to-browser data-payload transfers are surpris-

ingly common in the WebTV system.

1.5 Content-Naming and Performance

One possible explanation for the redundant transfers identified in Chapter 6 isaliasing,

which occurs when different URLs “point to” identical data payloads. Aliasing can cause

unnecessary cache misses in conventional caches that associate cached reply payloads with

URLs, e.g., when the payload required to serve the current request is cached, but not in as-

sociation with the current request URL. More generally, content naming practices—the

complex and changing relationship between URLs and data payloads—can cause con-

ventional URL-indexed caches to needlessly retrieve the same payload more than once.

Researchers have investigated aliasing in the graph of hypertext links that connects Web

pages [36, 144], but the prevalence of aliasing in user-initiated Webtransactionsand the

impact of content-naming practices on the performance of conventional cache hierarchies

have not been previously quantified.

Working with Jeff Mogul of Compaq Corporation, I have determined precisely the frac-

tion of conventional cache misses that are due to content-naming practices in the aforemen-

tioned Compaq and WebTV workload traces. The problem is surprisingly severe: Roughly

10% of payload transfers to conventional URL-indexed browsers and 23% of transfers to

proxies are redundant, and are entirely due to the mismatch between conventional URL-
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indexed caching and exogenous Web workload (client access patterns and server content-

naming practices). Mogul and I independently developed a simple, backward-compatible

HTTP protocol extension that completely eliminates redundant payload transfers, regard-

less of cause. Our “Duplicate Transfer Detection” (DTD) scheme can withstand evenad-

versarialworkloads: Scramble and confuse the relationship between URLs and data pay-

loads however you please; you will never cause a DTD cache to retrieve the same payload

twice. DTD enables a cache hierarchy to attain the maximal hit rates inherent in its work-

load, and is flexible with respect to the objective function it optimizes: It can minimize

either latency or bandwidth.

Chapter 7 analyzes content-naming practices and their impact on conventional cache

performance, and presents the Mogul/Kelly Duplicate Transfer Detection protocol exten-

sion.

1.6 Summary

This dissertation broadens our perspective on Web caching in several ways. It general-

izes our notion of Web workload to include the preferences of system users and describes

how these preferences can guide the allocation of cache storage space. It describes prin-

cipled ways of incorporating both technology costs and access patterns into optimal cache

capacity planning, and it demonstrates that capacity planning need not be centralized to

be effective. It shows that an end-to-end system-level perspective yields greater insight

than the traditional component-oriented focus by proving that content providers’ content-

naming practices interact with client access patterns in such a way as to impose a large

performance penalty on conventional Web caches. Finally, it describes a simple, general,

robust, and backward-compatible solution to the pervasive problem of redundant data trans-

fers on the Web.

The basic paradigm of my empirical work is straightforward and likely applicable in

a wide variety of contexts beyond the Web: 1) measure fundamental, exogenous, system-

level workload in an important production environment, 2) quantify performance bounds

inherent in offered workload, independent of the system currently serving it, 3) identify

gaps between the actual and potential performance of the current system, and 4) devise
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ways of closing these gaps while doing minimal violence to the existing installed base of

components, protocols and standards.

My research is relevant to a wide variety of information systems. Cost-minimizing

design methods are clearly needed for large-scale deployments of spartan clients; huge

losses will result if millions of devices each waste a few dollars. In the longer term, my

research will apply to new problems. As entertainment content shifts from broadcast media

to retrieval-on-demand systems, optimal cache sizing and management methods will take

on new significance: The video rental outlet of the future is a shared networked cache, and

it must be designed well to compete in the marketplace. Technologies evolve and their

roles change, but caching will always be fundamental to information systems and optimal

cache design methods are therefore of lasting relevance. Furthermore, because time-to-

market considerations continue to compel hasty deployments of poorly-integrated Internet

systems, opportunities for workload analysis and protocol enhancement along the lines of

my content-naming investigation will likely arise repeatedly in the years ahead.

The remainder of this dissertation is structured as follows: Chapter 2 formally describes

the problems I consider. Chapters 3 and 4 present my results on biased removal policies

and optimal cache sizing, respectively. Chapter 5 motivates the need for trace-driven sim-

ulation based on large, detailed workload traces, and Chapter 6 describes how I collected

such a trace at WebTV Networks. Chapter 7 investigates content-naming practices and the

performance problems that arise from their interactions with hierarchies of conventional

URL-indexed Web caches. Chapter 8 summarizes my contributions and outlines future

work.
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CHAPTER 2

Caching Problems

World Wide Web technologies have evolved rapidly and somewhat haphazardly, driven

in many cases by competitive pressures and resulting time-to-market considerations. Con-

sequently it is often difficult to describe succinctly and to reason about the Web as it exists

“in the wild.” Analytic progress requires that we abstract essentials from a bewildering

mass of detail, and the present chapter makes explicit the simplifying assumptions that I

use in this thesis. Readers interested in the details of real-world Web technologies in gen-

eral may refer to Krishnamurthy & Rexford’s excellent recent book on the subject [96];

those interested in Web caching in particular may consult recent books by Wessels [165]

and Rabinovich & Spatscheck [136].

Throughout this thesis we shall consider branching storage hierarchies such as the one

depicted in Figure 2.1. Client-end system workload consists ofreferences(or requests,

or accesses) that enter the system exogenously, e.g., from human users interacting with

browser software. These requests propagateupstreamtowardorigin serversuntil they are

satisfied by replies containingdata payloads(or documents, or objects)1 accompanied by

metadata. The server-end aspect of exogenous system workload is the universe of available

data payloads and the names through which data are accessible. When we consider the

World Wide Web and measured Web workloads, we must sometimes distinguish carefully

1The Web caching literature and the core Web protocol specifications do not use terminology consistently
or precisely (to take the most notorious example, the HTTP/1.1 specification defines the central concept
of “resource” in a circular fashion [64, 118]). In this thesis the term “payload” denotes the particular byte
sequence returned in a reply. “Document” or “resource” connotes a networked resource that may change
while retaining the same name. We shall never speak of payloads being modified, but we shall sometimes
speak of document or resource modification.
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Figure 2.1: A branching multi-level storage hierarchy. Requests from browsers are filtered
through dedicated and shared caches on their way to origin servers. Point A is a candidate
location for a shared cache, considered in the text.

between the document names or “Uniform Resource Locators” (URLs) [25] contained in

requests and the reply payloads they elicit, because some workload traces identify payloads

separately from URLs.

Data payloads may becachedat intermediate storage nodes as they traveldownstream

toward points of request, and subsequent references may be satisfied by a cached copy

stored along the path from point of request to origin server; when this happens we say

that acache hithas occurred. Some nodes areshared cachesthat serve requests from

several lower-level nodes; others arededicatedto a single request stream. We shall consider

“Web-like” systems that differ from other layered storage systems, e.g., shared-memory

multiprocessors and distributed file systems, in the following ways:

1. Data payloads are not of uniform size.

2. Cache miss penalties are non-uniform.

3. Payloads are atomic; partial payloads are not transmitted or stored (HTTP/1.1 sup-

ports partial-payload replies, but this feature is not widely used in practice).

4. Cached payloads are read-only; only origin servers may modify them.

5. Caches are fully associative.
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6. All data movement and caching is demand-driven; prefetching does not occur, and

payloads are cached and evicted only in response to requests.

7. Servers are typically stateless, and the protocol governing requests and replies as-

sumes stateless servers.

8. System components are physically distributed and may be owned and administered

by different organizations whose interests do not coincide.

9. The namespace is unbounded (unlike a CPU address space).

10. Cache consistency mechanisms involve expiration times that origin servers associate

with payloads, or that intermediate caches compute heuristically. (Stronger consis-

tency mechanisms, e.g., involving callbacks, would violate the statelessness prop-

erty.)

Our goal as system designers is to optimize cost and performance metrics that describe how

well the system handles offered workload. We are permitted to modify the system serving

exogenous workload but not the workload itself, e.g., we may introduce or alter components

but we cannot re-arrange client access patterns or modify server content-naming practices.

In this thesis I consider interventions involving caching.

One class of problems that I consider is that of serving offered workload at minimal

cost. Of particular interest is the tradeoff between the monetary cost of cache storage ca-

pacity and that of bandwidth, because this tradeoff is important in practice, because both

costs are relatively easy to estimate, and because both can often easily be expressed in

comparable units (dollars). In the interest of generality, however, we shall prefer optimiza-

tion techniques that permit us to assign arbitrary costs to how the system under our control

serves offered workload. This allows us to contemplate any costs that can in principle be

expressed in monetary terms, e.g., the disutility of latency for interactive users.

Of the many available opportunities for intervention, I focus on the following: We can

install caches where none currently exist, e.g., at point “A” in Figure 2.1, if doing so reduces

overall costs. Furthermore, we can add storage capacity to caches. Afterstaticdecisions re-

garding cache placement and size have been made, a crucialdynamicintervention remains:

Replacement policies can attempt to minimize the aggregate cost of cache misses that oc-

cur while serving requests. Finally, we can identify and rectify cases where the protocols
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that govern interactions among caches in a hierarchy are ill suited to offered workload. In

summary, I address the following questions:

1. When is a cache economically justifiable?

2. What is the optimal size of a cache?

3. How can a cache of fixed, finite capacity best serve offered workload?

4. How can caches better cooperate to serve workload?

I consider these questions in the sequence shown, addressing each assuming that answers

to the previous questions have been fixed.

To the extent that it considers monetary cost at all, existing capacity planning literature

sometimes regards it as the objective function in a constrained optimization problem:

The purpose of capacity planning for Internet services is to enable deployment

which supports transaction throughput targets while remaining within accept-

able response time bounds and minimizing the total dollar cost of ownership

of the host platform [129].

The HP Labs MINERVA system automates this process to an extent [8]. Because I focus

onunconstrainedproblems it might seem that my approach ignores or contradicts the con-

ventional capacity planning literature, much of which is mature and well developed [112].

However, we shall see that under certain reasonable assumptions performance constraints

and the goal of cost minimization may be considered separately, because design prescrip-

tions from conventional capacity planning methods and from my own cost-minimization

techniques can be reconciled very easily. The two families of methods are complementary

but not tightly coupled, allowing them to develop independently.

The subsections that follow outline the main issues surrounding the caching problems

that I consider.

2.1 Cache Sizing

Informally, the cache sizing problem is to determine the optimal size of an existing

cache, i.e., a storage capacity that minimizes the total cost of serving requests submitted
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to the cache. The tradeoff at issue is the cost of storing payloads locally versus the cost

of repeatedly retrieving them; the latter may reflect the cost of upstream bandwidth, server

load, end-user latency or other costs. Formally, let $M(s) denote the memory cost of cache

capacitys, and let $A(s) represent the aggregate cost of cache misses incurred when a cache

of sizesprocesses the given workload. Our goal is to find an optimal sizes� that minimizes

total cost $M(s�)+$A(s�). In general, both $M(s) and $A(s) are monotonic step functions,

as illustrated in Figure 2.2. Note that minimal total cost need not occur at a single cache

size, that total cost is a step function but need not be monotonic, and that local minima

may exist in the total cost function. Finally, note that total cost increases monotonically

for cache sizes greater than the “working set size” (sum of distinct payload sizes) of the

offered workload; we may therefore ignore cache sizes larger than this effectively-infinite

bound.

As we consider the offline problem of determining optimal cache size, we shall repre-

sent workload in one of two ways: as an explicit sequence of references (a trace), or in a

probabilistic form that is more amenable to analytic techniques. In an explicit representa-

tion we are given a sequence ofM references to one ofN documents; associated with each

request is a nonnegative miss cost.2 In a probabilistic representation we are given only

2Throughout this dissertation miss cost represents theadditionalpenalty we face when cache misses occur
rather than any absolute measure of disutility; in other words, miss cost is the difference between the utility
of a cache hit and that of a miss. It is assumed to be nonnegative.
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the relative popularity of each document. A probabilistic representation ignores temporal

locality and other workload details, greatly simplifying the problem; Section 4.2 exploits

the simplicity of this representation in conjunction with an idealized cost model to compute

simultaneously optimal sizes formanycaches in a branching storage hierarchy. If work-

load is given as an explicit reference sequence, the difficult part of the cache sizing problem

is computing aggregate miss cost as a function of cache size $A(s); this is the subject of

Section 4.4.

Designers are sometimes given performance constraints (e.g., throughput targets and

responsiveness bounds), and cache size is one of many parameters that must be chosen in

such a way as to satisfy them. It is possible, for instance, that a certain minimal storage

capacitysmin > s� is required to achieve hit rates high enough to satisfy a mean latency tar-

get. The correct procedure is therefore to determine the minimal cache sizesmin required

to satisfy all performance constraints, using the methods of the conventional capacity plan-

ning literature [112]; computes� using methods such as those described in Chapter 4; and

finally choose thelarger of smin ands�. (Here we assume that additional cache hits result-

ing from choosing an optimal sizes� > smin will not cause performance constraints to be

violated. This is a reasonable assumption; cache misses nearly always require more time

and computational resources than hits.) In other words, if we are given exogenous per-

formance constraints, our problem is one of optimal cacheexpansionrather than optimal

cachesizing.

2.2 Cache Installation

The question of whether a cache should be installed at a given location must be an-

swered before we consider optimal cache sizing. However, given an expected workload and

a method for computing aggregate miss cost as a function of cache size $A(s), it is straight-

forward to decide whether a cache is economically justifiable: Installation entails some

fixed cost $fixed in addition to the cost of storage $M(s). The cost ofnot installing a cache

is $A(0), and the cost of installing a cache of optimal sizes� is $fixed+$A(s�)+$M(s�).

We simply choose the alternative with lower cost. As in the cache sizing problem, the dif-

ficult part is computing $A(s) based on workload. So far we have ignored interactions be-

tween different caches’ workloads, e.g., the impact of browser caches on the workload that
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reaches shared proxy caches. However in Section 4.2.1 we shall see that when workload

is expressed probabilistically the cache installation problem can be solved for a two-level

branching cache hierarchy.

Again, conventional performance constraints do not complicate the task of deciding

whether or not to install a cache, for the same reason: If the minimum storage capacity

required to satisfy performance constraints,smin, is greater thans�, we compare $fixed+

$A(smin)+$M(smin) with $A(0) when deciding whether a cache is economically justifiable,

i.e., we compare an optimallyexpandedcache with no cache.

Of course, if it is not possible for a cache ofanycapacity to provide reasonably respon-

sive service and satisfy other performance constraints, then we ought not install a cache.

This possibility cannot be dismissed, because careful studies of intermediate caching servers

in distributed file systems have concluded that under some conditions such caches cande-

gradesome performance metrics, e.g., latency [121,122]. As stated previously, throughout

this dissertation we assume that cache hits are always preferable to cache misses; miss costs

represent theadditionalpenalty we incur from cache misses, and are nonnegative.

2.3 Removal Policies

Given that a cache has been installed and its capacity is fixed, the remaining problem

is how best to serve its workload. If workload is represented probabilistically, this is a

straightforward task due to the assumption of independent references: The cache must solve

a classic knapsack problem, storing a subset of data payloads with maximal popularity-

weighted miss cost subject to a capacity constraint. Therefore when considering the cache

service problem we shall restrict attention to the case where workload is represented as

an explicit trace. A cache removal policy should strive to minimize the aggregate cost of

processing all requests, i.e., the sum over all cache misses of miss cost.

Alternatively, we might speak of the value of cache hits rather than the cost of cache

misses, and say that a cache should maximize value, perhaps by preferentially storing the

most valuable documents. The two perspectives—cost minimization and value maximi-

zation—are substantively equivalent but differ in connotation, and in some cases we shall

adopt the latter view. In particular, the “value” perspective is more natural in situations

where miss costs are supplied to a cache by system users, e.g., servers and clients. Chapter 3
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considers a scenario in which content providers declare to a cache the value they receive

from cache hits, and Section 3.4 describes difficulties that can arise when clients supply hit

values that bias a removal policy.

2.4 Redundant Transfers

Web transactions involve requests containing names (URLs) that elicit replies contain-

ing data payloads. Content providers define the relationship between URLs and reply pay-

loads, and this relationship is neither simple nor stable: Identical URLs can yield different

reply payloads and different URLs can yield identical payloads. We refer to these phenom-

ena asresource modificationandaliasing, respectively.

Traditional Web caches use URLs to organize and locate stored data, i.e., cached re-

ply payloads are associated with, and accessed via, the URL that yielded them. Content-

naming practices at the server end can interact with client request patterns in such a way as

to cause redundant payload transfers in conventional “URL-indexed” caches. Aliasing, for

instance, can cause redundant transfers when a conventional cache already holds the pay-

load needed to satisfy the current request, but not in association with the current request

URL. These observations suggest that URL-indexed caching may be poorly suited to Web

workloads. Chapter 7 quantifies the prevalence of namespace complexities such as aliasing

and resource modification in real Web workloads and the rate of redundant transfers due

to the use of URL-indexed caches. It also describes a simple, backward-compatible proto-

col extension capable of completely eliminating redundant payload transfers, regardless of

cause. Jeff Mogul and I devised this protocol extension independently and are evaluating it

together; we call it “Duplicate Transfer Detection” (DTD). A happy side effect of DTD is

that it ensures perfect cache consistency for all types of data.

2.5 Cache Consistency

To remainsemantically transparent, caches must serve the same payload as the origin

server would at the time they process requests. Consecutive accesses to the same URL

sometimes yield different reply payloads, and URL-indexed caches therefore require some

mechanism to determine whether a payload cached in association with the current request
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URL is fresh, i.e., is the same as the origin server would return. The statelessness constraint

discussed earlier precludes invalidation-based consistency mechanisms in which servers

track cache contents and explicitly instruct caches to discard stale entries. Remaining alter-

natives includeexpiration, in which reply metadata specifies a time beyond which the reply

data should not be considered fresh, andrevalidation, in which caches verify freshness by

contacting the origin server.

In practice, thefreshness policiesof today’s Web caches employ a combination of the

two, serving requests from cache if a fresh cache entry is available for the current request

URL and revalidating if an entry exists but is stale. Reply metadata may specify an absolute

expiration time or an age limit for cache entries; if origin servers provide no such metadata,

the cache freshness policy will typically compute an estimated time-to-live heuristically.

Revalidations may ask whether a resource has changed since it was retrieved from the

origin server, or they may compare theentity tagsof the cached resource with the origin

server’s current view of the resource. Entity tags (“Etags”) are a kind of opaque, unordered

version identifier that origin servers associate with payloads; matching Etags imply identi-

cal payloads.

Some URLs correspond to simple static files residing on disk at the server. Others,

however, invoke scripts, programs, or database queries whose output is often termed “dy-

namic content.” Similarly, replies are sometimes customized for individual users using

mechanisms such as “cookies” [97]. Origin servers may explicitly mark customized and

dynamic replies “uncachable,” or they may instruct caches to revalidate the cached payload

each time it is used, thus saving bandwidth while preserving semantic transparency.

As we shall see in Chapter 7, expiration mechanisms sometimes fail to preserve se-

mantic transparency, and existing revalidation mechanisms often fail in surprising ways,

causing unnecessary payload transfers. The Mogul/Kelly Duplicate Transfer Detection

protocol extension is compatible with and complementary to existing expiration and reval-

idation mechanisms, guarantees semantic transparency, can be used with “dynamic” and

customized content, lacks the subtle failure modes of HTTP’s existing consistency mecha-

nisms, and eliminates redundant data-payload transfers entirely.
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CHAPTER 3

Preference-Sensitive Removal Policies

Due to differences in server capacity, external bandwidth, and client demand, some

Web servers value cache hits more than others. If a shared cache knows the extent to which

different servers value hits, it can employ apreference-sensitivereplacement policy that at-

tempts to deliver higher aggregate value to content providers.1 Storage space in shared Web

caches—proxies serving corporate- or campus-sized LANs and backbone caches embed-

ded in high-speed networks, as opposed to browser caches—can be diverted to serve those

who value caching most by the removal policy. Caches are therefore ideal loci for variable-

QoS mechanisms. Finally, it is widely observed that cache hit rates are proportional to the

logarithmof cache size, and that removal policies vary widely in performance by several

metrics; therefore a better removal policy can yield benefits equivalent to aseveral-fold

increase in cache size.

This section introduces a novel preference-sensitive LFU/LRU hybrid, “Aged server-

weighted LFU” (A-swLFU), that is designed to exploit observed regularities in Web request

patterns. I compare this algorithm with others from the Web caching literature, discuss the

problems associated with obtaining servers’ private valuation information, and describe

difficulties that arise when a removal policy attempts to accommodate heterogeneousclient

preferences, as opposed to server preferences.

1A note on terminology: In this thesis, as in the Web caching literature, the terms “cost-aware,”
“preference-sensitive” and “value-sensitive” are used interchangeably. All describe cache replacement poli-
cies that attempt to minimize the total cost of processing a request stream in which a miss cost is associated
with each document or with each request.
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Table 3.1: Notation of Chapter 3.

u Typical URL
Wu Server-assigned weight on URLu
sizeu Payload size of URLu (bytes)
α Zipf exponent
K Aging parameter in A-swLFU
L Aging term in GD-Size
i Typical client
s Typical server
Ws Weight from servers
wi Weight from clienti
niu Number of references to URLu by client i
Nu Overall reference count on URLu
Vu Removal priority ofu in cwLFU

Section 3.1 discusses the nature of value-sensitive replacement policies and describes

several from the existing Web caching literature. Section 3.2 explains how the tradi-

tional caching problem can be decomposed into two problems—value differentiation and

prediction—and presents empirical analyses of Web trace data to justify the design deci-

sions underlying the prediction features of my own algorithm. Section 3.3 presents em-

pirical results comparing the value-sensitive performance of several value-sensitive algo-

rithms. Section 3.4 describes circumstances under which biased frequency-sensitive algo-

rithms such as ours donot perform well, and Section 3.5 discusses economic incentive

issues surrounding value-sensitive caching.

3.1 Value-Sensitive Caching

Actual production caches currently employ LRU-like algorithms or periodic purge poli-

cies, often for reasons related to disk performance, but a far wider range of removal policies

has been explored in the research literature. Williams et al. present a systematic taxonomy

of policies organized by the sort keys that determine the removal order of cached docu-

ments [166]. For instance, LRU evicts documents in ascending order of last access time

and LFU employs ascending reference count. Bahn et al. [18] provide a comprehensive

review of the literature on removal policies, which is too large to be summarized here.
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The early literature on Web cache replacement algorithms considered policies intended to

maximize performance metrics such as hit rate and byte hit rate; in a sense, the implicit

design paradigm is one in which the cache designer “hard wires” into a cache the objective

function it will maximize by specifying a rigid replacement policy.

Starting in the late 1990s, several researchers have independently explored more flex-

ible approaches to cache management. Many of these reflect a sophisticated design ap-

proach in which a cache attempts to optimize an objective function that isnot hard-wired

into the replacement policy; the objective function is specified by associating a miss penalty

with each reference. The need to provide different service levels to different content

providers motivates my interest in such algorithms. I begin with the assumption that dif-

ferent servers value cache hits on their objects differently, possibly with quite large dif-

ferences. Some servers will have clients who are intolerant of delay, and who may be

willing to pay for a higher quality of service. Others may be constrained in their exter-

nal network connections and server equipment, and thus may value off-loading traffic to a

network cache, particularly during anomalous heavy-load (“flash crowd”) events. Together

with complementary research into variable-QoS Web content hosting [3, 29, 133, 161], the

growing family of value-sensitive caching policies addresses the needs of a heterogeneous

user community.

3.1.1 Value Model

We assume that servers associate with each of their URLsu a numberWu indicating

the value they receive per byte whenu is served from cache: The value generated by a

cache hit equalsWu� sizeu. This information could be transmitted to a shared cache in

HTTP reply headers. (We might speak ofWu as per-byte miss cost rather than hit value;

the two perspectives are essentially equivalent.) Thus, we can compare all replacement

algorithms—value sensitive or insensitive, value or cost based—in terms ofvalue hit rate

(VHR), defined as

VHR �
Σhits Wu�sizeu

ΣrequestsWu�sizeu
: (3.1)

This performance metric is a natural generalization of familiar measures: WhenWu = 1 for

all documents, VHR is equal to byte hit rate; ifWu = 1=sizeu it is equal to hit rate.
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3.1.2 Value-Sensitive Removal Policies

Several removal policies designed to maximize VHR have been proposed. Cao &

Irani’s “GreedyDual-Size” (GD-Size) algorithm attempts to optimize an arbitrary objec-

tive function that may be supplied dynamically, at cache run time [42]. In the terminology

of our value model, given value weightsWu GD-Size seeks to maximize aggregate value

across all requests. Following a request foru, the document’s removal priority is set to

Wu+L. L is an aging term initialized to zero; following a removal it is set to the priority

of the evicted document. LRU breaks ties between documents whose removal priority is

otherwise identical [41]. GD-Size is a value-sensitiverecentistalgorithm, because when all

Wu are equal, it reduces to LRU. At around the same time that GD-Size was first proposed,

Wooster & Abrams explored similar removal policies that retain documents that require the

longest time to retrieve from origin servers [173].

“Server-weighted LFU” (swLFU) is a simplefrequentistcache replacement policy [86].

Removal priority is determined by weighted reference countWu�Nu, whereNu is the

number of requests foru since it last entered the cache; last access time breaks ties between

documents with identical value-weighted reference counts. When allWu are equal and

positive, swLFU reduces to LFU; when all weights are zero it becomes LRU. Figure 3.1

describes the algorithm in pseudocode.

swLFU retains those URLs that contribute most to aggregate user value per unit of

cache space:

contribution ofu to aggregate value
unit size

=
Wu�sizeu�Nu

sizeu
= Wu�Nu

As expected, swLFU does indeed favor URLs with high weights. A positive correlation

between service quality (byte hit rate (BHR)) and declared weight is evident when we ex-

perimentally measure BHR as a function of randomly-assigned weight in a trace-driven

simulation (Figure 3.2). In our tests a tenfold increase inWu corresponds to roughly a dou-

bling in BHR. If servers mustpaythe cache for the value they receive (shown as an optional

feature in Figure 3.1), we might say that swLFU attempts tomaximize cache revenue. If Wu

are tied to payments, servers will be deterred from reporting inflated weights. Furthermore,

provided that servers know they will receive more cache hits if and only if they declare

higher weight, they have an incentive to report weights that reasonably approximate their
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for each requested documentu
if u is in cache

deliveru to client
record access time ofu
Nu Nu+1
[optional] charge(Wu�size(u)) dollars to server ofu

else
retrieveu andWu from server
deliveru to client
if size(u)� cache size

while (sum of sizes of cached URLs+size(u)> cache size)
among cached URLs with minimalN�W, remove LRU item

placeu in cache
recordWu and access time ofu
Nu 1

end if
end for

Figure 3.1: The swLFU algorithm.

true valuations. Economic incentive issues such as this rarely appear in the mainstream

Web caching literature. The only example of which I am aware is that Rizzo & Vicisano

criticize Wooster & Abrams’ removal policy, which keeps in cache documents that take

longest to retrieve, on the grounds that it rewards slow origin servers [140,173].

Arlitt et al. have introduced a frequency-sensitive variant of GD-Size, “GD-Size with

Frequency” (GDSF) [10]. In GDSF a document’s removal priority is set toNu�Wu+ L

following a reference, whereL has the same meaning as in GD-Size. Bahn et al. de-

scribefamily of value-sensitive algorithms, collectively known as “Least Unified Value”

(LUV), whose emphasis on frequency and recency can be adjusted [18]. Jin & Bestavros

have developed a sophisticatedself-tuningparameterized generalization of GD-Size called

GD* [82].

3.2 Prediction vs. Value Sensitivity

One approach to designing Web caching systems, typical of the earliest literature, is to

implement new features on an ad hoc basis and test performance experimentally. A more

refined approach, common in the mature Web caching literature, is to identify regularities

24



4

10

20

30

40

1 10 100 1000 10000

by
te

 h
it 

ra
te

 (
%

)

URL weight

QoS as f(weight) at SV site (log scales)

Figure 3.2: Quality-of-service (byte hit rate) as a function ofWu for SV trace summarized
in Table 3.2.

in Web cache workloads and to implement features that are well-suited to these regulari-

ties; Rizzo et al. provide an elaborate example [140]. This section describes a conceptual

framework for characterizing workloads and designing value-sensitive removal policies,

then presents empirical workload analysis that guided the design of A-swLFU.

The performance of any value-sensitive caching system depends on how well it solves

two distinct problems:predictionandvalue differentiation. Any measure of performance

will depend on having objects already waiting in the cache before they are requested,

hence prediction. Because cache space is scarce it is not possible to store permanently

all requested objects (otherwise removal policies would be unnecessary); therefore a cache

should identify and store the most valuable documents, i.e., those whose presence in cache

is expected to yield the highest value through future cache hits. This value/prediction

framework is similar in spirit to an elegant approach developed independently by Bahn

et al. [18], though different in emphasis.

Conventional removal policies have largely focused on solving the prediction problem,

ranking documents for removal based on estimated likelihood of future requests. Thus,

we might expect recentist algorithms like LRU to perform well when there is substantial

temporal locality in user requests; frequentist algorithms like LFU are better suited to time-

independent requests.

We are primarily interested in the issue of value differentiation. However, an algo-

rithm will not serve users well if it excels at value differentiation but performs poorly at

prediction. Therefore I analyzed trace data and studied the prior literature to find regulari-

ties important forprediction, and used these findings to hard-wire certain features into the

25



0

0.25

0.5

0.75

1

1 10 100 1e3 1e4 1e5 1e6

P[
X

<
=

x]

LRU stack depth of hit

UC
SV
PA

1

10

100

1e3

1e4

1e5

1 10 100 1e3 1e4 1e5 1e6

re
fe

re
nc

e 
co

un
t

rank in popularity

BO1
PA
PB
SD
SV
UC

Figure 3.3: Workload characteristics: CDF of LRU stack distances of hits (left) and Zipf-
like popularity distribution (right).

new algorithm, while allowing value differentiation to be driven by valuation inputs (Wu).

Four Web request stream characteristics relevant topredictionare evident in the trace data

I analyzed and in the prior literature:

1. Low temporal locality of reference.

2. Zipf-like document popularity distribution.

3. Nonstationary request process.

4. Weak size-popularity correlation.

Temporal locality in a request stream is quantified via LRU stack distance transforma-

tion. Requested items in the stream are added to an infinite-capacity stack as follows: If the

item is not present in the stack (“miss”), we push it on the top (at depth 1) and output∞; this

increases by 1 the depth of all items already in the stack. If an itemis present in the stack

(“hit”), we output its depth, remove it, and replace it at the top. For example, the symbol

stream “ABBACBD” yields “∞ ∞ 1 2 ∞ 3 ∞.” Maximal temporal locality occurs when

all references to the same symbol are adjacent on the input, in which case all hits occur at

depth 1; the string “AABBBCD” has the same relative symbol frequencies as the previous

example, but now a stack distance transform yields “∞ 1 ∞ 1 1 ∞ ∞.” Barford et al. [19]

and Mahanti & Williamson [103] apply stack distance analysis to Web caching. We shall

return to LRU stack distance transformation in Chapter 4, which discusses its relationship

to cache performance.
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PA site SV site UC site

# origin servers 114,381 124,698 105,710
# URLs 3,412,105 3,744,274 2,884,598
# requests 7,011,622 7,897,659 5,568,112
Bytes req’d 131,665,275,664 161,620,444,331 127,346,723,989

Infinite cache
size (bytes) 60,037,623,775 66,976,225,688 51,825,514,504
hit rate 51.3364 52.5901 48.1943
byte HR 54.4013 58.5596 59.3036
value HR 48.5422 57.4670 56.5745

Table 3.2: Summary statistics on three request streams after filtering out uncachable docu-
ments.

Figure 3.3 (left) shows the cumulative distribution of LRU stack hits in 14-day request

streams collected during August 1998 at three NLANR caches [66]; Table 3.2 displays

summary statistics for these three request streams. The median stack depth of hits ranges

from 100,000 to 200,000, indicating weak temporal locality. This conclusion is consistent

with other researchers’ findings, e.g., Mahanti & Williamson, who report consistently low

temporal locality across several shared-cache workloads [103], and Barford et al., who

report that temporal locality inclient traces declined between 1995 and 1998 [19]. The

implication for removal policy design is that pure recentist algorithms like LRU are a poor

choice.

A second observation is that the frequency of document requests in Web traces is Zipf-

like, i.e., the number of references to theith most popular document is proportional to

1=iα. This is qualitatively apparent in Figure 3.3 (right), a log-log plot of reference count

as a function of popularity rank for six 28-day NLANR traces collected during March 1999;

Table 3.3 presents estimates of theα parameter. If we assume that temporal locality is so

weak as to be negligible and that document references follow an independent reference

model, frequentist prediction is appropriate. Breslau et al. argue that an independent ref-

erence model wherein document popularity follows a Zipf-like distribution describes Web

workloads well [33].

Even if document references are independent, the distribution that generates them may

change over time. This effect is apparent when we examine day-to-day changes in the set
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Figure 3.4: Left: Hot set drift at six NLANR sites, March 1999. Right: windowed hit rates
for LRU and LFU at two cache sizes, August 1998 SV trace.

of most popular documents in each trace (“hot set drift”). Figure 3.4 (left) shows, for each

of the first 28 days in March 1999 at each of six NLANR cache sites, the fraction of that

day’s 500 most popular documents that were among the 500 most popular on 1 March.

The composition of the “hot set” changes gradually over time in our workloads; Mahanti &

Williamson report qualitatively similar results for other traces [103]. The implication is that

pure frequentist prediction (LFU) will likely suffer a “cache pollution” problem: Formerly-

popular documents that are no longer popular will clutter the cache as time goes on. The

pollution conjecture is confirmed by a simple experiment: Using an August 1998 NLANR

trace, I simulated LRU and LFU caches at 4 GB and 8 GB. Figure 3.4 (right) shows hit

rates computed separately within non-overlapping windows of 250,000 requests each. LFU

initially outperforms LRU, but over time its performance deteriorates; as we would expect,

the pollution problem is more severe at the smaller cache size. Figure 3.4 illustrates the

danger of using small traces: If we had used only the first 2.5 million requests for the figure

on the right (i.e., the first 10 windows), we would obtain aqualitativelymisleading result,

namely that LFU is simply better than LRU.

Finally, no clear relationship between document size and popularity is evident in the

six traces used in our experiments. Table 3.3 provides summary statistics on the six traces

used in the main experiments of this section, including size-frequency correlations. In each

trace the correlation between document size and popularity does not differ significantly

from zero. The design implication is that we should not discriminate against either large or

small documents.
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The foregoing analysis of request streams suggests that a combination of frequentist

prediction and recentist “pollution control” is appropriate. A simple combination of LFU

and LRU, together with value sensitivity, yields the aged server-weighted LFU (A-swLFU)

removal policy. The default replacement policy is swLFU as described in Section 3.1 (evict

objects based on value-weighted frequency count); however, on everyKth eviction we

remove the LRU item. A-swLFU reduces to original swLFU and plain LRU as special cases

(K = 0 andK = 1, respectively). A-swLFU is not the first recentist/frequentist hybrid: Lee

et al. [100] define a different continuum between LRU and LFU for theunweightedcase

(Wu = 1 for all u); Bahn et al. have generalized this algorithm to theweightedcase of

interest to us [18].

Whereas “LRU” unambiguously specifies a single replacement policy, LFU-like algo-

rithms are parameterized by answers to the following questions:

1. What criteria break ties between documents with identical reference counts?

2. Are reference counts maintained on items even after they have been evicted from

cache?

3. Is placement following a miss mandatory or optional?

Throughout this section, LRU is the secondary removal criterion in all algorithms; Fig-

ure 3.5 shows the impact of the last two parameters on byte hit rate for LFU algorithms

that use LRU to break ties. I consider variants of LFU in which reference counts persist

across evictions (“Perfect LFU” in the terminology of Breslau et al. [33]), and in which they

are defined only for cached items (“in-cache LFU”). While some theoretical investigations

consider optional-placement algorithms [79], in my tests itneverconfers a substantial ad-

vantage over mandatory placement and often incurs a severe performance penalty, possibly

because it ensures that a large fraction of the many twice-requested documents in our traces

never result in cache hits. Therefore I consider only mandatory-placement variants of LFU

in this section.

3.3 Experiments

This section compares value-sensitive removal policies through trace-driven simula-

tions using Web request streams collected at six NLANR cache sites during 1–28 March
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1999 [66]. Prior to simulation I pre-process raw cache access logs by removing dynamic

content and preserving only successful requests for items not present in client caches. The

six processed traces are summarized in Table 3.3. The simulations described in this section

present severe computational challenges and motivate the design and implementation of an

efficient parallel cache simulator, which is described in Section 5.3.

3.3.1 Heterogeneous Valuations

To explore the relative performance of value-sensitive removal policies I conducted ex-

periments of the following form: Randomly assign to each servers a weightWs drawn

uniformly from the setf1;10;100;1000;10000g, then setWu = Ws for all documentsu

hosted by servers, and finally compute value hit rates for various algorithms at different

cache sizes. We use a high-variance weight distribution because, as Section 3.4 explains in

greater detail, weighted-LFU algorithms behave very much like ordinary unweighted LFU

when weights span a narrow range. Figure 3.6 shows mean VHR over five weight assign-

ments at cache sizes ranging from 64 MB to 16 GB for perfect and in-cache variants of

A-swLFU with K = 100; no attempt was made to tuneK to particular traces or cache sizes.

We present LRU at cache sizes from 1–16 GB to illustrate the gap between conventional

and value-sensitive algorithms. The results suggest that even without a well-tuned aging

parameter A-swLFU yields better aggregate value to servers than GD-Size at smaller cache

sizes in most of our traces.
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Table 3.3: Traces recorded at six NLANR sites, 1–28 March 1999.

BO1 PA PB SD SV UC
requests 11,583,087 13,548,917 19,803,754 37,085,277 23,738,274 26,024,662
documents 5,252,946 4,901,241 9,820,054 8,640,338 9,375,514 7,615,462
servers 193,422 168,082 291,410 247,459 265,305 250,484
unique bytes 104,474,161,664 76,038,927,331 188,308,442,149 204,928,271,675 159,114,665,878 150,119,984,279
bytes requested 236,150,085,697 220,658,618,173 383,130,815,921 620,283,701,022 412,899,064,992 397,548,684,913
max H.R. (%) 54.6 63.8 50.4 76.7 60.5 70.7
max B.H.R. (%) 59.4 67.3 55.2 69.1 63.2 64.4
meanNu 2.205 2.764 2.017 2.532 4.292 3.417
std. dev.Nu 37.77 25.60 29.71 34.10 74.59 43.80
Zipf α (R2) .578 (.88) .751 (.93) .560 (.89) .854 (.93) .692 (.92) .784 (.91)
mean sizeu 19,888.68 15,514.22 19,175.91 16,971.30 23,717.62 19,712.52
std. dev. sizeu 337,424.3 220,990.6 269,819.6 221,649.6 289,507.6 312,418.1
median sizeu 3895 3584 3712 3886 4080 3830
Cov(sizeu;Nu) 5158.76 4533.34 4168.46 -25,014.49 3097.10 -11,984.42
Corr(sizeu;Nu) 0.00040476 0.00080136 0.00052007 -0.00115845 0.00040978 -0.00087585
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Figure 3.6: VHR as function of cache size for two A-swLFU variants and GD-Size. LRU
is also shown at larger cache sizes for comparison. Note that vertical scales do not begin at
zero.
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Figure 3.7: Tuned perfect & in-cache A-swLFU, in-cache GDSF, and GD-Size. March
1999 UC trace. The results shown required roughly 60 CPU days to compute using the
parallel simulator of Section 5.3.

How does A-swLFU perform with a well-tunedK parameter? Figure 3.7 shows VHR

averaged over 20 random assignments ofWu for GD-Size, in-cache GDSF, and perfect and

in-cache A-swLFU withK values of 0;10;20; : : :;150; at each cache size we present the

A-swLFU with the highest VHR. Perfect A-swLFU performs the best for caches that are

4 GB or smaller, consistent with what Breslau et al. report for theunweighedcase [33].

However the gains over in-cache A-swLFU and GDSF are modest and may not justify the

extra cost of retaining frequency tables on evicted documents. Optimally-tuned in-cache

A-swLFU and GDSF perform almost identically; both are value-sensitive combinations

of recentist and frequentist approaches, so this is not surprising. GD-Size, which does

not exploit frequency information, performs noticeably worse except at large cache sizes.

Figure 3.9 and the accompanying text in Section 3.3.2 discuss tuning theK parameter in

greater detail.

A-swLFU works best when cache space is scarce. This performance advantage is

especially important for main-memory caches. Some caching systems are disk I/O con-

strained [141]. If Web demand and network bandwidth grow so rapidly that disk bandwidth

cannot keep pace, RAM-only caches become a favorable design option. Furthermore, Gray

& Shenoy predict that as RAM prices drop over the next decade, main memory will fill

many of the roles currently played by disks [72]. The absence of disks removes many prac-

tical constraints that currently limit cache designers’ choice of removal policy. A value-

sensitive replacement algorithm enables a diskless cache to provide “premium” service for
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those willing to pay for minimal latency. My results show that GDSF and A-swLFU are

good replacement policies for such a cache.

3.3.2 Homogeneous Valuations

As a “sanity check” I also consider the degenerate case where all documents have equal

weight (Wu= 1 for all u). As noted in Section 3.1, GD-Size reduces to ordinary LRU in this

case, and the VHR performance metric reduces to byte hit rate. Figure 3.8 presents byte hit

rates at cache sizes ranging up to 16 GB generated by GD-Size/LRU and four LFU variants

(all combinations of aged (K = 10) vs. ordinary (K = 0) and perfect vs. in-cache). Our

results confirm Breslau et al.’s conclusion that (un-aged) in-cache LFU performs poorly in

terms of byte hit rate [33]. However, the addition of agingwithoutany attempt to tune the

aging parameter improves the performance of in-cache LFU beyond that of un-aged perfect

LFU. As expected, aged perfect LFU generally performs best. Finally, in three of six cases

(PA, PB, and SD) LRU outperforms un-aged perfect LFU at all cache sizes, contrary to

Breslau et al.’s claim that perfect LFU generally performs better than LRU in terms of

BHR. We attribute the difference to the size of Breslau et al.’s traces, which are too small

for cache pollution effects to occur. More remarkably, aged in-cache LFU outperforms

aged perfect LFU on two traces (PA and SD), and performs roughly as well one other (SV).

How much can we gain by tuningK at a particular cache? Figure 3.9 shows byte hit

rate asK varies from zero to 25 for in-cache LFU (solid lines) and perfect LFU (dashed

lines) at cache sizes ranging from 256 MB (lowermost solid/dashed pair) to 16 GB (top

pair). The solid and dashed lines meet atK = 1 because both algorithms reduce to LRU

at thatK value. Remarkably, in-cache LFU with optimalK outperforms perfect LFU with

optimalK at everycache size. In other words, well-tuned aging appears to eliminate any

advantage of maintaining reference counts on evicted documents in the unweighted case.

Figure 3.9 furthermore appears to confirm the conjecture that the optimal amount of aging

depends on cache size; larger caches require more aggressive aging (lowerK).
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Figure 3.8: Cost = size case: byte hit rates as function of cache size for GD-Size/LRU and
four LFU variants: perfect vs. in-cache and K=10 aging vs. no aging. March 1999 NLANR
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3.4 Limits to Biased LFU

Weighted-LFU algorithms do not perform much better than their value-insensitive coun-

terparts when access patterns overwhelm or dilute the valuation information contained in

weights. I demonstrate this in two situations: when weights are assigned by clients instead

of servers, and when weights span a narrow range.

Consider aclient-weighted“cwLFU” algorithm in which clienti supplies weightwi

indicating the utility per byte it receives when its requests are served from cache. Removal

priority in cwLFU is determined by

Vu� ∑
clients i

winiu

whereniu is the number of requests for URLu by client i. A problem arises when client

weightswi are uncorrelated with reference countsniu: The law of large numbers causes the

quantity

Vu�
Vu

Nu
where Nu�∑

i
niu

to converge toward the mean of thewi distribution for URLs with high overall reference

counts, because popular documents are referenced by many clients. To illustrate this phe-

nomenon, I obtainniu data from an NLANR access log, randomly assign to clients integer

weightswi in the range 1–10, and computeVu for URLs with Nu > 50. As shown in

Figure 3.10, values ofVu cluster strongly around 5.5. Ordinary LFU and cwLFU differ

only insofar asVu differ substantially across objects, and this does not happen when client
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Figure 3.10: Histogram of mean weighted valuesVu for popular URLs in NLANR’s Silicon
Valley L3 cache request log of 26 August 1998 (a busy day at a busy site) for a particular
random assignment ofwi values to clients. Other assignments ofwi yield qualitatively
similar results.

weights are uncorrelated with reference counts. It is conceivable that such correlations do

exist in the real world, e.g., we might imagine that impatient clients who value cache hits

have similar reading habits. However available data do not allow us to explore such hypo-

thetical correlations, which therefore remain purely speculative. One well-known result is

suggestive: Wolman et al. report that the relationship between clients’ organizational affil-

iation (i.e., their department within the University of Washington) and their access patterns

is weak. Furthermore even when clients are artificially clustered according to their request

patterns, hit rates of shared caches serving these clusters are not substantially higher than

for similarly-sized random groups of clients [172].

A-swLFU and swLFU do not perform well with weights drawn from a narrow range,

e.g., 1–10. The reason is that document reference countsNu vary over many orders of

magnitude (Figure 3.3). If weightsWu span only one order of magnitude, their influence on

the behavior of weighted-LFU variants may be negligible.
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Figure 3.11: Overlap among topk items in lists sorted on weighted and unweighted criteria.
Reference countsniu are from the NLANR SV log of 17 March 1999.

We can illustrate the combined effect of both client weights and weights drawn from

a narrow range through a simple experiment: Obtain reference countsniu from a Web

cache access log and assign to the clients in the log weightswi drawn randomly from

f1;2; : : : ;10g. Create two lists of tuples of the form(u;Nu;Vu), one sorted in descending

order of reference countsNu and the other sorted on cwLFU removal priorityVu. Examine

the overlap in the topk URLs on both lists as a function ofk. If the two lists are very

similar, the topk sub-lists will overlap substantially even for small values ofk; if the lists

are very different, the overlap will be small except for large values ofk. This exercise

provides a crude comparison of the contents of weighted and unweighted caches: The top

k items on our two sorted lists are roughly those that would be contained in cwLFU and

unweighted LFU caches of sizek after processing the request stream in the access log.

This experiment can be performed for swLFU as well as cwLFU; in both cases removal

priority is weighted reference count. Figure 3.11 shows list overlap as a function ofk in two

scenarios: client weights drawn from a narrow range (left), and server weights drawn from

our high-variance distribution (right). For a cache capable of holding between 10,000 and

100,000 documents, weighted and unweighted LFU yield very similar cache contents (80%

overlap), and therefore similar hit/miss behavior, in the narrow-weight-range cwLFU case.

By contrast, the similarity between weighted and unweighted cache contents is far lower

(25% overlap) in the wide-weight-range swLFU case. Client weights from a narrow range

yield cache contents very similar to ordinary unweighted LFU, whereas server weights

from a wide distribution make a substantial difference.
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In summary, under certain circumstances weighted-LFU algorithms behave very much

like ordinary LFU. Of course, this conclusion depends on the particulars of the weight dis-

tributions and other parameters used in the investigations described in this section. How-

ever, the interaction between document popularity and weight range and the interaction

between client weights and access patterns are generic issues that must be considered in

the design of any weighted-LFU removal policy.

3.5 Incentives

By measuring performance (VHR) using server announcements of their values (Wu),

we implicitly assume that these announcements are truthful. Unfortunately, when cache re-

placement is directly affected by the announced values, it will generally be in each server’s

private interest to systematically misreport its valuations: No matter how low their true

values, they would like their objects to get better treatment than another server’s objects.

The problem of strategic announcements is generic and confronts any value-sensitive re-

placement policy: A reliable source of user value information is needed to improve on

insensitive policies.2

A powerful approach to this problem is known asmechanism design; Mas-Colell et

al. [106] offer a good introduction, McAfee & McMillan [109] review of incentives in

auctions, and Varian [159] discusses mechanism design applied to “software agents.” The

approach provides participants with economic incentives so that it is in their rational self-

interest to provide truthful valuation information. The search space of possible incentive

schemes is considerably simplified by the Revelation Principle [125], which states that any

aggregate user value that can be achieved by some incentive scheme can also be achieved by

a scheme in which it is rational for participants to tell the truth. Nonetheless, the design of

incentive mechanisms is technically challenging, and is beyond the scope of this discussion.

We simply review a few observations on the possible shape of a good scheme.

One important result originally due to Vickrey [160] and generalized to a much richer

set of problems in Varian & MacKie-Mason [158] lends some intuition for the problem.

2The problem of inducing servers to truthfully reveal private valuation information is distinct from the
problem of preventing acachefrom over-reporting hits in a scheme in which servers pay for cache hits.
Economics offers insight into the former problem (“bid shading”), but not the latter (fraud).
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Vickrey proposed the second price auction: Charge the winner of a single-good auction

the second highest bid. The bidder’s announcement affects onlywhenshe wins, not how

much she pays, and it can be shown that the bidder’s dominant strategy is to bid her true

valuation.

The generalized Vickrey auction suggests that charging a server for each hit the valua-

tion announced for the object that was most recently evicted might be incentive compatible.

This works if caching decisions are a one-shot activity. Unfortunately it is not, and in this

example, the server’s bid affectsfuturepayments, so it is not optimal to tell the truth. For

example, if the current price is less than the server’s true value, it will want to overbid to

increase its object’s duration in the cache, since each hit will produce value greater than its

cost.

Chan et al. propose a quite different approach to value-sensitive caching, in which a

cache periodically auctions off disk space [45]. In that setting the authors are able to pro-

vide an incentive-compatible scheme. However, they report that their cache market yields

value lower than swLFU except at extremely small cache sizes (1 and 4 MB [sic]). This

is probably because a periodic allocation framework, which seems necessary to achieve

incentive compatibility, is not well suited to the natural event-driven dynamic of caching.
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CHAPTER 4

Optimal Cache Sizing

This chapter describes two approaches to the problem of determining exact optimal

storage capacity for Web caches based on workload and the costs of memory and cache

misses. The first approach considers memory/bandwidth tradeoffs in an idealized cost

model. It assumes that workload is described probabilistically, i.e., that it consists of in-

dependent references drawn from a known distribution, and that caches employ a “Per-

fect LFU” removal policy. For the cache installation problem, I derive conditions under

which a shared higher-level “parent” cache serving several lower-level “child” caches is

economically viable. For the cache sizing problem, I characterize circumstances under

which globally optimal storage capacities in such a hierarchy can be determined through a

decentralizedcomputation in which caches individually minimize local expenditures.

The second approach is applicable if the workload at a single cache is represented by

an explicit request sequence and the cache employs one of a family of removal policies that

includes LRU. Arbitrary miss costs are associated with individual requests, and the cost

of cache storage need only be monotonic. Per-request miss costs based on the expense of

upstream bandwidth are often readily available in practice. In principle it is also possible

to estimate miss costs arising from other sources, e.g., the disutility that human end users

incur from latency; econometric research into this topic has begun [7, 29, 78]. I present an

efficient single-pass algorithm to compute aggregate miss cost as a function of cache size in

O(M logM) time andO(M) memory, whereM is the number of requests in the workload.

Because it allows us to computecompletestack distance transformations and hit rates at

all cache sizes with modest computational resources, this algorithm permits analysis of

reference locality and cache performance with no loss of precision.
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4.1 Monetary Costs and Benefits

Web cache capacity planning must weigh the relative costs of storage and cache misses

to determine optimal cache size. While the monetary costs and benefits of caching do not

figure prominently in the academic literature, they are foremost in industry analysts’ minds:

CacheFlow is targeting the enterprise, where most network managers will be

loath to spend $40,000 to save bandwidth on a $1,200-per-month T1 line. To

sell these boxes, CacheFlow must wise up and deliver an entry-level appliance

starting at $7,000 [83].

This section considers the problem of determining optimal cache sizes based on economic

considerations. I focus exclusively on the storage cost vs. miss cost tradeoff and ignore

throughput and response time issues, which are covered extensively elsewhere [112]. As

explained in greater detail in Section 2.1, performance constraints and cost minimization

may sometimes be considered separately in the cache sizing problem, because in some

cases one should simply choose the larger of the two cache sizes they separately require.

In other words, under some circumstances, if economic arguments prescribe a larger cache

than needed to satisfy throughput and latency targets, an opportunity exists to save money

overall by additional spending on storage capacity.

Section 4.2 begins with a simple model that considers only memory and bandwidth

costs. The memory/bandwidth tradeoff is the right one to consider in a highly simplified

model, because bandwidth savings is the main reason why many institutions deploy Web

caches: According to a survey of Fortune1000 network managers who have deployed Web

caches, 54% do so to save bandwidth, 32% to improve response time, 25% for security

reasons, and 14% to restrict employee access [75]. The analysis of Section 4.2 is similar

in spirit to Gray’s “five-minute rule” [71] extended to large-scale hierarchical caching sys-

tems. I show how the economic viability of a shared high-level cache is related to system

size and technology cost ratios. I furthermore demonstrate that under certain conditions,

globally-optimal storage capacities in a large branching cache hierarchy can be determined

through scalable, decentralized, local computations. Section 4.4 addresses the shortcom-

ings of the simple model’s assumptions, describing an efficient method of computing the

optimal storage capacity of a single cache forcompletely arbitraryworkloads, miss costs,

and storage costs. This method allows us to computecompletestack distance transfor-
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Figure 4.1: Two-level caching hierarchy of Section 4.2.

mations and arbitrarily-weighted hit rates atall cache sizes for large traces using modest

computational resources. Section 4.7 concludes by discussing the two models’ limitations

and their relation to other literature.

4.2 A Simple Hierarchical Caching Model

Consider a two-level cache hierarchy as depicted in Figure 4.1 in whichC lower-level

caches each receive request streams described by the same popularity distribution at the rate

of R references per second; child request streams need not be exactly identical, but their

aggregate statistical properties (relative popularity of documents and mean request rate) are

the same. Requests that cannot be served by one of these “child” caches are forwarded to

a single higher-level “parent” cache. A document of sizeSi bytes may be stored in a child

or parent cache at a cost, respectively, of $Mc or $Mp dollars per byte. Bandwidth between

origin servers and the parent costs $Bp dollars per byte per second, and bandwidth between

the parent and each child costs $Bc. Our objective is to serve the child request streams

at minimal overall cost in the long-term steady state (all caches “warm”). The tradeoff at

issue is the cost of storing documents closer to where they are requested versus the cost of

repeatedly retrieving them from more distant locations.

Request streams are described by an independent reference model in which documenti

is requested with relative frequencypi where∑i pi = 1; the rate of request for documenti is

thereforepiRrequests per second. The model of Breslau et al. [33] (independent references

from a Zipf-like popularity distribution) is a special case of the class of reference streams
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Table 4.1: Notation of Section 4.2.

M total number of requests
N total number of distinct documents
C number of child caches
R rate of requests reaching each child cache (requests/second)
i index of a typical document
pi relative popularity of documenti, ∑i pi = 1
Si size of documenti (bytes)
$Mc cost of storage at a child cache ($/byte)
$Mp cost of storage at parent cache ($/byte)
$M cost of storage when $Mc = $Mp ($/byte)
$Bc cost of bandwidth between child cache and parent ($/(byte/sec))
$Bp cost of bandwidth between parent and origin server ($/(byte/sec))

considered here. Given independent references drawn from a fixed distribution, the most

natural cache removal policy is “Perfect LFU”, i.e., LFU with reference counts that persist

across evictions [33] (Perfect LFU isoptimalfor such a workload only if documents are of

uniform size). Our analysis furthermore requires that caches retain precisely those items

with maximal Perfect-LFU reference counts, so we shall therefore assume that all caches

useoptional-placementPerfect LFU: Following a request, the requested item is cached

only if its reference count is sufficiently high. Optional-placement variants of removal

policies are common in the theoretical caching and paging literature [77,79].

4.2.1 Centralized Optimization

Because we ignore congestion effects at caches and on transmission links, we may

compute optimal cache sizes by determining optimal dispositions for eachdocumentinde-

pendently, and then sizing caches accordingly. A document may be cached 1) at the parent,

2) atall children, or 3) nowhere. These alternatives are mutually exclusive: By symmetry,

if it pays to cache a document at any child, then it ought to be cached at all children; and

if a document is cached at the children it is pointless to cache it at the parent. The costs of

the three options for documenti are

cache at children cache at parent don’t cache

CSi$Mc Si$Mp+CpiRSi$Bc CpiRSi($Bp+$Bc)
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The document should be cached at the children if and only if this option is cheaper than the

alternatives (we break ties by caching documents closer to children, rather than farther):

CSi$Mc� Si$Mp+CpiRSi$Bc ) pi �
C$Mc�$Mp

CR$Bc
(4.1)

CSi$Mc�CpiRSi($Bp+$Bc) ) pi �
$Mc

R($Bp+$Bc)
(4.2)

Each child cache should therefore be exactly large enough to accommodate documentsi

whose popularitypi satisfies Equations 4.1 and 4.2; Perfect LFU replacement ensures that,

in the long-term steady state, precisely those documents will be cached at the children. By

similar reasoning, the parent cache should be just big enough to hold documents for which

parent caching is the cheapest option:

pi <
C$Mc�$Mp

CR$Bc
(4.3)

Si$Mp+CpiRSi$Bc�CpiRSi($Bp+$Bc) ) pi �
$Mp

CR$Bp
(4.4)

Taken together, the requirements for parent caching (Equations 4.3 and 4.4) imply a neces-

sary condition for the cache installation problem; a parent cache is justifiable only if there

are sufficiently many children:

C$Mc�$Mp

CR$Bc
> pi �

$Mp

CR$Bp
) C>

$Mp$Bc=$Bp+$Mp

$Mc
(4.5)

Note that it is straightforward to handle cases where a shared cache entails a fixed

cost: We compute the cost of serving the given workload without a shared cache and with

optimal child cache sizes (the only options for each document are to cache it at the children,

or nowhere). We then compute the cost of serving workload assuming a shared cache and

optimal cache sizes everywhere, and then simply select the cheaper alternative.

Of particular interest is the special case where per-byte memory costs at parent and

children are equal, and the number of children is large. If $Mp= $Mc= $M then the criterion

that determines whether a parent cache is economically justified by the number of children

(Equation 4.5) simplifies to

C>
$Bc

$Bp
+1 (4.6)
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Equations 4.5 and 4.6 are independent of document sizes, popularity, and request rates. In

the simplified model we are considering, the number of child caches required for a shared

parent to be economically viable depends entirely on technology costs.

If in addition to uniform memory costs we furthermore assume thatC is very large, the

criteria for caching at a child (Equations 4.1 and 4.2) simplify to

pi �

�
C�1

C

�
$M

R$Bc
�

$M

R$Bc
and pi �

$M

R($Bc+$Bp)

If the first of these inequalities is satisfied, then the second must also be satisfied, because

R and all costs are strictly positive. Therefore in the case where the number of children is

large and memory costs are identical at parent and children, documenti should be cached

at children iff

pi �
$M

R$Bc
(4.7)

4.2.2 Decentralized Optimization

I now describe circumstances under which adecentralizedcomputation that uses only

local information yields the same result as the centralized computation of Section 4.2.1.

Imagine that the parent and children caches are operated by independent entities, each of

which seeks to minimize its own operating costs ($Mp and $Bp for the parent, $Mc and

$Bc for the children). Each child’s decision whether or not to cache each document is

independent of whether the document is cached at the parent, because the transmission and

storage costs facing children are unaffected by caching decisions at the parent. The higher-

level cache in turn bases its caching decisions solely on the document requests submitted

to it and the costs it must pay to satisfy them. A child will cache documenti iff

Si$Mc� Si piR$Bc ) pi �
$Mc

R$Bc
(4.8)

After the lower-level caches have sized themselves to accommodate exactly those doc-

uments whose relative popularity satisfies Equation 4.8, requests for those documents will

not reach the parent. The parent will, however, receive requests for all other documentsj

46



at the rate ofCpjR, and will choose to cache all documents that satisfy

Sj$Mp�CpjR$Bp ) pj �
$Mp

CR$Bp
(4.9)

The condition of Equation 4.9 is identical to that of the previous centralized-optimi-

zation result (Equation 4.4). Furthermore, when memory costs are uniform Equation 4.8

becomes the child-caching criterion for large numbers of children (Equation 4.7). There-

fore the caching decisions—and hence cache sizes—determined independently by parent

and children through (literally) greedy local computations are the same as those that a

globally-optimizing “central planner” would compute.

4.3 Cost Calculations

In practice bandwidth costs rarely have the convenient dimensions we have thus far

assumed, because they typically involve fixed installation costs as well as periodic mainte-

nance and service fees. However, we can convert periodic costs into a single cost using a

standard present-value calculation [32]; in the simplest case

present value=
periodic payment

interest rate during period
(4.10)

For example, if the annual interest rate is 5%, the present value of perpetual yearly pay-

ments of $37 is $37/.05 = $740. Slightly more sophisticated calculations can account

for finite time horizons (depreciation periods) and variable interest rates. A back-of-the-

envelope PV calculation sheds light on the industry analysts’ negative remark about Cache-

Flow cited in Section 4.1: If the appliance yields 15% bandwidth savings on a $1,200/month

line ($180/month in cost savings) and if the annual interest rate is 5%, then the product’s

present value exceeds $40,000. However, if we assume a finite product life, we find that

PV exceeds purchase price only for lifetimes of roughly 7 years or more assuming 50%

bandwidth savings.

To put the model of this section in perspective, we briefly survey the actual costs of

bandwidth in Michigan circa early 2000. Note that the general form of these costs does not

correspond to the simple model of Section 4.2: Whereas that model assumed bandwidth

costs proportional to traffic volume, in practice both external and local bandwidth at U-M
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Table 4.2: Merit Networks Inc. prices of Internet connectivity for commercial and educa-
tional customers in U.S. dollars.

Technology Annual costs $B ($/(byte/sec))
& Bandwidth Installation Edu Comm Edu Comm

Private Line
56 Kbps 6,602 8,395 9,520 24.93 28.14

ISDN
64 Kbps 3,763 7,484 8,609 19.18 21.99

128 Kbps 3,763 8,504 10,609 10.87 13.50
256 Kbps 9,880 10,377 13,217 6.79 8.57
384 Kbps 10,224 11,996 15,326 5.21 6.60

Fractional T1
128 Kbps 7,307 14,077 16,182 18.05 20.68
256 Kbps 7,307 14,842 17,682 9.50 11.28
384 Kbps 7,307 15,352 18,682 6.55 7.93
768 Kbps 7,307 16,882 20,682 3.59 4.38

Full T1 line(s)
1.5 Mbps 7,307 19,942 24,682 2.17 2.67
3.0 Mbps 9,962 35,344 40,163 1.91 2.17

are purchased in terms of capacity rather than usage. Our motive for considering the actual

monetary costs of Internet and LAN bandwidth is Equation 4.6, which states a threshold

condition for the viability of a shared cache in terms of the ratio of internal and external

bandwidth costs.

Table 4.2 presents prices charged by Merit Networks, Inc. and corresponding band-

width costs based on Equation 4.10. All present-value calculations assume a 5% annual

interest rate.

The cost of 10 Mbps shared Ethernet installations at the University of Michigan pro-

vides a crude estimate of LAN bandwidth costs circa 2000. Table 4.3 presents LAN band-

width costs based the University’s internal prices. Prices shown are determined by the

following formula:

price= 1:1� (number of hosts�$458+$23;000)

(By summer 2002 switched Ethernet running at much faster speeds (GbpsE) is becoming

common, and at some institutions internal bandwidth prices might be two to four orders
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Table 4.3: LAN bandwidth costs of 10 Mbps shared Ethernet at the University of Michigan.
Data courtesy JoElla Coles of ITD.

bandwidth bandwidth
number of installation per client cost

clients cost ($) (bytes/sec) ($/(byte/sec))

1 25803 1250000.0 0.020643
5 27819 250000.0 0.111276

10 30338 125000.0 0.242704
15 32857 83333.3 0.394284
20 35376 62500.0 0.566016
25 37895 50000.0 0.757900
30 40414 41666.7 0.969936
40 45452 31250.0 1.454464
50 50490 25000.0 2.019600
75 63085 16666.7 3.785100

100 75680 12500.0 6.054400

of magnitude lower [69].) Consistent with the assumptions of this section, we compute

available bandwidth per LAN client for the idealized case of identical client behavior. Note

that if we take any $Bp from Table 4.2 and anyC and $Bc from Table 4.3, these will sat-

isfy Equation 4.6 for anyC > 1. (Again, we emphasize that actual internal and external

bandwidth costs at U-M do not follow the simple usage-based proportionality assumption

of Section 4.2, so this observation is at best suggestive.)

Some readers may object that technology costs fluctuate too rapidly to guide design

decisions. While it is true that memory and bandwidth prices change rapidly, engineer-

ing principles based on technology priceratios have remained remarkably robust for long

periods [70]. Because the main results of this section are stated in terms of ratios, it is

reasonable to suppose that they are relatively insensitive to short-term technology price

fluctuations.

4.4 A Detailed Model of Single Caches

The model assumptions and optimization procedures of Section 4.2 are problematic

for several reasons: The workload model assumes an idealized steady state, ignoring such
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Table 4.4: Notation of Section 4.4.

M total number of requests
N total number of distinct documents requested
xt document requested at virtual timet
Si size of documenti (bytes)
$t cost incurred if request at timet misses ($)
$M(s) storage cost of cache capacitys ($)
Dt set of documents requested up to timet
Pt(i) priority of documenti 2 Dt

δt priority depth function defined on documents inDt (bytes)
$A(s) total miss cost over entire reference sequence ($)

features as cold-start effects and temporal locality. The model assumes that caches use

Perfect-LFU replacement. Production caches, however, nearly always use variants of LRU;

many cache designers reject Perfect LFU because of its higher time and memory overhead.

Real-world storage and miss costs are not simple linear functions of capacity.

In this section I describe a method for determining the optimal size of asinglecache

that suffers from none of the above deficiencies. I assume that 1) workload is described by

anexplicit sequenceof requests; 2) anarbitrary miss cost is associated with each request;

3) the cache uses one of a large family of replacement policies that includes LRU and a vari-

ant of Perfect LFU; and 4) the cost of cache storage capacity is an arbitrary nondecreasing

function. The first assumption allows us to apply this algorithm to traces, e.g., proxy logs.

The second allows us to assess different miss costs for documents of different size, or for

requests to the same document during peak vs. off-peak hours. The third assumption means

that my method is applicable to the vast majority of production Web caches, and the fourth

allows us to consider any reasonable storage cost function.

Cache workload consists of a sequence ofM referencesx1;x2; : : : ;xM where subscripts

indicate the “virtual time” of each request: If the request at timet is for documenti, then

xt = i. Associated with each reference is a nonnegative miss cost $t . Whereas document

sizes are constant, the miss costs associated with different requests for the same document

need not be equal: Ifxt = xt 0 = i for t 6= t 0 we requireSxt = Sxt0
= Si , but we permit $t 6= $t 0

(e.g., miss costs may be assessed higher during peak usage periods). Finally, the cost of

cache storage $M(s) is an arbitrary nondecreasing function of cache capacitys; this permits

us to consider, e.g., fixed costs.
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The set of documents requested up to timet is denotedDt � fi : xt 0 = i for somet 0� tg.

A scalarpriority Pt is defined over documents inDt ; two documents never have equal

priority: Pt(i) = Pt( j) iff i = j. Informally, thepriority depthδt of a documenti 2Dt is the

smallest cache size at which a reference to the document will result in a cache hit. Formally,

δt(i)� Si + ∑
h2Ht

Sh where Ht � fh2 Dt : Pt(h)> Pt(i)g (4.11)

The priority depth of documents not inDt is defined to be infinity. Priority depth general-

izes the familiar notion of LRU stack distance [108] to the case of non-uniform document

sizes and general priority functions (the use of stack distances to measure temporal locality

is discussed in Section 3.2). Let

$A(s)�
M

∑
t=1

$t It(s) where It(s)�

8<
:

0 if s� δt(xt)

1 otherwise
(4.12)

denote aggregate miss cost over the entire reference sequence as a function of “size” param-

eters (note that this is simply a kind of cumulative distribution). For every input sequence,

$A(s) is equal to the total miss cost incurred by a cache of sizes whose eviction order is

defined byP provided thats �maxi Si , and that the cache removal policy satisfies thein-

clusion property, meaning that a cache of sizes will always contain any smaller cache’s

contents. The second requirement is familiar from the literature on stack distance transfor-

mations of reference streams [23,108,128,155]; replacement policies with this property are

sometimes known as “stack policies”.1 The first requirement is necessary because aggre-

gate miss cost is monotonic only for cache sizes capable of holding any document. Mattson

et al. describe the relationship between the cumulative distribution of stack distances and

cache hit rate [108]; Equation 4.12 simply generalizes this to the case of non-uniform doc-

ument sizes and non-uniform miss costs.

Given $A(s) we can efficiently determine a cache sizes� that minimizes total cost

$A(s�)+ $M(s�). Because storage cost is nondecreasing in cache capacity, we need not

1LRU and the variant of Perfect LFU that caches a requested document only if it has sufficiently
high priority (“optional-placement Perfect LFU”) are stack policies; FIFO and mandatory-placement LFUs
are not [108]. The most interesting recent Web cache removal policies—GD-Size [42], GDSF [10],
swLFU [86,87], LUV [18] and GD* [82]—do not satisfy the inclusion property, and therefore the fast single-
pass simulation methods described in Section 4.5 cannot be applied to them.

51



consider total cost at all cache sizes: $A(s) is a “step function” that is nonincreasing in

s, with at mostM “steps,” and minimal overall cost must occur at one of them. We may

therefore determine a (not necessarily unique) cache size that minimizes total cost inO(M)

time.

In summary, my method for computing the optimal size of a single cache from a trace

is as follows: Given document sizes, a suitable priority function, and a reference stream,

compute the priority depth of each reference using Equation 4.11. Compute aggregate

miss cost as a function of cache size using Equation 4.12. Finally, inspect the “steps” in

this function’s domain;s� is guaranteed to occur at one of them.

At first glance, it might appear that the bottleneck in this approach is the computation

of priority depth (Equation 4.11). A straightforward implementation of a priority list, e.g.,

as a linked list, would requireO(N) memory andO(N) time per reference for a total of

O(MN) time to process the entire sequence ofM requests. For reasonable removal poli-

cies, however, it is possible to perform this computation inO(M logN) time andO(N)

memory using an algorithm reminiscent of those developed for efficient processor-memory

simulation [23, 128, 155]; I describe my priority-depth algorithm in Section 4.5. Given a

pair (δt(xt);$t) for each ofM requests, we can compute $A(s) after sorting these pairs on

δ in O(M logM) time andO(M) memory. This “post-processing” sorting step is there-

fore the computational bottleneck for any trace workload, in whichM � N. By contrast,

a simulation of asingle cache sizewould requireO(M logN) time for practical removal

policies.

4.5 Fast Simultaneous Simulation

I now describe an algorithm that computesδt for each ofM references inO(M logN)

time andO(N) memory by making a single pass over a reference sequence. Daniel Reeves

and I developed this algorithm together. The crucial insight that stack distances can be com-

puted in logarithmic time is due to Reeves, who rediscovered a cleaner and simpler version

of Bennett & Kruskal’s scheme [23]. Because it computes $A(s) at the additional cost of

sorting the output, in effect this algorithm simultaneously simulatesall cache sizes of pos-

sible interest. An efficient method is necessary to compute stack distances for real traces,

in which M andN can both exceed 10 million [87]. To make the issue concrete, whereas
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a na¨ıveO(MN) priority depth algorithm required over five days to process 11.6 million re-

quests for 5.25 million documents, myO(M logN) algorithm completed the job in roughly

three minutes on the same computer.

For this method to work, we require that the priority functionP corresponding to the

cache’s removal policy satisfy an additional constraint: The relative priority of two docu-

ments may change only when one of them is referenced. This is not an overly restrictive

assumption; indeed, some researchers regard it as a requirement for a practical replacement

policy, because it permits requests to be processed in logarithmic time [18].

We represent documents in the setDt as nodes of a binary tree, where an inorder traver-

sal visits document records in ascending priority. Each distinct document requires one

node, hence theO(N) memory requirement. Each node stores the aggregate size of all doc-

uments in its right (higher-priority) subtree; we can therefore recoverδt (i) by traversing the

path from documenti’s node to the root (see Figure 4.2). To process a request, we output

the referenced document’s priority depth, remove the corresponding node from the tree,

adjust its priority, and re-insert it. Tree nodes are allocated in anN-long array indexed by

document ID, so locating a node takesO(1) time. All of the other operations useO(logN)

time, for a total ofO(M logN) time to process the entire input sequence. Cormen et al.

describe similar ways of augmenting data structures; Exercise 14.2-4 on page 311 of their

algorithms text is strongly reminiscent of the method used here [48] (this appears in the

first edition of the text as Exercise 15.2-4 on page 289 [47]).

For all removal policies of practical interest, a document’s priority onlyincreaseswhen

it is accessed. A simple binary tree would therefore quickly degenerate into a linked list, so

I use a splay tree to ensure (amortized) logarithmic time per operation [93, 146, 154]. It is

possible to maintain the invariant that each tree node stores the total size of all documents

represented in its right subtree during insertions, deletions, and “splay” operations without

altering the overall asymptotic time or memory complexity of the standard splay tree algo-

rithm. A simple ANSI C implementation of our priority depth algorithm is available [84].

Martin Arlitt of Hewlett-Packard Labs reports that my simple, unoptimized implementa-

tion of the Reeves-Kelly priority depth algorithm computes stack distances for a very large

trace roughly six times faster than his own highly-optimized implementation of a slower

algorithm (19 hours vs. roughly 5 days).
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Doc 4
Size: 27

Doc 1
Size: 34

Doc 3
Size: 19

Doc 2
Size: 43

Size: 62
Doc 7Doc 6

Size: 51

Doc 5
Size: 75

34 43

62+19+43=124

Increasing priority

Priority depth = 34+75+124=233

Figure 4.2: Recovering priority depth. In this example, document 1 has been referenced.
We initialize an accumulator to the size of document 1 (in this example, 34) plus the sum
of sizes of all documents in its right subtree (in this example, zero). We then walk up
to the root. When we move from a right child to its parent (e.g., from document 1 to
document 6) we do nothing. However when we move from a left child to its parent (e.g.,
from document 6 to document 5) we add to the accumulator the size of the parent (75)
and the sum of sizes of all documents in the parent’s right subtree (124). When we reach
the root, the accumulator contains the sum of the sizes of the referenced document and all
higher-priority documents, i.e., the priority depth of the referenced document (233).
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Reeves and I devised our efficient priority depth algorithm before we became aware of

similar (though less general) techniques dating back to the mid-1970s [23,128,155], which

appear not to be widely used in Web-related literature. To the best of our knowledge, no

recent papers containing stack depth analyses [4, 15, 19, 20, 103] cite the most important

papers on efficient stack distance computation [23, 128, 155]). The idea of using splay

trees is suggested by Thompson, who used AVL trees in his own work and reports that

AVL-based implementations are complex and error-prone [155]. The Reeves/Kelly priority

depth algorithm is simpler than those described in the processor-memory-caching literature

because it ignores associativity considerations and assumes that cached data is read-only.

It is better suited to Web caching because it handles variable document sizes and arbitrary

miss costs.

4.6 Numerical Results

To illustrate the flexibility and efficiency of the Reeves/Kelly priority depth algorithm,

I use it to computecompletestack distance transformations and LRU hit rates atall cache

sizes for six four-week NLANR [66] Web cache traces summarized in Table 4.5 and de-

scribed more fully in Table 3.3. Similarly detailed results rarely appear in the Web caching

literature. Almeida et al. present complete stack distance traces for four Web server work-

loads ranging in size from 28,000–80,000 requests [4]. They furthermore note that the

marginal distribution of a stack distance trace is related to cache miss rate, but their dis-

cussion assumes uniform document sizes. Arlitt et al. present the only stack depth analysis

of large traces (up to 1.35 billion references) of which I am aware [12, 13]. Complete and

exact calculations may have been viewed as computationally infeasible. All of the results

presented here, however, were computed in a total of under five hours on an unspectacular

machine—far less time than was required to download our raw trace data from NLANR.2

LRU stack distance, a standard measure of temporal locality in symbolic reference

streams, is a special-case output of our priority depth algorithm when all document sizes

and miss costs are 1. Section 3.2 explains the relationship between LRU stack distances and

2We used a Dell Poweredge 6300 server with four 450-MHz Intel Pentium II Xeon processors and 512 MB
of RAM running Linux kernel 2.2.12-20smp.
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Table 4.5: Traces derived from access logs recorded at six NLANR sites, 1–28 March
1999. Run times shown are wall-clock times to compute given quantities, in seconds. The
run times sum to under four hours, ten minutes.

BO1 PA PB SD SV UC

# documents (millions) 5.25 4.90 9.82 8.64 9.38 7.62
# requests (millions) 11.58 13.55 19.80 37.09 23.74 26.02
maxSi (MB) 218.6 104.9 218.7 175.0 107.4 175.0
unique bytes (billions) 104.5 76.0 188.3 204.9 159.1 150.1
bytes requested (billions) 236.2 220.7 383.1 620.3 412.9 397.5
run times (sec):

priority depths 230 288 399 872 547 587
stack distances 249 341 403 1117 581 716
HR(size) 309 414 497 1439 712 903
BHR(size) 314 423 522 1461 740 913

temporal locality. Intuitively, the LRU stack distance of a given reference is the number

of distinct documents that were accessed between the given reference and the previous

reference to the same document. If most hits occur at a shallow depth in the LRU stack,

this indicates high temporal locality, and suggests that even a small LRU cache will yield

a high hit rate. Mattson et al. is the classic reference on stack distance analysis [108];

Almeida et al. [4] and Arlitt & Williamson [15] apply the technique to Web traces.

The frequency distribution of stack distances from our six traces is shown in Figure 4.3

(top). Frequency distributions visually exaggerate temporal locality, particularly when (as

is common in the literature) the horizontal axis is truncated at a shallow depth. The sit-

uation does not improve if we aggregate the observed stack distances into constant-width

bins, because as Arlitt & Williamson have noted, the visual impression of temporal locality

created depends on the granularity of the bin sizes we choose [15]. The clearest and least

ambiguous way to present these data is with a cumulative distribution, as on the bottom of

Figure 4.3, from which order statistics such as the median and quartile stack distances are

directly apparent. For all six of our NLANR traces the median stack distance is 100,000 or

greater, indicating weak temporal locality; this is not surprising, because L1 (browser) and

L2 (proxy) caches filter most of the temporal locality from client reference streams before

they reach NLANR’s L3 (network backbone) caches.
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Figure 4.3: Frequency distribution (top) and cumulative distribution (bottom) of LRU stack
distances in six traces. Compare these data with Table 10 and Figure 8 of Arlitt & Jin [13];
temporal locality is far weaker in our network cache traces than in their very large server
workload.
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Figure 4.4 shows LRU hit rates and byte hit rates at all cache sizes for our six Web

traces. For the workloads considered, exact performance measurements at all cache sizes

appear to offer littlevisualadvantage over the customary technique of interpolating mea-

surements taken at regular intervals (e.g., 1 GB, 2 GB, 4 GB, etc.) via single-cache-size

simulation. However, since exact hit rate functions may be obtained at very modest com-

putational cost, it is not clear that a less precise approach offers any advantage, either.

4.7 Discussion

The idealized model of Section 4.2 is useful for computing optimal cache sizes only to

the extent that its underlying workload and cost assumptions are valid. Breslau et al. argue

that the independent reference model is approximately accurate for many purposes [33], but

Almeida et al. have describe several shortcomings of this model and propose more accurate

alternatives [4]. The model of Section 4.2 assumes a homogeneous population of lower-

level caches; Wolman et al. explore in detail the implications of sharing amongheteroge-

neousclient aggregates, and furthermore consider document modification rates, which I

ignore [171,172]. The primary formal weakness of my model of hierarchical caching is its

simple linear cost model. In many cases of practical interest, memory and bandwidth costs

are step functions that do not admit accurate linear approximations. Finally, I ignore the

low-level aspects of Web operation. Feldmann et al. report that details such as bandwidth

heterogeneity and aborted transfers can negate the bandwidth savings that proxy caching

would otherwise yield [62].

The single-cache optimization method of Section 4.4 does not model cache consistency

mechanisms and therefore does not distinguish between “fast hits,” in which the required

payload is obtained from cache without revalidation, and “slow hits,” in which successful

revalidation entails a round-trip to the origin server but no payload data is transferred. In

other words, miss costs can be assessed only for payload transfers; successful revalidations

entail no payload transfer and therefore are assigned zero cost. This is problematic in

cases where latency drives the cost model and where round-trip time is large compared

to payload transfer time. However the method is well suited to bandwidth-driven cost

models, to latency-based costs in low-RTT, low-bandwidth communications media, and to

workloads with large payloads (e.g., entertainment-on-demand workloads).
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Figure 4.4: Exact hit rates (top) and byte hit rates (bottom) as function of cache size for
six large traces, LRU removal. Fast simultaneous simulation method yields correct results
only for cache sizes� largest object size in a trace; smaller cache sizes not shown.
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Another problem with the method is that it does not account for uncertainty in expected

workload; it implicitly assumes that a trace recorded in the past represents future reference

patterns. Ideally we would like to incorporate uncertainty into the capacity planning pro-

cess directly, to support risk-averse design in a principled way. One step in this direction

would be to explore the relative importance of different aggregate workload characteristics,

e.g., the distributions of document popularity and size, on optimal cache size. If simple re-

lationships are found, e.g., between mean popularity-weighted document size and optimal

cache size, then it may be possible to account for risk aversion straightforwardly.

Aside from these issues, my workload-driven single-cache optimal sizing method is

usable in its present form. One obvious application is the determination of optimal brow-

ser cache sizes. Douceur & Bolosky’s study of disk usage on a large corporate network

indicates that roughly half of all PC disk space is unused [57], so there’s no shortage of po-

tential browser cache space in rich-client environments. Resource-constrained thin clients

such as wireless palmtop browsers and diskless set-top boxes provide a more compelling

context in which to apply my optimization methods, because neither storage nor bandwidth

are cheap or plentiful in such environments.

The single-cache optimization method of Section 4.4 is fully general in the sense that

per-reference miss costs may reflect any criteria whatsoever. In particular, they may reflect

the preferences of system stakeholders, and in this case they permit more flexibility than

the value model I defined in my investigation of preference-sensitive removal policies.

Whereas the value model of Section 3.1.1 associates miss penalties withdocuments, here

we associate them withreferences. This flexibility allows us to assess different miss costs

on different references to the same document using a wide variety of criteria, e.g., time of

day, server load, network load, and the client who issues each request. This in turn allows

us to choose cache sizes well suited not merely to the order in which accesses are made and

the sizes of accessed items but also to theimportanceof accesses, which we may define as

we please.
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CHAPTER 5

Cache Analysis, Traces, and Simulation

While simplified analytic workload models and publicly-available trace data are suffi-

cient for the investigations we have considered so far, they cannot support the full range of

research questions considered in this thesis. This chapter explains why it was necessary to

develop and employ the novel workload measurement technique described in Chapter 6 and

describes the computational challenges of large data sets. Purely analytic investigation of

removal policies yields results too weak to guide cache design, and therefore we must often

resort to empirical and numerical methods. The sections that follow explain the shortcom-

ings of analytic alternatives to cache simulation, discuss problems with publicly-available

Web trace data, review existing trace-collection methodologies, and sketch the design of a

parallel cache simulator capable of handling large traces.

5.1 Analytic Modeling

An offline algorithmreceives all of its input at once. Anonline algorithmreceives its

input in installments. Cache replacement policies are instances of the latter, because a cache

must dispose of its current request before receiving the next. When we speak of “offline

removal policies” we refer to policies that exploit clairvoyant knowledge of future accesses

in making eviction decisions; such policies, of course, are not realizable in practice, but

they can provide upper bounds on the performance of any removal policy governing a

finite cache. Belady describes an optimal offline removal policy for the special case of

uniform page sizes and uniform miss costs [22] and Hosseini-Khayat considers optimal

offline removal in the general case of non-uniform page sizes and miss penalties [77].
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The standard framework for analyzing caching and paging policies and other online

algorithms is Sleator & Tarjan’scompetitive analysis[145]. We say that an online algo-

rithm is c-competitive if the cost it incurs on any input is not more thanc times that of

the optimaloffline algorithm plus a constant;c is called the algorithm’scompetitive ra-

tio. Competitive analysis assumes an adversarial workload model and provides worst-case

performance bounds that often underestimate performance under real workloads.

If page sizes may vary, the best competitive ratio achievable by any deterministic on-

line replacement policy isk+ 1, wherek is equal to cache size divided by smallest doc-

ument size [79]; Greedy-Dual Size attains this bound and is therefore said to beonline

optimal [42]. For some minimal-cost caching problems, randomized algorithms with a

competitive ratio ofO(log2k) are available [79]. Kimbrel extends competitive analysis to

caching systems with weak (expiration-based) consistency mechanisms [90]. Becausek

is typically on the order of 10 million or more, the competitive analysis properties of an

algorithm are unlikely to sway a cache designer’s choice of removal policy. Furthermore,

online-optimal algorithms like LRU and GD-Size are in practice observed to perform far

better than competitive analysis suggests.

In addition to weakening the performance bounds we obtain from competitive anal-

ysis of paging systems, non-uniform page size and miss cost complicate analysis enor-

mously. Whereas the optimal offline removal policy for the special case of uniform page

size and page fault penalty (“longest forward distance”) has been known for decades and

is both straightforward and computationally tractable [22], the optimal offline policy for

non-uniform size and cost has only recently been described, and the computational prob-

lem is NP-complete [77]. In other words, even if we could somehow supply a Web cache

with clairvoyant knowledge of future access patterns, it is computationally infeasible for

the cache to exploit this knowledge to full advantage.

A different analytic approach to understanding reference streams and the performance

of paging policies that process them is to develop workload models and derive performance

results for various cache management strategies directly from these models. Examples of

workload models include the independent reference model, the LRU stack model, and the

working set model (see Rau [137] and the references therein for an excellent review of these

models from the processor-memory literature). Knuth analyzes optimal offline removal
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assumingrandompage references, and devotes some attention to the LRU stack distance

model [91].

While superior in most respects to the competitive-analysis approach, analytically trac-

table workload models often poorly predict the performance of Web removal policies, and

therefore trace-driven simulation plays an essential role in replacement policy evaluation.

Existing synthetic workload generators and benchmarks such as SURGE [20], WebPoly-

graph [134], and SPECweb [149] cannot provide acceptable inputs for the kinds of trace-

driven simulations I require because they make no attempt to mimic a phenomenon crucial

to my investigations: aliasing. Synthetic generators assume a one-to-one relationship be-

tween content names (URLs) and content (reply payloads), and therefore cannot shed light

on the performance implications of the more complex URL/payload relationship that exists

in the wild. We therefore require traces of real workloads collectedin situ.

5.2 Trace-Collection Methods and Available Traces

This section explains my trace data requirements in terms of my research questions.

After explicitly stating my requirements I review existing trace-collection methods and

publicly-available data sets.

5.2.1 Requirements

My primary goal is to develop efficient and cost-effective ways to serve the work-

load submitted to the World Wide Web by content providers and content consumers. Re-

searchers have investigated in detail the workload placed oncomponentsof the World Wide

Web, e.g., servers, proxies, and networks [10–15,58,60,61,171,172]. Little is known, how-

ever, about the fundamental exogenous workload placed on the Webas a system. At the

server end, exogenous workload consists of the universe of available data and the names

(URLs) through which it is published. Padmanabhan & Qiu investigate content creation

and modification dynamics at a large, busy Web site [130]; this is the only systematic study

of available content of which I am aware. At the client end, patterns of client accesses

constitute the exogenous workload. A handful of studies, reviewed in Section 5.2.4, have

measured and analyzed client workload directly, but many questions remain open.
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In particular, interactions between dedicated (browser) and shared intermediate (proxy)

caches in storage/retrieval systems like the Web are not well understood. Access pat-

terns in distributed file systems exhibit so little sharing across client reference streams that

even small client caches dramatically reduce the maximal hit rates of shared intermediate

caches [121]. This observation may not be true of the Web, where sharing might be much

stronger. To understand the impact of browser cache size on both browser and proxy cache

performance we requirecompleteclient reference streams, unfiltered by browser caches.

More generally, we want traces that record the system’s exogenous workload unaltered by

the systemcurrentlyserving it, because such traces permit the bottom-up simulation ofany

system that might serve the workload. They allow us to explore as many points in the space

of possible designs as our computational resources permit.

The range of questions I wish to address requires a detailed record of (request, reply)

transactions for all requests issued by a large population of clients. To model conventional

URL-indexed caches, it is necessary to know the (possibly anonymized) URL for each re-

quest. To determine upper bounds on cache hit rates and understand the impact of content

naming practices on cache performance, it is necessary to identify cases where the reply

data payloads in different transactions are the same; an anonymized payload digest is suf-

ficient for this purpose. To model a variety of cache freshness heuristics and revalidation

policies, it is necessary to record metadata returned by origin servers in replies.

5.2.2 Server Logs

It is straightforward for researchers to obtain origin server logs from a variety of differ-

ent sources [14, 104]. Furthermore server logs can be extraordinarily large [13], and since

some popular server software is available in source form it is relatively easy to instrument

servers to collect very detailed traces. A server, however, sees only a fraction of all the

transactions involving the clients that visit it, so server logs are unsuitable for investigation

of browser/proxy cache hierarchies.

5.2.3 Proxy Logs and Sniffers

To record transactions involving large numbers of users and servers, researchers some-

times employ packet sniffers [61, 62, 148] or proxy logs [56]; both typically record trans-
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actions that pass between a pool of clients and the Internet. Widespread use of caching

proxies can complicate the sniffer approach because a sniffer located between a caching

proxy and the Internet does not record requests served from the proxy cache. The logs of

a caching proxy do not suffer from this problem, but such logs do not necessarily reflect

the payloads that origin servers would provide: Proxies might serve stale content unless

they revalidate payloads with the origin server with every cache hit. Moreover, proxy and

sniffer traces do not record client requests served from browser caches.

Implementors and administrators regard proxy logs primarily as security features; con-

sequently the logging capabilities of most proxies are not well suited to research. Logs

rarely record all of the data available to the proxy and typically omit information crucial

to accurate trace-driven simulation. In particular, they fail to record cache-related HTTP

metadata in reply headers and “META http-equiv ” tags within HTML files, reply pay-

loads or hashes thereof, and accurate, high-resolution timestamps. Davison and C´aceres et

al. have documented the shortcomings of conventional proxy log formats [39,53].

When a single logical cache consists of multiple host machines, e.g., when Microsoft’s

Cache Array Routing Protocol (CARP) [50] is used, new problems can arise. The times-

tamps in MS Proxy Server access logs have one-second resolution, and the system clocks

in a CARP array are seldom carefully synchronized. Furthermore, a single client’s requests

are load-balanced across the array. It is therefore impossible to determine the true order

in which references arrive at the proxy array, making the logs useless for removal policy

evaluation, which is sensitive to the exact arrival order of references.

5.2.4 Instrumented Clients

In a few cases, researchers have instrumented Web browsers to collect true client traces

unfiltered by browser caches. Catledge & Pitkow recorded a client trace at the Georgia Tech

Computer Science department in 1994, and researchers at Boston University’s CS depart-

ment recorded a similar trace in 1995 [43, 52]. Both traces are remarkably rich, recording

a wide variety of user-interface events unavailable outside the browser. Together, these two

traces have supported a number of interesting studies [26, 43, 51, 52]. In principle, client

traces can support realistic bottom-up explorations of cache hierarchies and shed light on

user interactions invisible outside the client. Researchers cannot easily instrument popular
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browsers today because source code is unavailable, but a client proxy such as Medusa [92]

can collect much of the same data. However, it remains difficult to deploy an instrumented

browser among a large and representative sample of Web users. Furthermore, if such a feat

were possible it would still be difficult to synchronize large numbers of client clocks, es-

pecially on resource-constrained thin clients, and accurate simulation of a cache hierarchy

is impossible without precise event timestamps. Finally, elaborate browser instrumenta-

tion may not be an option in memory-constrained thin clients; Adya et al.’s recent study

of mobile client browse patterns relies on server logs [1]. To the best of my knowledge,

no instrumented-client traces have been collected for research purposes since 1995. (A

1999 sequel to the original Boston University study used a trace that did not reflect browser

cache hits [19].) Alexa (now a subsidiary of Amazon.com) has instrumented large numbers

of Web browsers through a downloadable toolbar that reports surfing activity to a central

logging site, but the traces collected through this proprietary method are not used for re-

search purposes and neither the collection method nor the data logged are described in

detail [2].

5.2.5 Publicly-Available Traces

Some of the most detailed and interesting Web workload traces have not been published,

to protect proprietary corporate information and end-user privacy [12, 85, 115, 130, 171].

Published traces are often anonymized to conceal the identities of clients, the resources

(URLs) accessed, or both. In most cases anonymization does not diminish the scientific

value of traces, but it can destroy useful information if performed too aggressively: The

NLANR access logs used in Chapters 3 and 4, for instance, anonymize client identities

differently each day, making it impossible to extract individual client reference streams

more than one day long [66].

Another problem with the widely-used NLANR traces is that the total number of human

users whose requests pass throughall of NLANR’s “worldwide backbone cache system”

is now known to be remarkably small. In 1999 Duke University researchers estimated the

total NLANR end-user population at “over 13,000” based on an analytic model, and at

25,000–43,000 based on analysis of Squid’s “Via” and “X-forwarded-for” headers [67].

At my request Duane Wessels of NLANR counted 98,144 unique “leaf” IP addresses in
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these logs for the first 26 days of October 2000 [164]. Considering the prevalence of

dynamically-assigned IP addresses, this probably represents an over-estimate of the true

end-user population.

Brian Davison has compiled a comprehensive index of available Web traces [54], many

of which are stored at the Web Characterization Repository [74]. Roughly half are server

logs. With the exception of the NLANR traces, which are published daily, the most re-

cent trace dates to November 1999. Most of the available proxy traces are small in terms

of the number of transactions recorded, the number of clients involved, or the duration of

data-collection. In several cases the “infinite cache size” (sum of distinct document sizes)

is so small that a cache of reasonable capacity would never need to evict a document; such

traces are useless for comparing removal policies.Noneof the traces contain reply-payload

checksums, and most lack request and reply metadata. Finally, many publicly-available

traces were collected in idiosyncratic environments, e.g., academic computer science de-

partments and computer corporations, andall were generated by heavyweight clients (full-

featured browsers running on desktop PCs or engineering workstations). Such traces may

not be representative of workloads generated by typical end-users on the memory- and

bandwidth-constrained browsers that are proliferating as the Web expands onto set-top

boxes and wireless handheld devices.

5.2.6 Summary

To summarize, the few existing Web client traces are several years old, reflect the re-

quests of computer science students, and are small in comparison with server and proxy

traces. By contrast server and proxy traces are often large and sometimes describe more

representative user populations but typically omit reply metadata and references served

from browser caches. Section 6.1 describes a collection methodology that combines some

of the advantages of client and proxy traces and explains how this technique was used to

measure Web client workload on an unprecedented scale.
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5.3 Efficient General Simulation

Efficient single-pass simultaneous simulation to determine aggregate miss cost as an

exact function of cache size for an explicit workload (sequence of requests) is possible

only for a subset of interesting removal policies, and for cache sizes no smaller than the

largest referenced data object (see Sections 4.4 and 4.5 for details). To simulate small

caches and the full range of interesting removal policies, we must resort to conventional

methods, i.e., we must simulate one cache size at a time.

Surprisingly, in contrast to the large literature on processor-memory cache simulation,

there seems to be little literature on Web cache simulator design (i.e., simulation of fully as-

sociative caches with read-only documents of variable sizes and weak consistency mecha-

nisms). I have identified only one paper that describes in detail the workings of a Web cache

simulator [174]. Two other cache simulators are publicly available, but their accompanying

documentation does not describe the rationale behind their designs [21,40]. None of these

simulators exploit parallel hardware architectures, and none seem explicitly designed to

efficiently process very large traces. On the contrary, the WebCASE simulator described

by Zhang et al. is implemented in Perl and emphasizes a graphical interface [174], and the

author of the Wisconsin Web Cache Simulator reports that one of her simulators can handle

only up to 2 million requests at a time [42, page 196].

In this section I briefly describe a general-purpose Web cache simulator that generated

many of the results presented in Chapter 3. My design decisions were guided by the expe-

rience of several previous implementations, discussions with Yee Man Chan, and folklore

passed along informally at workshops and conferences; like every other Web caching re-

searcher I’ve met, I learned the art of cache simulation on the street. I do not claim that the

design presented here is optimal. Yet, it is exemplary in that it is both relatively simple and

able to exploit the computational resources of modern shared-memory computers.

Main memory is often the limiting resource in Web cache simulation. CPU utilization

drops below 5% whenever a simulator begins to swap, dramatically extending the run times

of large simulations. Fast simulation is essential for evaluating cost-weighted removal

policies because we must sample many random cost functions to evaluate such policies.

(The comparison of GD-Size, GDSF, and A-swLFU presented in Figure 3.7 requiredsixty

CPU-daysto compute.) Therefore all of the data required for a simulation run must fit
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into main memory. Not many machines at the University of Michigan have enough main

memory to support large-trace simulations: An early-2000 survey of 78 UltraSPARCs on

the CAEN network revealed that 43 have 64 MB of RAM, 33 have 128 MB, and two

heavily-used cycle servers have 256 MB each. Under reasonable assumptions, four of the

six NLANR traces described in Table 3.3 require over 256 MB for a single simulation

run. We must therefore restrict ourselves to the relatively few computers on campus with

large main memories. In nearly every case these machines also happen to have multiple

processors, so ideally we would like to parallelize the simulation over multiple CPUs.

Multiple cache simulations are trivially parallelizable, in the sense that simulations of

different removal policies, cache sizes, traces, or cost functions can be run independently.

However, na¨ıve simulations of thesame tracerun as independent processes waste precious

RAM if each process has an identical copy of certain data, e.g., a large lookup table of

document sizes. Furthermore this redundant data isread-only, suggesting a design in which

multiple processes or threads simultaneously simulate the same trace on a multiprocessor

sharing access to a single copy of read-only data.

In my design, a simulator process first reads trace data and constructs two large read-

only lookup tables: one of document sizes, and one containing the sequence of document

references to be simulated. The main thread then spawns several worker threads that will

independently simulate different cache sizes, removal policies, or cost functions. Each

worker thread requires private read/write memory for maintaining simulated cache con-

tents. The number of workers is chosen to be as high as possible subject to the constraint

that the total size of all workers’ private memory plus the shared tables not exceed available

physical memory. Modern operating systems such as Solaris, Linux, and Irix automatically

assign the worker threads to different processors. This approach ensures that all CPUs are

utilized provided that sufficient memory is available for an extra simulator thread; similarly,

physical memory will be exploited so long as a free processor is on hand.

My simulator’s memory requirements vary with trace characteristics and also removal

policy; a complex policy like A-swLFU, for instance, requires more memory than LRU.

The memory requirements for LFU, GD-Size, swLFU and GDSF in my current implemen-

tation are given by the following expression (assuming 32-bit machine words):

# bytes = 8N+4M+T(4S+16N)
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Figure 5.1: RAM requirements of current multi-threaded simulator as function of num-
ber of active worker threads (number of processors used) for the six NLANR traces of
Table 3.3.

whereN is the number of documents in the trace,M is the number of references,T is

the number of worker threads, andS is the number of servers. Figure 5.1 shows memory

requirements as a function of number of worker threads for the traces I have used. In my

experiments with cost-biased removal policies I associate per-byte miss costs with servers

rather than with documents; see Section 3.1.1 for details. A happy side effect is that the

simulator’s memory requirements are substantially reduced. A more general simulator

that associated miss costs withrequestsrather than servers or documents might require

4N+8M+16TN bytes of memory.

The major shortcoming of my parallel simulator is that it does not model cache fresh-

ness policies and therefore does not distinguish between “slow hits” (successful revali-

dations) and “fast hits” (no contact with origin server required because cache entry is

fresh); this feature would not have helped my preliminary investigations, because the

NLANR traces do not include document metadata such as expiration dates. Furthermore

the HTTP/1.1 specification defines (often only implicitly or vaguely) a large parameter-

ized space of compliant cache freshness policies [64], and to the best of my knowledge

the freshness policies used in actual production caches are not well documented in the re-
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search literature or elsewhere. Anecdotal evidence suggests that the freshness policies of

several important production proxy and browser caches stray from the HTTP/1.1 caching

recommendations. It is therefore not clear which of the many reasonable freshness policies

a general-purpose simulator ought to implement. Finally, the benefits of a freshness policy

are limited: It merely allows us to distinguish between fast and slow hits and to model

violations of semantic transparency.
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CHAPTER 6

Workload Measurement

This chapter discusses a new technique for measuring Web client request streams and

describes how it was used to collect a large and detailed client trace at WebTV Networks.

It also presents a thorough workload analysis and simulation results describing the aggre-

gate LRU hit rate of the entire client population as a function of browser cache size. These

simulation results, made possible by the efficient single-pass algorithm of Section 4.5, rep-

resent an upper bound on LRU cache hierarchy performance that is inherent in the offered

workload, independent of the system currently serving it. We shall see that theactualper-

formance of the WebTV system falls short of the potential revealed by my simulations: Re-

dundant data-payload transfers that cannot be explained as compulsory or capacity misses

occur frequently in the WebTV system. I briefly describe how a simple HTTP protocol

extension can close this gap; Chapter 7 motivates the protocol extension and Section 7.5

describes it in greater detail.

As noted in Section 5.2, the trace data used in most empirical Web caching research

cannot support large-scale bottom-up simulations of browser/proxy cache hierarchies: Ex-

isting client traces are too small, and traces based on proxy logs and network sniffers

lack crucial detail. This section describes a technique that combines the relative ease of

proxy logging with most of the advantages of client instrumentation. In this method a

“cache-busting proxy” intercepts requests from unmodified clients and labels all replies

uncachable, thereby disabling browser caches and allowing the proxy to log requests that

would otherwise be served silently from browser caches. An informal survey of Web re-

searchers reveals that this technique has been proposed before; it was discussed by a group

at Boston University in late 1999 [30] and is described in a recent book by Krishnamurthy
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& Rexford [96]. Very recently, Adam Bradley of Boston University has implemented a

cache-busting proxy [30, 31]. To the best of my knowledge, however, the idea was never

used before my work at WebTV.

In September 2000 I collected a large anonymized trace of client accesses at WebTV

Networks using a cache-busting proxy. The proxy itself ran in non-caching mode; the

trace therefore reflects activity in a cacheless system. The proxy furthermore recorded a

checksum of every entity-body (data payload) received from origin servers, as well as a

checksum of the (possibly different) entity-body served to the client after transcoding by

the proxy. All events in this trace are timestamped at microsecond resolution by well-

synchronized proxy clocks. The proxy recorded all cache-related HTTP metadata in client

requests, server reply headers, and “META http-equiv ” tags in HTML files. WebTV’s

trace spans 16 days and records over 347 million requests to over 36 million documents by

over 37,000 clients; this is two orders of magnitude larger than any client trace described

in the Web caching literature.

6.1 Trace Collection

With over a million active subscribers WebTV Networks is among the largest Inter-

net service providers (ISPs), and its customer base is arguably more representative of the

general public than the traditional subjects of Web traces (computer science students and

computer industry employees). Furthermore the WebTV system is extraordinarily well in-

tegrated, providing essentially everything but the origin server: client hardware, browser

software, proxies, and Internet connectivity. WebTV staff constantly monitor and tune the

system to improve its performance, frequently adding new instrumentation as new ques-

tions arise. WebTV is an important production environment controlled by a single or-

ganization; performance enhancements suggested by workload analysis are far easier to

implement in such environments than in the overall Web. For these reasons WebTV is an

ideal environment for Web-related research.

WebTV clients represent an interesting intermediate point in design space, midway

between the resource-rich PC-based browsers of the early Web and the ultra-thin clients of

tomorrow. WebTV employs a relatively inexpensive (often diskless) set-top box to enable

Web surfing on a conventional television. The five types of client devices described in
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cache size # in H.R.
Type Description RAM disk trace (%)

FCS “Classic” 420 KB 8,790 37.64
BPS No-frills 1240 KB 11,253 41.94
LC2.5 “Plus” 3200 KB 7,370 44.41
LC2 Diskful Plus 1 MB 20 MB 8,535 44.64
ST1 Satellite 3 MB 20 MB 1,221 44.81

Table 6.1: WebTV client devices.

Table 6.1 were in use during September 2000; the last column shows estimates of client

cache hit rates based on request volumes reaching the proxy before and after browser caches

were disabled. Clients connect to the WebTV service via modem; according to WebTV’s

measurements, bandwidth to clients varies but is typically roughly 33.6 Kbps.

My original goal was to collect a client trace using instrumented browsers. WebTV fre-

quently downloads software updates to its client devices, so at first this seemed a straight-

forward approach. However a combination of logistical difficulties and schedule con-

straints forced an alternative approach. Compared with client software modifications, proxy

patches are much easier to implement and deploy and are far more frequent in practice. We

therefore decided to record unfiltered client requests by disabling the browser cache with a

modified proxy.

A sophisticated centralized service infrastructure compensates for WebTV client lim-

itations by transcoding images, re-writing HTML, and maintaining persistent state (e.g.,

cookies). Sixteen modified proxies collected WebTV’s client trace, with the following

non-standard features enabled during data collection:

� events were timestamped at microsecond resolution;

� checksums were logged of all entity bodies received from origin servers and all entity

bodies served to clients after transcoding;

� all metadata relevant to caching in client requests, server reply headers, and embed-

ded HTML tags were logged;

� all documents were served to clients with an “Expires: 0 ” HTTP header; and

� the proxy itself was run in non-caching mode.
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All trace fields related to user identity and requested content are anonymized to protect

user privacy. For instance, URLs and payload digests are irreversibly mapped to unique but

otherwise meaningless integers.

During normal operations WebTV proxies process every byte of every data payload,

so the additional performance penalty of computing checksums was relatively minor; sim-

ilarly, the proxies normally parse META tags in HTML. The number of proxy hosts that

collected data was twice as large as would normally be used for our sample client popula-

tion, so the proxies were not overloaded as they recorded the trace. Extensive tests on large

human-user test populations within WebTV prior to data collection revealed that the impact

of our collection methods on user-perceived latency was not significant. We are confident

that any additional latency due to the disabling of proxy and browser caches was minor and

did not affect user behavior.

Payload checksums are crucial to the namespace investigations of Chapter 7, for they

illuminate the relationship between a URL and the data payload returned as a result of

a specific access to that URL at a given instant. The fact that the WebTV trace reflects

activity in a cacheless system ensures that the payloads recorded in every transaction are

those returned directly from the origin server; there is no chance that the WebTV proxy

served (and logged) a stale payload from its cache. Another benefit of the WebTV trace is

that it reflects no requests initiated by “robots,” which can be identified only with complex

and unreliable heuristics [6].

META tags are necessary for correct browser cache simulations and are furthermore

interesting because they illustrate discrepancies between HTML-embedded metadata and

HTTP headers. For instance, META expiration dates often disagree with HTTP expirations.

Of over 149 million requests issued during 16–22 September, 95,558 have expiration dates

in both headers and META tags. Among these requests the META expiration is earlier

than the response header expiration 21.8% of the time; ignoring the HTML-embedded

expiration could cause consistency violations in some of these cases. In 141,159 cases an

expiration is specified only in a META tag; unnecessary revalidations would result from

ignoring the embedded metadata in some of these cases.

WebTV proxy host clocks are carefully synchronized via Network Time Protocol [114].

A script queried the proxies withntpq at ten-minute intervals throughout the data col-

lection period to check their clock synchronization; Figure 6.1 shows the distribution of
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Figure 6.2: Hourly request volume by GMT time, 1-hour time bins.

observed NTP parameters. The absolute offset of the proxies with respect to an accurate

reference is nearly always under 10 milliseconds. An individual client’s references are

nearly always separated by a longer interval. The WebTV trace therefore reflects the true

order in which accesses are made, which is crucial for accurate trace-driven simulation.

A sample of client devices was “attached” to our modified proxy bank throughout the

data collection period, i.e., all Web sessions initiated by these devices were handled by

the special proxies. WebTV clients communicate directly with origin servers for secure

transactions, which are therefore not reflected in our trace. Furthermore the trace contains

only HTTP requests; we did not record the small volume of FTP and Gopher traffic handled

by the proxies. We estimate that well under 5% of traffic escaped detection.

WebTV served documents pre-expired for over sixteen days beginning on Wednesday

6 September 2000. The request rate reaching our proxies promptly doubled, as illustrated

in Figure 6.2. By comparing request volumes from each client device type before and

76



0

5

10

15

31
Aug

7
Sept

14
Sept

21
Sept

%
 I

M
S 

re
qu

es
ts

time

LC2
ST1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

31
Aug

7
Sept

14
Sept

21
Sept

%
 I

M
S 

re
qu

es
ts

time

LC2.5
BPS
FCS
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hour windows. Note that vertical scales differ.

after 6 September we obtain crude estimates of browser cache hit rates; estimates based

on requests of 4–5 vs. 11–12 September are shown in Table 6.1. This technique must be

used with care, because browser caches did not cease to operate on 6 September, they

merely ceased to cache incoming documents. It is reasonable to suppose that many brow-

ser caches remained “warm” even after cache busting began, serving some fraction of re-

quests from cache. We gain insight into browser cache “cool down” from the percentage

of “ If-Modified-Since ” (IMS) revalidation requests reaching our proxies from each

device type over time, as shown in Figure 6.3.

Rich-client browsers typically use separate regions of memory to hold the currently-

viewed document and to cache previously-viewed objects; the contents of the cache there-

fore change only when new items are inserted into the cache. In the memory-constrained

WebTV client, however, the same region of memory is used as both a “staging area” for

the current item and as cache for previously-requested items. Large incoming documents

therefore cause cache evictionseven if they are not cached themselves. This accounts for

the rapid decrease in IMS requests in Figure 6.3. Collectively, the browser caches in our

sample are never flushed completely; even after two weeks IMS requests reach our prox-

ies, possibly from clients with low activity levels. However the fraction of IMS requests

quickly falls to negligible levels, particularly for diskless clients. Our estimates of browser

cache hit rate are based on proxy request volumes several days after cache busting began,

by which time most browser caches have cooled substantially. However it is possible that

our estimated hit rates for diskful clients are slightly low. In retrospect, we might have ob-

tained better results from a more thorough cache-busting proxy that attempted to forcibly
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full trace reduced trace
Clients 37,201 37,165
Server IP addresses 267,595 252,835
Server hostnames 536,451 412,509
URLs 40,756,045 32,541,361
Unique payloads 38,754,890 36,573,310
(URL, payload) pairs 54,910,572 44,785,808
Transactions 347,460,865 326,060,677
Bytes transferred

Total 1,973,999,619,772
Unique payloads 639,563,546,204

Table 6.2: WebTV trace summary statistics.

flush browser caches, e.g., by serving an HTML file with a large number of newline char-

acters appended to it.

Table 6.2 summarizes the WebTV trace. The trace is roughly as large in most respects as

recent proxy traces and substantially larger than mid-1990s Web client traces. Furthermore

it reflects a client sample comparable to the entire end-user population served by NLANR’s

cache hierarchy, which is thought to be under 100,000 (see Section 5.2.5).

My simulations use only successful (HTTP status code 200) transactions. I furthermore

exclude transactions involving seventeen payloads for which accurate sizes are not avail-

able; these account for slightly over 100,000 transactions. The reduced trace is summarized

in the right-hand column of Table 6.2. I associate with each reply payload a single size that

includes protocol overhead (HTTP headers) by adding to each payload’s Content-Length a

median header size of 247 bytes.

Table 6.3 summarizes several of the largest and most important Web workload traces

used in recent literature: the two mid-1990s Web client traces discussed in Section 5.2.4,

more recent proxy and server traces [12, 13, 115, 172], an AFS client trace [123], and fi-

nally the WebTV trace. The most striking feature of Table 6.3 is the large size difference

between the early client traces and the more recent proxy and server traces; by nearly every

measure the latter are orders of magnitude larger. The difficulty of deploying an instru-

mented browser on large numbers of clients is largely responsible for the difference. The

WebTV trace, while nearly as detailed as the early Web client traces, records roughly as

many transactions as the three largest proxy tracescombined.
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Requests per
Trace Type Begin End Clients Objects Requests Client per Day

CITI AFS client 20 Oct 93 20 Dec 93 37 N/A 12,192,933 5,402
Georgia Tech. client 3 Aug 94 24 Aug 94 107 9,452 43,060 19
Boston U. client 21 Nov 94 17 Jan 95 600 46,830 575,775 17

Cable Modem proxy 3 Jan 97 31 May 97� thousands 16,110,126 117,652,652
World Cup server 1 May 98 23 Jul 98 2,770,108 20,728 1,352,804,107 6
Compaq WRL proxy 1 Jan 99 31 Mar 99 � 25,000 N/A 125,259,641 54
U. Washington proxy 7 May 99 14 May 99 22,984� 18,400,000 � 82,800,000 515
Microsoft proxy 7 May 99 14 May 99 60,233� 15,300,000 � 107,700,000 286

WebTV client 7 Sep 00 22 Sep 00 37,165 36,573,310 347,460,865 425

Table 6.3: Traces used in Web and file system research. “Objects” refers to distinct payloads, or to URLs in traces that do not distinguish
payloads.
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Figure 6.4: Zipf-like reference counts of URLs and reply bodies.

URLs Unique payloads
Count 32,541,361 36,573,310
Zipf α 1.0341� 0.000032 0.9376� 0.000043
Zipf β 7.6313� 0.000227 6.9112� 0.000308
R2 0.969766 0.928005

Table 6.4: WebTV trace Zipf parameters.

The WebTV trace is large not merely in terms of number of clients and transactions but

also in terms of its “working set.” The sum of distinct payload sizes in the WebTV trace is

roughly 600 GB. At the time the WebTV trace was collected, thirty-one production-grade

cache products competed in a “Cache-Off” benchmark exercise [142]. The mean capacity

of these caches was 83.5 GB and the median size was 42 GB. The WebTV workload could

fill the largest entrant’s cache (315 GB) nearly twice. However the trace’s working set is

not impossibly large by the standards of September 2000; the bank of modified WebTV

proxies that collected the trace had a total capacity of roughly 600 GB. Similarly, the sum

of distinct payload sizes requested by typical clients in the trace is moderately large for

a set-top device, but not excessively so. The median client receives under 20 MB of dis-

tinct payloads, and over 26% of the client devices that generated the WebTV trace had

larger browser caches [85]. In Section 7.3 I consider effectively-infinite browser and proxy

caches, i.e., caches sufficiently large that they suffer no capacity misses.
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Figure 6.5: Left: CDF of Zipfα across client sub-populations. Right: CDF ofR2.

6.1.1 Trace Characteristics

The popularity distributions of URLs and reply bodies, shown in Figure 6.4, affect

cache performance. As in most Web workloads studied to date the popularity distribution

of URLs is Zipf-like, as is that of distinct data payloads. Table 6.4 reports Zipf parameters

for the popularity distribution of both URLs and reply bodies, obtained by fitting to the

WebTV data linear least-squares models of the form

log10(reference count) = �α log10(popularity rank)+β

using standard algorithms [81, 135]. The Zipfα parameters in the WebTV client trace are

remarkably close to unity. Cunha et al. report similar findings on the Boston University

client trace [52]. By contrast, the Zipf parameter is often higher at servers [130] and lower

at proxies [33]. Padmanabhan & Qiu give an interesting analysis of why the Zipfα varies

at different levels in a cache hierarchy [130]. Breslau et al. discuss the implications of Zipf-

like popularity distributions for caching [33]. The coefficient of determinationR2 describes

how well a linear regression model explains the data;R2 is unity when the model perfectly

explains the data and is zero when the model explains none of the variation in the data. The

high R2 values in Table 6.4 confirm the visual impression of Figure 6.4 that a Zipf model

is appropriate to the data.

We furthermore compute the Zipfα parameter of the payload popularity distribution for

each clientin the WebTV trace. Figure 6.5 shows the distributions ofα across three subsets

of the client population: 1) all clients that request more than thirty distinct payloads (this
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Figure 6.6: Concentration of references.

excludes only a handful of clients), 2) clients whose number of distinct referenced payloads

is between the 25th and 75th percentiles, and 3) clients whose model fit is particularly

good (R2 > 0:95). The figure displays separately the distributions ofR2 for the first two

groups. Three remarkable features are apparent in Figure 6.5: For most clients a Zipf model

describes the popularity of accessed payloads reasonably well (R2 > 0:9). Furthermore,

whereasα for the overall trace (shared proxy serving cacheless clients) is roughly 0.938, it

is lower in over 87% of individual client reference streams; at present I have no theoretical

explanation for whyα should be higher at a shared proxy than at clients. Finally,α is

noticeably higher in clients for which the Zipf model fit is close.

Figure 6.6 shows the cumulative concentration of references across URLs and payloads

sorted in descending order of popularity. The top one percent of payloads accounts for over

two thirds of all transactions and the top ten percent account for nearly 85%; for URLs the

figures are 62.2% and 82.4%, respectively. Concentration of references in the WebTV

client trace is much stronger than in proxy traces (e.g., Figure 5a of Arlitt et al. [12]).

Browser caches filter reference concentration as well as reference locality from the original

client reference streams, so that both locality and concentration are markedly lower in the

reference stream that reaches proxies. Figure 10 of Padmanabhan & Qiu [130] showsserver

vs. proxy reference concentration.

Client activity levels span a wide range. Figure 6.7 shows the distribution of the number

of requests and total bytes transferred to clients in the WebTV trace. Visual inspection

suggests that these distributions are roughly lognormal, i.e., the logarithm of requests-per-

client and of bytes-per-client appears to be roughly Gaussian, as illustrated in Figure 6.8.
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Figure 6.8: Frequency histograms of log2-transformed data. Left: references/client.
Right: stack distances in BPS sample.

The figure shows histograms of log-transformed data superimposed over a normal curve

defined by sample mean and sample variance.

Similarly, graphical evidence suggests that the distribution of LRU stack distances at the

client is roughly lognormal (Figure 6.8, right; the data shown are from a sample of requests

from a subset of BPS-type client devices, described below). As explained in Section 4.4,

this distribution is closely related to the success function of an LRU cache [108] and is

often used to measure temporal locality in reference streams [4, 15]. Almeida et al. report

that references reachingserversappear to have lognormal stack distance distributions, and

that lognormal stack distance models predict cache success functions well [4].
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Response content-length
Trace set mean median
WebTV (includes HTTP headers) 6,054 1,821
Compaq 11,192 2,894
Berkeley Home IP [73] 7,964 2,239
ATT-delta [119] 7,881 3,210
HP cable modem [12] 21,568 4,346
Washington [172] 7.7KB not avail.

Table 6.5: Response sizes in various traces.

6.1.2 Trace Representativeness

Any study that generalizes from one or two traces must consider whether they are rep-

resentative of Web use in general. I compared the WebTV trace with a Compaq data set

(described in Section 7.3.2) and with traces used in prior literature in terms of Zipf param-

eters (Section 6.1.1), response sizes, MIME type distributions, and “surfing tempo.”

Table 6.5 shows mean and median response body sizes from several relatively large,

recent trace sets. The WebTV and Compaq traces roughly span the range of means and

medians, except for those of the HP cable modem trace. The WebTV sizes are similar to

(but slightly smaller than) the Berkeley sizes, consistent with the use of slow final hops

in both environments. The Compaq sizes are not inconsistent with those from the AT&T

and Washington broadband environments. The mean reply size in the cable modem trace is

skewed because users took advantage of increased bandwidth to download extraordinarily

large files; Martin Arlitt verified this by manually retrieving the files. Arlitt furthermore

speculates that the large median reply size in the cable modem trace may be due to the

same phenomenon [9].

Table 6.6 shows the fraction of transactions, bytes transferred, payloads, and working

set associated with popular MIME types; all types that account for 1% or more in any

category are shown. Roughly 4.3% of payloads are served (at different times) with more

than one MIME type; in such cases I define the payload’s type to be the most common

type. In terms of transactions and bytes transferred, the WebTV trace is roughly similar

to other workloads reported in the literature, e.g., the AT&T trace described in Table 1

of Douglis et al. [58]. JPEG files are more prominent in WebTV’s client trace, probably

because client caches served many JPEG accesses in the AT&T trace. In terms of distinct
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Transactions Payloads
MIME type % by % by % by % by

count bytes count bytes
image/gif 68.389 34.39117.247 5.727

image/jp[e]g 18.627 25.84324.854 18.441
text/html 10.255 22.391 54.212 43.902

app’n/[x-]javascript 1.169 0.625 1.142 0.088
audio/(midi,x-midi,mid) 0.253 1.171 0.089 0.159

video/mpeg 0.077 9.808 0.291 20.843
app’n/octet-stream 0.034 0.716 0.038 1.390

video/quicktime 0.002 0.400 0.010 1.143
video/x-msvideo 0.001 0.547 0.009 1.440

all other 1.192 4.106 2.107 6.867

Table 6.6: MIME type distribution of WebTV trace.
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Figure 6.9: Distribution of inter-reference intervals in WebTV (left) and Boston University
(right) client traces.

payloads, HTML is far more prevalent in the WebTV trace (54% vs. 24%). The practice of

decomposing logical pages into multiple HTML frames, more common in September 2000

than in November 1996, might partly explain the difference.

Wolman et al. collected a large Web trace at the University of Washington using a packet

sniffer in May 1999 [171]. Their Figure 1 reports the distribution of MIME types in this

trace. Image files account for more transactions and more bytes transferred in the WebTV

trace, probably due to client caching on the University of Washington campus.

We might expect bandwidth-constrained thin clients to “surf” at different rates than con-

ventional rich-client browsers in academic or corporate environments. Figure 6.9 shows the

distribution of inter-reference intervals for the last seven days of the WebTV trace and for
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the Boston University client trace. WebTV requests directly initiated by user actions (e.g.,

the fetch that results from following a hyperlink) are marked as “primary” in the trace, and

the distribution of intervals between primary references is plotted separately for WebTV.

The Boston distribution is bi-modal due to browser cache hits (compound objects, e.g.,

HTML pages with embedded images, arenot responsible; such objects are present in both

traces). The WebTV data reflect a cacheless low-bandwidth environment, and therefore

it is somewhat surprising that WebTV browsers appear to be operating roughly as fast as

Xmosaic: 89.5% of BU intervals are 10 seconds or less; for WebTV the figure is 93%.

In summary, the WebTV trace is roughly consistent with other data used in Web-related

research in terms of a variety of characteristics. The differences are largely attributable to

the fact that the WebTV trace was recorded in an entirely cacheless environment.

6.2 Inherent Performance Bounds

This section considers bounds on the performance ofany cache system serving the

WebTV workload, bounds that are inherent in the workload itself. We shall consider several

inherent performance bounds, describe how they evolve over time, explore the effect of

multi-level cache hierarchies on these bounds, and investigate whether the WebTV system’s

performance approaches the bounds inherent in its workload.

6.2.1 System-Wide Miss Rates

The most obvious example of an inherent bound is the compulsory miss rate. In a given

cache reference stream, the first time a reply payload appears in a transaction itmustbe

fetched from afar; the request cannot be satisfied by the cache. The compulsory miss rate

of the WebTV workload can be obtained directly from Table 6.2 as the ratio of distinct

payloads to transactions: Approximately 11% of transactions require that a payload be

retrieved into the WebTV system. We can compute a minimal byte miss rate in analogous

fashion using total bytes transferred and sum of distinct payload sizes; it is roughly 32.4%.

In other words, for the WebTV workload the difference between perfect caching and no

caching is a factor of three in bandwidth consumption and an order of magnitude difference

in the number of payload retrievals.
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Figure 6.10: Percentage of replies containing new documents.
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Figure 6.11: Ratio of distinct documents to transactions vs. number of transactions exam-
ined.

Figure 6.10 shows the percentage of replies containing never-before-seen payloads in

non-overlapping windows of 10,000,000 requests for the first 320 million references in

the WebTV trace. This is identical to the minimal (compulsory) miss rate of the overall

WebTV system, assuming caches so large that capacity misses never occur. The figure

shows that in the absence of redundant payload transfers the steady-state hit rate of an

infinitely large WebTV proxy serving cacheless clients exceeds 90%; even a cold proxy

cache would enjoy an 80% hit rate. In practice, imperfect cache consistency mechanisms

and namespace complexities (e.g., aliasing) cause unnecessary cache misses and redundant

payload transfers. Section 7.5 describes a simple and practical way to eliminate these

problems entirely and raise hit rates to the full potential suggested by Figure 6.10.

Another way to view the evolution of compulsory miss rate over time is to compute

the ratio of distinct documents to transactions using truncated traces of varying length. In
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Figure 6.12: Distribution of maximal browser hit rates (left) and effectively infinite browser
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other words, for different values ofK, compute compulsory miss ratio using only the first

K transactions in the overall trace, ignoring the remainder of the trace. Figure 6.11 shows

the results of this exercise on a log-log scale. While Figure 6.10 gives the impression

that compulsory miss rates level off at around ten percent after a week or so, Figure 6.11

reveals a more subtle pattern: The overall compulsory miss rate declines according to a

power law, and this pattern persists even after hundreds of millions of transactions have

been processed.

6.2.2 Browser Caches

Figure 6.12 shows the distribution of maximalbrowserhit rates under ideal conditions

for individual client request sequences, and the distribution of browser cache sizes required

to achieve maximal hit rates. “Ideal conditions” means that the first request that yields a

given payload is a miss, but all subsequent requests that would return the same payload are

hits. In other words, no redundant transfers occur, and only compulsory misses occur. This

is similar to Mogul’s “perfect coherency” cache [115–117], but it assumes no misses due to

the namespace. In Mogul’s terminology, I simulate a “perfect duplicate suppression” cache

large enough to store all requested documents. We see from the left-hand subfigure that the

median of maximal individual browser hit rates is roughly 65%.

A browser cache attains maximal hit rate if it can store all requested documents; the sum

of distinct payload sizes is therefore termed the “infinite cache size” of a request sequence.

However if we assume LRU replacement we can compute the maximalpriority depthacross
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references in a workload [89]; this is the smallest LRU cache size that experiences no

capacity misses. The distribution of infinite cache sizes and maximal LRU priority depths

is shown on the right of Figure 6.12. For the workloads studied an 11.6 MB LRU cache is

effectively infinite for half of clients.

We obtain a complete picture of the relationship between browser cache size and poten-

tial hit rate by computing each client’s success function (hit rate as a function of cache size)

separately, assuming LRU replacement. We now permit capacity misses, but as before no

redundant transfers occur. Efficient single-pass simultaneous simulation algorithms for this

computation have long been available for the special case where document sizes and miss

penalties are uniform [23,128,155]; Daniel Reeves and I generalized them to non-uniform

sizes and miss costs as described in Sections 4.4 and 4.5. Using the Reeves-Kelly algorithm

I first compute browser cache hit rates for each client at every cache size. I then aggregate

the results into a single success function for the entire client population.1

To avoid the confounding effects of cache cool-down (Figure 6.3) and cold-start, I also

perform the same exercise for a sample of 1,959 modern diskless (BPS) clients with moder-

ately heavy request volumes (between median and 75th percentiles) and moderate locality

(maximal browser cache hit rates between the 25th and 75th percentiles). We use each

client’s first 2,000 references to warm the browser cache and tabulate hit rates based only

on its next 1,000 requests. Results for both the BPS sample and the entire client population

are shown in Figure 6.13; estimates of actual WebTV browser hit rates based on proxy

request volumes before and after browser caches were disabled (Table 6.1) are included

for comparison. These results are similar to the success function presented in Figure 5 of

Bestavros et al., which assumes LFU replacement [26].

Aggregate browser cache success functions are essential to informed tradeoffs between

browser functionality and cache hit rates in thin-client systems such as WebTV. New ver-

sions of browser software support new features and therefore require more resources, e.g.,

physical memory, but capacity expansion is not possible in the installed base of client de-

1As noted in Section 4.4, fast simultaneous simulation yields correct results only for cache sizes as least
as large as the largest document in a trace when used to model rich-client browsers such as Netscape and IE,
in which replies larger than the cache do not alter its contents. The memory-constrained WebTV browser,
however, uses the same region of memory as both a cache and a staging area for the document currently being
viewed. A reply larger than the cache will therefore flush the browser cache’s contents, even though such an
oversized reply cannot be cached. Stack methods can be used to model WebTV-like browser caches atall
cache sizes.
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Figure 6.13: Aggregate WebTV client success functions.

Cache Measured BPS sample All clients
Type Size H.R. (%) H.R. R.I. H.R. R.I.
FCS 420 KB 37.6 50.8 35.1 56.4 50.0
BPS 1240 KB 41.9 57.3 36.8 64.1 53.0
LC2.5 3200 KB 44.4 60.6 36.5 66.9 50.7
LC2 21 MB 44.6 65.1 46.0 71.7 60.8
ST1 23 MB 44.8 65.1 45.3 71.8 60.3

Table 6.7: Percent relative improvement (R.I.) over current hit rates.

vices. One option for browser designers is to steal application memory from the cache; this

has been done several times at WebTV. However it is impossible to know the performance

implications of such a decision without browser cache success functions obtained through

measurement (Table 6.1) or simulation (Figure 6.13).

Table 6.7 summarizes the relative improvement in aggregate browser cache hit rates

that would result from eliminating redundant payload transfers, i.e., it summarizes the gap

between the actual and potential hit rates of WebTV caches shown in Figure 6.13. The

large gap between the simulated and measured success functions in the WebTV data indi-

cates that redundant payload transfers occur frequently; Chapter 7 discusses the causes of

redundant transfers and presents a fully general solution.

6.2.3 Filter Effects in Cache Hierarchies

Cache hierarchies complicate our consideration of inherent performance bounds be-

cause the actions of lower-level caches affect the workload reaching higher-level caches.
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The reference sequence reaching a shared Web proxy cache, for instance, consists of the

merged miss sequences of the browser caches it serves. We must understand this coupling

to tailor higher-level caches to the design of lower-level caches and their workloads.

Literature from the 1970s considers locality filtering inlinear CPU memory hierarchies.

The classic paper on stack distances by Mattson et al. extends stack processing techniques

to the analysis of a rather peculiar abstract multi-level storage system [108]. Unfortunately

the model considered appears to have been chosen for its analytic tractability rather than

relevance to real systems, and it does not seem applicable to the semantics of actual proces-

sor, database, file system, or Web cache hierarchies. Gecsei, who describes ways of extend-

ing stack processing to more realistic types of multi-level linear storage hierarchies [68],

assumes a combination of write-back semantics and cache-inclusion properties that make

them inapplicable to branching Web cache hierarchies. Lam & Madnick consider storage

hierarchies with slightly different semantics and discuss conditions that lead to undesirable

inclusion violations [99]; Baer & Wang extend this work [16]. In both cases write-back

semantics are integral to the analysis, which therefore cannot be extended to reasonable

models of Web cache hierarchies.

In contrast to the mathematical rigor of the early literature, recent literature on locality

filtering in database and Web caches relies exclusively on empirical methods (trace-driven

simulation, often usingsyntheticinputs). Doyle et al. consider the implications of locality

filtering for Web server cluster architecture using both synthetic and trace workloads [59].

Williamson describes a similar investigation with emphasis on proxy caches [167]. Zhou

et al. evaluate a formidably complex second-level database buffer cache removal policy

via trace-driven simulation using real traces and synthetic benchmarks [176]. These recent

papers do not build upon the earlier formal literature on locality filtering, nor do I.

A crucial issue in locality filtering is whether enough locality remains in the miss se-

quence of lower-level caches to make higher-level caches worthwhile. The reduction in

locality due to client caching might be offset by the merging of many dedicated-cache miss

streams into a single shared-cache reference sequence, but this depends on sharing across

client reference streams. Muntz & Honeyman report that hit rates of shared intermediate

caches in network file systems do not exceed 20% if reference streams are filtered even

by small client caches [121]. The WebTV data, however, point to a dramatically different

conclusion: Assuminginfinitebrowser caches, up to 73.4% of requests can be served from
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Figure 6.14: Browser success function and proxy success functions for several different
browser cache sizes.

browser caches. Of the remaining requests, 57.7% can be served from a sufficiently large

shared proxy cache. Sharing across client reference streams is far stronger in Web work-

loads than in distributed file systems, and shared caches are therefore potentially far more

effective. Client caches do not “skim all of the cream” in Web workloads.

Furthermore when we consider the effect offinite browser cache sizes on proxy cache

performance, a remarkable pattern emerges. Figure 6.14 shows on the right LRU proxy

cache success functions for workloads filtered by each of five browser cache sizes; the

browser cache success function of Figure 6.13 is included on the left for comparison. Not

surprisingly, proxy hit rates at any cache size are lower for larger browser cache sizes.

The remarkable feature of the proxy success functions, however, is that over a range of

interesting sizes (1–100 GB) they aresteeperfor larger browser caches. In other words, the

marginalbenefits of proxy cache expansionincreasewith larger browser caches. Note that

this result is not general across the entire domain of the proxy success functions; it is not

true, for instance, between 108 and 109 bytes. However it does hold across a wide range

of proxy cache sizes that were reasonable by the standards of September 2000; recall from

Section 6.1 that the capacity of typical commercial cache products at the time ranged from

40 to 80 GB.

6.3 Discussion

The cache-busting proxy technique requires no client modifications and relatively mi-

nor proxy modifications, and is more feasible than conventional client instrumentation,
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especially for collecting large and representative data sets. Yet, the method is not without

limitations and disadvantages. It fails to record user-interface events and therefore can-

not support the same range of investigations as an instrumented client, which remains the

“gold standard” for trace collection. Furthermore the new method provides event times-

tamps recorded at the proxy, and these do not necessarily reflect the latency experienced

by clients. If documents are served pre-expired as in the WebTV procedure, browsers may

continue to serve some requests from cache even after cache-busting begins (Figure 6.3),

so the technique does not provide a perfect record of client requests. Finally, it is unclear

whether cache busting alters user behavior by increasing latency. Nonetheless a cache-

busting proxy trace sheds far more light on client access patterns than ordinary proxy logs.

It gives us (most of) the detail we want at a price we can afford.

My investigation of performance bounds inherent in the workload studied demonstrates

that hierarchical caching yields substantial benefits. A well-functioning cache system can

reduce payload transfers into the aggregate WebTV system by an order of magnitude and

network traffic by a factor of three. Furthermore the role of a shared proxy is not insignifi-

cant: Merging 37,000 browser cache miss streams yields an access sequence with sufficient

re-referencing to support high proxy hit rates. Finally, when we consider finite caches we

find that larger browser caches yield lower absolute proxy hit rates but higher marginal

returns to proxy capacity expansion across a wide range of reasonable proxy cache sizes.

From a practical standpoint the most interesting result of my workload analysis is the

large gap between actual and potential browser cache hit rates for the client population

as a whole (Figure 6.13). One way to think about the simulated success functions is that

they describe performance in a “trivial namespace” Web, in which a simple one-to-one cor-

respondence exists between URLs and data payloads. To an extent such a namespace is

achievable in practice, e.g., by embedding payload checksums in URLs. Content delivery

networks do this already: Akamai URLs contain partial MD5 checksums of data payloads.

If URLs contain payload checksums, replies never expire and stale content is never served

from cache; a simple namespace improves both the performance and the correctness of

CDNs by making cache consistency issues disappear entirely. However, unchanging and

mnemonic document names are necessary in systems like the Web, which precludes an

entirely flat namespace. In practice, content naming on the Web is both complex and unsta-

ble: The same payload is sometimes available through different URLs, and the same URL
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sometimes yields different payloads. Chapter 7 considers the extent to which content-

naming practices contribute to redundant payload transfers in hierarchies of conventional

Web caches. For the present we simply note that redundant transfers are very common in

the WebTV system.

Several practical techniques have been proposed to avoid redundant payload transfers,

but published “duplicate suppression” schemes for the Web do not completely eliminate the

problem and require that modified servers supply hints to clients. Mogul reports that one

such proposal would increase an infinite proxy’s hit rate and byte hit rate by at most 5.4%

and 6.2% respectively, assuming full participation by all origin servers [116, 117]. While

the benefits of imperfect duplicate suppression for infinite proxy caches may be modest,

WebTV’s data show that the benefits ofperfectduplicate suppression forfinite browser

caches are substantial. My most conservative simulation data suggest that browser cache

hit rates would increase by 35% to 45% over their estimated current levels (Table 6.7).

Fortunately a simple and practical hop-by-hop protocol extension can completely eliminate

redundant proxy-to-browser transfers in systems such as WebTV; Section 7.5 describes this

protocol extension, which Jeff Mogul and I conceived independently. Briefly, it works as

follows:

� The browser caches every data payload it receives, without exception.

� The browser issues ordinary requests to the proxy.

� Before the proxy returns a reply payload it first sends the payload’s checksum.

� The browser compares the checksum to those of items in its cache. A match ends the

transaction; otherwise the proxy transmits the full payload.

Several variants of this overall approach are possible: The proxy could transmit a full

reply preceded by a payload checksum and abort the transmission at the client’s request. Al-

ternately the proxy might wait for an explicit “proceed” from the client. The former entails

no user-latency penalty and does not throttle the proxy or prolong transactions. However it

may have little impact in high-bandwidth, high-round-trip-time environments if documents

are small (the full payload reaches the client before its “abort” message reaches the proxy).

The latter variant introduces an additional RTT into the transaction but completely elimi-

nates redundant transfers; it may be attractive in low-bandwidth, low-RTT environments.
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For purposes of duplicate suppression the proposed approach entirely ignores the name-

space and consistency mechanisms (URLs and expiration metadata). Unnecessary misses

due to aliasing and inappropriate metadata therefore disappear completely; only compul-

sory and capacity misses occur. The proposed approach could be used as a hop-by-hop

mechanism between any two levels in a cache hierarchy. The semantics of existing pro-

tocols, e.g., HTTP, are largely unchanged if cached payloads and their digests are used to

avoid redundant transfers. The scheme is similar in spirit to the Santos/Spring/Wetherall

method of eliminating redundant network traffic between routers [143,150].

Re-writing the rules of browser/proxy interaction is difficult in the most general case

because different vendors’ products must interoperate during migration and backward com-

patibility with legacy software must be maintained. However in more tightly integrated

environments where a single organization controls both browser and upstream service in-

frastructure, e.g., WebTV and AOL, such changes are feasible. These also happen to be

bandwidth-constrained environments, where the prospect of transferring compact message

digests rather than far larger entity-bodies is particularly attractive.
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CHAPTER 7

Content Naming and Redundant Transfers

We have seen in Section 6.2 that redundant payload transfers to WebTV browsers are

surprisingly common. This chapter considers the extent to which this problem arises from

the interaction among 1) standard cache management strategies, 2) content-naming prac-

tices, i.e., the relationship between request URLs and reply payloads defined by origin

servers, and 3) client access patterns. In particular, we shall explore the prevalence of alias-

ing and resource modification and quantify the extent to which namespace phenomena such

as these account for redundant transfers to conventional Web caches in a browser-proxy hi-

erarchy.

Aliasing occurs in Web transactions when requests containing different URLs yield

replies containing identical data payloads. Existing browsers and proxies perform cache

lookups using URLs, and aliasing can cause redundant payload transfers when the reply

payload that satisfies the current request has been accessed and cached with a URL other

than the current one. Awareness of this problem is slowly growing in the commercial world:

A major cache appliance vendor now encourages site designers to make Web pages cache-

friendly by avoiding aliasing [49, page 9]. Within well-administered sites, aliasing might

decrease when such advice is heeded. Other trends, however, are moving the Web in the

opposite direction and are beyond the control of individual sites. For example, commercial

Web authoring tools typically include many small “clip art” images, and a particular image

bundled with such a tool is available through a different URL at each site that uses it.

Given the proliferation of technologies that create aliases and the potential for aliasing

to cause redundant transfers, it is surprising that relatively little is known about the scale

and consequences of this phenomenon. Only a few previous studies have considered the
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prevalence of aliasing in Web transactions, the performance penalty of conventional URL-

indexed cache management in large multi-level cache hierarchies, or ways to eliminate

redundant payload transfers. Few of the Web workload traces that researchers have col-

lected can illuminate the relationship between request URLs and reply payloads, because

they do not describe payloads in sufficient detail.

This section quantifies aliasing and the impact of URL-indexed cache management on

browser and proxy cache miss rates by examining large anonymized client and proxy traces

collected, respectively, at WebTV Networks in September 2000 and at Compaq Corpora-

tion in early 1999. We investigate whether conventional URL-indexed caching is primarily

responsible for the high rate of redundant proxy-to-browser payload transfers previously

reported in the WebTV system, quantify the prevalence of redundant server-to-proxy pay-

load transfers, consider other causes of redundant payload transfers, and discuss a simple

way to eliminate all redundant transfers, regardless of cause.

Unlike the NLANR data used for the investigations of removal policies in Chapter 3, the

traces used in this section record anonymized versions of both request URLs and reply data

payloads; together, these illuminate namespace phenomena such as resource modification

and aliasing. The richness of our data sets requires that we introduce new terminology

not needed when discussing the simpler NLANR traces. In the context of a given trace

of Web transactions, a reply payload isaliasedif it is accessed via more than one distinct

URL in the entire trace. Similarly a URL ismodifiedif it yields more than one distinct

reply payload. Certain terms related to aliasing, such as “duplication,” lack clear, widely-

accepted definitions in the literature, and I shall avoid them when discussing my own work.

When discussing cache performance, we are concerned with whether the payload re-

quired to serve a request is obtained from cache or must be fetched from elsewhere. There-

fore throughout this section the term “hit” refers to accesses for which the required payload

is obtained from cache, regardless of whether messages are exchanged with the origin

server. A successful revalidation is a hit, because it averts the payload transfer. Similarly

“miss” denotes a transaction in which the reply payload is not obtained from cache. The

trace-driven simulations of this section do not consider caches that violate semantic trans-

parency in the sense of RFC 2616 [64], i.e., they model caches that either miss or return

exactly the same payload that the origin server would return at the moment of access.
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7.1 Related Work

While few studies have directly addressed our central topic, many have investigated

aspects of the HTTP namespace and their impact on cache performance. This section

reviews literature on the relationship between URLs and reply payloads.

7.1.1 Resource Modification

“Resource modification” is the complement of aliasing: Requests containing identical

URLs yield different reply bodies. Because it has direct implications for cache consistency

and object “cachability,” resource modification has been extensively studied. Section 7.2

compares the prevalence of aliasing and resource modification and reports that more trans-

actions are affected by the former.

Douglis et al. report that rates of resource modification in a trace from a corporate envi-

ronment are high enough to substantially reduce the hit rates of conventional URL-indexed

caches [58]. More recently, Brewington & Cybenko consider the burden that modifica-

tion rates place on search engines [35]. After fitting a combination of exponential and

Weibull models to their data, they report that roughly 10% of inter-modification intervals

are 10 days or less and roughly 72% are 100 days or less. Brewington’s doctoral thesis

considers the problem of monitoring changing information resources in greater theoretical

and empirical depth [34]. This research is based on polling URLs obtained from users who

have requested notification when specified resources change, and might therefore reflect a

sample of resources with atypical rates of change. Padmanabhan & Qiu analyze the dy-

namics of content creation, modification and deletion at the MSNBC Web site [130]. They

report a median inter-modification interval of approximately 10,000 seconds and note that

most alterations to files are relatively minor.

Resources expected to change frequently are often called “dynamic,” although this

poorly-defined term blurs the distinction between the process by which a response is gen-

erated, and whether it is “cachable.” In practice, cache implementors and researchers em-

ploy heuristics to identify uncachable responses by looking either for signs of dynamic

generation (such as “cgi” in a URL) or for metadata, such as cookies, implying that a re-

source gives a different response to every request. Wolman et al. report that Squid deems

uncachable 40% of replies in a large trace collected at the University of Washington in
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May 1999; Zhang reports that customized and dynamic content together render roughly

7.1% of the objects in his trace uncachable [175].

Work by Wills & Mikhailov, however, casts doubt on the assumption that it is pointless

to cache seemingly “dynamic” or “customized” content. They report that even if a previ-

ous access to a URL had returned a “Set-Cookie” header, in most cases the absence of a

request cookie, or the presence of a different cookie, does not affect the reply payload re-

turned for a subsequent access [168]. Repeated accesses to query resources at E-commerce

sites sometimes return identical payloads [170]. Iyengar & Challenger exploited the cacha-

bility of dynamic replies at a large, busy Web server and report impressive performance

gains [80]. Smith et al. report dynamic reply cache hit rates of 13.6% and 38.6% for two

workloads [147].

Wolman et al. incorporate observed resource popularity and modification rates into an

analytic model of hierarchical caching [172]. Their model describes the impact of resource

modification rates on cache hit rates and suggests that cooperative caching schemes yield

diminishing returns as client populations increase.

7.1.2 Mirroring

“Mirroring” typically refers to a special case of aliasing in which replicas of pages or

entire sites are deliberately made available through different URLs. Shivakumar & Garcia-

Molina investigate mirroring in a large crawler data set [144]. They report far more aliasing

than appears in the WebTV client trace: 36% of reply bodies are accessible through more

than one URL. Bharat et al. survey techniques for identifying mirrors on the Internet [28].

Bharat & Broder investigate mirroring in a large crawler data set and report that roughly

10% of popular hosts are mirrored to some extent [27].

Broder et al. consider approximate mirroring or “syntactic similarity” [36]. Although

they introduce sophisticated measures of document similarity, they report that most “clus-

ters” of similar documents in a large crawler data set contain onlyidenticaldocuments. In

other words, simple aliasing is the dominant form of similarity in their workload. These

authors report that 18–41% of reachable payloads are aliased.
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7.1.3 Duplicate Suppression

Douglis et al. report that 18% of the full-body responses recorded at a corporate firewall

that resulted in a new instance of a particular resource were identical to at least one other

instance of a different resource [58].

Several “duplicate suppression” proposals address performance problems caused by

duplication. The HTTP Distribution and Replication Protocol (DRP) employs payload

digests to avoid unnecessary data transmission in deliberate replication over HTTP [156]. A

DRP client obtains “index files” containing digests indicating the current state of resources,

and the client can then request precisely those resources for which its copies are obsolete.

Mogul reviewed several end-to-end duplicate-suppression schemes involving “hints”

supplied by origin servers to clients, and by clients to caches. These proposals do not

entirely eliminate the problem of redundant payload transfers, and a trace-driven simulation

demonstrates that one such scheme yields 5.4% and 6.2% improvements in hit rates and

byte hit rates, respectively. Even these modest gains areupper bounds, because they assume

the full participation of all origin servers [116,117].

Santos & Wetherall [143] and Spring & Wetherall [150] describe a general protocol-

independent network-layer technique for eliminating redundant traffic by cachingpacket

payloads and transmitting digests thereof to avoid redundant transfers. Muthitacharoen et

al. designed a network file system for low-bandwidth environments that performs similar

operations on chunks of files [124].

Inktomi’s Traffic Server proxy cache product has included a technique called “content

fingerprinting,” which uses payload digests to avoid storing multiple copies of identical

payloads [107]. Content fingerprinting suppresses duplicates in storage, but not on the

network. Bahn et al. describe a similar scheme [17].

7.1.4 Harmful Practices

The HTTP/1.1 specification is long and complex [64]. Not all servers are fully com-

pliant, and the compliance of products does not always improve over time [94]. Non-

compliance can clearly cause redundant payload transfers and other kinds of waste. How-

ever, redundant transfers can also occur if mechanisms introduced into HTTP/1.1 to im-

prove cache correctness are used in strange butcompliantways. For instance, identical
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payloads served by a single site are sometimes accompanied bydifferententity tags [169],

causing new-style “If-None-Match ” revalidation attempts to fail where old-fashioned

“ If-Modified-Since ” requests might succeed. In this case, the server is compliant

with the specification, but not with the most efficient possible implementation.

Furthermore, several common practices that do not violate the protocol complicate the

HTTP namespace in harmful ways. Mikhailov & Wills report, for instance, that content

providers sometimes embed session identifiers in dynamically-written URLs rather than

cookies [113]. Ad rotation often creates many minor variants of the HTML for a Web

page, inflating resource modification rates. Padmanabhan & Qiu document other types of

minor changes that occur frequently at the MSNBC site [130].

7.1.5 Summary

Existing literature touches on a number of issues surrounding aliasing on the Web,

but the prevalence of this phenomenon across user-initiated transactions and the impact of

URL-indexed cache organization on miss rates in multi-level cache hierarchies is poorly un-

derstood. Most proxy traces employed in empirical Web caching research shed no light on

aliasing because they do not record data payloads or digests thereof. Data sets collected by

Web crawlers often include payload digests but cannot support trace-driven simulations of

cache hierarchies; they illuminate aliasing acrossavailableresources rather thanaccessed

resources. The WebTV trace described in Section 6.1.1 is well suited to my investigation

because it records all client requests and corresponding server replies in a large, cacheless

production environment.

7.2 Prevalence of Aliasing

For the purposes of this section, a transaction record is simply a pair(U;P)whereU is a

request URL andP is a reply data payload. We say that a reply payloadP is aliasedif there

exist two or more records(U;P);(U 0;P) containing the same reply payloadP but different

URLs U andU 0. Similarly, we say that a URLU is modifiedif there exist two or more

transactions containingU as the URL and different reply payloadsP andP0. Thedegreeof

a payload is the number of distinct URLs that appear with it in transaction records, and the
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URLs 32,541,361
Modified URLs 1,859,929

Unique payloads 36,573,310
Aliased payloads 1,821,182

(URL, payload) pairs 44,785,808
Transactions 326,060,677

w/ modified URLs 32,277,753
w/ aliased payloads 176,595,754

Payload sizes
Range (min–max) 40–91,397,479
Median 5,487
Mean 17,487
Sum 639,563,546,204
Sum of aliased 19,726,808,472

Transfer sizes
Median 1,821
Mean 6,054
Sum 1,973,999,619,772
Sum of aliased 711,717,843,218

Table 7.1: WebTV reduced trace aliasing statistics.

degree of a URL is the number of distinct reply payloads that appear with it in the trace.

Aliased payloads and modified URLs each have degree two or greater.

Table 7.1 summarizes the prevalence of aliasing and resource modification in the re-

duced WebTV trace. The table shows that aliased payloads account for over 54% of trans-

actions and 36% of bytes transferred in the WebTV trace, suggesting that conventional

URL-indexed caches might suffer many redundant transfers and receive much redundant

network traffic when processing the WebTV workload. Section 7.3 addresses these issues.

Note that whereas over half of transactions involve aliased payloads, only 10% involve

modified URLs;aliasing affects far more transactions than resource modification.

The figures cited above regarding the prevalence of aliasing are of limited scientific

interest if they are merely artifacts of trace length. The assertion that “X% of payloads are

aliased” is misleading ifX varies with trace length. As in the discussion of compulsory

miss rates surrounding Figure 6.11 in Section 6.2.1, we gain insight into this issue by

computing quantities of interest using truncated prefixes of the overall WebTV trace and

plotting these quantities against prefix length. Figure 7.1 shows fraction of payloads aliased

and fraction of transactions involving aliased payloads as functions of trace length. We see
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Figure 7.1: Left: Fraction of payloads aliased versus trace length. Right: Fraction of
transactions carrying aliased payloads versus trace length.
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Figure 7.2: Left: CDF of payload and URL degrees. Center: CDF of transactions by
degree of URL & payload involved. Right: CDF of bytes transferred by degree of payload
involved.

from the right-hand plot that the latter quantity is indeed an artifact of trace length; it grows

with the logarithm of trace length. Somewhat surprisingly, however, the left-hand plot

shows that the fraction of payloads that are aliased isnot an artifact of trace length. After

a few days (roughly 100 million transactions) this quantity levels off at roughly 5% and

remains constant. Whereas the crawler studies cited in Section 7.1.2 report that 20–40%

of availablepayloads are aliased in the static sense that they arereachablevia multiple

URLs, the WebTV trace suggests that in the long term only around 5% of payloads are

are actuallyaccessedvia different URLs by a large client population. Taken together,

these facts suggest thatuser-initiated transactions discover far less aliasing than is actually

present in the hyperlink structure of the Web.

The distributions of the degrees of payloads and URLs in the WebTV trace are shown

on the left in Figure 7.2. Fewer than 5% of payloads are aliased, but one is accessed via

348,491 different URLs. Similarly only 5.7% of URLs are modified, but one yields 491,322
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Figure 7.3: CDFs of change and alias ratios.

distinct payloads. This analysis downplays the prevalence of aliasing and modification

because it does not consider the number of times that different (URL, payload) pairs occur

in the trace. The plot in the center shows the distributions of payload and URL degrees

weighted by reference count. Finally, the plot on the right shows the distribution of bytes

transferred by the degree of the payload involved. The figure shows that roughly 10% of

traffic is due to payloads accessed via 10 or more distinct URLs.

In over 41 million successful transactions (12.72%) a payload is accessed through a dif-

ferent URL than in the previous access to the same payload. By contrast, under 14.3 million

transactions (4.37%) involve a different payload than the previous transaction with the same

URL. Here again the prevalence of aliasing exceeds that of resource modification. (Note

that this does not imply that aliasing causes more cache misses than resource modification;

in fact, the reverse might be true.)

Following Douglis et al. [58] I compute for each multiply-referenced URL its “change

ratio,” the fraction of its accesses that return a different data payload than its previous ac-

cess. We furthermore compute for each multiply-referencedpayloadan analogous metric,

the “alias ratio,” defined as the fraction of its accesses made through a different URL than

its previous access. The distributions of change ratios and alias ratios across multiply-

referenced URLs and payloads, respectively, are shown in Figure 7.3. The figure shows

that 15.3% of multiply-referenced payloads are aliased and 12.4% of multiply-referenced

URLs are modified. However the figure also shows that alias ratios are generally lower

than change ratios. For example, only 2% of multiply-referenced payloads have alias ratios

above 0.5 whereas 4.7% of multiply-referenced URLs have change ratios over 0.5.
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Transactions w/ Aliased
Aliased Payloads Payloads

MIME type % by % by % by % by
count bytes count bytes

image/gif 66.113 62.60813.016 11.901
image/jp[e]g 30.655 30.748 6.976 6.472

text/html 15.993 12.729 1.577 1.172
app’n/[x-]javascript 66.564 67.410 1.863 4.370

audio/(midi,x-midi,mid) 82.854 81.83335.157 32.052
video/mpeg 32.472 13.284 6.422 1.932

app’n/octet-stream 63.557 19.26310.563 3.886
video/quicktime 7.583 1.205 1.515 0.488
video/x-msvideo 8.882 5.574 2.125 1.472

all other 47.089 21.200 3.324 2.275

Table 7.2: Prevalence of aliasing by MIME type in WebTV trace.

7.2.1 Aliasing and Response Attributes

Techniques meant to eliminate redundant transfers usually impose some costs. If we

could impose those costs only on those subsets of responses that are most likely to benefit

from an alias elimination technique, we could (in principle) reduce overall costs without

similarly reducing overall benefits.

Table 7.2 shows the prevalence of aliasing among popular MIME types in the WebTV

trace. The table uses the same sort order as Table 6.6. Aliasing is most common among

MIDI payloads: 35% of MIDI payloads are accessed via two or more different URLs, and

over 80% of MIDI transactions involve aliased payloads. However Table 6.6 shows that

MIDI accounts for under 2% of all traffic and under 1% of all transactions.

GIF files account for over two thirds of transactions and over one third of bytes trans-

ferred in the WebTV trace (Table 6.6), and roughly two thirds of GIF transactions involve

aliased payloads (Table 7.2). Taken together, these facts imply thatnearly half of all trans-

actions involve aliased GIF payloads(0:66113�0:68389= 0:45214). By contrast, aliasing

is far less prevalent among HTML and JPEG payloads, which together account for roughly

29% of transactions and 48% of bytes transferred; fewer than 7.5% of transactions involve

aliased HTML or JPEG payloads. These findings are consistent with the hypothesis that

Web authoring tools account for much of the aliasing in Web transactions; unfortunately

the traces I use are anonymized in such a way as to prevent more detailed investigation of
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Figure 7.4: CDFs by payload size for all payloads (top row) and three popular MIME types.
Solid lines indicate aliased payloads, transactions involving aliased payloads, and aliased
bytes transferred; dashed lines non-aliased. All horizontal scales are identical and show
payload size in bytes.

the issue. Section 7.5.4 discusses means of eliminating aliasing caused by Web authoring

tools.

Figure 7.4 shows several distributions involving the sizes of payloads in the WebTV

trace. The top row of distributions shows that aliased payloads, and the transactions and

bytes transferred due to them, tend to be smaller than their non-aliased counterparts. How-

ever when we examine particular MIME types this generalization does not always hold. For

example, aliasing is associated with slightly larger payload sizes in JPEG transactions and

HTML traffic. Techniques that attempt to eliminate redundant payload transfers should add

a minimal number of header bytes, since the bias toward aliasing of small payloads implies

that potential benefits can easily be squandered.
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1 Mirrored http://mir1.bar.com/img.gif
content http://mir2.bar.com/img.gif

2 Within-site http://bar.com/image.gif
http://bar.com/i.gif

3 Different sites, http://bar.com/img.gif
sameabs path http://foo.com/img.gif

4 Everything http://bar.com/image.gif
different http://foo.com/i.gif

Table 7.3: Causes of aliasing.

7.2.2 Causes of Aliasing

Aliasing can arise in several different ways, e.g., deliberate mirroring, aliasing within a

single site, and identical content available at different sites. We can further decompose the

last cause into cases where theabs path component of the URL is the same, or different.

Table 7.3 provides examples of the possibilities.

Knowing the cause of aliasing can help us decide where to focus efforts at remedia-

tion. A site can replace an ad-hoc mirroring strategy with a CDN, which does not introduce

aliasing into the HTTP namespace [55]. Site administrators can avoid type 2 aliasing,

following the advice of a CacheFlow white paper on cache-friendly site design [49]. Un-

fortunately the widespread use of Web authoring tools can cause type 3 aliasing, and this is

beyond the control of individual sites. Furthermore aliasing occurs evenwithin such tools:

DreamWeaver [102], for instance, contains 632 unique image files under642different file-

names.

The raw WebTV trace is anonymized in such a way that aliasing of types 1 and 3

cannot be distinguished. Furthermore the reduced trace used in my empirical work omits

anonymizedabs path fields, preventing us from distinguishing between types 3 and 4.

We can, however, identify cases where different URLs contain identical versus different

host components.

Payloads of degree 2, i.e., payloads accessed via exactly two different URLs, fall into

exactly one of the categories in Table 7.3. Degree-2 payloads account for 70% of aliased

payloads, 31% of transactions involving aliased payloads, and 34.6% of aliased payload

bytes transferred. 80.56% of degree-2 payloads are accessed via URLs with different host

components; the remainder are cases of within-site aliasing. Though far from probative,
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this finding is consistent with the conjecture that Web authoring tools account for much of

the aliasing in Web transactions.

7.3 Performance Implications of URL-Indexed Caching

In any reference sequence, the first access to a given payload must result in a compul-

sory miss; subsequent transactions involving the same payload, however, can in principle

be served from cache. In this section I compare the miss rates of conventional URL-indexed

caches with compulsory miss rates. The use of URLs to organize and locate payloads in

conventional caches accounts entirely for the difference between the two. As explained

below, compulsory miss rates represent anachievablebound on the performance of a suf-

ficiently large cache.

As noted above, I use the terms “hit” and “miss” to mean respectively “required payload

is obtained from cache” and “payload must be fetched from elsewhere.” This section as-

sumes infinite-capacity caches that require no removal policy and suffer no capacity misses.

It furthermore considers only semantically transparent caches, i.e., caches where hits sup-

ply exactly the same payload as the origin server would; this can easily be achieved in

practice by revalidating every request.

7.3.1 Abstract Cache Models

A conventional “URL-indexed” cache stores in association with each requested URL

the most recently received reply payload. In addition to compulsory misses, an infinite-

capacity URL-indexed cache suffers a miss, and resulting redundant transfer, if it has pre-

viously received the payload that satisfies the current request, but this payload is not cached

in association with the current request URL.

Just as it is possible to design a cache that wastes no storage on multiple copies of

payloads [17,107], it is possible to design a cache that suffersonlyfrom compulsory misses

(assuming infinite capacity). One can construct such a cache by assuming that the cache

computes a message digest of every stored payload, that the cache maintains an index

mapping digest values to stored payloads, and that every payload-bearing response message

received by the cache is preceded by a digest of that message’s payload, computed by the

108



message sender (i.e., proxy or origin server). This allows the cache to avoid the payload

transfer if it already stores a copy of the payload. The strategy is very simple: “1) cache

forever every payload you receive, and 2) before receiving a payload, verify via digest

lookup that you don’t already have it.” This approach ensures that the current request is

served from cache if the required payload has ever been received before, and therefore

only compulsory misses occur; redundant transfers cannot. Jeff Mogul and I devised this

scheme independently and call it “Duplicate Transfer Detection” (DTD).

Figure 7.5 describes, in pseudocode, how conventional and DTD caches process re-

quests. A DTD cache conceptually maintainstwocaches of received payloads: a “ucache”

indexed by URLs and a “dcache” indexed by payload digest. (A reasonable implementa-

tion, of course, would involve two indices into a single cache of payloads.) Consistency

checks (revalidations) are omitted from the pseudocode for brevity and clarity; in practice

such checks are necessary to ensure semantic transparency. Section 7.5 discusses DTD as a

realizable protocol design. For the present we simply note that compulsory miss rates rep-

resent anachievablebound on the performance of infinite-capacity caches and that DTD is

one way of achieving this bound.

Our idealized cache models differ only in their susceptibility to misses due to the way

they associate stored payloads with URLs. In other words, URL-indexed caching accounts

for the difference between the miss rate of an infinite-capacity conventional cache and the

compulsory miss rate inherent in the reference sequence. By comparing the two we can

quantify precisely what fraction of payload transfers to a URL-indexed cache are redun-

dant; all such redundant transfers are are due to the interplay between server-end content-

naming practices, client access patterns, and conventional URL-indexed caching.

Aliased payloads can cause redundant transfers for URL-indexed caches, but are not

the only cause. For example, a single resource (URL) whose value alternates between two

payloads can also cause redundant transfers. Multiple causes may occur together, so a re-

dundant transfer could fall into several categories. The abstract models in Figure 7.5, and

the simulations in Section 7.3.2, do not isolate the contribution of aliasing to redundant

transfers. Instead they consider the performance penalty that arises from the interaction be-

tween URL-indexed caching and complexities in the namespace, e.g., aliasing and resource

modification.
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Conventional URL-indexed cache

if cache[URL] = correct payload
conventionalhit++

else
compulsorymissor redundanttransfer++
send URL
receive payload
cache[URL] payload

DTD cache

if u cache[URL] = correct payload
conventionalhit++

else
send URL
receive payload digest
if d cache[digest] = correct payload

DTD hit++
send “don’t bother”

else
compulsorymiss++
send “proceed”
receive payload
d cache[digest] payload
u cache[URL] payload

Figure 7.5: URL-indexed and DTD caches.
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7.3.2 Simulation Results

I computed compulsory and URL-indexed miss rates and byte miss rates for 1) the ag-

gregate browser cache population of over 37,000 clients, 2) a shared proxy cache serving

cacheless clients, 3) a proxy serving infinite URL-indexed browser caches, and 4) a proxy

serving infinite DTD browser caches. Table 7.4 shows the results, including the percent-

age of redundant payload retrievals made by an infinite URL-indexed cache. The table

separately reports cold and warm proxy simulation results; I used the first nine days of

transactions in the sixteen-day WebTV trace to warm the simulated proxy for the latter. (I

did not simulate warm clients because at no time are all client caches equally warm: At any

given point in the overall trace, some clients have issued many requests while others have

issued few or none.)

The results show that conventional URL-indexed caching entails large numbers of re-

dundant transfers at both levels of the cache hierarchy: Nearly 10% of payload transfers

to clients and over 20% of payload transfers to a shared proxy are redundant. Even if re-

dundant proxy-to-browser payload transfers are eliminated by DTD browser caches, nearly

12% of payload transfers to a URL-indexed proxy would be redundant. Under 4% of the

network traffic between the proxy and infinite-capacity conventional clients is redundant,

as is over 13% of the traffic reaching a URL-indexed proxy serving infinite URL-indexed

or cacheless clients.

The WebTV system is a somewhat peculiar environment, and it is reasonable to suspect

that thin-client surfing might differ systematically from browsing with conventional rich

clients. I therefore repeated the performance evaluations using a large proxy trace recorded

on the Compaq corporate network. This trace, described in detail by Mogul [116], is sum-

marized in Table 7.5 (the number of client hosts in the table is an underestimate, due to

the loss of backup tapes at Compaq). Like the WebTV trace, the Compaq trace contains

payload digests, but because browser caches were enabled it reflects only browser cache

misses. Therefore the Compaq trace cannot be used to evaluate browser cache perfor-

mance. As with the WebTV data, I use a reduced Compaq trace containing only status-200

transactions; a small number of erroneous transactions are also excluded.

The last two rows of Table 7.4 show simulated miss rates and byte miss rates for an

infinite-capacity shared proxy serving the Compaq workload. For the warm-proxy results

I warm the simulated cache with the first 50 million transactions and tabulate miss rates
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Miss Rates Byte Miss Rates
Simulated cache URL-indexed compulsory % redundantURL-indexed compulsory % redundant

cold ∞-cache clients 29.45 26.57 9.78 54.02 52.00 3.75
cold proxy serving cacheless clients 14.35 11.22 21.85 37.37 32.40 13.31

∞ URL-indexed clients 48.55 38.08 21.55 69.02 59.97 13.11
∞ DTD clients 47.83 42.21 11.75 69.27 62.30 10.06

warm proxy serving cacheless clients 12.93 9.93 23.14 35.58 30.40 14.55
∞ URL-indexed clients 46.30 35.74 22.80 67.42 57.77 14.32
∞ DTD clients 45.48 40.09 11.85 67.79 60.24 11.14

cold Compaq proxy, caching clients 46.84 38.77 17.24 67.49 59.53 11.79
warm Compaq proxy, caching clients 44.90 36.58 18.54 65.50 56.56 13.65

Table 7.4: URL-indexed and compulsory miss rates and % of URL-indexed payload transfers that are redundant.
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Clients at least 21,806
Server hostnames at most 454,424
URLs 19,644,961
Unique payloads 30,591,044
(URL, payload) pairs 34,848,044
Transactions 78,913,349
Bytes transferred

Total 902,792,408,397
Unique payloads 537,460,558,056

Table 7.5: Compaq reduced trace summary statistics.

based only on subsequent transactions. The Compaq results are roughly similar to the

WebTV results: Over 17% of a URL-indexed cache’s payload retrievals are redundant, as

is roughly 12% of origin-to-proxy traffic.

7.4 Explaining Redundant Transfers

The original motive for my investigation of aliasing was to explain the high rates of re-

dundant proxy-to-browser payload transfers in the WebTV system described in Section 6.2:

Actual client miss rates are far higher than predicted by a simulated client-cache model that

includes only compulsory and capacity misses. Redundant transfers can result from at least

three causes: 1) faulty metadata supplied by origin servers or intermediaries, 2) poor brow-

ser cache management, and 3) URL-indexed caching. It now appears that URL-indexed

caching accounts for a substantial fraction of redundant payload transfers to WebTV clients,

but not all of them. A thorough investigation of the remaining possibilities is the subject of

my ongoing research; I offer a few tentative observations below.

Inappropriate metadata appears frequently in reply headers, and sometimes takes sur-

prising forms. For instance, in the WebTV trace, different replies from the same server

containing the same payload sometimes containdifferententity tags. This curious phe-

nomenon can cause “If-None-Match ” revalidation attempts to fail needlessly, resulting

in redundant payload transfers. Other researchers have explained this problem, which arises

when large server farms fail to harmonize entity tags across server replicas [169].

Mogul investigated erroneous HTTP timestamps in a large trace and reported that

38% of responses contained impossibleDate header values and 0.3% had impossible
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Last-Modified values [115]. Some timestamp errors might cause transparency fail-

ures; others might cause needless revalidations. Wills & Mikhailov report a different kind

of timestamp error: TheLast-Modified reply header of a resource sometimes changes

even when the reply body does not [169].

Anecdotal evidence suggests that Web design tools do not encourage content creators

to associate reasonable expiration dates with pages. This is unfortunate because many

commercial sites might incorporate business rules intoExpires headers, e.g., “resources

are modified only during business hours”; however, such practices seem to be rare. Finally,

origin servers are not the only source of faulty metadata. The popular Squid proxy, for

example, does not update cached object headers after revalidations [126].

The WebTV browser cache truncates expiration dates to a maximum of 24 hours; this

may increase the number of revalidations but in itself will not cause redundant payload

transfers. However the WebTV browser furthermoreevictsexpired items rather than reval-

idating them with conditional GET requests [37,151]. The Mozilla browser cache, by con-

trast, is designed to comply with the letter and spirit of HTTP/1.1 [65,120]. WebTV’s strat-

egy prevents transparency failures when expiration dates are overly optimistic and might

simplify implementation in memory-constrained client devices, but it might also inflate

client miss rates. It appears to follow the obsolete HTTP/1.0 standard (RFC 1945 of May

1996), which explicitly states that expired cache entries should be discarded:

The Expires entity-header field gives the date/time after which the entity should

be considered stale. ....Applications must not cache this entity beyond the date

given.[24] (emphasis added)

The current standard specifies far more reasonable behavior:

The Expires entity-header field gives the date/time after which the response is

considered stale. A stale cache entry may not normally be returned by a cache

... unless it is first validated with the origin server.... [64] (emphasis added)

7.5 Avoiding Redundant Transfers

Section 7.3.1 described an abstract model for a cache that suffers only compulsory

misses. Here I sketch how this can be realized in a practical protocol design, as an extension
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to HTTP. This design avertsall redundant payload transfers, including but not limited to

those caused by aliasing. Jeff Mogul and I conceived this simple scheme independently;

we call it “Duplicate Transfer Detection” (DTD). DTD can be applied both to client and

proxy caches.

First, consider the behavior of a traditional HTTP cache. Such a cache is URL-indexed:

If the cache finds that it does not currently hold an entry for a requested URLU , this

is a cache miss. On a miss, the cache issues or forwards a request for the URL toward

the origin server, which would normally send a response containing payloadP. If the

cache holds an expired entry forU , it may send a “conditional” request, and if the server’s

view of the resource has not changed, it may return a “Not Modified” response without

a payload. Real HTTP caches differ from the abstract URL-indexed model defined in

Section 7.3.1 because they implement HTTP’s cache-consistency mechanisms, and so may

suffer redundant transfers resulting from inappropriate metadata and from self-inflicted

wounds, so to speak (see Section 7.4), as well as from “namespace confusion” (aliasing

and resource modification).

Now consider an idealized, infinite cache that retains in storage every payload it has ever

received, even those that a traditional HTTP cache would not treat as valid cache entries.

A finite, URL-indexed cache differs from this idealization because it implements both an

update policy (it stores only the most recent payload received for any given URL), and a

replacement policy (it stores only a finite set of entries, selected for maximum expected

value).

The concept behind Duplicate Transfer Detection is quite simple: If our idealized cache

can determine, before receiving the payload, whether it had ever previously receivedP, then

we can avoid transferring that payload. Such a cache would experience only compulsory

misses and would never suffer redundant payload transfers. A finite-cache realization of

DTD would, of course, also suffer capacity misses.

How does the cache know whether it has received a payloadP before the server sends

the entire response? DTD follows the model of the abstract cache described in Sec-

tion 7.3.1. The cache maintains one set of cache entries but two lookup tables: one indexed

by URL, and one indexed by the digest of each stored payload. If a DTD cache finds no

fresh entry under the requested URLU , it forwards a (possibly conditional) request to the

origin server. If the server replies with a payload, it first sends the digestD of the payload,
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and the cache checks for a stored entry with a matching digest value. On a digest match,

the cache can signal the server not to send the payload (although the server must still send

the HTTP message headers, which might be different). Thus, while DTD does not avoid

transferring the request and response message headers, it can avoid any redundant payload

transfer. We say that a “DTD hit” occurs when DTD prevents a payload transfer that would

have occurred in a conventional URL-indexed cache.

An idealized, infinite DTD cache storesall payloads that it has received. In particular, it

does not delete a payloadP from storage simply because it has received a different payload

P0 for the same URLU . A realistic, finite DTD cache will eventually delete payloads from

its storage, based on some replacement policy. A DTD cache might benefit from retain-

ing old cache entries that other cache replacement and update algorithms would discard,

speculating that such an entry will yield a future DTD hit.

DTD can be implemented in at least two ways. One minimizes bandwidth consumption

by ensuring that redundant payload transfers never occur; however it sometimes entails an

extra round-trip time (RTT) between data receiver and sender. The other implementation

strategy minimizes client latency by ensuring that data is transmitted as rapidly as possible;

however it sometimes entails redundant data transmission. To minimize bandwidth, on

receiving a request the server sends the response headers (including the payload digest) but

defers sending the payload until the client sends an explicit “proceed” request. To minimize

latency, the server sends the payload immediately, but stops if the client sends an “abort”

message. The “proceed” model imposes an extra RTT on every compulsory and capacity

miss, but never sends any redundant payload bytes. (A more intricate form of the “proceed”

model could amortize this delay over several misses, as described in Section 7.5.1.) The

“abort” model does not impose additional delays, but the abort message may fail to reach

the server in time to prevent redundant traffic from being transmitted.

Finally, note that DTD caches allow us to dispense entirely with the curious notion of

“uncachable content.” No special treatment is required for “dynamic” content generated by

CGI scripts or content customized via cookies. With DTD, a payload is a payload, and all

payloads are equally cachable. DTD guarantees that redundant transfers never occur, and

it requires no sacrifice in semantic transparency.
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7.5.1 Latency Analysis

It is straightforward to analyze the relative latencies of a conventional URL-indexed

cache and a DTD cache (using the “proceed” model). Ignoring revalidations and assuming

that cache hits are instantaneous and request messages are negligibly small, the average-

case latencies of these two approaches are given by the following expressions:

DTD hit miss

URL� indexed : Pd(R+Sp=B) + Pm(R+Sp=B)

DTD : Pd(R+Sd=B) + Pm(R+Sd=B+R+Sp=B)

wherePd is the probability that a request misses in a URL-indexed cache but would hit

in a DTD cache,Pm is the probability of a compulsory or capacity miss,R andB are the

round-trip latency and bandwidth of the communications medium, respectively,Sp is the

mean size of a reply payload, andSd is the size of a payload digest.

The latency of a URL-indexed cache is greater when

Pd

Pm
>

BR+Sd

Sp�Sd

Substituting into this equation parameter estimates for the WebTV system with infinite

client caches (Pd = 2:89%; Pm= 26:57%; B= 33:6 Kbps; R= 100 ms; Sd = 32 bytes; Sp=

13;441 bytes ) we find that DTD offers lower latency (0.908 sec/transaction versus 0.972

sec/transaction, on average). DTD offers lower latency forSp values larger than roughly

3600 bytes.

This average analysis overestimates the RTT overhead of the “proceed” model because

it considers transactions individually. A reasonable browser-proxy implementation of DTD

would likely “bundle” requests and payload digests using HTTP pipelining over persistent

connections, in the common case where the client requests an HTML container page fol-

lowed by many embedded page components. In such an implementation the number of

wasted RTTs would not exceed two per compound Web page. In the WebTV workload

the ratio of HTML replies to GIF and JPEG replies is roughly 1:9, which implies a worst

case of two DTD RTTs wasted per ten HTTP requests. Trans-continental RTT is roughly
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100 ms in the United States, and the additional latency of two RTTs would barely exceed

the threshold of perception.

Note that the “abort” model for DTD, in which the server simply transmits a normal

reply preceded by a payload digest rather than waiting for a “proceed” message,always

results in receiver latency less than or equal to that of URL-indexed caching. However the

“proceed” model conserves bandwidth by ensuring that no fraction of a payload is ever

transmitted to a receiver that already has it. Because of the complexity of TCP behavior, it

is nearly impossible to use an average-case analysis to estimate the bandwidth savings in

the “abort” model.

The foregoing average-case analysis omits many details and therefore may not accu-

rately predict the performance of actual DTD implementations. A more detailed analytic

and empirical evaluation of the costs and benefits of DTD is the subject of my ongoing

work with Jeff Mogul and Yee Man Chan. However the simplified performance model

above formalizes our intuition that in low-bandwidth/low-RTT environments the “proceed”

model entails little latency penalty.

7.5.2 Security Issues

Measures that improve the performance of computing systems often create subtle secu-

rity vulnerabilities, and caching is a prime example. Timing attacks on processor memory

hierarchies have been known for decades, e.g., the famous TENEX vulnerability described

in Tanenbaum’s OS text [153, pp. 183–4]. Recently Felten et al. have described variants

applicable to Web cache hierarchies [63]. At least two new security problems arise when

DTD is used in cache hierarchies.

First, if an attacker can generate payload digest collisions, then she can cause a DTD

proxy to deliver incorrect payloads, as illustrated by the following scenario:

1. User Alice’s browser forwards requests to a shared proxy. DTD is employed in the

server-to-proxy hop.

2. Alice issues a request for which the correct reply payload isP.

3. Evildoer Eve has previously created a payloadP0 such that digest(P0)= digest(P) and

has caused it to be cached in the proxy (this can occur in the course of an ordinary
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transaction; the proxy need not deviate from its prescribed behavior nor “collude”

with Eve in any sense).

4. The proxy forwards Alice’s request to the origin server, which replies with digest(P).

5. The proxy finds that it already has a cached payloadP0 with a matching digest, and

therefore does not retrieve payloadP from the origin server.

6. The proxy transmits Eve’s incorrect payloadP0 to Alice.

This attack can be prevented through the use of secure message digest functions such as

MD5 [139] and SHA1 [127], for which it is thought to be computationally infeasible to

generate collisions.

A more subtle problem involves information leakage; interestingly, the attack doesnot

rely on timing information of any kind. A server can exploit DTD to learn the contents of

a client’s cache:

1. User Bob’s browser and thenosy.com server employ DTD.

2. Bob issues a request for URLhttp://nosy.com/humdrum.html .

3. nosy.com replies with digest(naughty.gif ), even though it never receives or

serves requests for this interesting payload.

4. Bob’s browser tells server “already got that,” thereby revealing something about

Bob’s past surfing.

Sophisticated implementations of this attack might employ JavaScript within HTML pages

to systematically search a client’s cache for interesting payloads, analogous to the timing

attacks described by Felten et al [63]. Attacks of this form can be detected by simply always

sending “proceed” instead of “already got that,” retrieving the reply payload, and verifying

that its digest matches the one sent by the server. Of course, this countermeasure negates

the benefits of DTD and should perhaps be done by “privacy auditors” using simulated

clients, rather than by ordinary users. Another countermeasure is to permit users to “opt

out” of DTD by disabling this feature, perhaps on a selective, site-by-site basis. A still more

cautious countermeasure would be to employ DTD only within individual sites. However

this approach may severely limit the benefits of DTD, because as noted in Section 7.2.2

most aliasing occursacrosssites rather than within sites.
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7.5.3 Similar Proposals

DTD is an application-level analogue of the network-level approach proposed by San-

tos & Wetherall [143] and Spring & Wetherall [150], in which packet-payload digests are

used to avert redundant data transfers betweenrouters. The two approaches are in some

sense complementary, because each can avoid some redundant data transfers eliminated

by the other. For example, the router-based approach can eliminate transfers of common

prefixes of slightly different payloads, while DTD does not suffer from the re-packetization

potentially caused by pipelining in HTTP. The approaches also differ in adoption dynam-

ics: The router-level technique is easier to deploy for an organization that controls network

infrastructure, while the application-level technique may be preferable for a single orga-

nization that controls two levels of a cache hierarchy (e.g., the client and proxy caches of

AOL or WebTV).

7.5.4 Alternatives to DTD

While DTD is a simple and fully general solution to the problem of redundant payload

transfers, it comes with a price. As shown in Section 7.5.1, the bandwidth-saving “proceed”

variant of DTD typically imposes additional latency on clients, and the latency-minimizing

“abort” variant sometimes saves little bandwidth. If we can attribute most redundant trans-

fers to a single cause, perhaps we can devise a less general and less costly solution than

DTD.

As noted in Sections 7.2.1 and 7.2.2, the aliasing observed in the WebTV trace is con-

sistent with the hypothesis that Web authoring tools such as FrontPage have filled the Web

with aliased images, and that these account for much of the aliasing in Web transactions.

The WebTV and Compaq traces are anonymized in such a way as to preclude definitive

investigation of this issue, but if future research confirms the authoring-tool conjecture

several special-purpose solutions are available.

Instead of installing redundant copies of “clip art” images at every customer site, Web

authoring tools might serve each image from a central server, or from a content distribution

network such as Akamai. The former approach eliminates aliasing but creates a single point

of failure for all Web sites that use the authoring tool. It might also raise privacy concerns,

because the image server might learn about the workloads of sites that use the authoring tool
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(e.g., through Referer headers). The CDN approach eliminates aliasing without introducing

fragility, and furthermore may improve end-user latency.

Going one step further, we can imagine bundling the clip art imageswith browsers

instead of with Web authoring tools. (In other words, transmit images from FrontPage

to Internet Explorer once, in Redmond, rather than millions of times via the Web.) This

approach eliminates evencompulsorymisses and requires no modifications to the HTTP

protocol. One implementation strategy would be to create a new type of HTML image tag

that contains both a payload digest and a URL. The meaning of the new tag is that an image

with the given digest should be inserted. If such an image cannot be found in the browser

cache it can be fetched using the given URL, ensuring that older browsers not bundled with

newer clip art will still function properly.

7.6 Discussion

My results show that aliasing is a surprisingly prevalent phenomenon in Web transac-

tions; by several measures it is present to a greater extent than resource modification, yet it

has received far less attention in the research literature. I have also shown that namespace

phenomena such as aliasing and resource modification are not merely academic curiosities.

My analysis of two large workloads from very different environments demonstrates that

content-naming practices interact with client access patterns in such a way as to cause sub-

stantial numbers of redundant retrievals in conventional URL-indexed Web caches. The

costs of redundant transfers in terms of end-user latency and server load are difficult to

quantify in monetary terms, but the monetary cost in terms of wasted bandwidth can be

computed easily in environments where bandwidth costs are straightforward. The Financial

Director of IT at the University of Michigan reports that roughly 15% of traffic between U-

M and the outside world is Web-related, that our institution currently pays $1.9 million per

year for bandwidth, and that this cost is roughly linear in bandwidth consumed [76, 132].

If roughly 14% of origin-to-proxy Web traffic is redundant in the warm steady state, as

suggested by Table 7.4, it costs U-M nearly $40,000 annually.

The Mogul/Kelly Duplicate Transfer Detection protocol extension provides a fully gen-

eral way to eliminate redundant transfers, regardless of cause. It is conceptually very sim-

ple; veteran Web browser and proxy implementors have assured me that it would be easy to
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implement and deploy in a production environment [101,151]. Because it is a hop-by-hop

mechanism, adoption dynamics pose few difficulties in any environment where adjacent

HTTP endpoints are inclined to cooperate, e.g., between the proxy and browser caches of

AOL or WebTV, or between a content provider and the edge servers of a CDN. Finally,

DTD permits so-called “dynamic” content to be cached safely and consistently without

any special treatment.

When DTD is used to eliminate redundant transfers (the “proceed” model), it some-

times introduces an extra round trip into transactions. Although in typical cases this RTT

is small and can furthermore be amortized over several HTTP requests, in some cases it

might be too high a price to pay. My analysis is consistent with the hypothesis that many

of the redundant transfers that occur in practice may be due to aliasing caused by the “clip

art” images bundled with Web authoring tools like FrontPage, DreamWeaver, etc. If this

proves to be the case, then DTD is not the only remedy available; the little images could be

served from a single site, served from a CDN, or bundled with browsers.
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CHAPTER 8

Summary and Future Work

To scale and to serve offered workload efficiently, distributed information retrieval sys-

tems such as the World Wide Web must employ caching to the fullest extent permitted by

offered workload. In this thesis I demonstrate that today’s Web caches fall short of the

performance bounds they might attain, and I contribute several methods for optimizing or

improving the performance of Web caches along several dimensions, including

1. a removal policy that strives to maximize the run-time value of caches as defined by

stakeholder (content provider) preferences;

2. a method of precisely computing cost-minimizing cache sizes under realistic and

very general workload and cost assumptions; and

3. a fully general method of eliminating redundant data-payload transfers.

One distinctive feature of my research is that I adopt generalized notions of cost and per-

formance that support sensitivity to system stakeholder preferences. Another is that I focus

on system-wide interactions, end-to-end performance, and fundamental exogenous system

workloads rather than on component workloads and performance. Finally, for my empiri-

cal work I have obtained several of the most detailed and the largest data sets in existence;

these in turn required me to advance the state of the art in analytic techniques.

Beyond my practical contributions, I make a number of noteworthy observations. Con-

trary to conclusions drawn from studies of distributed file systems, I find that sharing across

Web client reference streams is so strong that a shared proxy cache can attain high hit rates
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even if dedicated client caches are large. In a similar vein, I report that themarginalbene-

fits of proxy cachingincreasewith browser cache size. Finally, I prove that under certain

circumstances a decentralized algorithm can compute globally-optimal cache sizes at every

node in a large two-level branching hierarchy.

In Section 8.1 I describe how my contributions fit together to improve our understanding

of Web caching and in Section 8.2 suggest avenues for future work.

8.1 Summary of Contributions

Several of my contributions can be viewed as generalizations of conventional notions

of “workload” and “performance.” Biased Web cache removal policies have been proposed

before, but the insight that miss penalties can reflect stakeholder (e.g., content provider)

preferences and that such policies can therefore provide variable QoS through dynamic

adaptation to preferences is original to the MARX project [105], which provided the first

detailed evaluation of such a scheme [86, 87] (Chuang discusses variable-QoS cache man-

agement schemes in very general terms but does not evaluate specific methods [46].) This

perspective broadens our concept of workload to include heterogeneous stakeholder pref-

erences and allows us to accommodate these preferences within the existing framework of

removal policies. Similarly the idea that capacity planning can optimize the caching trade-

off between the costs of bandwidth and storage is not new. However the optimal sizing

method I introduced generalizes existing data-engineering rules of thumb to non-uniform

document sizes and completely arbitrary per-access miss costs. The latter may reflect any

criteria whatsoever, including the preferences of the content consumers and providers in-

volved in each transaction.

Furthermore my research has investigated in novel ways the interplay between dif-

ferent workload characteristics as they affect caching. For instance, I have demonstrated

(Section 3.4) that it will be difficult for weighted-LFU removal policies to adapt to hetero-

geneous client preferences if document popularity and per-client hit valuations are uncor-

related. This is only a partial negative result; it proves that one class of biased replacement

policies is ill-suited to a particular combination of workload characteristics, but does not

preclude the possibility that client preferences can guide welfare-maximizing cache man-

agement. To take another example, I have shown that the fundamental exogenous workload
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entering the Web from opposite ends—content naming and client access patterns—interact

in such a way as to cause many unnecessary misses in conventional URL-indexed caches.

In response to this finding I devised a straightforward and comprehensive payload-transfer

optimization mechanism that completely eliminates redundant transfers. These results un-

derscore the importance of a system-level perspective and the perils of focusing exclusively

on a subset of components or workload characteristics.

In several ways my results focus our attention specifically onlarge-scalecaching sys-

tems. My proof that decentralized self-interested computations yield globally-optimal

cache sizes throughout a two-level branching cache hierarchy holds only in the limit as the

client population grows large; this result is somewhat reminiscent of the competitiveness

assumption underlying key results in microeconomic theory [106, Section 12.F]. In terms

of empirical methodology the scale of my investigations is in many ways unprecedented.

The cache-busting proxy method of trace collection is neither highly original nor highly

sophisticated. Yet I was the first to employ this technique and demonstrate its viability by

collecting a client trace two orders of magnitude larger than any other reported in Web-

related literature. To analyze this vast quantity of data I developed fundamentally more

efficient simulation methods, e.g., a parallel general-purpose simulator and a generalized

fast single-pass stack simulation algorithm. The latter represents an incremental advance

over techniques that are well known among hardware designers, but it represents a dramatic

improvement in efficiency compared with the methods that Web caching researchers had

previously employed.

Finally, from a practical standpoint one of my most important contributions is to af-

firm that shared intermediate proxy caches can substantially improve important perfor-

mance metrics for today’s Web workloads. Sharing across Web client request streams is

far stronger than in distributed file systems, and the merged miss sequences of many Web

clients contain sufficient re-referencing to support high proxy hit rates even if client caches

are large. Furthermore I have shown that themarginalbenefits of proxy capacity expan-

sion aregreaterwhen browser caches are large. These findings demonstrate that proxies

can play an important role in reducing server loads and network traffic, and that client

capacity expansionincreasesthe motivation for proxy capacity expansion.
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8.2 Future Work

In the near term I intend to evaluate more thoroughly the latency effects of Duplicate

Transfer Detection using microbenchmarks and prototype implementations. Jeff Mogul

and I have been joined in our ongoing DTD work by MARX project veteran Yee Man Chan,

who at the time of this writing is implementing DTD in the Squid freeware proxy. In the

longer term DTD should be deployed in a well-instrumented production environment. My

efforts to persuade the WebTV browser, proxy and network operations teams to implement

and deploy DTD continue. A critical mass of enthusiasm for such a project has not yet

accumulated among key personnel at WebTV, but I’m confident that a persuasive detailed

case for DTD will lead to large scale testing.

Content naming and its impact on conventional cache performance remains a promis-

ing area for future research. The “proceed” variant of DTD can completely eliminate re-

dundant payload transfers resulting from the combination of namespace complexity, user

access patterns and URL-indexed caching. However it entails a latency penalty, and if a

single underlying cause that accounts for the bulk of redundant transfers can be identified

and eliminated, we might obtain all the benefits of DTD without this penalty. My findings

in Chapter 7 suggest the intriguing possibility that authoring tools have populated the Web

with large numbers of “clip art” image files that are accessed via multiple URLs. A recent

trace that records both payload checksums andplaintextURLs would be required to defini-

tively investigate this hypothesis (the WebTV trace is unsuitable because both URLs and

payload digests are irreversibly anonymized). If it proves to be correct, a number of inter-

ventions are possible. The most obvious is to serve each clip art image from a single server

site, e.g.,images.frontpage.com , rather than from every site that uses the tool. The

images might also be served from a CDN’s edge servers, or even bundled with browsers.

A detailed evaluation of the relative merits of these approaches and their potential benefits

on the real Web would be a significant contribution.

The cache-busting proxy method of Chapter 6 seems destined for further use among

researchers. Adam Bradley of Boston University has implemented a cache-busting proxy,

and his team intends to use it to collect data for their research [30]. An obvious enhance-

ment to the basic technique would be to alter replies to actively flush client caches, e.g., by

appending semantically insignificant newline characters to HTML pages served.
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The optimal cache sizing method of Section 4.4 can be applied only in an environment

where both cache workload and miss penalties are available. Unfortunately my (admit-

tedly limited) experience has shown that environments where miss penalties are readily

available, e.g., institutions like the University of Michigan where bandwidth costs increase

linearly with traffic volume, happen to be places where workload is very difficult to mea-

sure on a large scale. Conversely, environments like WebTV where large-scale workload

measurement is feasible have proven to be those where credible monetary miss penalties

are very difficult to estimate. A natural next step in the evaluation of the method is to iden-

tify a production system where workload measurement and cost estimation can be done at

reasonable cost and quantify the monetary savings that would result from optimally-sized

caches in such an environment. An orthogonal avenue of development for the optimal

sizing method is to explore ways of generalizing it to accept per-reference penalties for

successful revalidations as well as payload fetches; such an extension is desirable for situ-

ations where costs reflect the disutility of latency.

Storage costs have plummeted in recent years and the decline is expected to continue;

some might therefore argue that optimal cache sizing methods will become unnecessary.

This line of reasoning is faulty for several reasons. First, costratios rather than absolute

costs should guide design, and technology price ratios relevant to a wide range of computer

system design problems have in some cases remained remarkably constant over periods

of many years [70, 72]. Furthermore workloads often expand at rates that keep pace with

technological improvements and cost decreases. As entertainment content moves from

broadcast media to retrieval-on-demand systems, optimal capacity planning will take on

new importance. The music stores and video rental outlets of tomorrow are shared caches,

and they must be designed well to compete.

Future research on preference-sensitive removal policies should emphasize measuring

stakeholder preferences rather than comparisons among biased replacement policies using

randomly-generated preferences. As I have shown in Chapter 3, the basic method requires

preferences that vary over large scales when applied to the problem of maximizing value

to content providers. It furthermore requires that preferences be correlated with document

reference counts when applied to the problem of maximizing client value, as explained

in Section 3.4. The next step for research on applications of biased removal policies to

run-time value maximization is to determine whether these requirements are satisfied in
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practice. If they are, then it will be possible to conduct credible evaluations of the overall

method on real workloads and real client preferences using the most recent cost-aware

removal policies, e.g., GreedyDual* [82]. Readers interested in pursuing such work are

warned that the Web caching community has grown weary of studies comparing biased

removal policies. The first panel discussion at the 2001 Web Caching Workshop, which

occasioned little debate and much nodding, considered the proposal, “Resolved: Publish

no more papers on Web cache replacement policies.” Future research should emphasize

the measurement of user value and potential benefits of run-time maximization rather than

comparisons of replacement policies.

Much of my empirical research follows a simple paradigm characteristic of research in

experimental computer science: 1) measure fundamental, exogenous, system-level work-

load on a large scale in an important production environment; 2) measure performance

bounds inherent in the workload itself, independent of the system currently serving it;

3) identify gaps between the actual and potential performance of the system under study;

and 4) devise ways of closing these gaps that are compatible with existing components,

architectures, protocols and standards. This approach has proven fruitful for my study of

Web cache hierarchies, and I believe that it is applicable to many other systems. In par-

ticular I conjecture that a wide range of emerging “Web services” [44] will not initially be

optimized for the applications that are built on them. Like early Web cache hierarchies,

first-generation Web services will likely be based on sub-optimal system architectures and

protocols, designed with insufficient workload knowledge, and deployed in haste. Much

low-hanging fruit will grow as applications based on Web services mature, and the methods

I have applied in my thesis research are a promising way of harvesting it.
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